1
|
Jiang T, Zhu X, Yin Z, Gao R, Li Y, Li C, Meng Q, Zhu X, Song W, Su X. Dual role of Baimao-Longdan-Congrong-Fang in inhibiting Staphylococcus aureus virulence factors and regulating TNF-α/TNFR1/NF-κB/MMP9 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156477. [PMID: 39938176 DOI: 10.1016/j.phymed.2025.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Baimao-Longdan-Congrong-Fang (BLCF), a traditional Chinese herbal formula described in the Taiping Shenghui Fang (998 AD), consists of medicinal plants with heat-clearing and tonifying properties. BLCF has a promise as a treatment for Staphylococcus aureus (S. aureus) pneumonia, according to its historical use and current pharmacological research. PURPOSE In this study, the inhibitory effects of BLCF on S. aureus virulence factors were evaluated in vitro, and its mechanisms of action were investigated in a methicillin-resistant S. aureus (MRSA) pneumonia mouse model. METHODS The inhibitory effect of BLCF on S. aureus virulence factors, including sortase A (SrtA) and α-hemolysin (Hla), was investigated by fluorescence resonance energy transfer (FRET) and hemolysis assays. A C57BL/6J mouse model of MRSA pneumonia was employed to evaluate its therapeutic efficacy. Accordingly, an integrated strategy of medicinal chemistry, network pharmacology analysis, GEO database analysis, bioinformatics, molecular docking, molecular dynamics simulation, GeneMANIA-based functional association (GMFA), and GSEA was used to identify and illustrate potential therapeutic targets and mechanisms. Subsequently, the mechanistic results were confirmed by Western blot analysis and RT-qPCR. RESULTS While BLCF exhibited weak inhibitory activity against S. aureus USA300, Newman, and SA37 strains, it significantly suppressed SrtA-related virulence functions without affecting bacterial growth. FRET and hemolysis assays confirmed that BLCF inhibited SrtA activity (IC50 = 1.25 mg/mL) while decreasing hemolytic activity. Furthermore, BLCF protected mice from MRSA infection, increasing their survival rates. Bioinformatics analysis identified 26 active compounds and 2 hub genes (Tnf and Mmp9) that were associated with 5 types of immune cell, including activated CD4 T cells, myeloid-derived suppressor cells, activated dendritic cells, macrophages, and mast cells. Molecular docking revealed 3 active compounds (isoacteoside, verbascoside, and echinacoside) that exhibited strong binding affinities to TNF, MMP9, and SrtA. Molecular dynamics simulations validated the stable interactions between isoacteoside and the target proteins, yielding binding energies of -136.76 ± 8.83 kJ/mol, -174.98 ± 14.89 kJ/mol, and -186.34 ± 9.06 kJ/mol, respectively. The therapeutic effect of BLCF was closely linked to the NF-κB signaling pathway, as revealed by GMFA and GSEA analyses. In vivo, BLCF reduced lung bacterial load, improved the wet/dry ratio, and decreased inflammatory cytokines, thereby enhancing lung histopathology through modulation of the TNF-α/TNFR1/NF-κB/MMP9 axis. CONCLUSIONS BLCF can effectively treat MRSA pneumonia in mice by inhibiting SrtA activity, decreasing hemolytic activity, and regulating the TNF-α/TNFR1/NF-κB/MMP9 axis. These findings suggest BLCF, a traditional herbal formula, as a promising novel therapeutic approach to treat pneumonia.
Collapse
Affiliation(s)
- Tao Jiang
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xiujing Zhu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zixin Yin
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Rui Gao
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yufen Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Chenhao Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Qianting Meng
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xiaojuan Zhu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
2
|
Chittasupho C, Samee W, Mangmool S, Karuna N, Anuchapreeda S, Okonogi S, Athikomkulchai S. Phytochemical Characterization and Anticancer Activity of Clerodendrum chinense Leaf Extract Against Breast and Cervical Cancer Cells. Int J Mol Sci 2025; 26:2729. [PMID: 40141371 PMCID: PMC11943097 DOI: 10.3390/ijms26062729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/15/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer remains a significant global health challenge, necessitating novel therapeutic interventions. Clerodendrum chinense leaf extract (CCL) has gained interest for its potential anticancer properties due to its bioactive composition. This study aims to evaluate the cytotoxic effects of CCL against MCF-7 breast cancer and HeLa cervical cancer cells and elucidate its mechanisms of action. High-performance liquid chromatography identified verbascoside, isoverbascoside, and hispidulin as the major bioactive compounds. CCL exhibited time- and dose-dependent cytotoxicity, with MCF-7 cells showing greater sensitivity (IC50 = 126.8 µg/mL, 72 h) than HeLa cells (216.1 µg/mL, 72 h). Flow cytometry confirmed apoptotic induction, with late apoptosis increasing at moderate concentrations (16.03-23.55%) and necrosis prevailing at higher doses (50.80-63.68%). Reactive oxygen species generation was significantly elevated in MCF-7 (70.2%) and HeLa (60.4%) cells at 250 µg/mL. CCL effectively suppressed colony formation and cell migration in a dose-dependent manner. Molecular docking studies demonstrated that apoptosis induction of CCL bioactive compounds may mediate through the pro-apoptotic BCL2 associated X, apoptosis regulator (BAX) regulator. These findings highlight the potential of CCL as a natural anticancer agent with multiple mechanisms, including reactive oxygen species (ROS)-induced apoptosis, BAX activation, and inhibition of proliferation and metastasis.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand;
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (N.K.)
| | - Narainrit Karuna
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (N.K.)
| | - Songyot Anuchapreeda
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sirivan Athikomkulchai
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| |
Collapse
|
3
|
Zhang H, Wang Q, Wei J. Study on Flowering Dynamics and Pollination Habits of Monochasma savatieri Under Artificial Cultivation Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:715. [PMID: 40094636 PMCID: PMC11901981 DOI: 10.3390/plants14050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
The research aimed to investigate the reproductive biology of M. Savatieri (Monochasma savatieri Franch. ex Maxim.), focusing on its floral structure, developmental stages, flowering dynamics, pollen dispersal characteristics, stigma development, and longevity, as well as self-crossing affinity in both indoor and outdoor cultivation conditions. The study divided the flower development process into four distinct stages: the bud stage (1-3 days), the present bud stage (4-8 days), the pollination stage (9-14 days), and the fruiting stage (15-35 days). Pollen dispersal begins one hour after flowering during the pollination stage and ends within five hours under both indoor and outdoor sunny conditions. Pollen remains highly viable for up to 60 days. Stigma receptivity reaches its maximum at 94.44% on the first day of flowering, decreases to 68.2% by the fourth day, and further declines to 16.7% on the fifth day. The plant, with an outcrossing index (OCI) of 3, shows a 28.80% outcrossing rate in indoor environments and 9.57% in outdoor conditions. It primarily relies on heterogamous pollination while being capable of both self-pollination and artificial pollination. The results provide significant insights into the breeding and production of M. savatieri.
