1
|
Hassanen EI, Hassan NH, Mehanna S, Hussien AM, Ibrahim MA, Mohammed FF, Farroh KY. Oral supplementation of curcumin-encapsulated chitosan nanoconjugates as an innovative strategy for mitigating nickel-mediated hepatorenal toxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03799-4. [PMID: 39836252 DOI: 10.1007/s00210-025-03799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Nickel pollution adversely affects human health and causes various disorders, mainly hepatic and renal dysfunction. The present work focused on a comparative evaluation of the pure form of curcumin (CU) with curcumin-encapsulated chitosan nanoconjugates (CS/CU NCs), on mitigation of the delirious effects of Ni on hepatorenal tissue. Forty-two male rats were allocated into 6 groups (n = 7 for each) as follows: (1) control, (2) CU, (3) CS/CU NCs, (4) Ni, (5) Ni + CU, (6) Ni + CS/CU NCs. After 30 days, blood and tissue (liver and kidneys) were collected to measure hepatorenal biomarkers, oxidant/antioxidant balance, inflammatory gene expression, liver and kidney histopathology, and immunohistochemistry. Results revealed disruption of hepatorenal functions, oxidative stress, and inflammatory markers at biochemical and molecular levels associated with severe hepatorenal histopathological alterations and abnormal immunohistochemical tissue expression for caspase-3 and cyclooxygenase-2. On the contrary, the treatment of Ni-intoxicated rats with CS/CU NCs markedly mitigated the adverse effect of Ni on hepatorenal tissue via regulation of oxidative stress, inflammatory, and apoptotic markers. The present study provides a novel nanoformulation for curcumin using CS NPs encapsulation that selectively targets the injured cells and improves the beneficial effect of CU via enhancing the antioxidant activity and regulating both inflammatory and apoptotic markers.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sally Mehanna
- Department of Biotechnology, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Cairo, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Faten F Mohammed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
- Department of Pathology, College of Veterinary Medicine, King Faisal University, 31982, Hofuf, Al Ahsa, Saudi Arabia
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center, Giza, Egypt
- Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
2
|
Lv M, Sun Q, Yu Y, Bao J. Nanocurcumin in myocardial infarction therapy: emerging trends and future directions. Front Bioeng Biotechnol 2025; 12:1511331. [PMID: 39845374 PMCID: PMC11750836 DOI: 10.3389/fbioe.2024.1511331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Curcumin has been observed to significantly reduce pathological processes associated with MI. Its clinical application is limited due to its low bioavailability, rapid degradation, and poor solubility. Advancements in nanotechnology can be used to enhance its therapeutic potentials in MI. Curcumin nano-formulation enhances its solubility, stability, and bioavailability, allowing more precise delivery to ischemic cardiac tissue. Curcumin nanoparticles have been observed to successfully reduce infarct size, maintain heart function by modulating essential molecular pathways in MI. Its liposomal formulations provide sustained release and higher tissue penetration with improved pharmacokinetics and enhanced therapeutic efficacy. Preclinical studies revealed that nanocurcumin drastically lower oxidative stress indicators, inflammatory cytokines, and cardiac damage. Micelles composed of polymers have demonstrated high biocompatibility and targeting capabilities with increased cardio-protective effects. Research and clinical trials are essential for comprehensive analysis and efficacy of curcumin-based nano-therapeutics in cardiovascular condition and lowering risk of MI.
Collapse
Affiliation(s)
- Mei Lv
- General Medicine Department, Yantaishan Hospital, Yantai, Shandong, China
| | - Qing Sun
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong, China
| | - Yilin Yu
- Preventive medicine, Shandong University, Jinan, Shandong, China
| | - Jinwei Bao
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
3
|
Nakanishi T, Tonai S, Ichikawa H, Mori S, Ishihara S, Chang Y, Yamashita Y. Curcumin Suppresses ROS Production and Increases Mitochondrial Activity in Cumulus Cells and Oocytes of COCs Derived From Non-Vascularized Follicles in Pigs. Anim Sci J 2025; 96:e70032. [PMID: 39905924 DOI: 10.1111/asj.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 02/06/2025]
Abstract
In vitro maturation (IVM) produces offspring from domestic animals; however, the blastocyst rate after IVM was low. We previously reported that the developmental competence of oocytes derived from follicles with blood vessels absent on the surface (non-vascularized follicles: NVF) is quite low compared to those derived from follicles with blood vessels present on the surface (vascularized follicles: VF). Thus, it is important to develop technique to improve the quality of NVF-derived oocyte by IVM. Since it has been reported that reactive oxygen species (ROS) reduces oocyte quality, in this study, we investigated whether curcumin that is known as antioxidant could improve oocyte quality derived from NVF. As results, cultivation of NVF Cumulus-oocyte complexes (COCs) with curcumin significantly improved cumulus expansion and oocyte meiotic maturation of NVF COCs compared to those of NVF COCs without curcumin. Cultivation with curcumin of NVF COCs significantly improved the proliferative activity of cumulus cells. Furthermore, the cultivation significantly reduced ROS activity and increased mitochondrial activity. Hence, it was revealed that the addition of curcumin to the maturation medium increased mitochondrial activity and reduced ROS levels in NVF-derived cumulus cells and oocytes, thereby improving the maturation of oocytes within COCs.
Collapse
Affiliation(s)
- Tomoya Nakanishi
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, Japan
| | - Shingo Tonai
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, Japan
| | - Haruto Ichikawa
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, Japan
| | - Shota Mori
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | | | | | - Yasuhisa Yamashita
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, Japan
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| |
Collapse
|
4
|
Hamed AM, Elbahy DA, Ahmed ARH, Thabet SA, Refaei RA, Ragab I, Elmahdy SM, Osman AS, Abouelella AMA. Comparison of the efficacy of curcumin and its nano formulation on dexamethasone-induced hepatic steatosis, dyslipidemia, and hyperglycemia in Wistar rats. Heliyon 2024; 10:e41043. [PMID: 39759349 PMCID: PMC11696662 DOI: 10.1016/j.heliyon.2024.e41043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Background and objective Insulin resistance is a primary feature of type 2 diabetes. This study compared the effects of curcumin and its nanoformulation on insulin resistance, fasting blood sugar, liver function, GLUT4, lipid profile, and oxidative stress in the liver and pancreas in a diabetic model. Methods Thirty male Wistar rats were divided into five groups: a control group, a diabetic group, a diabetic group treated with metformin (40 mg/kg), a diabetic group treated with curcumin (100 mg/kg), and a diabetic group treated with curcumin NPs (100 mg/kg). Diabetes was induced by injecting dexamethasone daily for 14 days. Treatment with curcumin and curcumin NPs was administered by gavage for 14 days. Body weight and fasting blood sugar levels were measured on days 1, 14, and 28. Results The metformin, curcumin, and curcumin NPs groups showed significantly greater body weight gain than the untreated diabetic group (P < 0.001). In diabetic rats treated with curcumin and curcumin NPs, insulin resistance decreased by approximately 40 %, while fasting blood sugar levels dropped by 35-40 % (P < 0.001). The levels of liver enzymes (AST, ALT), cholesterol, triglycerides, LDL, and the oxidative stress marker MDA in liver and pancreatic tissues were reduced by 30-50 %. Additionally, beneficial markers such as albumin, HDL, antioxidants (GSH, SOD), and GLUT4 levels were increased by 25-45 % (P < 0.001). Nano-curcumin consistently showed greater improvements than curcumin, especially in reducing oxidative stress and supporting liver and pancreatic health. Conclusion This study demonstrates that curcumin NPs has a superior effect on reducing oxidative stress and improving metabolic parameters in diabetes compared to curcumin. by enhancing the bioavailability and stability of curcumin, the nanoformulation showed stronger therapeutic potential for managing high blood sugar, cholesterol issues, and liver health, positioning curcumin NPs as a promising alternative to conventional treatments for diabetes and its complications.
Collapse
Affiliation(s)
- Amany M. Hamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Dalia A. Elbahy
- Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed RH. Ahmed
- Department of Pathology, faculty of medicine, Sohag University, Sohag, Egypt
| | - Shymaa A. Thabet
- Central Research Center, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Islam Ragab
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | | | - Ahmed S. Osman
- Department of Biochemistry, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Azza MA. Abouelella
- Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
5
|
Roy D, Ghosh M, Rangra NK. Herbal Approaches to Diabetes Management: Pharmacological Mechanisms and Omics-Driven Discoveries. Phytother Res 2024. [PMID: 39688013 DOI: 10.1002/ptr.8410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder marked by hyperglycemia, resistance to insulin, and impaired function of the pancreatic β-cells; it advances into more serious complications like nephropathy, neuropathy, cardiovascular disease, and retinopathy; herbal medicine has indicated promise in not just mitigating the symptoms but also in managing the complications. This review would aim to evaluate the pharmacological aspect of the botanical therapies Anacardium occidentale, Allium sativum, Urtica dioica, and Cinnamomum zeylanicum, as well as their bioactive phytochemicals, quercetin, resveratrol, berberine, and epigallocatechin gallate (EGCG). In this review, we discuss their mechanisms for secreting the insulin sensitizers, carbohydrate-hydrolyzing enzymes, reduction in oxidative stress and effectiveness against diabetic complications-all through sensitivity to insulin. Great emphasis is laid on the integration of multi-omics technologies such as genomics, proteomics, metabolomics, and transcriptomics in the discovery of bioactive compounds. The nature of the technologies can evaluate the intrinsic complexities of herbal pharmacology and even identify therapeutic candidates. Finally, the review refers to the meagre clinical trials on the efficiency of these compounds in the metabolism of humans. High-quality future research, such as human large-scale trials, would be emphasized; improvement in the clinical validity of a drug might come from improved study design, better selection of potentially usable biomarkers, and enhanced safety profiles to guarantee efficacy with lessened risks.
Collapse
Affiliation(s)
- Debajyoti Roy
- Faculty of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Maitrayee Ghosh
- Faculty of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Naresh Kumar Rangra
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
6
|
Alrashdi B, Askar H, Germoush M, Fouda M, Abdel-Farid I, Massoud D, Alzwain S, Gadelmawla MH, Ashry M. Evaluation of the anti-diabetic and anti-inflammatory potentials of curcumin nanoparticle in diabetic rat induced by streptozotocin. Open Vet J 2024; 14:3375-3387. [PMID: 39927337 PMCID: PMC11799653 DOI: 10.5455/ovj.2024.v14.i12.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/03/2024] [Indexed: 02/11/2025] Open
Abstract
Background Natural materials are frequently good options for drug development, regardless of their source. It has been demonstrated that curcumin boosts antioxidant capacity and guards against diabetic disorders. Aim The current study aimed to evaluate the possible anti-inflammatory and anti-diabetic effects of curcumin-NPs (Cur-NPs) in streptozotocin-induced diabetic rats. Methods Four groups of rats were randomly selected; (1) standard control group, (2) Cur-NPs group was given the regular food of rats along with 5 mg/kg of Cur-NPs daily, (3) Diabetic rats in the STZ group served as the positive control, and (4) Included in the STZ~Cur-NPs group were diabetic rats receiving Cur-NPs (5 mg/kg/day). Results After receiving Cur-NPs treatment for 6 weeks, the levels of glucose, tumor necrosis factor alpha TNF-alpha, interlukin1 β (IL1β), interlukin-4, interlukin-6, interlukin-10, MDA, and NO in the diabetic animals were significantly reduced. Simultaneously, the levels of insulin, CAT, GPx, GSH, and SOD were significantly increased, approaching the levels of the corresponding healthy animals. Similarly, insulin secretion increased in the islet β-cells as shown by immunohistochemical analysis, indicating improved glycaemic control and eventual glucose commitment to glycolysis; its processes for scavenging free radicals and acting as an antioxidant may explain this behavior. Conclusion As a result, our findings aid in the potential characterization and creation of novel therapeutic agents that prevent diabetes.
