1
|
Jiang L, Lai J, Xu X, Lu Y, Gu K, Chen S, Xu L, Liu K. Reduced insulin clearance in paediatric metabolic (dysfunction)-associated fatty liver disease and its dual role in beta-cell offload and diabetes risk. Diabetes Obes Metab 2024; 26:5390-5398. [PMID: 39192529 DOI: 10.1111/dom.15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
AIM Diminished hepatic insulin clearance (HIC) is observed in obese adults and is presumed to be mediated by fatty liver. However, few reports have examined HIC in Chinese children with metabolic (dysfunction)-associated fatty liver disease (MAFLD). This study aimed to investigate the correlation between HIC, insulin sensitivity and β-cell function in obese Chinese children with MAFLD. METHODS In total, 204 obese children (74 MAFLD) aged 4-17 years were enrolled into this study. HIC, insulin sensitivity and β-cell function were calculated using the oral glucose tolerance test (1.75 g/kg body weight). Correlation analyses between the HIC and clinical variables were performed using Pearson's product-moment correlation coefficients. HIC and glucose homeostasis were assessed in a high-fat diet mouse model, and liver samples were collected for molecular analysis. RESULTS Obese children with MAFLD exhibited significantly lower HIC (AUCC-peptide/insulin ratio, p = 0.0019), higher insulin resistance (homeostatic model assessment of insulin resistance, p = 0.002), and increased compensatory β-cell function (homeostatic model assessment-β, p = 0.046) than obese children without liver involvement. Notably, HIC was negatively correlated with insulin sensitivity (r = -0.5035, p < 0.0001) and β-cell function (r = -0.4576, p < 0.0001). However, pancreatic β-cell dysfunction (p = 0.046) was accompanied by future reduced HIC (p = 0.034) in children with MAFLD in prediabetes. In a high-fat diet mouse model, MAFLD mice showed a 50% reduction in insulin-degrading enzyme expression, consistent with the observed decrease in HIC. CONCLUSIONS A lower HIC may offload pancreatic β-cells at an early stage. However, obese children with MAFLD are at risk of developing diabetes, and preventive efforts should be prioritized.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Jinxin Lai
- Department of Medical Laboratory, Wuxi Eighth People's Hospital, Wuxi, China
| | - Xu Xu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yang Lu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Kefeng Gu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Sha Chen
- Department of Obstetrics and Gynecology, Affiliated Women's Hospital of Jiangnan University (Wuxi Maternity and Child Health Care Hospital), Wuxi, China
| | - Lulian Xu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Kerong Liu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| |
Collapse
|
2
|
Lautt WW. Hepatalin: the missing link in prediabetes, obesity, and type 2 diabetes. Can J Physiol Pharmacol 2023; 101:117-135. [PMID: 36716439 DOI: 10.1139/cjpp-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatalin is a hormone secreted by the liver in response to pulses of insulin after a mixed nutrient meal, but only if the liver receives two permissive synergistic feeding signals from the stomach. Hepatalin stimulates glucose uptake and storage as glycogen in skeletal muscle, heart, and kidney but not liver, intestines, or adipocytes. Insulin acts primarily on liver and fat. Reduced hepatalin action results in postprandial hyperglycemia, compensatory elevation of insulin secretion, and a resultant shift in partitioning of nutrient energy storage from glycogen in muscle, to fat. Chronic hepatalin suppression leads to a predictable chronology of dysfunctions, first diagnosable as Absence of Meal-induced Insulin Sensitization (AMIS) which progresses to prediabetes, adiposity, and type 2 diabetes. The focus on nutrient partitioning and the role of hepatalin allows AMIS to be diagnosed, prevented, and treated, including through the use of lifestyle interventions.