Collapse
Affiliation(s)
| | | | - Jianhe Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (Q.W.)
| |
Collapse
|
4
|
Zhao L, Qi H, Liu W, Lv H, Li P, Liu W, Sun R, Wang Q, Wang X. Isoacteoside alleviates hepatocellular carcinoma progression by inhibiting PDHB-mediated reprogramming of glucose metabolism. Commun Biol 2025; 8:205. [PMID: 39922943 PMCID: PMC11807089 DOI: 10.1038/s42003-025-07622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Pyruvate dehydrogenase B (PDHB) is an important component of the pyruvate dehydrogenase complex and is implicated in altering tumor metabolism and promoting malignancy. However, the specific impact of PDHB on hepatocellular carcinoma (HCC) metabolic reprogramming and its role in tumor progression remain to be elucidated. In our investigation, we have discerned a pronounced elevation in PDHB expression within HCC, intricately linked to delayed tumor staging, heightened tumor grading, and diminished prognostic outcomes. PDHB overexpression drives tumor growth and metastasis in vitro and in vivo. Mechanistically, PDHB mediates metabolic reprogramming by binding to the promoter regions of SLC2A1, GPI, and PKM2, promoting glycolysis-related gene transcription, contributes to HCC sorafenib resistance. In addition, Isoacteoside is a targeted inhibitor of PDHB and exert antitumor effects on HCC. In the mouse xenograft model, the combination of isoacteoside and sorafenib shows significantly better effects than sorafenib alone. In summary, our study validates PDHB as an oncogenic drug resistance-related gene capable of predicting HCC tumor progression. PDHB and Isoacteoside could be potential avenues for targeted and combination therapies in liver cancer.
Collapse
Affiliation(s)
- Lijun Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Haonan Qi
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Weiting Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Huiying Lv
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Peixian Li
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Wenyue Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China.
| | - Qiongzi Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China.
| | - Xiangpeng Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China.
| |
Collapse
|
5
|
Xu W, Hou H, Yang W, Tang W, Sun L. Immunologic role of macrophages in sepsis-induced acute liver injury. Int Immunopharmacol 2024; 143:113492. [PMID: 39471696 DOI: 10.1016/j.intimp.2024.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Sepsis-induced acute liver injury (SALI), a manifestation of sepsis multi-organ dysfunction syndrome, is associated with poor prognosis and high mortality. The diversity and plasticity of liver macrophage subpopulations explain their different functional responses in different liver diseases. Kupffer macrophages, liver capsular macrophages, and monocyte-derived macrophages are involved in pathogen recognition and clearance and in the regulation of inflammatory responses, exacerbating the progression of SALI through different pathways of pyroptosis, ferroptosis, and autophagy. Concurrently, they play an important role in maintaining hepatic homeostasis and in the injury and repair processes of SALI. Other macrophages are recruited to diseased tissues under pathological conditions and are polarized into various phenotypes (mainly M1 and M2 types) under the influence of signaling molecules, transcription factors, and metabolic reprogramming, thereby exerting different roles and functions. This review provides an overview of the immune role of macrophages in SALI and discusses the multiple roles of macrophages in liver injury and repair to provide a reference for future studies.
Collapse
Affiliation(s)
- Wanling Xu
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Hailong Hou
- Emergency Department, Meihekou Central Hospital, 2668 Aimin Street, Tonghua 135000, Jilin, China
| | - Weiying Yang
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Wenjing Tang
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Lichao Sun
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China.
| |
Collapse
|
6
|
Xiao Y, Chang Y, Liu YY, Li TT, Qu WR, Yuan C, Chen L, Huang S, Zhou XL. Biologically active franchetine-type diterpenoid alkaloids: Isolation, synthesis, anti-inflammatory, agalgesic activities, and molecular docking. Bioorg Chem 2024; 153:107834. [PMID: 39332071 DOI: 10.1016/j.bioorg.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
In this study, four franchetine-type diterpenoid alkaloids (1-4) were isolated from Aconitum sinoaxillare, and fourteen diverse franchetine analogs (5-18) were synthesized. Compounds 1, 2, 7 and 16 exhibited stronger inhibitory effects on NO production when compared to celecoxib. Among them, compound 1 had the best inhibitory effect on iNOS and COX-2 inflammatory proteins. The in vitro studies displayed that the anti-inflammatory effect of the most active compound 1 was ascribed to the inhibition of the TLR4-MyD88/NF-κB/MAPKs signalling pathway. Consequently, this led to a inhibition in the expression of inflammatory factors or mediators including NO, ROS, TNF-α, IL-6, IL-1β, iNOS, and COX-2. Additionally, compound 1 had low toxicity (LD50 > 20 mg/kg) in mice, and it had notable analgesic effects on acetic acid-induced visceral pain (ED50 = 2.15 ± 0.07 mg/kg). Moreover, compound 1 exhibited a distinct reduction in the NaV1.7 and NaV1.8 channel currents during both resting and half-inactivated states at 50 μM. The present study enriches the pharmacological activities of franchetine derivatives and provides valuable insights for the development of novel anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Yan Xiao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Ye Chang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; School of School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yu-Yan Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China
| | - Ting-Ting Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Wen-Rong Qu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Cheng Yuan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China.
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; School of School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China.
| |
Collapse
|
7
|
Sun Y, Men Q, Ren X, Yan C, Song S, Ai C. Low molecular fucoidan alleviated alcohol-induced liver injury in BALB/c mice by regulating the gut microbiota-bile acid-liver axis. Int J Biol Macromol 2024; 282:136930. [PMID: 39490864 DOI: 10.1016/j.ijbiomac.2024.136930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Fucoidan has attracted significant attention owing to its remarkable bioactivities, but the effect of molecular weight (Mw) on its activities in the context of alcoholic liver diseases (ALD) is poorly understood. In this study, low Mw fucoidan (OSLF) was prepared, and its protective effect against alcohol-induced liver injury was assessed in a mouse model. OSLF increased weight gain and colon length, improved lipid disorders, and reduced oxidative stress in mice exposed to alcohol, alleviating liver injury. OSLF alleviated inflammation in the liver by inhibiting alcohol-activated NF-κB and MAPK pathways. The underlying mechanism can be attributed to the improvement of alcohol-induced dysbiosis of the gut microbiota, including a decrease in Proteobacteria and Bacteroidetes and an increase in microbiota diversity, as well as the abundances of Parabacteroides, Bacteroides, and Faecalibaculum. Metabolomics results showed that OSLF improved alcohol-induced abnormalities of microbiota metabolites, primarily involving amino acid metabolism and short chain fatty acids production. In addition, OSLF ameliorated bile acid metabolism in the gut and regulated the expression of bile acid-associated genes in the liver, affecting bile acid synthesis, regulation, and transport. It suggested that OSLF had the potential for the management of ALD by regulating the gut microbiota-bile acid-liver axis.