Collapse
Affiliation(s)
- Barakat Alrashdi
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Hussam Askar
- Zoology Department, Faculty of Science, Al-Azhar University, 71524 Assuit, Egypt
| | - Mousa Germoush
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maged Fouda
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Ibrahim Abdel-Farid
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Sarah Alzwain
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, 71524 Assuit, Egypt
| |
Collapse
|
7
|
Stojchevski R, Velichkovikj S, Bogdanov J, Hadzi-Petrushev N, Mladenov M, Poretsky L, Avtanski D. Monocarbonyl analogs of curcumin C66 and B2BrBC modulate oxidative stress, JNK activity, and pancreatic gene expression in rats with streptozotocin-induced diabetes. Biochem Pharmacol 2024; 229:116491. [PMID: 39147331 DOI: 10.1016/j.bcp.2024.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
The pathogenesis of type 1 diabetes mellitus (T1DM) involves oxidative stress and inflammation. Curcumin, a natural polyphenolic compound found in turmeric, known to exhibit antioxidative and anti-inflammatory properties, is characterized by poor chemical stability, low bioavailability, and rapid metabolism. Monocarbonyl analogs of curcumin (MACs) with a structural absence of β-diketone and enhanced stability and bioavailability present a potential solution to the challenges associated with the use of curcumin. This study aimed to evaluate the effect of two MACs, C66 and B2BrBC, on oxidative stress markers, antioxidant enzyme activity, expression of diabetes-associated genes, and signaling pathway proteins in the context of T1DM. Streptozotocin (STZ)-induced male Wistar rats or rat pancreatic RIN-m cells were used for in vivo and in vitro experiments, respectively. C66 or B2BrBC were given either before or after STZ treatment. Oxidative stress markers and antioxidant enzyme activities were determined in various tissues. Expression of diabetes-associated genes was assessed using RT-qPCR, and the activity of signaling pathway proteins in the pancreas was determined through Western blot analysis. Treatment with C66 and B2BrBC significantly reduced oxidative stress markers and positively influenced antioxidant enzyme activities. Moreover, both compounds inhibited JNK activity in the pancreas while enhancing the expression of genes crucial for β-cell survival and glucose and redox homeostasis. The findings highlight the multifaceted potential of C66 and B2BrBC in ameliorating oxidative stress, influencing gene expression patterns linked to diabetes, and modulating key signaling pathways in the pancreas. The findings suggest that these compounds can potentially address diabetes-related pathological processes.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Sara Velichkovikj
- Department of Medicine, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Jane Bogdanov
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Leonid Poretsky
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
8
|
Eldeeb GM, Yousef MI, Helmy YM, Aboudeya HM, Mahmoud SA, Kamel MA. The protective effects of chitosan and curcumin nanoparticles against the hydroxyapatite nanoparticles-induced neurotoxicity in rats. Sci Rep 2024; 14:21009. [PMID: 39251717 PMCID: PMC11385554 DOI: 10.1038/s41598-024-70794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) have extensive applications in biomedicine and tissue engineering. However, little information is known about their toxicity. Here, we aim to investigate the possible neurotoxicity of HANPs and the possible protective role of chitosan nanoparticles (CNPs) and curcumin nanoparticles (CUNPs) against this toxicity. In our study, HANPs significantly reduced the levels of neurotransmitters, including acetylcholine (Ach), dopamine (DA), serotonin (SER), epinephrine (EPI), and norepinephrine (NOR). HANPs significantly suppressed cortical expression of the genes controlling mitochondrial biogenesis such as peroxisome proliferator activator receptor gamma coactivator 1α (PGC-1α) and mitochondrial transcription factor A (mTFA). Our findings revealed significant neuroinflammation associated with elevated apoptosis, lipid peroxidation, oxidative DNA damage and nitric oxide levels with significant decline in the antioxidant enzymes activities and glutathione (GSH) levels in HANPs-exposed rats. Meanwhile, co-supplementation of HANP-rats with CNPs and/or CUNPs significantly showed improvement in levels of neurotransmitters, mitochondrial biogenesis, oxidative stress, DNA damage, and neuroinflammation. The co-supplementation with both CNPs and CUNPs was more effective to ameliorate HANPs-induced neurotoxicity than each one alone. So, CNPs and CUNPs could be promising protective agents for prevention of HANPs-induced neurotoxicity.
Collapse
Affiliation(s)
- Gihan Mahmoud Eldeeb
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mokhtar Ibrahim Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Hebatallah Mohammed Aboudeya
- Department of Human Physiology, Medical Research Institute, Alexandria University, 165, Horreya Avenue, Hadara, Alexandria, Egypt.
| | - Shimaa A Mahmoud
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
- Pharos University in Alexandria, Alexandria, 21311, Egypt
| |
Collapse
|
9
|
Moosavi M, Soukhaklari R, Bagheri-Mohammadi S, Firouzan B, Javadpour P, Ghasemi R. Nanocurcumin prevents memory impairment, hippocampal apoptosis, Akt and CaMKII-α signaling disruption in the central STZ model of Alzheimer's disease in rat. Behav Brain Res 2024; 471:115129. [PMID: 38942084 DOI: 10.1016/j.bbr.2024.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
The central route of streptozotocin (STZ) administration has been introduced as a rat model of sporadic Alzheimer's disease (AD). Curcumin was suggested to possess possible neuroprotective effects, which may be profitable in AD. However, the low bioavailability of curcumin hinders its beneficial effects in clinical studies. Earlier studies suggested that a bovine serum albumin-based nanocurcumin, produces superior neuroprotective effects compared to natural curcumin. In the present study, the protective effect of nanocurcumin in rat model of central STZ induced memory impairment was assessed. In addition, due to the importance of the hippocampus in memory, the amounts of hippocampal active caspase-3, Akt, and CaMKII-α were evaluated. Adult male Wistar rats weighing 250-300 g were used. STZ (icv) was injected during days 1 and 3 (3 mg/kg in divided), and nanocurcumin or curcumin 50 mg/kg/oral gavage was administered daily during days 4-14. Morris water maze training was performed on days 15-17, and the retention memory test was achieved on the 18th day. Following memory assessment, the rats were sacrificed and the hippocampi were used to assess caspase-3 cleavage, Akt, and CaMKII-α signaling. The findings revealed that nanocurcumin ingestion (but not natural curcumin) in the dose of 50 mg/kg was capable to prevent the impairment of water maze learning and memory induced by central STZ. Molecular assessments indicated that STZ treatment increased the caspase-3 cleavage in the hippocampus while deactivating Akt and CaMKII-α. Nanocurcumin reduced caspase-3 cleavage to a non-significant level compared to control group and restored Akt and CaMKII-α within the hippocampus while natural curcumin exerted no significant effect. These findings might suggest that nanocurcumin can restore memory deficit, hippocampal apoptosis as well as Akt and CaMKII-α signaling disruption associated with brain insulin resistance.
Collapse
Affiliation(s)
- Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Roksana Soukhaklari
- Shiraz Neuroscience Research Centre, Shiraz University of Medical sciences, Shiraz, Iran; Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Bita Firouzan
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y, Qian L. β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res 2024; 62:71-89. [PMID: 37839502 PMCID: PMC11331176 DOI: 10.1016/j.jare.2023.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), a chronic metabolic disease characterized by elevated blood glucose, is caused by various degrees of insulin resistance and dysfunctional insulin secretion, resulting in hyperglycemia. The loss and failure of functional β-cells are key mechanisms resulting in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). AIM OF REVIEW Elucidating the underlying mechanisms of β-cell failure, and exploring approaches for β-cell neogenesis to reverse β-cell dysfunction may provide novel strategies for DM therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Emerging studies reveal that genetic susceptibility, endoplasmic reticulum (ER) stress, oxidative stress, islet inflammation, and protein modification linked to multiple signaling pathways contribute to DM pathogenesis. Over the past few years, replenishing functional β-cell by β-cell neogenesis to restore the number and function of pancreatic β-cells has remarkably exhibited a promising therapeutic approach for DM therapy. In this review, we provide a comprehensive overview of the underlying mechanisms of β-cell failure in DM, highlight the effective approaches for β-cell neogenesis, as well as discuss the current clinical and preclinical agents research advances of β-cell neogenesis. Insights into the challenges of translating β-cell neogenesis into clinical application for DM treatment are also offered.
Collapse
Affiliation(s)
- Fanglin Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Neurology, Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Medical Research Center, the affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Wang X, Zhang W, Zhou S. Multifaceted physiological and therapeutical impact of curcumin on hormone-related endocrine dysfunctions: A comprehensive review. Phytother Res 2024; 38:3307-3336. [PMID: 38622915 DOI: 10.1002/ptr.8208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Over the past five decades, Curcumin (Cur), derived from turmeric (Curcuma longa), has gained considerable attention for its potential therapeutic applications. Synthesizing insights from clinical trials conducted over the last 25 years, this review delves into diseases where Cur has demonstrated promise, offering a nuanced understanding of its pharmacokinetics, safety, and effectiveness. Focusing on specific examples, the impact of Cur on various human diseases is explored. Endocrine glands and associated signaling pathways are highlighted, elucidating how Cur influences cellular signaling. The article underscores molecular mechanisms such as hormone level alteration, receptor interaction, cytokine and adipokine expression inhibition, antioxidant enzyme activity, and modulation of transcription factors. Cur showcases diverse protective mechanisms against inflammation and oxidative damage by suppressing antiapoptotic genes and impeding tumor promotion. This comprehensive overview emphasizes the potential of Cur as a natural agent for countering aging and degenerative diseases, calling for further dedicated research in this realm.
Collapse
Affiliation(s)
- Xiuying Wang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
12
|
Roy D, Kaur P, Ghosh M, Choudhary D, Rangra NK. The therapeutic potential of typical plant-derived compounds for the management of metabolic disorders. Phytother Res 2024. [PMID: 38864713 DOI: 10.1002/ptr.8238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Obesity and Type 2 diabetes are prevalent metabolic dysfunctions that present significant health challenges worldwide. Available cures for these ailments have constraints with accompanying unwanted effects that persistently exist. Compounds originated from plants have recently been introduced as hopeful remedies to treat metabolic disorders because of their diverse pharmacological activities. This detailed observation gives an introduction into the treatment capacity of plant-derived compounds regarding metabolic syndromes while analyzing various groups alongside their performance in this field despite unique mechanisms designed by nature itself. Interestingly, this study provides some examples including curcumin, resveratrol, quercetin, berberine, epigallocatechin gallate (EGCG), and capsaicin, which highlights potential therapeutic impacts for future testing. However, current clinical trials inspecting human studies investigating efficacies concerning metabolism challenge present limitations. Finally, the review weighs up bad reactions possibly inflicted after administering plant-originated materials though suggestive insights will be provided later. Above all, it outlines the chance to identify novel therapies encapsulated within natural substances based upon recent developments could hold significant promise toward managing misplaced metabolisms globally.