Collapse
Affiliation(s)
- W Wayne Lautt
- Department of Pharmacology and Therapeutics, Max Rady Faculty of Health Sciences, University of Manitoba, 260 Brodie Center 727 McDermot Avenue, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
3
|
Mollet IG, Macedo MP. Pre-Diabetes-Linked miRNA miR-193b-3p Targets PPARGC1A, Disrupts Metabolic Gene Expression Profile and Increases Lipid Accumulation in Hepatocytes: Relevance for MAFLD. Int J Mol Sci 2023; 24:ijms24043875. [PMID: 36835287 PMCID: PMC9965679 DOI: 10.3390/ijms24043875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Distinct plasma microRNA profiles associate with different disease features and could be used to personalize diagnostics. Elevated plasma microRNA hsa-miR-193b-3p has been reported in patients with pre-diabetes where early asymptomatic liver dysmetabolism plays a crucial role. In this study, we propose the hypothesis that elevated plasma hsa-miR-193b-3p conditions hepatocyte metabolic functions contributing to fatty liver disease. We show that hsa-miR-193b-3p specifically targets the mRNA of its predicted target PPARGC1A/PGC1α and consistently reduces its expression in both normal and hyperglycemic conditions. PPARGC1A/PGC1α is a central co-activator of transcriptional cascades that regulate several interconnected pathways, including mitochondrial function together with glucose and lipid metabolism. Profiling gene expression of a metabolic panel in response to overexpression of microRNA hsa-miR-193b-3p revealed significant changes in the cellular metabolic gene expression profile, including lower expression of MTTP, MLXIPL/ChREBP, CD36, YWHAZ and GPT, and higher expression of LDLR, ACOX1, TRIB1 and PC. Overexpression of hsa-miR-193b-3p under hyperglycemia also resulted in excess accumulation of intracellular lipid droplets in HepG2 cells. This study supports further research into potential use of microRNA hsa-miR-193b-3p as a possible clinically relevant plasma biomarker for metabolic-associated fatty liver disease (MAFLD) in dysglycemic context.
Collapse
Affiliation(s)
- Inês Guerra Mollet
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
- UCIBIO-Requimte, Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa, 2825-149 Caparica, Portugal
- Correspondence: (I.G.M.); (M.P.M.)
| | - Maria Paula Macedo
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
- Associação Protectora dos Diabéticos de Portugal, Education Research Center (APDP-ERC), 1250-203 Lisbon, Portugal
- Correspondence: (I.G.M.); (M.P.M.)
| |
Collapse
|
4
|
Sousa L, Guarda M, Meneses MJ, Macedo MP, Vicente Miranda H. Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. J Pathol 2021; 255:346-361. [PMID: 34396529 DOI: 10.1002/path.5777] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Insulin-degrading enzyme (IDE) function goes far beyond its known proteolytic role as a regulator of insulin levels. IDE has a wide substrate promiscuity, degrading several proteins such as amyloid-β peptide, glucagon, islet amyloid polypeptide (IAPP) and insulin-like growth factors, that have diverse physiological and pathophysiological functions. Importantly, IDE plays other non-proteolytical functions such as a chaperone/dead-end chaperone, an E1-ubiquitin activating enzyme, and a proteasome modulator. It also responds as a heat shock protein, regulating cellular proteostasis. Notably, amyloidogenic proteins such as IAPP, amyloid-β and α-synuclein have been reported as substrates for IDE chaperone activity. This is of utmost importance as failure of IDE may result in increased protein aggregation, a key hallmark in the pathogenesis of beta cells in type 2 diabetes mellitus and of neurons in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this review, we focus on the biochemical and biophysical properties of IDE and the regulation of its physiological functions. We further raise the hypothesis that IDE plays a central role in the pathological context of dysmetabolic and neurodegenerative diseases and discuss its potential as a therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Luís Sousa
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Mariana Guarda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria João Meneses
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - M Paula Macedo
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal.,Departamento de Ciências Médicas, Instituto de Biomedicina - iBiMED, Universidade de Aveiro, Aveiro, Portugal
| | - Hugo Vicente Miranda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| |
Collapse
|
5
|
Borges DO, Patarrão RS, Ribeiro RT, de Oliveira RM, Duarte N, Belew GD, Martins M, Andrade R, Costa J, Correia I, Boavida JM, Duarte R, Gardete-Correia L, Medina JL, Raposo JF, Jones JG, Penha-Gonçalves C, Macedo MP. Loss of postprandial insulin clearance control by Insulin-degrading enzyme drives dysmetabolism traits. Metabolism 2021; 118:154735. [PMID: 33631143 DOI: 10.1016/j.metabol.2021.154735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/05/2023]
Abstract