Collapse
Affiliation(s)
- Yiyun Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Qiuyue Men
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaomeng Ren
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunhong Yan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
8
|
Pan S, Peng L, Yi Q, Qi W, Yang H, Wang H, Wang L. Ginsenoside Rh 2 Alleviates LPS-Induced Inflammatory Responses by Binding to TLR 4/MD-2 and Blocking TLR 4 Dimerization. Int J Mol Sci 2024; 25:9546. [PMID: 39273493 PMCID: PMC11395244 DOI: 10.3390/ijms25179546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Lipopolysaccharide (LPS) triggers a severe systemic inflammatory reaction in mammals, with the dimerization of TLR4/MD-2 upon LPS stimulation serving as the pivotal mechanism in the transmission of inflammatory signals. Ginsenoside Rh2 (G-Rh2), one of the active constituents of red ginseng, exerts potent anti-inflammatory activity. However, whether G-Rh2 can block the TLR4 dimerization to exert anti-inflammatory effects remains unclear. Here, we first investigated the non-cytotoxic concentration of G-Rh2 on RAW 264.7 cells, and detected the releases of pro-inflammatory cytokines in LPS-treated RAW 264.7 cells, and then uncovered the mechanisms involved in the anti-inflammatory activity of G-Rh2 through flow cytometry, fluorescent membrane localization, Western blotting, co-immunoprecipitation (Co-IP), molecular docking and surface plasmon resonance (SPR) analysis in LPS-stimulated macrophages. Our results show that G-Rh2 stimulation markedly inhibited the secretion of LPS-induced interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Additionally, G-Rh2 blocked the binding of LPS with the membrane of RAW 264.7 cells through direct interaction with TLR4 and MD-2 proteins, leading to the disruption of the dimerization of TLR4 and MD-2, followed by suppression of the TLR4/NF-κB signaling pathway. Our results suggest that G-Rh2 acts as a new inhibitor of TLR4 dimerization and may serve as a promising therapeutic agent against inflammation.
Collapse
Affiliation(s)
- Shujuan Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; (S.P.); (H.W.)
- Engineering Research Center of the Utilization for Characteristic Bio-Pharma Ceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; (Q.Y.); (W.Q.); (H.Y.)
| | - Luyuan Peng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| | - Qion Yi
- Engineering Research Center of the Utilization for Characteristic Bio-Pharma Ceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; (Q.Y.); (W.Q.); (H.Y.)
| | - Weijin Qi
- Engineering Research Center of the Utilization for Characteristic Bio-Pharma Ceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; (Q.Y.); (W.Q.); (H.Y.)
| | - Hui Yang
- Engineering Research Center of the Utilization for Characteristic Bio-Pharma Ceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; (Q.Y.); (W.Q.); (H.Y.)
| | - Hongying Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; (S.P.); (H.W.)
- Engineering Research Center of the Utilization for Characteristic Bio-Pharma Ceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; (Q.Y.); (W.Q.); (H.Y.)
| | - Lu Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; (S.P.); (H.W.)
- Engineering Research Center of the Utilization for Characteristic Bio-Pharma Ceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; (Q.Y.); (W.Q.); (H.Y.)
| |
Collapse
|
9
|
Zhang J, Wu Y, Wang C, Xu W, Zhang Z, Zhang S, Guan X, Wang X. The antioxidant, anti-inflammatory and analgesic activity effect of ethyl acetate extract from the flowers of Syringa pubescens Turcz. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117561. [PMID: 38072290 DOI: 10.1016/j.jep.2023.117561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Syringa Pubescens Turcz. (SP), a member of the Oleaceae family, is a species of plant known as Syringa. Flowers, as the medicinal part, are commonly used in the treatment of hepatitis and tonsillitis. AIM OF THE STUDY The research was the first to assess the antioxidant and anti-inflammatory potential of different parts of SP flowers (SPF) in vitro. The most promising fraction was ethyl acetate fraction of SP flower (SPFEA). The antioxidant, anti-inflammatory and analgesic activities of SPFEA were further studied, and the chemical components were identified. METHODS HPLC was used to identify the major components in various fraction of SPF. DPPH and ABTS + radical scavenging assays as well as FRAP test and β-carotene bleaching test were employed to assess the antioxidant potential of SPF fraction in vitro. The inhibitory effect on NO production in LPS-treated RAW264.7 cells and heat-induced protein denaturation test were used to evaluate the anti-inflammatory potential of SPF fraction. Further analysis of the biological activity of SPFEA was performed. Acute toxicity test was conducted to assess the toxicity of SPFEA. The anti-inflammatory effect was assessed by utilizing xylene induced ear edema model, carrageenan-induced foot edema model and peritonitis model in vivo. The analgesic effect of SPFEA was evaluated using hot plate test, tail immersion test, formaldehyde test as well as acetic acid-induced abdominal writhing pain experiment in vivo. In carrageenan induced foot edema model, ELISA kits were employed to measure levels of inflammation factors (NO, TNF-α, IL-6, COX-2, IL-1β) in foot tissue as well as MDA, CAT, SOD, GSH-PX levels in liver tissue. RESULTS HPLC results showed that there were significant differences in bioactive substances among different fractions of SPF, and SPFEA was rich in bioacitve components. Compared with other fractions of SPF, SPFEA exhibited better antioxidant and anti-inflammatory abilities. The 3000 mg/kg SPFEA group in mice had no obvious side effects. The xylene-induced ear edema model, carrageenan-induced foot edema and peritonitis models demonstrated that the SPFEA had significant anti-inflammatory effect. Moreover, inflammation factors including NO, TNF-α, IL-6, COX-2, IL-1β were significantly reduced in SPFEA groups in foot tissue induced by carrageenan. Additionally, SPFEA effectively decreased liver tissue oxidative stress levels (MDA, SOD, GSH-PX and CAT). The bioactivities of SPFEA demonstrated a clear dose-dependent relationship. The results of the hot plate test, tail immersion test, formaldehyde test and acetic acid-induced abdominal writhing pain experiments indicated the SPFEA possessed an excellent analgesic effect, and this effect was in dose-dependent manner. CONCLUSION The study provides a scientific foundation for understanding the pharmacological action of SPFEA. It has been indicated that SPFEA has excellent antioxidant, analgesic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Jiameng Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Yanfang Wu
- College of Basic Medical Sciences, Henan University of Science and Technology, 471000, Luoyang, China.