Collapse
Affiliation(s)
- Debajyoti Roy
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Maitrayee Ghosh
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Deepika Choudhary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Naresh Kumar Rangra
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
13
|
Roghani AK, Garcia RI, Roghani A, Reddy A, Khemka S, Reddy RP, Pattoor V, Jacob M, Reddy PH, Sehar U. Treating Alzheimer's disease using nanoparticle-mediated drug delivery strategies/systems. Ageing Res Rev 2024; 97:102291. [PMID: 38614367 DOI: 10.1016/j.arr.2024.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
The administration of promising medications for the treatment of neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) is significantly hampered by the blood-brain barrier (BBB). Nanotechnology has recently come to light as a viable strategy for overcoming this obstacle and improving drug delivery to the brain. With a focus on current developments and prospects, this review article examines the use of nanoparticles to overcome the BBB constraints to improve drug therapy for AD The potential for several nanoparticle-based approaches, such as those utilizing lipid-based, polymeric, and inorganic nanoparticles, to enhance drug transport across the BBB are highlighted. To shed insight on their involvement in aiding effective drug transport to the brain, methods of nanoparticle-mediated drug delivery, such as surface modifications, functionalization, and particular targeting ligands, are also investigated. The article also discusses the most recent findings on innovative medication formulations encapsulated within nanoparticles and the therapeutic effects they have shown in both preclinical and clinical testing. This sector has difficulties and restrictions, such as the need for increased safety, scalability, and translation to clinical applications. However, the major emphasis of this review aims to provide insight and contribute to the knowledge of how nanotechnology can potentially revolutionize the worldwide treatment of NDDs, particularly AD, to enhance clinical outcomes.
Collapse
Affiliation(s)
- Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ali Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
14
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
15
|
Stoleru OA, Burlec AF, Mircea C, Felea MG, Macovei I, Hăncianu M, Corciovă A. Multiple nanotechnological approaches using natural compounds for diabetes management. J Diabetes Metab Disord 2024; 23:267-287. [PMID: 38932892 PMCID: PMC11196251 DOI: 10.1007/s40200-023-01376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/18/2023] [Indexed: 06/28/2024]
Abstract
Objectives Diabetes mellitus (DM) is a long-standing and non-transmissible endocrine disease that generates significant clinical issues and currently affects approximately 400 million people worldwide. The aim of the present review was to analyze the most relevant and recent studies that focused on the potential application of plant extracts and phytocompounds in nanotechnology for the treatment of T2DM. Methods Various databases were examined, including Springer Link, Google Scholar, PubMed, Wiley Online Library, and Science Direct. The search focused on discovering the potential application of nanoparticulate technologies in enhancing drug delivery of phytocompounds for the mentioned condition. Results Several drug delivery systems have been considered, that aimed to reduce adverse effects, while enhancing the efficiency of oral antidiabetic medications. Plant-based nanoformulations have been highlighted as an innovative approach for DM treatment due to their eco-friendly and cost-effective synthesis methods. Their benefits include targeted action, enhanced availability, stability, and reduced dosage frequency. Conclusions Nanomedicine has opened new opportunities for the diagnosis, treatment, and prevention of DM. The use of nanomaterials has demonstrated improved outcomes for both T1DM and T2DM. Notably, flavonoids, including substances such as quercetin, naringenin and myricitrin, have been recognized for their enhanced efficacy when delivered through novel nanotechnologies in preventing T2DM onset and associated complications. The perspectives on the addressed subject point to the development of more nanostructured phytocompounds with improved bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Ozana Andreea Stoleru
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maura Gabriela Felea
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irina Macovei
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Monica Hăncianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreia Corciovă
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
16
|
Gauttam VK, Munjal K, Chopra H, Ahmad A, Rana MK, Kamal MA. A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome. Curr Pharm Des 2024; 30:10-30. [PMID: 38155468 DOI: 10.2174/0113816128274446231220113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.
Collapse
Affiliation(s)
- Vinod Kumar Gauttam
- Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Hmachal Pradesh, India
| | - Kavita Munjal
- Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Aftab Ahmad
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahesh Kumar Rana
- Department of Agriculture, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
17
|
Lai TC, Lee CW, Hsu MH, Chen YC, Lin SR, Lin SW, Lee TL, Lin SY, Hsu SH, Tsai JS, Chen YL. Nanocurcumin Reduces High Glucose and Particulate Matter-Induced Endothelial Inflammation: Mitochondrial Function and Involvement of miR-221/222. Int J Nanomedicine 2023; 18:7379-7402. [PMID: 38084125 PMCID: PMC10710795 DOI: 10.2147/ijn.s433658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Particulate matter (PM) 2.5, harmful air pollutants, and diabetes are associated with high morbidity and mortality from cardiovascular disease (CVD). However, the molecular mechanisms underlying the combined effects of PM and diabetes on CVD remain unclear. Methods Endothelial cells (ECs) treated with high glucose (HG) and PM mimic hyperglycemia and air pollutant exposure in CVD. Endothelial inflammation was evaluated by Western blot and immunofluorescence of ICAM-1 expression and monocyte adhesion. The mechanisms underlying endothelial inflammation were elucidated through MitoSOX Red analysis, JC-1 staining, MitoTracker analysis, and Western blot analysis of mitochondrial fission-related, autophagy-related, and mitophagy-related proteins. Furthermore. nanocurcumin (NCur) pretreatment was used to test if it has a protective effect. Results ECs under co-exposure to HG and PM increased ICAM-1 expression and monocyte adhesion, whereas NCur pretreatment attenuated these changes and improved endothelial inflammation. PM exposure increased mitochondrial ROS levels, worsened mitochondrial membrane potential, promoted mitochondrial fission, induced mitophagy, and aggravated inflammation in HG-treated ECs, while NCur reversed these changes. Also, HG and PM-induced endothelial inflammation is through the JNK signaling pathway and miR-221/222 specifically targeting ICAM-1 and BNIP3. PM exposure also aggravated mitochondrial ROS levels, mitochondrial fission, mitophagy, and endothelial inflammation in STZ-induced hyperglycemic mice, whereas NCur attenuated these changes. Conclusion This study elucidated the mechanisms underlying HG and PM-induced endothelial inflammation in vitro and in vivo. HG and PM treatment increased mitochondrial ROS, mitochondrial fission, and mitophagy in ECs, whereas NCur reversed these conditions. In addition, miR-221/222 plays a role in the amelioration of endothelial inflammation through targeting Bnip3 and ICAM-1, and NCur pretreatment can modulate miR-221/222 levels. Therefore, NCur may be a promising approach to intervene in diabetes and air pollution-induced CVD.
Collapse
Affiliation(s)
- Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan, Republic of China
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan, Republic of China
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, Republic of China
| | - Mei-Hsiang Hsu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, Republic of China
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Taoyuan, Taiwan, Republic of China
- Center for Nanotechnology and Center for Biomedical Technology, Chung-Yuan Christian University, Taoyuan, Taiwan, Republic of China
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Shu-Hao Hsu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jaw-Shiun Tsai
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
- Center for Complementary and Integrated Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
18
|
Godse S, Zhou L, Sakshi S, Singla B, Singh UP, Kumar S. Nanocarrier-mediated curcumin delivery: An adjuvant strategy for CNS disease treatment. Exp Biol Med (Maywood) 2023; 248:2151-2166. [PMID: 38058006 PMCID: PMC10800127 DOI: 10.1177/15353702231211863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Neurological disorders are a major global challenge, which counts for a substantial slice of disease burden around the globe. In these, the challenging landscape of central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuro-AIDS, demands innovative and novel therapeutic approaches. Curcumin, a versatile natural compound with antioxidant and anti-inflammatory properties, shows great potential as a CNS adjuvant therapy. However, its limited bioavailability and suboptimal permeability to the blood-brain barrier (BBB) hamper the therapeutic efficacy of curcumin. This review explores how nanocarrier facilitates curcumin delivery, which has shown therapeutic efficacy for various non-CNS diseases, for example, cancers, and can also revolutionize the treatment outcomes in patients with CNS diseases. Toward this, intranasal administration of curcumin as a non-invasive CNS drug delivery route can also aid its therapeutic outcomes as an adjuvant therapy for CNS diseases. Intranasal delivery of nanocarriers with curcumin improves the bioavailability of curcumin and its BBB permeability, which is instrumental in promoting its therapeutic potential. Furthermore, curcumin's inhibitory effect on efflux transporters will help to enhance the BBB and cellular permeability of various CNS drugs. The therapeutic potential of curcumin as an adjuvant has the potential to yield synergistic effects with CNS drugs and will help to reduce CNS drug doses and improve their safety profile. Taken together, this approach holds a promise for reshaping CNS disease management by maximizing curcumin's and other drugs' therapeutic benefits.
Collapse
Affiliation(s)
- Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Swarna Sakshi
- Alabama College of Osteopathic Medicine, Dothan, AL 36303, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Hassan I, Al-Tamimi J, Ebaid H, Habila MA, Alhazza IM, Rady AM. Silver Nanoparticles Decorated with Curcumin Enhance the Efficacy of Metformin in Diabetic Rats via Suppression of Hepatotoxicity. TOXICS 2023; 11:867. [PMID: 37888717 PMCID: PMC10611133 DOI: 10.3390/toxics11100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Hepatotoxicity is one of the significant side effects of chronic diabetes mellitus (DM) besides nephrotoxicity and pancreatitis. The management of this disease is much dependent on the restoration of the liver to its maximum functionality, as it is the central metabolic organ that gets severely affected during chronic diabetes. The present study investigates if the silver nanoparticles decorated with curcumin (AgNP-Cur) can enhance the efficacy of metformin (a conventional antidiabetic drug) by countering the drug-induced hepatoxicity. Swiss albino rats were categorized into six treatment groups (n = 6): control (group I without any treatment), the remaining five groups (group II, IV, V, VI) were DM-induced by streptozocin. Group II was untreated diabetic positive control, whereas groups III was administered with AgNP-cur (5 mg/kg). Diabetic group IV treated with metformin while V and VI were treated with metformin in a combination of the two doses of NPs (5 and 10 mg/kg) according to the treatment schedule. Biochemical and histological analysis of blood and liver samples were conducted after the treatment. The groups V and VI treated with the combination exhibited remarkable improvement in fasting glucose, lipid profile (HDL and cholesterol), liver function tests (AST, ALT), toxicity markers (GGT, GST and LDH), and redox markers (GSH, MDA and CAT) in comparison to group II in most of the parameters. Histological evaluation and comet assay further consolidate these biochemical results, pleading the restoration of the cellular structure of the target tissues and their nuclear DNA. Therefore, the present study shows that the NPs can enhance the anti-diabetic action by suppression of the drug-mediated hepatoxicity via relieving from oxidative stress, toxic burden and inflammation.