Systemic insulin availability is determined by a balance between beta-cell secretion capacity and insulin clearance (IC). Insulin-degrading enzyme (IDE) is involved in the intracellular mechanisms underlying IC. The liver is a major player in IC control yet the role of hepatic IDE in glucose and lipid homeostasis remains unexplored. We hypothesized that IDE governs postprandial IC and hepatic IDE dysfunction amplifies dysmetabolic responses and prediabetes traits such as hepatic steatosis. In a European/Portuguese population-based cohort, IDE SNPs were strongly associated with postprandial IC in normoglycemic men but to a considerably lesser extent in women or in subjects with prediabetes. Liver-specific knockout-mice (LS-IDE KO) under normal chow diet (NCD), showed reduced postprandial IC with glucose intolerance and under high fat diet (HFD) were more susceptible to hepatic steatosis than control mice. This suggests that regulation of IC by IDE contributes to liver metabolic resilience. In agreement, LS-IDE KO hepatocytes revealed reduction of Glut2 expression levels with consequent impairment of glucose uptake and upregulation of CD36, a major hepatic free fatty acid transporter. Together these findings provide strong evidence that dysfunctional IC due to abnormal IDE regulation directly impairs postprandial hepatic glucose disposal and increases susceptibility to dysmetabolic conditions in the setting of Western diet/lifestyle.
Collapse
Affiliation(s)
- Diego O Borges
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School-FCM, Universidade Nova de Lisboa, Lisboa, Portugal; Molecular Biosciences PhD Program, Instituto de Tecnologia Química e Biológica António Xavier - ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rita S Patarrão
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School-FCM, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rogério T Ribeiro
- Sociedade Portuguesa de Diabetologia, Lisboa, Portugal; APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisboa, Portugal; Departamento de Ciências Médicas, Instituto de Biomedicina - iBiMED, Universidade de Aveiro, Aveiro, Portugal
| | - Rita Machado de Oliveira
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School-FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Nádia Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Rita Andrade
- Sociedade Portuguesa de Diabetologia, Lisboa, Portugal; APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisboa, Portugal
| | - João Costa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Isabel Correia
- Sociedade Portuguesa de Diabetologia, Lisboa, Portugal; APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisboa, Portugal
| | - José Manuel Boavida
- Sociedade Portuguesa de Diabetologia, Lisboa, Portugal; APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisboa, Portugal
| | - Rui Duarte
- Sociedade Portuguesa de Diabetologia, Lisboa, Portugal; APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisboa, Portugal
| | - Luís Gardete-Correia
- Sociedade Portuguesa de Diabetologia, Lisboa, Portugal; APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisboa, Portugal
| | | | - João F Raposo
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School-FCM, Universidade Nova de Lisboa, Lisboa, Portugal; Sociedade Portuguesa de Diabetologia, Lisboa, Portugal; APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisboa, Portugal
| | - John G Jones
- APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisboa, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Carlos Penha-Gonçalves
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisboa, Portugal
| | - M Paula Macedo
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School-FCM, Universidade Nova de Lisboa, Lisboa, Portugal; Sociedade Portuguesa de Diabetologia, Lisboa, Portugal; APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisboa, Portugal; Departamento de Ciências Médicas, Instituto de Biomedicina - iBiMED, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
6
|
Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. Biomedicines 2021; 9:biomedicines9010086. [PMID: 33477364 PMCID: PMC7830943 DOI: 10.3390/biomedicines9010086] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a highly conserved and ubiquitously expressed metalloprotease that degrades insulin and several other intermediate-size peptides. For many decades, IDE had been assumed to be involved primarily in hepatic insulin clearance, a key process that regulates availability of circulating insulin levels for peripheral tissues. Emerging evidence, however, suggests that IDE has several other important physiological functions relevant to glucose and insulin homeostasis, including the regulation of insulin secretion from pancreatic β-cells. Investigation of mice with tissue-specific genetic deletion of Ide in the liver and pancreatic β-cells (L-IDE-KO and B-IDE-KO mice, respectively) has revealed additional roles for IDE in the regulation of hepatic insulin action and sensitivity. In this review, we discuss current knowledge about IDE’s function as a regulator of insulin secretion and hepatic insulin sensitivity, both evaluating the classical view of IDE as an insulin protease and also exploring evidence for several non-proteolytic functions. Insulin proteostasis and insulin sensitivity have both been highlighted as targets controlling blood sugar levels in type 2 diabetes, so a clearer understanding the physiological functions of IDE in pancreas and liver could led to the development of novel therapeutics for the treatment of this disease.