| | - Chenyu Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Weidong Xu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Zichen Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Suya Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Xinyi Guan
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Xinsheng Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China.
| |
Collapse
|
10
|
Zhao M, Yang M, Du J, Cao X, Zhong L, Li W, Chen Y, Peng M, Guo H, Zhou T, Zhang C, Ren Z, Ding Z, Zhong R, Wang Y, Shu Z. Monochasma savatieri Franch. protects against acute lung injury via α7nAChR-TLR4/NF-κB p65 signaling pathway based on integrated pharmacology analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117487. [PMID: 38030024 DOI: 10.1016/j.jep.2023.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is a life-threatening condition with high morbidity and mortality, underscoring the urgent need for novel treatments. Monochasma savatieri Franch. (LRC) is commonly used clinically to treat wind-heat cold, bronchitis, acute pneumonia and acute gastroenteritis. However, its role in the treatment of ALI and its mechanism of action are still unclear. AIM OF THE STUDY This study aimed to demonstrate the pharmacological effects and underlying mechanisms of LRC extract, and provide important therapeutic strategies and theoretical basis for ALI. MATERIALS AND METHODS In this study, a research paradigm of integrated pharmacology combining histopathological analysis, network pharmacology, metabolomics, and biochemical assays was used to elucidate the mechanisms underlaying the effects of LRC extract on LPS-induced ALI in BALB/c mice. RESULTS The research findings demonstrated that LRC extract significantly alleviated pathological damage in lung tissues and inhibited apoptosis in alveolar epithelial cells, and the main active components were luteolin, isoacteoside, and aucubin. Lung tissue metabolomic and immunohistochemical methods confirmed that LRC extract could restore metabolic disorders in ALI mice by correcting energy metabolism imbalance, activating cholinergic anti-inflammatory pathway (CAP), and inhibiting TLR4/NF-κB signaling pathway. CONCLUSIONS This study showed that LRC extract inhibited the occurrence and development of ALI inflammation by promoting the synthesis of antioxidant metabolites, balancing energy metabolism, activating CAP and suppressing the α7nAChR-TLR4/NF-κB p65 signaling pathway. In addition, our study provided an innovative research model for exploring the effective ingredients and mechanisms of traditional Chinese medicine. To the best of our knowledge, this is the first report describing the protective effects of LRC extract in LPS-induced ALI mice.
Collapse
Affiliation(s)
- Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Mingming Peng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huilin Guo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chongyang Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhonglu Ren
- College of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zihe Ding
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Renxing Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
11
|
Algethami FK. GC/MS and LC-MS Analysis and in-vitro Antioxidant Activity of Essential Oil and Crude Methanol Extract from the Leaves of Acacia Gerrardii Benth. Growing in Saudi Arabia. Chem Biodivers 2024; 21:e202301847. [PMID: 38299486 DOI: 10.1002/cbdv.202301847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
In this study, I determined the essential oil (EO) chemical composition and crude methanol extract (ME) phytochemical profile of the leaves of Acacia gerrardii (ACGL), a plant growing in Saudi Arabia. Additionally, I assessed their in vitro antioxidant activity. The gas chromatography-mass spectrometry analysis of the EO revealed a high content of oxygenated monoterpenes (79.86 %), primarily dominated by pulegone (35.11 %), carvacrol (27.36 %), and neo-dihydrocarveol (4.67 %). The ME was analyzed by liquid chromatography-mass spectrometry to determine its qualitative chemical profile. Four organic acids, eleven phenolic compounds, sixteen flavonoids, nine terpenoids (eight triterpenoids and one diterpenoid), and one coumarin were found in the ME of ACGL. This extract was found to be dominated by 5,6,4-trihydroxy-7,3-dimethoxyflavone (39.30 %), acteoside (30.27 %), nevadensin (7.55 %), isoacteoside (3.08 %) and apiin (3.23 %), and hesperidin (2.73 %). The phenolic (TPC=127.70±1.47 mg gallic acid equivalents/g of extract) and flavonoid (TFC=85.48±0.12 mg quercetin equivalents/g of extract) contents of the ME were also assessed. The in vitro antioxidant activities of both the EO and ME were evaluated using DPPH, ABTS, and ferrous ion chelating effect assays. Compared to the positive control (vit. E and Vit. C), and both extracts exhibited excellent activity.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| |
Collapse
|
12
|
Tang L, Zhao HQ, Yang H, Hu C, Ma SJ, Xiao WZ, Qing YH, Yang L, Zhou RR, Liu J, Zhang SH. Spectrum-effect relationship combined with bioactivity evaluation to discover the main anxiolytic active components of Baihe Dihuang decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117090. [PMID: 37640258 DOI: 10.1016/j.jep.2023.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anxiety disorders leads to a decline in quality of life and increased risk of morbidity and mortality. The Baihe Dihuang decoction (BDD) is a classic Chinese medical formula that has been widely used to treat anxiety disorders for thousands of years in China. However, the pharmacodynamic material that is responsible for the antianxiety of BDD remains unclear. AIM OF THE STUDY To screen the main ingredients of anti-anxiety in BDD based on the establishment of spectrum-effect relationship and verified experiment. METHODS The UPLC-Q-TOF/MS technique was utilized to establish fingerprints of various fractions of BDD and identify the main compounds. The anti-anxiety effects of BDD were comprehensively evaluated through multiple assessments, including the open field test, elevated plus maze test, and neurotransmitters tests. Then, the spectrum-effect relationship was established through Pearson correlation analysis, gray correlation analysis, orthogonal partial least squares regression analysis. The spectrum-effect relationship results were confirmed through various measures on an anxiety condition cell model, induced by a corticosterone and lipopolysaccharide intervention. These measures included assessing neuronal cell viability, morphology, apoptosis, synaptic damage, and the expression of neurotransmitters and inflammatory factors. RESULTS In the UPLC-Q-TOF-MS fingerprint, 46 common peaks were identified. The pharmacological results indicated that different fractions of BDD have strong effects on improving anxiety-like behavior and regulating neurotransmitters. Among them, butanol fraction has the highest comprehensive evaluation score of anti-anxiety efficacy, which is main active fraction of BDD for anti-anxiety. The analysis of the spectrum-effect relationship revealed that the 46 peaks exhibited varying degrees of correlation with the anti-anxiety efficacy indicators of BDD. Among them, 14 components have a high correlation with the anti-anxiety efficacy indicators, which may be the potential anti-anxiety efficacy components of BDD. The in vitro activity verification of active components verified our prediction, regaloside A, B, C, D, H, acteoside, and isoacteoside improved neuronal cell viability, cell morphology, apoptosis, and synaptic damage. Additionally, regaloside A, B, C, D, H and acteoside regulated the neurotransmitter levels, while regaloside A, B, C, D, acteoside and isoacteoside inhibited the levels of inflammatory cytokines. CONCLUSION The butanol fraction was found to be the main active fraction of BDD, and 14 compounds were the major anxiolytic active components. The results of verifying the major active components were consistent with the predicted results of the spectrum-effect analysis. The developed spectrum-effect analysis in this study demonstrates high accuracy and reliability for screening active components in TCMs.