Collapse
Affiliation(s)
- Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.-T.); (H.E.); (I.M.A.); (A.M.R.)
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.-T.); (H.E.); (I.M.A.); (A.M.R.)
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.-T.); (H.E.); (I.M.A.); (A.M.R.)
| | - Mohamed A. Habila
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ibrahim M. Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.-T.); (H.E.); (I.M.A.); (A.M.R.)
| | - Ahmed M. Rady
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.-T.); (H.E.); (I.M.A.); (A.M.R.)
| |
Collapse
|
20
|
Wang L, Qi C, Cao H, Zhang Y, Liu X, Qiu L, Wang H, Xu L, Wu Z, Liu J, Wang S, Kong D, Wang Y. Engineered Cytokine-Primed Extracellular Vesicles with High PD-L1 Expression Ameliorate Type 1 Diabetes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301019. [PMID: 37209021 DOI: 10.1002/smll.202301019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Indexed: 05/21/2023]
Abstract
Type 1 diabetes (T1D), which is a chronic autoimmune disease, results from the destruction of insulin-producing β cells targeted by autoreactive T cells. The recent discovery that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) function as therapeutic tools for autoimmune conditions has attracted substantial attention. However, the in vivo distribution and therapeutic effects of MSC-EVs potentiated by pro-inflammatory cytokines in the context of T1D have yet to be established. Here, it is reported that hexyl 5-aminolevulinate hydrochloride (HAL)-loaded engineered cytokine-primed MSC-EVs (H@TI-EVs) with high expression of immune checkpoint molecule programmed death-legend 1 (PD-L1) exert excellent inflammatory targeting and immunosuppressive effects for T1D imaging and therapy. The accumulated H@TI-EVs in injured pancreas not only enabled the fluorescence imaging and tracking of TI-EVs through the intermediate product protoporphyrin (PpIX) generated by HAL, but also promoted the proliferative and anti-apoptotic effects of islet β cells. Further analysis revealed that H@TI-EVs exhibited an impressive ability to reduce CD4+ T cell density and activation through the PD-L1/PD-1 axis, and induced M1-to-M2 macrophage transition to reshape the immune microenvironment, exhibiting high therapeutic efficiency in mice with T1D. This work identifies a novel strategy for the imaging and treatment of T1D with great potential for clinical application.
Collapse
Affiliation(s)
- Lanxing Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chunxiao Qi
- Department of Pharmacology, Tianjin Medical University, Tianjin, 300070, China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yanwen Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xing Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lina Qiu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Hang Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lijuan Xu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Shusen Wang
- Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuebing Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Surgical Intensive Care Unit, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| |
Collapse
|
21
|
Chang R, Chen L, Qamar M, Wen Y, Li L, Zhang J, Li X, Assadpour E, Esatbeyoglu T, Kharazmi MS, Li Y, Jafari SM. The bioavailability, metabolism and microbial modulation of curcumin-loaded nanodelivery systems. Adv Colloid Interface Sci 2023; 318:102933. [PMID: 37301064 DOI: 10.1016/j.cis.2023.102933] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Curcumin (Cur), the major bioactive component of turmeric (Curcuma longa) possesses many health benefits. However, low solubility, stability and bioavailability restricts its applications in food. Recently, nanocarriers such as complex coacervates, nanocapsules, liposomes, nanoparticles, nanomicelles, have been used as novel strategies to solve these problems. In this review, we have focused on the delivery systems responsive to the environmental stimuli such as pH-responsive, enzyme-responsive, targeted-to-specific cells or tissues, mucus-penetrating and mucoadhesive carriers. Besides, the metabolites and their biodistribution of Cur and Cur delivery systems are discussed. Most importantly, the interaction between Cur and their carriers with gut microbiota and their effects of modulating the gut health synergistically were discussed comprehensively. In the end, the biocompatibility of Cur delivery systems and the feasibility of their application in food industry is discussed. This review provided a comprehensive review of Cur nanodelivery systems, the health impacts of Cur nanocarriers and an insight into the application of Cur nanocarriers in food industry.
Collapse
Affiliation(s)
- Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liran Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Muhammad Qamar
- Faculty of Food science and Nutrition, Department of Food Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Yanjun Wen
- Henan Provincial Key Laboratory of Natural Pigments, Henan Zhongda Hengyuan Biotechnology Stock Company Limited, Luohe 462600, PR China
| | - Linzheng Li
- Henan Provincial Key Laboratory of Natural Pigments, Henan Zhongda Hengyuan Biotechnology Stock Company Limited, Luohe 462600, PR China
| | - Jiayin Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xing Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | | | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
22
|
Heyns IM, Davis G, Ganugula R, Ravi Kumar MNV, Arora M. Glucose-Responsive Microgel Comprising Conventional Insulin and Curcumin-Laden Nanoparticles: a Potential Combination for Diabetes Management. AAPS J 2023; 25:72. [PMID: 37442863 DOI: 10.1208/s12248-023-00839-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Successful management of type 2 diabetes mellitus (T2DM), a complex and chronic disease, requires a combination of anti-hyperglycemic and anti-inflammatory agents. Here, we have conceptualized and tested an integrated "closed-loop mimic" in the form of a glucose-responsive microgel (GRM) based on chitosan, comprising conventional insulin (INS) and curcumin-laden nanoparticles (nCUR) as a potential strategy for effective management of the disease. In addition to mimicking the normal, on-demand INS secretion, such delivery systems display an uninterrupted release of nCUR to combat the inflammation, oxidative stress, lipid metabolic abnormality, and endothelial dysfunction components of T2DM. Additives such as gum arabic (GA) led to a fivefold increased INS loading capacity compared to GRM without GA. The GRMs showed excellent in vitro on-demand INS release, while a constant nCUR release is observed irrespective of glucose concentrations. Thus, this study demonstrates a promising drug delivery technology that can simultaneously, and at physiological/pathophysiological relevance, deliver two drugs of distinct physicochemical attributes in the same formulation.
Collapse
Affiliation(s)
- Ingrid M Heyns
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Garrett Davis
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA.
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA.
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA.
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA.
| |
Collapse
|
23
|
Metawea MR, Abdelrazek HMA, El-Hak HNG, Moghazee MM, Marie OM. Comparative effects of curcumin versus nano-curcumin on histological, immunohistochemical expression, histomorphometric, and biochemical changes to pancreatic beta cells and lipid profile of streptozocin induced diabetes in male Sprague-Dawley rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62067-62079. [PMID: 36932309 PMCID: PMC10167140 DOI: 10.1007/s11356-023-26260-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/28/2023] [Indexed: 05/10/2023]
Abstract
Diabetes mellitus is a worldwide problem characterized by hyperglycemia as well as the damage of the microscopic structure of the beta cells of Langerhans pancreatic islets. In the present study, the histological, immunohistochemical, morphometric, and biochemical alterations to pancreatic beta cells in streptozocin (STZ)-induced diabetes were assessed in rats treated with curcumin (CU) (100 mg/kg/day) or nano-curcumin (nCU) (100 mg/kg/day) for 1 month. Twenty-four adult male Wistar albino rats were distributed into four groups: the nondiabetic control group, the diabetic untreated group, and two diabetic groups treated with CU or nCUR, respectively. Blood glucose, serum insulin levels, and lipid profile were measured. The pancreatic tissues were collected and processed into paraffin sections for histological and immunohistochemical examination, oxidative stress markers, and real-time PCR expression for pancreatic and duodenal homeobox 1 (PDX1). The insulin expression in beta cells was assessed using immunohistochemistry. Morphometrically, the percentage area of anti-insulin antibody reaction and the percentage area of islet cells were determined. STZ-induced deteriorating alteration in beta cells led to declines in the number of functioning beta cells and insulin immunoreactivity. In STZ-treated rats, CU and nCUR significantly reduced blood glucose concentration while increasing blood insulin level. It also caused a significant increase in the number of immunoreactive beta cells to the insulin expression and significant reduction of the immunoreactive beta cells to the caspase-3 expression. In conclusion, CU and nCUR could have a therapeutic role in the biochemical and microscopic changes in pancreatic beta cells in diabetes-induced rats through STZ administration with more bio-efficacy of nCUR.
Collapse
Affiliation(s)
- Mohamed R Metawea
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba Nageh Gad El-Hak
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Mona M Moghazee
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Ohoud M Marie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
24
|
Ganugula R, Arora M, Dwivedi S, Chandrashekar DS, Varambally S, Scott EM, Kumar MNVR. Systemic Anti-Inflammatory Therapy Aided by Curcumin-Laden Double-Headed Nanoparticles Combined with Injectable Long-Acting Insulin in a Rodent Model of Diabetes Eye Disease. ACS NANO 2023; 17:6857-6874. [PMID: 36951721 DOI: 10.1021/acsnano.3c00535] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Therapeutic interventions that counter emerging targets in diabetes eye diseases are lacking. We hypothesize that a combination therapy targeting inflammation and hyperglycemia can prevent diabetic eye diseases. Here, we report a multipronged approach to prevent diabetic cataracts and retinopathy by combining orally bioavailable curcumin-laden double-headed (two molecules of gambogic acid conjugated to terminal carboxyl groups of poly(d,l-lactide-co-glycolide)) nanoparticles and injectable basal insulin. The combination treatment led to a significant delay in the progression of diabetic cataracts and retinopathy, improving liver function and peripheral glucose homeostasis. We found a concurrent reduction in lens aggregate protein, AGEs, and increased mitochondrial ATP production. Importantly, inhibition of Piezo1 protected against hyperglycemia-induced retinal vascular damage suggesting possible involvement of Piezo1 in the regulation of retinal phototransduction. Histologic evaluation of murine small intestines revealed that chronic administration of curcumin-laden double-headed nanoparticles was well tolerated, circumventing the fear of nanoparticle toxicity. These findings establish the potential of anti-inflammatory and anti-hyperglycemic combination therapy for the prevention of diabetic cataracts and retinopathy.