Collapse
|
7
|
S-Nitrosoglutathione Reverts Dietary Sucrose-Induced Insulin Resistance. Antioxidants (Basel) 2020; 9:antiox9090870. [PMID: 32942712 PMCID: PMC7555592 DOI: 10.3390/antiox9090870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The liver is a fundamental organ to ensure whole-body homeostasis, allowing for a proper increase in insulin sensitivity from the fast to the postprandial status. Hepatic regulation of glucose metabolism is crucial and has been shown to be modulated by glutathione (GSH) and nitric oxide (NO). However, knowledge of the metabolic action of GSH and NO in glucose homeostasis remains incomplete. The current study was designed to test the hypothesis that treatment with S-nitrosoglutathione is sufficient to revert insulin resistance induced by a high-sucrose diet. Male Wistar rats were divided in a control or high-sucrose group. Insulin sensitivity was determined: (i) in the fast state; (ii) after a standardized test meal; (iii) after GSH + NO; and after (iv) S-nitrosoglutathione (GSNO) administration. The fasting glucose level was not different between the control and high-sucrose group. In the liver, the high-sucrose model shows increased NO and unchanged GSH levels. In control animals, insulin sensitivity increased after a meal or administration of GSH+NO/GSNO, but this was abrogated by sucrose feeding. GSNO was able to revert insulin resistance induced by sucrose feeding, in a dose-dependent manner, suggesting that they have an insulin-sensitizing effect in vivo. These effects are associated with an increased insulin receptor and Akt phosphorylation in muscle cells. Our findings demonstrate that GSNO promotes insulin sensitivity in a sucrose-induced insulin-resistant animal model and further implicates that this antioxidant molecule may act as a potential pharmacological tool for the treatment of insulin resistance in obesity and type 2 diabetes.
Collapse
|
8
|
Determining the contribution of a high-fructose corn syrup formulation to hepatic glycogen synthesis during ad-libitum feeding in mice. Sci Rep 2020; 10:12852. [PMID: 32733017 PMCID: PMC7393509 DOI: 10.1038/s41598-020-69820-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022] Open
Abstract
Excessive sugar intake including high-fructose corn syrup (HFCS) is implicated in the rise of obesity, insulin resistance and non-alcoholic fatty liver disease. Liver glycogen synthesis is influenced by both fructose and insulin signaling. Therefore, the effect of HFCS on hepatic glycogenesis was evaluated in mice feeding ad-libitum. Using deuterated water: the fraction of glycogen derived from triose-P sources, Krebs cycle substrates, and direct pathway + cycling, was measured in 9 normal-chow fed mice (NC) and 12 mice fed normal chow plus a 55% fructose/45% glucose mix in the drinking water at 30% w/v (HFCS-55). This was enriched with [U-13C]fructose or [U-13C]glucose to determine the contribution of each to glycogenesis. For NC, direct pathway + cycling, Krebs cycle, and triose-P sources accounted for 66 ± 0.7%, 23 ± 0.8% and 11 ± 0.4% of glycogen synthesis, respectively. HFCS-55 mice had similar direct pathway + cycling (64 ± 1%) but lower Krebs cycle (12 ± 1%, p < 0.001) and higher triose-P contributions (24 ± 1%, p < 0.001). HFCS-55-fructose contributed 17 ± 1% via triose-P and 2 ± 0% via Krebs cycle. HFCS-55-glucose contributed 16 ± 3% via direct pathway and 1 ± 0% via Krebs cycle. In conclusion, HFCS-55 supplementation resulted in similar hepatic glycogen deposition rates. Indirect pathway contributions shifted from Krebs cycle to Triose-P sources reflecting HFCS-55-fructose utilization, while HFCS-55-glucose was incorporated almost exclusively by the direct pathway.