Collapse
Affiliation(s)
- Lin Tang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hong-Qing Zhao
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hui Yang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Chao Hu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Si-Jing Ma
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang-Zhong Xiao
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yu-Hui Qing
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Lei Yang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Rong-Rong Zhou
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
13
|
Pongkitwitoon B, Putalun W, Triwitayakorn K, Kitisripanya T, Kanchanapoom T, Boonsnongcheep P. Anti-inflammatory activity of verbascoside- and isoverbascoside-rich Lamiales medicinal plants. Heliyon 2024; 10:e23644. [PMID: 38187323 PMCID: PMC10770615 DOI: 10.1016/j.heliyon.2023.e23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Verbascoside and isoverbascoside are two active phenylethanoid glycosides mainly found in plants of the order Lamiales. This study analyzes the verbascoside and isoverbascoside levels and the total phenolic contents in the water and ethanolic extracts of 20 medicinal plants of the order Lamiales commonly used in Thailand. The related bioactivities, including the antioxidant activity via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reduction activity potential assays and anti-tyrosinase and -inflammatory activities via the cyclooxygenase and nitric oxide assays are also investigated. The extracts of several plant species, including Barleria prionitis, B. lupulina, Rhinacanthus nasutus, Orthosiphon aristatus, and Nicoteba betonica, exhibit high verbascoside and isoverbascoside content levels. The correlation analysis between the bioactive activities and the active compounds demonstrates a significant association between the verbascoside level in the water extracts and both the DPPH antioxidant activity and the nitric oxide level in the anti-inflammatory assays. This study provides the first report on the verbascoside and isoverbascoside quantification of several plant samples. The findings provide valuable insights for future research on lesser-studied plants possessing high verbascoside and isoverbascoside levels, which exhibit promising anti-inflammatory activities.
Collapse
Affiliation(s)
- Benyakan Pongkitwitoon
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | | |
Collapse
|
14
|
Tan L, Solis-Sainz JC. Monochasma Savatieri Aqueous Extract inhibits Human Breast Cancer Cell Line Migration and Adhesion Without Generating Toxicity. Anticancer Agents Med Chem 2024; 24:982-989. [PMID: 38629374 DOI: 10.2174/0118715206287870240408031843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Monochasma savatieri, is a rare and endangered plant used to treat cancer in Chinese traditional medicine. OBJECTIVE To evaluate the anti-cancer activity of M. savatieri aqueous extract by determining its cytotoxicity, anti-migratory, and anti-adhesion effects on breast cancer cells. METHODS Cell viability, migration, adhesion, circularity, and cell cycle were evaluated by crystal violet (CV) staining, wound-healing, and transwell assays and flow cytometry in MCF7 and MDA-MB-231 cells. Caveolin-1, snail, vimentin and activated Erk and Akt expression were determined by western blot in MDA-MB-231 cells. Immunofluorescent assays confirmed caveolin-1 expression in MDA-MB-231 cells. RESULTS Survival and cell cycle of MCF7 and MDA-MB-231 cells were not modified by doses up to 500 μg/mL of the extract. The extract inhibited cell migration and adhesion of MDA-MB-231 cells. When cells were exposed to the extract, there was a slight decrease in protein expression of factors related to epithelial-to-mesenchymal transition (snail and vimentin) and a strong decrease in the expression of the oncogenic membrane protein caveolin- 1. Furthermore, the levels of phosphorylated Erk and Akt were also decreased. The content of acteoside, a phenylpropanoid glycoside with reported anti-cancer activity present in M. savatieri, was almost 5 times as much as isoacteoside. CONCLUSION M. savatieri possesses anti-cancer activity without exerting cytotoxicity on breast cancer cells. The extract exhibited anti-migratory and anti-adhesion effects on breast cancer cells by regulating Erk and Akt signaling pathways and the expression of caveolin-1. In addition, acteoside present in M. savatieri could be responsible for the observed effects.
Collapse
Affiliation(s)
- Lin Tan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, 571101, China
| | - Juan C Solis-Sainz
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, 571101, China
- Department of Biomedical Research, School of Medicine, Autonomous University of Queretaro, Queretaro Qro, 76170, Mexico
| |
Collapse
|
15
|
Yao K, Wang Z, Peng C, Wang Y, Xue B, Tang Y, Wang Z, Xu H. HIV protease inhibitor saquinavir inhibits toll-like receptor 4 activation by targeting receptor dimerization. Immunopharmacol Immunotoxicol 2023; 45:754-760. [PMID: 37485845 DOI: 10.1080/08923973.2023.2239488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE Toll-like receptor 4 (TLR4) is crucial in induction of innate immune response through recognition of invading pathogens or endogenous alarming molecules. Ligand-triggered dimerization of TLR4 is essential for the activation of NF-κB and IRF3 through MyD88- or TRIF-dependent pathways. Saquinavir (SQV), an FDA-approved HIV protease inhibitor, has been shown to attenuate the activation of NF-κB induced by HMGB1 by blocking TLR4-MyD88 association in proteasome independent pathway. This study aims to define whether SQV is an HMGB1-specific and MyD88-dependent TLR4 signaling inhibitor and which precise signaling element of TLR4 is targeted by SQV. MATERIALS AND METHODS PMA differentiated human THP-1 macrophages or reconstituted HEK293 cells were pretreated with SQV before stimulated by different TLR agonists. TNF-α level was evaluated through ELISA assay. NF-κB activation was analyzed using NF-κB SEAP reporting system. The levels of MyD88/TRIF pathways-related factors were examined by immunoblot. TLR4 endocytosis was assessed by immunocytochemistry. TLR4 dimerization was determined using immunoprecipitation between different tagged TLR4 and an in silico molecular docking experiment was performed to explore the possible binding site of SQV on its target. RESULTS Our data showed that SQV suppresses both MyD88- and TRIF-dependent pathways in response to lipopolysaccharide (LPS), a critical sepsis inducer and TLR4 agonist, leading to downregulation of NF-κB and IRF3. SQV did not suppress MyD88-dependent pathway triggered by TLR1/2 agonist Pam3csk4. In the only TRIF-dependent pathway, SQV did not alleviate IRF3 phosphorylation induced by TLR3 agonist Poly(I:C). Furthermore, dimerization of TLR4 following LPS or HMGB1 stimulation was decreased by SQV. CONCLUSION We concluded that TLR4 receptor complex is one of the mammalian targets of SQV, and TLR4-mediated immune responses and consequent risk for uncontrolled inflammation could be modulated by FDA-approved drug SQV.