Collapse
Affiliation(s)
- R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - S Dwivedi
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - D S Chandrashekar
- Genomic Diagnostics and Bioinformatics, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - S Varambally
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - E M Scott
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, New York 14853, United States
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama 35487, United States
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
25
|
Guo NK, She H, Tan L, Zhou YQ, Tang CQ, Peng XY, Ma CH, Li T, Liu LM. Nano Parthenolide Improves Intestinal Barrier Function of Sepsis by Inhibiting Apoptosis and ROS via 5-HTR2A. Int J Nanomedicine 2023; 18:693-709. [PMID: 36816330 PMCID: PMC9930579 DOI: 10.2147/ijn.s394544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Background Intestinal barrier dysfunction is an important complication of sepsis, while the treatment is limited. Recently, parthenolide (PTL) has attracted much attention as a strategy of sepsis, but whether nano parthenolide (Nano PTL) is therapeutic in sepsis-induced intestinal barrier dysfunction is obscured. Methods In this study, cecal ligation and puncture (CLP)-induced sepsis rats and lipopolysaccharide (LPS)-stimulated intestinal epithelial cells (IECs) were used to investigate the effect of PTL on intestinal barrier dysfunction. Meanwhile, we synthesized Nano PTL and compared the protective effect of Nano PTL with ordinary PTL on intestinal barrier function in septic rats and IECs. Network pharmacology and serotonin 2A (5-HTR2A) inhibitor were used to explore the mechanism of PTL on the intestinal barrier function of sepsis. Results The encapsulation rate of Nano PTL was 95±1.5%, the drug loading rate was 11±0.5%, and the average uptake rate of intestinal epithelial cells was 94%. Ordinary PTL and Nano PTL improved the survival rate and survival time of septic rats, reduced the mean arterial pressure and the serum level of inflammatory cytokines, and protected the liver and kidney functions in vivo, and increased the value of transmembrane resistance (TEER) reduced the reactive oxygen species (ROS) and apoptosis in IECs in vitro through 5-HTR2A. Nano PTL had better effect than ordinary PTL. Conclusion Ordinary PTL and Nano PTL can protect the intestinal barrier function of septic rats by inhibiting apoptosis and ROS through up-regulating 5-HTR2A, Nano PTL is better than ordinary PTL.
Collapse
Affiliation(s)
- Ning-Ke Guo
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Han She
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Lei Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Yuan-Qun Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Chun-Qiong Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xiao-Yong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Chun-Hua Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China,Correspondence: Tao Li; Liang-Ming Liu, Email ;
| | - Liang-Ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
26
|
Ganugula R, Nuthalapati NK, Dwivedi S, Zou D, Arora M, Friend R, Sheikh-Hamad D, Basu R, Kumar MNVR. Nanocurcumin combined with insulin alleviates diabetic kidney disease through P38/P53 signaling axis. J Control Release 2023; 353:621-633. [PMID: 36503070 PMCID: PMC9904426 DOI: 10.1016/j.jconrel.2022.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Treatments for diabetic kidney disease (DKD) mainly focus on managing hyperglycemia and hypertension, but emerging evidence suggests that inflammation also plays a role in the pathogenesis of DKD. This 10-week study evaluated the efficacy of daily oral nanoparticulate-curcumin (nCUR) together with long-acting insulin (INS) to treat DKD in a rodent model. Diabetic rats were dosed with unformulated CUR alone, nCUR alone or together with INS, or INS alone. The progression of diabetes was reflected by increases in plasma fructosamine, blood urea nitrogen, creatinine, bilirubin, ALP, and decrease in albumin and globulins. These aberrancies were remedied by nCUR+INS or INS but not by CUR or nCUR. Kidney histopathological results revealed additional abnormalities characteristic of DKD, such as basement membrane thickening, tubular atrophy, and podocyte cytoskeletal impairment. nCUR and nCUR+INS mitigated these lesions, while CUR and INS alone were far less effective, if not ineffective. To elucidate how our treatments modulated inflammatory signaling in the liver and kidney, we identified hyperactivation of P38 (MAPK) and P53 with INS and CUR, whereas nCUR and nCUR+INS deactivated both targets. Similarly, the latter interventions led to significant downregulation of renal NLRP3, IL-1β, NF-ĸB, Casp3, and MAPK8 mRNA, indicating a normalization of inflammasome and apoptotic pathways. Thus, we show therapies that reduce both hyperglycemia and inflammation may offer better management of diabetes and its complications.
Collapse
Affiliation(s)
- Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Nikhil K Nuthalapati
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Subhash Dwivedi
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Dianxiong Zou
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Richard Friend
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Rita Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA; Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, USA; Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Zou HY, Zhang HJ, Zhao YC, Li XY, Wang YM, Zhang TT, Xue CH. N-3 PUFA Deficiency Aggravates Streptozotocin-Induced Pancreatic Injury in Mice but Dietary Supplementation with DHA/EPA Protects the Pancreas via Suppressing Inflammation, Oxidative Stress and Apoptosis. Mar Drugs 2023; 21:md21010039. [PMID: 36662212 PMCID: PMC9861647 DOI: 10.3390/md21010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
It has been reported that dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential for the preservation of functional β-cell mass. However, the effect of dietary n-3 PUFA deficiency on pancreatic injury and whether the supplementation of n-3 PUFA could prevent the development of pancreatic injury are still not clear. In the present study, an n-3 PUFA deficiency mouse model was established by feeding them with n-3 PUFA deficiency diets for 30 days. Results showed that n-3 PUFA deficiency aggravated streptozotocin (STZ)-induced pancreas injury by reducing the insulin level by 18.21% and the HOMA β-cell indices by 31.13% and the area of islet by 52.58% compared with the STZ group. Moreover, pre-intervention with DHA and EPA for 15 days could alleviate STZ-induced pancreas damage by increasing the insulin level by 55.26% and 44.33%, the HOMA β-cell indices by 118.81% and 157.26% and reversed the area of islet by 196.75% and 205.57% compared to the n-3 Def group, and the effects were significant compared to γ-linolenic acid (GLA) and alpha-linolenic acid (ALA) treatment. The possible underlying mechanisms indicated that EPA and DHA significantly reduced the ration of n-6 PUFA to n-3 PUFA and then inhibited oxidative stress, inflammation and islet β-cell apoptosis levels in pancreas tissue. The results might provide insights into the prevention and alleviation of pancreas injury by dietary intervention with PUFAs and provide a theoretical basis for their application in functional foods.
Collapse
Affiliation(s)
- Hong-Yu Zou
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Hui-Juan Zhang
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
- Correspondence: (T.-T.Z.); (C.-H.X.)
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: (T.-T.Z.); (C.-H.X.)
| |
Collapse
|
28
|
Ranjbar A, Kheiripour N, Shateri H, Sameri A, Ghasemi H. Protective Effect of Curcumin and Nanocurcumin on Sperm Parameters and Oxidant-antioxidants System of Rat Testis in Aluminium Phosphide Subacute Poisoning. Pharm Nanotechnol 2023; 11:355-363. [PMID: 36927427 DOI: 10.2174/2211738511666230316101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Aluminum phosphide (AlP) as an effective pesticide may contribute to oxidative stress and adversely influence sperm parameters. This study aimed to investigate the protective role of curcumin and nanocurcumin on oxidative damage in the testis of rats with AlP toxicity. METHODS A total of 42 adult male Wistar rats were equally randomized into the following study groups (n = 7): Control, Control+Curcumin, Control+Nanocurcumin, AlP, AlP+Curcumin, and AlP+Nanocurcumin. The testis tissue was used to investigate the levels of testicular malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and reduced glutathione (GSH) as well as the Catalase (CAT) and superoxide dismutase (SOD) enzyme activity. Epididymal sperm was used to perform sperm analysis. RESULTS AlP administration led to a significant increase in MDA, and TOS levels and also markedly decreased the SOD activity and the levels of TAC and GSH in testis tissue (p <0.001). Moreover, the motility and viability of sperms were significantly reduced (p <0.001). Curcumin and Nanocurcumin co-administration with AlP remarkably decreased the MDA and TOS level (p <0.001) and significantly increased the GSH and TAC levels as well as the activity of SOD in AlP intoxicated groups (p<0.001). Our findings demonstrated that Nanocurcumin administration has significantly enhanced the sperm quality in AlP intoxicated rats as compared to the control group (p <0.001). CONCLUSION According to the results of this study, Curcumin as a potential antioxidant could be an effective attenuative agent against AlP-induced oxidative damage in testis, especially when it is used in encapsulated form, nanocurcumin.
Collapse
Affiliation(s)
- Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Shateri
- Department of Clinical Biochemistry, Hamadan School of Medical Sciences, Hamadan, Iran
| | - Amirhossein Sameri
- Department of Pathobiology, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| | - Hadi Ghasemi
- Department of Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Moudgil KD, Venkatesha SH. The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int J Mol Sci 2022; 24:95. [PMID: 36613560 PMCID: PMC9820125 DOI: 10.3390/ijms24010095] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammation is an integral part of autoimmune diseases, which are caused by dysregulation of the immune system. This dysregulation involves an imbalance between pro-inflammatory versus anti-inflammatory mediators. These mediators include various cytokines and chemokines; defined subsets of T helper/T regulatory cells, M1/M2 macrophages, activating/tolerogenic dendritic cells, and antibody-producing/regulatory B cells. Despite the availability of many anti-inflammatory/immunomodulatory drugs, the severe adverse reactions associated with their long-term use and often their high costs are impediments in effectively controlling the disease process. Accordingly, suitable alternatives are being sought for these conventional drugs. Natural products offer promising adjuncts/alternatives in this regard. The availability of specific compounds isolated from dietary/medicinal plant extracts have permitted rigorous studies on their disease-modulating activities and the mechanisms involved therein. Here, we describe the basic characteristics, mechanisms of action, and preventive/therapeutic applications of 5 well-characterized natural product compounds (Resveratrol, Curcumin, Boswellic acids, Epigallocatechin-3-gallate, and Triptolide). These compounds have been tested extensively in animal models of autoimmunity as well as in limited clinical trials in patients having the corresponding diseases. We have focused our description on predominantly T cell-mediated diseases, such as rheumatoid arthritis, multiple sclerosis, Type 1 diabetes, ulcerative colitis, and psoriasis.
Collapse
Affiliation(s)
- Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Vita Therapeutics, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
Dwivedi S, Gottipati A, Ganugula R, Arora M, Friend R, Osburne R, Rodrigues-Hoffman A, Basu R, Pan HL, Kumar MNVR. Oral Nanocurcumin Alone or in Combination with Insulin Alleviates STZ-Induced Diabetic Neuropathy in Rats. Mol Pharm 2022; 19:4612-4624. [PMID: 36106748 PMCID: PMC9972482 DOI: 10.1021/acs.molpharmaceut.2c00465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM), a multifaceted metabolic disorder if not managed properly leads to secondary complications. Diabetic peripheral neuropathy (DPN) is one such complication caused by nerve damage that cannot be reversed but can be delayed. Recently, diabetes patients are using dietary supplements, although there remains a general skepticism about this practice. Curcumin (CUR), one such supplement can help prevent underlying low-grade inflammation in diabetes, but it is plagued by poor oral bioavailability. To better understand the role of bioavailability in clinical outcomes, we have tested double-headed nanosystems containing curcumin (nCUR) on DPN. Because CUR does not influence glucose levels, we have also tested the effects of nCUR combined with long-acting subcutaneous insulin (INS). nCUR with or without INS alleviates DPN at two times lower dose than unformulated CUR, as indicated by qualitative and quantitative analysis of the hind paw, sciatic nerve, spleen, and L4-6 spinal cord. In addition, nCUR and nCUR+INS preserve hind paw nerve axons as evident by the Bielschowsky silver stain and intraepidermal nerve fibers (IENF) density measured by immunofluorescence. The mechanistic studies further corroborated the results, where nCUR or nCUR+INS showed a significant decrease in TUNEL positive cells, mRNA expression of NLRP3, IL-1β, and macrophage infiltration while preserving nestin and NF200 expression in the sciatic nerve. Together, the data confirms that CUR bioavailability is proportional to clinical outcomes and INS alone may not be one of the solutions for DM. This study highlights the potential of nCUR with or without INS in alleviating DPN and warrants further investigation.