Collapse
|
9
|
Fu X, Cong H, Zhao S, Li Y, Liu T, Sun Y, Lv N. Construction of Glycometabolism- and Hormone-Related lncRNA-Mediated Feedforward Loop Networks Reveals Global Patterns of lncRNAs and Drug Repurposing in Gestational Diabetes. Front Endocrinol (Lausanne) 2020; 11:93. [PMID: 32210913 PMCID: PMC7068675 DOI: 10.3389/fendo.2020.00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a condition associated with the onset of abnormal glucose tolerance during pregnancy. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and genes can form lncRNA-mediated feedforward loops (lnc-FFLs), which are functional network motifs that regulate a wide range of biological processes and diseases. However, lnc-FFL network motifs have not been systematically investigated in GDM, and their role in the disease remains largely unknown. In the present study, a global lnc-FFL network was constructed and analyzed. Glycometabolism- and hormone-related lnc-FFL networks were extracted from the global network. An integrated algorithm was designed to identify dysregulated glycometabolism- and hormone-related lnc-FFLs in GDM. The patterns of dysregulated lnc-FFLs in GDM were complex. Moreover, there were strong associations between dysregulated glycometabolism- and hormone-related lnc-FFLs in GDM. Core modules were extracted from the dysregulated lnc-FFL networks in GDM and showed specific and essential functions. In addition, dysregulated lnc-FFLs could combine with ceRNAs and form more complex modules, which could play novel roles in GDM. Notably, we discovered that the dysregulated lnc-FFLs were enriched in the thyroid hormone signaling pathway. Some drug-repurposing candidates, such as hormonal drugs, could be identified based on lnc-FFLs in GDM. In summary, the present study highlighted the effect of dysregulated glycometabolism- and hormone-related lnc-FFLs in GDM and revealed their potential for the discovery of novel biomarkers and therapeutic targets for GDM.