Collapse
Affiliation(s)
- Kai Yao
- Department of Vascular Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Zheng Wang
- Department of Vascular Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Cheng Peng
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P. R. China
| | - Bichen Xue
- Department of Vascular Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Yulin Tang
- Department of Vascular Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Zhichao Wang
- Department of Vascular Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Hongbo Xu
- Department of Vascular Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| |
Collapse
|
16
|
He XY, Wang F, Suo XG, Gu MZ, Wang JN, Xu CH, Dong YH, He Y, Zhang Y, Ji ML, Chen Y, Zhang MM, Fan YG, Wen JG, Jin J, Wang J, Li J, Zhuang CL, Liu MM, Meng XM. Compound-42 alleviates acute kidney injury by targeting RIPK3-mediated necroptosis. Br J Pharmacol 2023; 180:2641-2660. [PMID: 37248964 DOI: 10.1111/bph.16152] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Necroptosis plays an essential role in acute kidney injury and is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed lineage kinase domain-like pseudokinase (MLKL). A novel RIPK3 inhibitor, compound 42 (Cpd-42) alleviates the systemic inflammatory response. The current study was designed to investigate whether Cpd-42 exhibits protective effects on acute kidney injury and reveal the underlying mechanisms. EXPERIMENTAL APPROACH The effects of Cpd-42 were determined in vivo through cisplatin- and ischaemia/reperfusion (I/R)-induced acute kidney injury and in vitro through cisplatin- and hypoxia/re-oxygenation (H/R)-induced cell damage. Transmission electron microscopy and periodic acid-Schiff staining were used to identify renal pathology. Cellular thermal shift assay and RIPK3-knockout mouse renal tubule epithelial cells were used to explore the relationship between Cpd-42 and RIPK3. Molecular docking and site-directed mutagenesis were used to determine the binding site of RIPK3 with Cpd-42. KEY RESULTS Cpd-42 reduced human proximal tubule epithelial cell line (HK-2) cell damage, necroptosis and inflammatory responses in vitro. Furthermore, in vivo, cisplatin- and I/R-induced acute kidney injury was alleviated by Cpd-42 treatment. Cpd-42 inhibited necroptosis by interacting with two key hydrogen bonds of RIPK3 at Thr94 and Ser146, which further blocked the phosphorylation of RIPK3 and mitigated acute kidney injury. CONCLUSION AND IMPLICATIONS Acting as a novel RIPK3 inhibitor, Cpd-42 reduced kidney damage, inflammatory response and necroptosis in acute kidney injury by binding to sites Thr94 and Ser146 on RIPK3. Cpd-42 could be a promising treatment for acute kidney injury.
Collapse
Affiliation(s)
- Xiao-Yan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ming-Zhen Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Meng-Meng Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Chun-Lin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
17
|
Li X, Qiu H, Gan J, Liu Z, Yang S, Yuan R, Gao H. Total tanshinones protect against acute lung injury through the PLCγ2/NLRP3 inflammasome signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116478. [PMID: 37121449 DOI: 10.1016/j.jep.2023.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge is a widely used traditional Chinese medicine with anticholinesterase, antitumor, and anti-inflammatory. Total Tanshinones (TTN), the most significant active ingredient of Salvia miltiorrhiza Bunge, exerts anti-inflammatory activity. However, the protective mechanism of total Tanshinones on acute lung injury (ALI) still needs to be explored. AIM OF THIS STUDY In this study, the underlying mechanisms of TTN to treat with ALI were investigated in vitro and in vivo. MATERIALS AND METHODS Cell experiments established an in vitro model of LPS-induced J774A.1 and MH-S macrophages to verify the mechanism. The levels of inflammatory cytokines (TNF-α, IL-6 and IL-1β) were estimated by ELISA. The changes of ROS, Ca2+ and NO were detected by flow cytometry. The expression levels of proteins related to the NLRP3 inflammasome were determined by Western blotting. The effect of TTN on NLRP3 inflammasome activation was examined by immunofluorescence analysis of caspase-1 p20. Male BALB/c mice were selected to establish the ALI model. The experiment was randomly divided into six groups: control, LPS, LPS + si-NC, LPA + si-Nek7, LPS + TTN, and DEX. Pathological alterations were explored by H&E staining. The expression levels of proteins related to the NLRP3 inflammasome were analyzed by Western blotting. RESULTS TTN decreased pro-inflammatory cytokines levels like TNF-α, IL-6, IL-1β, NO, and ROS in alveolar macrophages. TTN bound to NIMA-related kinase 7 (NEK7), a new therapeutic protein to modulate NLRP3 inflammasome and PLCγ2-PIP2 signaling pathway. In ALI mice, LPS enhanced IL-1β levels in the serum, lung tissues, and bronchoalveolar lavage fluid (BALF),which were reversed by TTN. TTN decreased cleaved-caspase-1 and NLRP3 expressions in lung tissues. When Nek7 was knocked down in mice by siRNA, the syndrome of ALI in mice was significantly suppressed, of which the effect was similar to that of TTN. CONCLUSIONS This research demonstrates that TTN alleviated ALI by binding to NEK7 in vitro and in vivo to modulate NLRP3 inflammasome activation and PLCγ2-PIP2 signaling pathways.