Collapse
Affiliation(s)
- Subhash Dwivedi
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Anuhya Gottipati
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Raghu Ganugula
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Meenakshi Arora
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Richard Friend
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Robert Osburne
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Aline Rodrigues-Hoffman
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, Florida32611-7011, United States
| | - Rita Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, Virginia22908, United States
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas77030, United States
| | - M N V Ravi Kumar
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas77843, United States
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama35401, United States
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama35401, United States
| |
Collapse
|
31
|
Rahiman N, Markina YV, Kesharwani P, Johnston TP, Sahebkar A. Curcumin-based nanotechnology approaches and therapeutics in restoration of autoimmune diseases. J Control Release 2022; 348:264-286. [PMID: 35649486 DOI: 10.1016/j.jconrel.2022.05.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases usually arise as a result of an aberrant immune system attack on normal tissues of the body, which leads to a cascade of inflammatory reactions. The immune system employs different types of protective and anti-inflammatory cells for the regulation of this process. Curcumin is a known natural anti-inflammatory agent that inhibits pathological autoimmune processes by regulating inflammatory cytokines and their associated signaling pathways in immune cells. Due to the unstable nature of curcumin and its susceptibility to either degradation, or metabolism into other chemical entities (i.e., metabolites), encapsulation of this agent into various nanocarriers would appear to be an appropriate strategy for attaining greater beneficial effects from curcumin as it pertains to immunomodulation. Many studies have focused on the design and development of curcumin nanodelivery systems (micelles, dendrimers, and diverse nanocarriers) and are summarized in this review in order to obtain greater insight into novel drug delivery systems for curcumin and their suitability for the management of autoimmune diseases.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad, Iran
| | - Yuliya V Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Center of Surgery", 3 Tsyurupy Str., 117418, Moscow, Russia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
32
|
How Curcumin Targets Inflammatory Mediators in Diabetes: Therapeutic Insights and Possible Solutions. Molecules 2022; 27:molecules27134058. [PMID: 35807304 PMCID: PMC9268477 DOI: 10.3390/molecules27134058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a multifactorial chronic metabolic disorder, characterized by altered metabolism of macro-nutrients, such as fats, proteins, and carbohydrates. Diabetic retinopathy, diabetic cardiomyopathy, diabetic encephalopathy, diabetic periodontitis, and diabetic nephropathy are the prominent complications of diabetes. Inflammatory mediators are primarily responsible for these complications. Curcumin, a polyphenol derived from turmeric, is well known for its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. The regulation of several signaling pathways effectively targets inflammatory mediators in diabetes. Curcumin’s anti-inflammatory and anti-oxidative activities against a wide range of molecular targets have been shown to have therapeutic potential for a variety of chronic inflammatory disorders, including diabetes. Curcumin’s biological examination has shown that it is a powerful anti-oxidant that stops cells from growing by releasing active free thiol groups at the target location. Curcumin is a powerful anti-inflammatory agent that targets inflammatory mediators in diabetes, and its resistant form leads to better therapeutic outcomes in diabetes complications. Moreover, Curcumin is an anti-oxidant and NF-B inhibitor that may be useful in treating diabetes. Curcumin has been shown to inhibit diabetes-related enzymes, such as a-glucosidase, aldose reductase and aldose reductase inhibitors. Through its anti-oxidant and anti-inflammatory effects, and its suppression of vascular endothelial development and nuclear transcription factors, curcumin has the ability to prevent, or reduce, the course of diabetic retinopathy. Curcumin improves insulin sensitivity by suppressing phosphorylation of ERK/JNK in HG-induced insulin-resistant cells and strengthening the PI3K-AKT-GSK3B signaling pathway. In the present article, we aimed to discuss the anti-inflammatory mechanisms of curcumin in diabetes regulated by various molecular signaling pathways.
Collapse
|
33
|
Attaluri S, Arora M, Madhu LN, Kodali M, Shuai B, Melissari L, Upadhya R, Rao X, Bates A, Mitra E, Ghahfarouki KR, Ravikumar MNV, Shetty AK. Oral Nano-Curcumin in a Model of Chronic Gulf War Illness Alleviates Brain Dysfunction with Modulation of Oxidative Stress, Mitochondrial Function, Neuroinflammation, Neurogenesis, and Gene Expression. Aging Dis 2022; 13:583-613. [PMID: 35371600 PMCID: PMC8947830 DOI: 10.14336/ad.2021.0829] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022] Open
Abstract
Unrelenting cognitive and mood impairments concomitant with incessant oxidative stress and neuroinflammation are among the significant symptoms of chronic Gulf War Illness (GWI). Curcumin (CUR), an antiinflammatory compound, has shown promise to alleviate brain dysfunction in a model of GWI following intraperitoneal administrations at a high dose. However, low bioavailability after oral treatment has hampered its clinical translation. Therefore, this study investigated the efficacy of low-dose, intermittent, oral polymer nanoparticle encapsulated CUR (nCUR) for improving brain function in a rat model of chronic GWI. Intermittent administration of 10 or 20 mg/Kg nCUR for 8 weeks in the early phase of GWI improved brain function and reduced oxidative stress (OS) and neuroinflammation. We next examined the efficacy of 12-weeks of intermittent nCUR at 10 mg/Kg in GWI animals, with treatment commencing 8 months after exposure to GWI-related chemicals and stress, mimicking treatment for the persistent cognitive and mood dysfunction displayed by veterans with GWI. GWI rats receiving nCUR exhibited better cognitive and mood function associated with improved mitochondrial function and diminished neuroinflammation in the hippocampus. Improved mitochondrial function was evident from normalized expression of OS markers, antioxidants, and mitochondrial electron transport genes, and complex proteins. Lessened neuroinflammation was noticeable from reductions in astrocyte hypertrophy, NF-kB, activated microglia with NLRP3 inflammasomes, and multiple proinflammatory cytokines. Moreover, nCUR treated animals displayed enhanced neurogenesis with a normalized expression of synaptophysin puncta, and multiple genes linked to cognitive dysfunction. Thus, low-dose, intermittent, oral nCUR therapy has promise for improving brain function in veterans with GWI.
Collapse
Affiliation(s)
- Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Laila Melissari
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Adrian Bates
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Eeshika Mitra
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Keyhan R Ghahfarouki
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - M. N. V Ravikumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| |
Collapse
|
34
|
Xia S, Weng T, Jin R, Yang M, Yu M, Zhang W, Wang X, Han C. Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds. BURNS & TRAUMA 2022; 10:tkac001. [PMID: 35291229 PMCID: PMC8918758 DOI: 10.1093/burnst/tkac001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
Background Gelatin methacryloyl (GelMA) hydrogels loaded with stem cells have proved to be an effective clinical treatment for wound healing. Advanced glycation end product (AGE), interacting with its particular receptor (AGER), gives rise to reactive oxygen species (ROS) and apoptosis. Curcumin (Cur) has excellent antioxidant activity and regulates intracellular ROS production and apoptosis. In this study, we developed a Cur-incorporated 3D-printed GelMA to insert into adipose-derived stem cells (ADSCs) and applied it to diabetic wounds. Methods GelMA hydrogels with Cur were fabricated and their in vitro effects on ADSCs were investigated. We used structural characterization, western blot, ROS and apoptosis assay to evaluate the antioxidant and anti-apoptotic activity, and assessed the wound healing effects to investigate the mechanism underlying regulation of apoptosis by Cur via the AGE/AGER/nuclear factor-κB (NF-κB) p65 pathway. Results A 10% GelMA scaffold exhibited appropriate mechanical properties and biocompatibility for ADSCs. The circular mesh structure demonstrated printability of 10% GelMA and Cur-GelMA bioinks. The incorporation of Cur into the 10% GelMA hydrogel showed an inhibitory effect on AGEs/AGER/NF-κB p65-induced ROS generation and ADSC apoptosis. Furthermore, Cur-GelMA scaffold promoted cell survival and expedited in vivo diabetic wound healing. Conclusions The incorporation of Cur improved the antioxidant activity of 3D-printed GelMA hydrogel and mitigated AGE/AGER/p65 axis-induced ROS and apoptosis in ADSCs. The effects of scaffolds on wound healing suggested that Cur/GelMA-ADSC hydrogel could be an effective biological material for accelerating wound healing.
Collapse
Affiliation(s)
- Sizhan Xia
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Tingting Weng
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Ronghua Jin
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Min Yang
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Meirong Yu
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Wei Zhang
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Xingang Wang
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Chunmao Han
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| |
Collapse
|
35
|
Curcumin ameliorates HO-induced injury through SIRT1-PERK-CHOP pathway in pancreatic beta cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:370-377. [PMID: 35538036 PMCID: PMC9827983 DOI: 10.3724/abbs.2022004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress play crucial roles in pancreatic β cell destruction, leading to the development and progression of type 1 diabetes mellitus (T1DM). Curcumin, extracted from plant turmeric, possesses multiple bioactivities such as antioxidant, anti-inflammatory and anti-apoptosis properties and . However, it remains unknown whether curcumin improves ER stress to prevent β cells from apoptosis. In this study, we aim to investigate the role and mechanism of curcumin in ameliorating HO-induced injury in MIN6 (a mouse insulinoma cell line) cells. Cell viability is examined by CCK8 assay. Hoechst 33258 staining, TUNEL and flow cytometric assay are performed to detect cell apoptosis. The relative amounts of reactive oxygen species (ROS) are measured by DCFH-DA. WST-8 is used to determine the total superoxide dismutase (SOD) activity. Protein expressions are determined by western blot analysis and immunofluorescence staining. Pretreatment with curcumin prevents MIN6 cells from HO-induced cell apoptosis. Curcumin decreases ROS generation and inhibits protein kinase like ER kinase (PERK)-C/EBP homologous protein (CHOP) signaling axis, one of the critical branches of ER stress pathway. Moreover, incubation with curcumin activates silent information regulator 1 (SIRT1) expression and subsequently decreases the expression of CHOP. Additionally, EX527, a specific inhibitor of SIRT1, blocks the protective effect of curcumin on MIN6 cells exposed to HO. In sum, curcumin inhibits the PERK-CHOP pathway of ER stress mediated by SIRT1 and thus ameliorates HO-induced MIN6 cell apoptosis, suggesting that curcumin and SIRT1 may provide a potential therapeutic approach for T1DM.
Collapse
|
36
|
Therapeutic Applications of Curcumin in Diabetes: A Review and Perspective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1375892. [PMID: 35155670 PMCID: PMC8828342 DOI: 10.1155/2022/1375892] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/28/2021] [Accepted: 01/22/2022] [Indexed: 12/14/2022]
Abstract
Diabetes is a metabolic disease with multifactorial causes which requires lifelong drug therapy as well as lifestyle changes. There is now growing scientific evidence to support the effectiveness of the use of herbal supplements in the prevention and control of diabetes. Curcumin is one of the most studied bioactive components of traditional medicine, but its physicochemical characteristics are represented by low solubility, poor absorption, and low efficacy. Nanotechnology-based pharmaceutical formulations can help overcome the problems of reduced bioavailability of curcumin and increase its antidiabetic effects. The objectives of this review were to review the effects of nanocurcumin on DM and to search for databases such as PubMed/MEDLINE and ScienceDirect. The results showed that the antidiabetic activity of nanocurcumin is due to complex pharmacological mechanisms by reducing the characteristic hyperglycemia of DM. In light of these results, nanocurcumin may be considered as potential agent in the pharmacotherapeutic management of patients with diabetes.