Collapse
Affiliation(s)
- Xuelian Fu
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huifang Cong
- Department of Gynecology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuyu Zhao
- Third Ward of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Li
- Third Ward of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianyi Liu
- Third Ward of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhong Sun
- Third Ward of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Lv
- Third Ward of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Nan Lv
| |
Collapse
|
10
|
Matsubayashi Y, Yoshida A, Suganami H, Ishiguro H, Yamamoto M, Fujihara K, Kodama S, Tanaka S, Kaku K, Sone H. Role of fatty liver in the association between obesity and reduced hepatic insulin clearance. DIABETES & METABOLISM 2017; 44:135-142. [PMID: 29395810 DOI: 10.1016/j.diabet.2017.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/13/2017] [Accepted: 12/03/2017] [Indexed: 01/29/2023]
Abstract
AIM Hepatic insulin clearance (HIC) is important in regulating plasma insulin levels. Diminished HIC causes inappropriate hyperinsulinaemia, and both obesity and fatty liver (FL), which are known to decrease HIC, can be found either together in the same patient or on their own. The mechanism by which obesity reduces HIC is presumed to be mediated by FL. However, few reports have examined the role of FL in the relationship between obesity and HIC in type 2 diabetes (T2D) patients. Therefore, our study investigated the association of HIC with clinical factors, including insulin sensitivity indices, focusing on the presence or absence of FL and obesity in T2D patients. METHOD Baseline data from 419 patients with T2D (279 men, 140 women; mean age: 57.6 years; body mass index: 25.5kg/m2) controlled by diet and exercise were analyzed. HIC was calculated from the ratio of fasting c-peptide to fasting insulin levels (HICCIR). Correlation analyses between HICCIR and clinical variables were performed using Pearson's product-moment correlation coefficients and single regression analysis in all participants and in those with obesity and FL either alone or in combination. RESULTS HICCIR was significantly correlated with whole-body insulin sensitivity indices and influenced by FL, but only in the FL group was obesity independently influenced HIC level. HICCIR decreased in those with both FL and obesity compared with those with only one such complication. CONCLUSION HICCIR may be used to evaluate whole-body insulin sensitivity in T2D. Also, compared with obesity, the influence of FL strongly contributed to a reduced HIC. TRIAL REGISTRATION NUMBER These trials were registered by the Japan Pharmaceutical Information Centre clinical trials information (JapicCTI) as 101349 and 101351.
Collapse
Affiliation(s)
- Y Matsubayashi
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan
| | - A Yoshida
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan; Medical information and product advancement department, Kowa Pharmaceutical Co. Ltd, Tokyo, Japan
| | - H Suganami
- Clinical data science department, Kowa Co. Ltd, 3-4-10 Nihonbashi-Honcho, Chuo-ku, 103-0023 TokyoJapan
| | - H Ishiguro
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan
| | - M Yamamoto
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan
| | - K Fujihara
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan
| | - S Kodama
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan
| | - S Tanaka
- Department of clinical biostatistics, Graduate School of Medicine, Kyoto university
| | - K Kaku
- Kawasaki Medical School, Yoshida-konoe-cho, Sakyo-ku, 606-8501 KyotoOkayama, Japan
| | - H Sone
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan.
| |
Collapse
|
11
|
Soares AF, Paz-Montoya J, Lei H, Moniatte M, Gruetter R. Sexual dimorphism in hepatic lipids is associated with the evolution of metabolic status in mice. NMR IN BIOMEDICINE 2017; 30:e3761. [PMID: 28661066 DOI: 10.1002/nbm.3761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 05/28/2023]
Abstract
Ectopic lipid accumulation in the liver is implicated in metabolic disease in an age- and sex-dependent manner. The role of hepatic lipids has been well established within the scope of metabolic insults in mice, but has been insufficiently characterized under standard housing conditions, where age-related metabolic alterations are known to occur. We studied a total of 10 male and 10 female mice longitudinally. At 3, 7 and 11 months of age, non-invasive 1 H-magnetic resonance spectroscopy (1 H-MRS) was used to monitor hepatic lipid content (HLC) and fatty acid composition in vivo, and glucose homeostasis was assessed with glucose and insulin challenges. At the end of the study, hepatic lipids were comprehensively characterized by nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometric analyses of liver tissue samples. In males, HLC increased from 1.4 ± 0.1% at 3 months to 2.9 ± 0.3% at 7 months (p < 0.01) and 2.7 ± 0.3% at 11 months (p < 0.05), in correlation with fasting insulin levels (p < 0.01, r = 0.51) and parameters from the insulin tolerance test (ITT; p < 0.001, r = -0.69 versus area under the curve; p < 0.01, r = -0.57 versus blood glucose drop at 1 h post-ITT; p < 0.01, r = 0.55 versus blood glucose at 3 h post-ITT). The metabolic performance of females remained the same throughout the study, and HLC was higher than that of males at 3 months (2.7 ± 0.2%, p < 0.01), but comparable at 7 months (2.2 ± 0.2%) and 11 months (2.2 ± 0.1%). Strong sexual dimorphism in bioactive lipid species, including diacylglycerols (higher in males, p < 0.0001), phosphatidylinositols (higher in females, p < 0.001) and omega-3 polyunsaturated fatty acids (higher in females, p < 0.01), was found to be in good correlation with metabolic scores at 11 months. Therefore, in mice housed under standard conditions, sex-specific composition of bioactive lipids is associated with metabolic protection in females, whose metabolic performance was independent of hepatic cytosolic lipid content.