Collapse
Affiliation(s)
- Xinxing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Haixin Qiu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Jinyue Gan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Zhenjie Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
18
|
Tang Q, Tang Y, Yang Q, Chen R, Zhang H, Luo H, Xiao Q, Liu K, Huang L, Chen J, Wang L, Song X, Chen S, Li G, Wang L, Li Y. Embelin attenuates lipopolysaccharide-induced acute kidney injury through the inhibition of M1 macrophage activation and NF-κB signaling in mice. Heliyon 2023; 9:e14006. [PMID: 36938407 PMCID: PMC10018479 DOI: 10.1016/j.heliyon.2023.e14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Septic acute kidney injury (AKI) is commonly associated with renal dysfunction and high mortality in patients. Owing to the rapid and violent occurrence of septic AKI with inflammation, there are no effective therapies to clinically treat it. Embelin, a natural product, has a potential regulatory role in immunocytes. However, the role and mechanism of embelin in septic AKI remains unknown. This study aimed to elucidate the role of embelin in macrophage regulation in lipopolysaccharide (LPS)-induced septic AKI. Embelin was intraperitoneally administered to mice after LPS injection. And bone marrow-derived macrophages (BMDMs) were subsequently isolated from the mice to explore the immunomodulatory role of embelin in macrophages. We found that embelin attenuated renal dysfunction and pathological renal damage in the LPS-induced sepsis mouse model. Molecular docking predicted that embelin could bind to phosphorylated NF-κB p65 at the ser536 site. Embelin inhibited the translocation of NF-κB p65 via phosphorylation at ser536 in LPS-induced AKI. It also reduced the secretion of IL-1β and IL-6 and increased the secretion of IL-10 and Arg-1 of BMDMs and mice after LPS stimulation, indicating that embelin suppressed macrophage M1 activation in LPS-induced AKI. Therefore, embelin attenuated LPS-induced septic AKI by suppressing NF-κB p65 at ser536 in activated macrophages. This study preclinically suggests a therapeutic role of embelin in septic AKI.
Collapse
Key Words
- AKI, acute kidney injury
- BMDMs, bone marrow-derived macrophages
- BUN, blood urea nitrogen
- DMEM, Dulbecco's modified eagle's medium
- Embelin
- FBS, fetal bovine serum
- HE, hematoxylin & eosin
- ICU, intensive care unit
- IHC, immunohistochemistry
- Inflammation
- LPS, lipopolysaccharide
- Macrophage
- PAS, periodic-acid Schiff
- Phosphorylated NF-κB p65 translocation
- Scr, serum creatinine
- Septic acute kidney injury
- mIF, multiplex immunofluorescent
Collapse
Affiliation(s)
- Qiao Tang
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Yun Tang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Qun Yang
- Department of Pathology, School of Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Rong Chen
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Hong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Haojun Luo
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Qiong Xiao
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Kaixiang Liu
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Liming Huang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Jie Chen
- Central Laboratory, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Lin Wang
- Institute of Laboratory Animal Sciences, School of Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Xinrou Song
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Sipei Chen
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Guisen Li
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Yi Li
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
- Corresponding author. Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
19
|
Guimarães CC, Sandy CM, Figueira R, Gonçalves MDR, Crevelin EJ, Cardoso PH, Fabro AT, Carmona F, Borges MDC, Pereira AMS. Anti-asthmatic activity of standardized hydro-ethanolic and aqueous extracts of Stachytarpheta cayennensis (Rich.) Vahl in a murine model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115877. [PMID: 36336223 DOI: 10.1016/j.jep.2022.115877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stachytarpheta cayennensis (Verbenaceae) has been used in Brazilian traditional medicine to treat asthma and other respiratory diseases. AIMS OF THE STUDY To investigate the effects of different doses of standardized hydro-ethanolic (SCH) and aqueous (SCA) extracts of aerial parts of S. cayennensis using a murine ovalbumin (OVA)-induced asthma model. MATERIALS AND METHODS The major constituents of the plant extracts were identified and standardized by ultra-performance liquid chromatography coupled with mass spectrometry. Balb/c mice were challenged with OVA solution and treated concomitantly by intraperitoneal injection of standardized SCH or SCA extracts at 50, 100, and 200 mg/kg concentrations. OVA-challenged control animals were treated with either dexamethasone (OVA-DEX) or saline solution (OVA-SAL). After challenge, we assessed in vivo bronchial hyperresponsiveness, airway inflammation (number of cells), peribronchial inflammation (histological analysis) and production of OVA-specific IgE and interleukin (IL)-4, IL-5, and IL-13 (ELISA). RESULTS Acteoside, isoacteoside, and ipolamiide were the major constituents of SCH and SCA. The respective concentrations of acteoside in SCH and SCA were 78 and 98 μg/mL, while those of ipolamiide were 30 and 19 μg/mL. Treatment with 200 mg/kg of SCH or SCA decreased IL-4, IL-5, and IL-13 in lung homogenates. These reductions were accompanied by a lower influx of inflammatory cells (eosinophils, lymphocytes, and macrophages) to the airways and lungs. In addition to the anti-inflammatory effects, administration of SCA, but not SCH, ameliorated the parameters of bronchial hyperresponsiveness and decreased levels of circulating OVA-specific IgE. CONCLUSION The results presented herein demonstrate for the first time the anti-asthmatic activity of S. cayennensis extracts in a murine model, thereby supporting the ethnopharmacological uses of the plant.