Collapse
|
37
|
Effects of nano-curcumin supplementation on oxidative stress, systemic inflammation, adiponectin, and NF-κB in patients with metabolic syndrome: A randomized, double-blind clinical trial. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Lebda MA, Elmassry IH, Taha NM, Elfeky MS. Nanocurcumin alleviates inflammation and oxidative stress in LPS-induced mastitis via activation of Nrf2 and suppressing TLR4-mediated NF-κB and HMGB1 signaling pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8294-8305. [PMID: 34482462 DOI: 10.1007/s11356-021-16309-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Coliform mastitis is a worldwide serious disease of the mammary gland. Curcumin is a pleiotropic polyphenol obtained from turmeric, but it is hydrophobic and rapidly eliminated from the body. However, nanoformulation of curcumin significantly improves its pharmacological activity by enhancing its hydrophobicity and oral bioavailability. Our study aimed to investigate the possible antioxidant and anti-inflammatory effects of nanocurcumin as a prophylactic against LPS-induced coliform mastitis in rat model, where LPS was extracted from a field strain of Escherichia coli (bovine mastitis isolate). The study was conducted on twenty lactating Wistar female rats divided into four equal groups, and the mastitis model was initiated by injection of LPS through the duct of the mammary gland. The results showed that nanocurcumin significantly attenuated the lipid peroxidation (MDA), oxidized glutathione, the release of pro-inflammatory cytokines (TNF-α and IL-1β), and the gene expression of TLR4, NF-κB p65, and HMGB1. Meanwhile, it improved the reduced glutathione level and Nrf2 activity and preserved the normal alveolar architecture. These findings suggested that nanocurcumin supplementation can be a promising potential protective approach for coliform mastitis.
Collapse
Affiliation(s)
- Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| | - Ingi H Elmassry
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nabil M Taha
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed S Elfeky
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Saleh DO, Nasr M, Hassan A, El‐Awdan SA, Abdel Jaleel GA. Curcumin nanoemulsion ameliorates brain injury in diabetic rats. J Food Biochem 2022; 46:e14104. [DOI: 10.1111/jfbc.14104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Dalia O. Saleh
- Department of Pharmacology Medical Research and Clinical Studies Institute, National Research Centre Giza Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Ain Shams University Cairo Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine Cairo University Cairo Egypt
| | - Sally A. El‐Awdan
- Department of Pharmacology Medical Research and Clinical Studies Institute, National Research Centre Giza Egypt
| | - Gehad A. Abdel Jaleel
- Department of Pharmacology Medical Research and Clinical Studies Institute, National Research Centre Giza Egypt
| |
Collapse
|
40
|
Abdulmalek S, Eldala A, Awad D, Balbaa M. Ameliorative effect of curcumin and zinc oxide nanoparticles on multiple mechanisms in obese rats with induced type 2 diabetes. Sci Rep 2021; 11:20677. [PMID: 34667196 PMCID: PMC8526574 DOI: 10.1038/s41598-021-00108-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
The present study was carried out to investigate the therapeutic effect of synthesized naturally compounds, curcumin nanoparticles (CurNPs) and metal oxide, zinc oxide nanoparticles (ZnONPs) on a high-fat diet (HFD)/streptozotocin (STZ)-induced hepatic and pancreatic pathophysiology in type 2 diabetes mellitus (T2DM) via measuring AKT pathway and MAPK pathway. T2DM rats were intraperitoneally injected with a low dose of 35 mg/kg STZ after being fed by HFD for 8 weeks. Then the rats have orally received treatments for 6 weeks. HFD/STZ-induced hepatic inflammation, reflected by increased phosphorylation of p38-MAPK pathway's molecules, was significantly decreased after nanoparticle supplementation. In addition, both nanoparticles significantly alleviated the decreased phosphorylation of AKT pathway. Further, administration of ZnONPs, CurNPs, conventional curcumin, and ZnSO4 (zinc sulfate), as well as metformin, effectively counteracted diabetes-induced oxidative stress and inflammation in the internal hepatic and pancreatic tissues. Based on the results of the current study, ZnONPs and CurNPs could be explored as a therapeutic adjuvant against complications associated with T2DM. Both nanoparticles could effectively delay the progression of several complications by activating AKT pathway and down-regulating MAPK pathway. Our findings may provide an experimental basis for the application of nanoparticles in the treatment of T2DM with low toxicity.
Collapse
Affiliation(s)
- Shaymaa Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Center of Excellency for Preclinical Study (CE-PCS), Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, SRTA-City, New Borg El-Arab City, Alexandria, Egypt
| | - Asmaa Eldala
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa Awad
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
41
|
Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, Maishu SP, Akter R, Rahman MH, Karthika C, Murad W, Qusty N, Qusti S, Alshammari EM, Batiha GES, Altalbawy FMA, Albooq MIM, Alamri BM. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules 2021; 26:4998. [PMID: 34443593 PMCID: PMC8402133 DOI: 10.3390/molecules26164998] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Protity Shuvra Dey
- Department of Food Science & Nutrition Management, J.D. Birla Institute, Kolkata 700020, India;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Tanima Bhattacharya
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | | | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Naeem Qusty
- Biochemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah 80200, Saudi Arabia;
| | - Safaa Qusti
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Eida M. Alshammari
- Department of Medical Laboratories, Faculty of Applied Medical Sciences, Umma Al-Qura University, Mecca P.O. Box 715, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Farag M. A. Altalbawy
- National institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt;
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Mona I. M. Albooq
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Badrieah M. Alamri
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
42
|
Mahjoob M, Stochaj U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res Rev 2021; 69:101364. [PMID: 34000462 DOI: 10.1016/j.arr.2021.101364] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Aging increases the susceptibility to a diverse set of diseases and disorders, including neurodegeneration, cancer, diabetes, and arthritis. Natural compounds are currently being explored as alternative or complementary agents to treat or prevent aging-related malfunctions. Curcumin, a phytochemical isolated from the spice turmeric, has garnered great interest in recent years. With anti-oxidant, anti-inflammatory, anti-microbial, and other physiological activities, curcumin has great potential for health applications. However, the benefits of curcumin are restricted by its low bioavailability and stability in biological systems. Curcumin nanoformulations, or nano-curcumin, may overcome these limitations. This review discusses different forms of nano-curcumin that have been evaluated in vitro and in vivo to treat or prevent aging-associated health impairments. We describe current barriers for the routine use of curcumin nanoformulations in the clinic. Our review highlights outstanding questions and future work that is needed to ensure nano-curcumin is efficient and safe to lessen the burden of aging-related health problems.
Collapse
Affiliation(s)
- Maryam Mahjoob
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
43
|
Wickramasinghe ASD, Kalansuriya P, Attanayake AP. Herbal Medicines Targeting the Improved β-Cell Functions and β-Cell Regeneration for the Management of Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2920530. [PMID: 34335803 PMCID: PMC8298154 DOI: 10.1155/2021/2920530] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
There is an increasing trend of investigating natural bioactive compounds targeting pancreatic β-cells for the prevention/treatment of diabetes mellitus (DM). With the exploration of multiple mechanisms by which β-cells involve in the pathogenesis of DM, herbal medicines are gaining attention due to their multitasking ability as evidenced by traditional medicine practices. This review attempts to summarize herbal medicines with the potential for improvement of β-cell functions and regeneration as scientifically proven by in vivo/in vitro investigations. Furthermore, attempts have been made to identify the mechanisms of improving the function and regeneration of β-cells by herbal medicines. Relevant data published from January 2009 to March 2020 were collected by searching electronic databases "PubMed," "ScienceDirect," and "Google Scholar" and studied for this review. Single herbal extracts, polyherbal mixtures, and isolated compounds derived from approximately 110 medicinal plants belonging to 51 different plant families had been investigated in recent years and found to be targeting β-cells. Many herbal medicines showed improvement of β-cell function as observed through homeostatic model assessment-β-cell function (HOMA-β). Pancreatic β-cell regeneration as observed in histopathological and immunohistochemical studies in terms of increase of size and number of functional β-cells was also prominent. Increasing β-cell mass via expression of genes/proteins related to antiapoptotic actions and β-cell neogenesis/proliferation, increasing glucose-stimulated insulin secretion via activating glucose transporter-2 (GLUT-2) receptors, and/or increasing intracellular Ca2+ levels were observed upon treatment of some herbal medicines. Some herbal medicines acted on various insulin signaling pathways. Furthermore, many herbal medicines showed protective effects on β-cells via reduction of oxidative stress and inflammation. However, there are many unexplored avenues. Thus, further investigations are warranted in elucidating mechanisms of improving β-cell function and mass by herbal medicines, their structure-activity relationship (SAR), and toxicities of these herbal medicines.
Collapse
Affiliation(s)
| | - Pabasara Kalansuriya
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | |
Collapse
|
44
|
Ashtary-Larky D, Rezaei Kelishadi M, Bagheri R, Moosavian SP, Wong A, Davoodi SH, Khalili P, Dutheil F, Suzuki K, Asbaghi O. The Effects of Nano-Curcumin Supplementation on Risk Factors for Cardiovascular Disease: A GRADE-Assessed Systematic Review and Meta-Analysis of Clinical Trials. Antioxidants (Basel) 2021; 10:1015. [PMID: 34202657 PMCID: PMC8300831 DOI: 10.3390/antiox10071015] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Previous studies have indicated that curcumin supplementation may be beneficial for cardiometabolic health; however, current evidence regarding the effects of its nanorange formulations, popularly known as "nano-curcumin", remains unclear. This systematic review and meta-analysis aimed to determine the impact of nano-curcumin supplementation on risk factors for cardiovascular disease. METHODS PubMed, Scopus, Embase, and ISI web of science were systematically searched up to May 2021 using relevant keywords. All randomized controlled trials (RCTs) investigating the effects of nano-curcumin supplementation on cardiovascular disease risk factors were included. Meta-analysis was performed using random-effects models, and subgroup analysis was performed to explore variations by dose and baseline risk profiles. RESULTS According to the results of this study, nano-curcumin supplementation was associated with improvements in the glycemic profile by decreasing fasting blood glucose (FBG) (WMD: -18.14 mg/dL; 95% CI: -29.31 to -6.97; p = 0.001), insulin (WMD: -1.21 mg/dL; 95% CI: -1.43 to -1.00; p < 0.001), and HOMA-IR (WMD: -0.28 mg/dL; 95% CI: -0.33 to -0.23; p < 0.001). Interestingly, nano-curcumin supplementation resulted in increases in high-density lipoprotein (HDL) (WMD: 5.77 mg/dL; 95% CI: 2.90 to 8.64; p < 0.001). In terms of other lipid profile markers (triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL)), subgroup analyses showed that nano-curcumin supplementation had more favorable effects on lipid profiles in individuals with dyslipidemia at baseline. Nano-curcumin supplementation also showed favorable anti-inflammatory effects by decreasing C-reactive protein (CRP) (WMD: -1.29 mg/L; 95% CI: -2.15 to -0.44; p = 0.003) and interleukin-6 (IL-6) (WMD: -2.78 mg/dL; 95% CI: -3.76 to -1.79; p< 0.001). Moreover, our results showed the hypotensive effect of nano-curcumin, evidenced by a decrease in systolic blood pressure (SBP). CONCLUSIONS In conclusion, our meta-analysis suggests that nano-curcumin supplementation may decline cardiovascular disease risk by improving glycemic and lipid profiles, inflammation, and SBP. Future large-scale investigations with longer durations are needed to expand on our findings.