Collapse
Affiliation(s)
- Ana Francisca Soares
- École Polytechnique Fédérale de Lausanne, Laboratory for Functional and Metabolic Imaging (LIFMET), Lausanne, VD, Switzerland
| | - Jonathan Paz-Montoya
- École Polytechnique Fédérale de Lausanne, Proteomics Core Facility (PCF), Lausanne, VD, Switzerland
| | - Hongxia Lei
- Center for Biomedical Imaging (CIBM), Lausanne VD, Switzerland and University of Geneva, Department of Radiology, Geneva, Switzerland
| | - Marc Moniatte
- École Polytechnique Fédérale de Lausanne, Proteomics Core Facility (PCF), Lausanne, VD, Switzerland
| | - Rolf Gruetter
- École Polytechnique Fédérale de Lausanne, Laboratory for Functional and Metabolic Imaging (LIFMET), Lausanne, VD, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne VD, Switzerland and University of Geneva, Department of Radiology, Geneva, Switzerland
| |
Collapse
|
12
|
Martins FO, Delgado TC, Viegas J, Gaspar JM, Scott DK, O'Doherty RM, Macedo MP, Jones JG. Mechanisms by which the thiazolidinedione troglitazone protects against sucrose-induced hepatic fat accumulation and hyperinsulinaemia. Br J Pharmacol 2016; 173:267-78. [PMID: 26447327 DOI: 10.1111/bph.13362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/13/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Thiazolidinediones (TZD) are known to ameliorate fatty liver in type 2 diabetes. To date, the underlying mechanisms of their hepatic actions remain unclear. EXPERIMENTAL APPROACH Hepatic triglyceride content and export rates were assessed in 2 week high-sucrose-fed Wistar rats treated with troglitazone and compared with untreated high-sucrose rodent controls. Fractional de novo lipogenesis (DNL) contributions to hepatic triglyceride were quantified by analysis of triglyceride enrichment from deuterated water. Hepatic insulin clearance and NO status during a meal tolerance test were also evaluated. KEY RESULTS TZD significantly reduced hepatic triglyceride (P < 0.01) by 48%, decreased DNL contribution to hepatic triglyceride (P < 0.01) and increased postprandial non-esterified fatty acids clearance rates (P < 0.01) in comparison with the high-sucrose rodent control group. During a meal tolerance test, plasma insulin AUC was significantly lower (P < 0.01), while blood glucose and plasma C-peptide levels were not different. Insulin clearance was increased (P < 0.001) by 24% and was associated with a 22% augmentation of hepatic insulin-degrading enzyme activity (P < 0.05). Finally, hepatic NO was decreased by 24% (P < 0.05). CONCLUSIONS Overall, TZD show direct actions on liver by reducing hepatic DNL and increasing hepatic insulin clearance. The alterations in hepatic insulin clearance were associated with changes in insulin-degrading enzyme activity, with possible modulation of NO levels.
Collapse
Affiliation(s)
- Fátima O Martins
- Metabolic Control Group, Center for Neurosciences and Cell Biology of Coimbra, Cantanhede, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael Roden (DOI: 10.1007/s00125-016-3911-x ).
Collapse
Affiliation(s)
- John G Jones
- Metabolic Control Group, Center for Neurosciences and Cell Biology of Coimbra, UC Biotech, Biocant Park, 3060-197, Cantanhede, Portugal.
- APDP-Diabetes Portugal-Education and Research Center (APDP-ERC), Lisbon, Portugal.
| |
Collapse
|