Collapse
Affiliation(s)
- Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Seyedeh Parisa Moosavian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA;
| | - Sayed Hossein Davoodi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Pardis Khalili
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, WittyFit, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| |
Collapse
|
45
|
Multi-Organ Protective Effects of Curcumin Nanoparticles on Drug-Induced Acute Myocardial Infarction in Rats with Type 1 Diabetes Mellitus. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The objectives of this study were to investigate the cardio-protective, hepatoprotective and nephroprotective effects of curcumin nanoparticle (NC) pretreatment compared to conventional curcumin (CC) on acute myocardial infarction (AMI) in rats with type 1 diabetes mellitus (T1DM). Fifty-six Wister Bratislava rats were divided into eight groups. The first four groups—C (control group), AMI (group with AMI), T1DM (group with T1DM), and T1DM-AMI (group with T1DM and AMI)—received only saline (S) during the whole experiment. Two groups—S-T1DM-CC-AMI and S-T1DM-NC-AMI—were pretreated with S before T1DM induction. The S-T1DM-CC-AMI group received CC (200 mg/Kg bw (bw—body weight)) after T1DM induction, while the S-T1DM-NC-AMI group received NC (200 mg/Kg bw) after T1DM induction. the CC-T1DM-CC-AMI group received CC (200 mg/Kg bw) during the whole experiment. Similarly, the NC-T1DM-NC-AMI group received NC (200 mg/Kg bw) over the entire experiment. T1DM was induced on day 7 using a single dose of streptozotocin (STZ). AMI was induced with isoproterenol (ISO) on day 22. Both curcumin formulations, CC and NC, prevented the following electrocardiographic changes: prolongation of the QRS complex, enlargement of QT and QTc intervals, and ST-segment elevation. Glucose levels and lipid profile parameters were reduced up to 1.9 times, while C-peptide serum levels were increased up to 1.6 times in groups that received CC or NC. Liver function parameters (aspartate transaminase, alanine transaminase) and kidney function parameters (creatinine, urea) were reduced 4.8 times, and histological changes of liver and kidney tissue were improved by CC or NC administration. Pretreatment with NC proved significantly higher cardioprotective, hepatoprotective and nephroprotective effects in the case of AMI in T1DM.
Collapse
|
46
|
Italiya KS, Singh AK, Chitkara D, Mittal A. Nanoparticulate tablet dosage form of lisofylline-linoleic acid conjugate for type 1 diabetes: in situ single-pass intestinal perfusion (SPIP) studies and pharmacokinetics in rat. AAPS PharmSciTech 2021; 22:114. [PMID: 33763759 DOI: 10.1208/s12249-021-01980-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lisofylline (LSF) is an anti-inflammatory molecule with high aqueous solubility and rapid metabolic interconversion to its parent drug, pentoxifylline (PTX) resulting in very poor pharmacokinetic (PK) parameters, necessitating high dose and dosing frequency. In the present study, we resolved the physicochemical and pharmacokinetic limitations associated with LSF and designed its oral dosage form as a tablet for effective treatment in type 1 diabetes (T1D). Self-assembling polymeric micelles of LSF (lisofylline-linoleic acid polymeric micelles (LSF-LA PLM)) were optimized for scale-up (6 g batch size) and lyophilized followed by compression into tablets. Powder blend and tablets were evaluated as per USP. LSF-LA PLM tablet so formed was evaluated for in vitro release in simulated biological fluids (with enzymes) and for cell viability in MIN-6 cells. LSF-LA PLM in tablet formulation was further evaluated for intestinal permeability (in situ) along with LSF and LSF-LA self-assembled micelles (SM) as controls in a rat model using single-pass intestinal perfusion (SPIP) study. SPIP studies revealed 1.8-fold higher oral absorption of LSF-LA from LSF-LA PLM as compared to LSF-LA SM and ~5.9-fold higher than LSF (alone) solution. Pharmacokinetic studies of LSF-LA PLM tablet showed greater Cmax than LSF, LSF-LA, and LSF-LA PLM. Designed facile LSF-LA PLM tablet dosage form has potential for an immediate decrease in the postprandial glucose levels in patients of T1D.
Collapse
|
47
|
Kheiripour N, Khodamoradi Z, Ranjbar A, Borzouei S. The positive effect of short-term nano-curcumin therapy on insulin resistance and serum levels of afamin in patients with metabolic syndrome. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:146-153. [PMID: 33907673 PMCID: PMC8051321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/15/2020] [Accepted: 04/08/2020] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Metabolic syndrome (MS) is a cluster of cardio-metabolic risk factors. MS is known as a highly prevalent disease worldwide. According to the existing evidence, consuming curcumin has positive effects on lipids profile, glucose, and body weight. This study aimed to evaluate the effects of nano-curcumin therapy on insulin resistance and serum level of afamin in patients with MS. MATERIALS AND METHODS Thirty MS patients (15 males and 15 females) received 80 mg/daily nano-curcumin for two months. The samples of fasting blood were collected from the participants at the beginning and 60 days after initiation of the intervention to measure biomarkers. RESULTS Comparing pre- and post-treatment with nano-curcumin values revealed a significant decrease in fasting plasma glucose (FPG) (p=0.017), insulin, homeostatic model assessment of insulin resistance (HOMA-IR) (p=0.006), and afamin (p=0.047). Moreover, there was a significantly negative relationship between afamin and high-density lipoprotein cholesterol (HDL-C) (p=0.044), as well as a significantly positive relationship between afamin and systolic (SBP) (p<0.001) and diastolic (DBP) (p<0.001) blood pressures. CONCLUSION Results suggest that taking nano-curcumin for 60 days may have positive effects on afamin, FPG, insulin, and HOMA-IR in patients with MS, but would not significantly affect other metabolic profiles. More studies with larger sample sizes are required to confirm these findings.
Collapse
Affiliation(s)
- Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Khodamoradi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Toxicology and Pharmacology Department, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shiva Borzouei
- Clinical Research Development Unit of Shahid Beheshti Hospital, Hamadan University of Medical science, Hamadan, Iran
| |
Collapse
|
48
|
Al-Jameel SS. The activity of curcumin combined with ZnCl₂ on streptozotocin-induced diabetic rats. An anti-diabetic, anti-hyperlipidemic study . JOURNAL OF ADVANCED PHARMACY EDUCATION AND RESEARCH 2021; 11:189-198. [DOI: 10.51847/o1gqkvmdou] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
49
|
Shamsi-Goushki A, Mortazavi Z, Mirshekar MA, Behrasi F, Moradi-Kor N, Taghvaeefar R. Effects of High White and Brown Sugar Consumption on Serum Level of Brain-Derived Neurotrophic Factor, Insulin Resistance, and Body Weight in Albino Rats. J Obes Metab Syndr 2020; 29:320-324. [PMID: 33107441 PMCID: PMC7789015 DOI: 10.7570/jomes20037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background In recent decades, consumption of simple sugars has increased dramatically, which contributes to health problems including insulin resistance and obesity. In this study, we investigated the effects of high concentrations of white sugar (WS) and brown sugar (BS) on serum concentration of brain-derived neurotrophic factor (BDNF), insulin resistance, and body weight in albino rats. Methods Twenty-four male Wistar rats were randomly divided into three groups: control, a group treated with 15% WS, and a group treated with 15% BS. Rats were given WS and BS by gavage (daily) for 42 days. At the end of the intervention period, serum level of BDNF, insulin resistance, and body weight were measured. Results Body weight and insulin resistance were significantly increased and serum BDNF level was decreased in both WS and BS groups compared to the control group (P<0.05). In the WS-treated rats, the amount of changes in the insulin resistance, body weight, and serum BDNF level was greater compared to that in BS-treated (P<0.05). Conclusion Due to the adverse effects of consuming high levels of WS and BS on serum level of BDNF, insulin resistance, and body weight, high intakes of these sweeteners are not recommended.
Collapse
Affiliation(s)
- Ali Shamsi-Goushki
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zinat Mortazavi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Ali Mirshekar
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Behrasi
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Rasul Taghvaeefar
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
50
|
Different Stages of Alveolar Bone Repair Process Are Compromised in the Type 2 Diabetes Condition: An Experimental Study in Rats. BIOLOGY 2020; 9:biology9120471. [PMID: 33339217 PMCID: PMC7766949 DOI: 10.3390/biology9120471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary Type 2 diabetes (T2D) affects more than 90% of all patients diagnosed with diabetes, and among its risk factors, unhealthy eating habits are worth mentioning. With the notorious increase in the incidence of diabetic patients, there has also been an increase in surgical complications in dentistry, so this work presents a study model that mimics the T2D condition in rats, where animals receive a diet composed of foods rich in sugar and fat equivalent to the poor diet of the current population. The animals were submitted to dental extraction to perform analyzes at different stages of the alveolar bone. It is important to highlight that with the development of this experimental model it will be possible to simulate different conditions that are observed in clinics and in consequence and improve the characterization of the cellular responses involved in this complex condition of T2D. The scientific evidence presented in this study shows that T2D prolongs the local inflammatory process, which impairs the organization and maturation of collagen fibers, delaying bone formation and bone turnover. This fact implies in a series of disorders in dental practice, that would need to compensate in other ways, either with systemic medications or local therapies. Abstract The aim of this study was to analyze the stages of the alveolar bone repair in type 2 diabetic rats evaluating the mechanism of mineralization and bone remodeling processes after dental extraction. Forty-eight rats were divided into normoglycemic (NG) and type 2 diabetes (T2D) groups. The upper right incisor was extracted and after 3, 7, 14 and 42 days the animals were euthanized. The following analyses were performed: immunolabeling against antibodies TNFα, TGFβ, IL6, WNT, OCN and TRAP, collagen fibers maturation, microtomography and confocal microscopy. Data were submitted to statistical analysis. The immunolabeling analysis showed that the T2D presented a more pronounced alveolar inflammation than NG. Labeling of proteins responsible for bone formation and mineralization was higher in NG than T2D, which presented greater resorptive activity characterized by TRAP labeling. Also, T2D group showed a decrease in the amount of collagen fibers. Micro-CT analysis showed that T2D causes a decrease in bone volume percentage due to deficient trabecular parameters and higher porosity. The T2D bone dynamics show a loss in bone remodeling process. T2D prolongs the local inflammatory process, which impairs the organization and maturation of collagen fibers, delaying bone formation that generates impact on mineralization and bone turnover.
Collapse
|