Collapse
Affiliation(s)
| | - Camila Mira Sandy
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Rebeca Figueira
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Mirani da Rocha Gonçalves
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil
| | - Eduardo José Crevelin
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900, Ribeirão Preto, SP, Brazil
| | - Pedro Henrique Cardoso
- Universidade Federal do Rio de Janeiro, Programa de Pós-graduação em Ciências Biológicas (Botânica), Museu Nacional, Departamento de Botânica, Quinta da Boa Vista, CEP 20940-040, Rio de Janeiro, RJ, Brazil
| | - Alexandre Todorovic Fabro
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Fabio Carmona
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Marcos de Carvalho Borges
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Ana Maria Soares Pereira
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
Zhang Y, Shen J, Ma X, He Y, Zhang Y, Cao D. Anti-Inflammatory Activity of Phenylethanoids from Acanthus ilicifolius var. xiamenensis. J Med Food 2023; 26:135-145. [PMID: 36637805 DOI: 10.1089/jmf.2022.k.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acanthus ilicifolius var. xiamenensis is a traditional herbal medicine in China. In this study, the anti-inflammatory activities of active ingredients of A. ilicifolius var. xiamenensis were investigated in RAW 264.7 cells and Freund's complete adjuvant-induced arthritic rats. Results showed that n-butanol extract exerted antiarthritic potential by reducing paw edema, arthritis score, and altered hematological and biochemical parameters in experimental rats. Phytochemical studies on n-butanol extract resulted in the isolation of five alkaloids (1-5) and five phenylethanoids (6-10). The anti-inflammatory assay of compounds 1-10 on lipopolysaccharide (LPS)-treated RAW 264.7 cells indicated that phenylethanoids 9 and 10 exhibited notable inhibitory activities. The result indicated that compounds 9 and 10 attenuated inflammation by decreasing the production of nuclear factor kappa-B (NF-κB) p65, inhibitory subunit of NF kappa B alpha, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and inducible nitric oxide synthase in LPS-mediated RAW 264.7 macrophages. Phenylethanoids 9 and 10 increased the expression of interleukin-10 and endothelial nitric oxide synthase. Therefore, compounds 9 and 10 showed anti-inflammatory activity by regulation of NF-κB and JAK/STAT signaling pathways.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinhuang Shen
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Ma
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yubin He
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yonghong Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Sławińska N, Zając J, Olas B. Paulownia Organs as Interesting New Sources of Bioactive Compounds. Int J Mol Sci 2023; 24:ijms24021676. [PMID: 36675191 PMCID: PMC9860774 DOI: 10.3390/ijms24021676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Paulownia spp. is a genus of trees in the Paulowniaceae family. It is native to southeastern Asia (especially China), where it has been cultivated for decorative, cultural, and medicinal purposes for over 2000 years. Depending on taxonomic classification, there are 6 to 17 species of Paulownia; P. tomentosa, P. elongata, P. fortunei, and P. catalpifolia are considered the most popular. Nowadays, Paulownia trees are planted in Asia, Europe, North America, and Australia for commercial, medical, and decorative purposes. Lately, growing interest in Paulownia has led to the development of various hybrids, the best-known being Clone in vitro 112, Shan Tong, Sundsu 11, and Cotevisa 2. Paulownia Clone in vitro 112 is an artificially created hybrid of two species of Paulownia: P. elongata and P. fortunei. The present review of selected papers from electronic databases including PubMed, ScienceDirect, and SCOPUS before 15 November 2022 describes the phytochemical characteristics, biological properties, and economic significance of various organs from different Paulownia species and hybrids, including P. tomentosa, P. elongata, P. fortunei, and Paulownia Clone in vitro 112. Many compounds from Paulownia demonstrate various biological activities and are promising candidates for natural preparations; for example, the leaves of Clone in vitro 112 have anti-radical and anticoagulant potential. However, further in vivo studies are needed to clarify the exact mechanism of action of the active substances and their long-term effects.
Collapse
|
22
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
23
|
Fermentation of Abelmoschus manihot Extract with Halophilic Bacillus licheniformis CP6 Results in Enhanced Anti-Inflammatory Activities. Nutrients 2023; 15:nu15020309. [PMID: 36678181 PMCID: PMC9864326 DOI: 10.3390/nu15020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Microbial fermentation provides a valorization strategy, through biotransformation, to convert plant-derived raw materials into health-promoting agents. In this study, we have investigated the antioxidative activity of Abelmoschus manihot fermented with various Bacillaceae strains from specific environments and demonstrated the anti-inflammatory effects of Bacillus licheniformis CP6 fermented A. manihot extract (FAME) in lipopolysaccharide (LPS)-stimulated Raw264.7 macrophages. Of 1500 bacteria isolated from various specific environments, 47 extracellular protease- and amylase-producing strains with qualified presumption safety status, belonging to the family Bacillaceae, were selected for A. manihot fermentation. Among them, strain CP6, a halophilic bacterium isolated from Tongyeong seawater in Korea and identified as B. licheniformis, showed the highest antioxidant activity. In particular, FAME exerted anti-inflammatory effects on LPS-stimulated Raw264.7 macrophages. Consequently, FAME had a potent inhibitory effect on nitric oxide (NO) production in LPS-stimulated macrophages, without cytotoxicity. Moreover, FAME downregulated LPS-induced pro-inflammatory mediator and enzyme levels in LPS-induced Raw264.7 cells, including IL-1β, IL-6, TNF-α, iNOS, and COX-2, compared to levels when cells were incubated in A. manihot extract (IAME). Further detailed characterization indicated that FAME suppresses inflammation by blocking NF-κB via IKK phosphorylation inhibition and IκB-α degradation and by downregulating NO production, and inflammatory mediators also decreased NF-κB translocation. Furthermore, FAME inhibited LPS-stimulated activation of MAPKs, including ERK1/2, JNK, and p38, compared to that with either IAME. Therefore, we suggest that FAME could be used for inflammation-related disorders.
Collapse
|
24
|
Guo W, Wang X, Liu F, Chen S, Wang S, Zhang Q, Yuan L, Du S. Acteoside alleviates dextran sulphate sodium‑induced ulcerative colitis via regulation of the HO‑1/HMGB1 signaling pathway. Mol Med Rep 2022; 26:360. [PMID: 36281914 PMCID: PMC9641715 DOI: 10.3892/mmr.2022.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022] Open
Abstract
Ulcerative colitis (UC) is a significant burden on human health, and the elucidation of the mechanism by which it develops has potential for the prevention and treatment of UC. It has been reported that acteoside (ACT) exhibits strong anti‑inflammatory activity. In the present study, it was hypothesized that ACT may exert a protective effect against UC. The effects of ACT on inflammation, oxidative stress and apoptosis were evaluated using dextran sulphate sodium (DSS)‑treated mice and DSS‑treated human colorectal adenocarcinoma Caco‑2 cells, which have an epithelial morphology. The results demonstrated that the ACT‑treated mice with DSS‑induced UC exhibited significantly reduced colon inflammation, as demonstrated by a reversal in body weight loss, colon shortening, disease activity index score, inflammation, oxidative stress and colonic barrier dysfunction. Further in vivo experiments demonstrated that ACT inhibited DSS‑induced apoptosis in colon tissues, as demonstrated by the results of the TUNEL assay and the altered protein expression levels of Bax, cleaved caspase‑3 and Bcl‑2. Furthermore, DSS significantly stimulated the protein expression levels of high mobility group box 1 protein (HMGB1), which serves a central role in the initiation and progression of UC, an effect which was markedly inhibited by ACT. Finally, DSS significantly decreased the protein expression levels of heme oxygenase‑1 (HO‑1) in colon tissues and the effect of ACT on GSH, apoptotic proteins and HMGB1 was markedly attenuated in the presence of the HO‑1 inhibitor tin protoporphyrin. In conclusion, ACT ameliorated colon inflammation through HMGB1 inhibition in a HO‑1‑dependent manner.
Collapse
Affiliation(s)
- Wenjuan Guo
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xiaodi Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shuo Chen
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shuai Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Qingrui Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lan Yuan
- Peking University Medical and Health Analysis Center, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
25
|
Luo J, Wang Y, Dong X, Wang W, Mu Y, Sun Y, Zhang F, Miao Y. miR-642a-5p increases glucocorticoid sensitivity by suppressing the TLR4 signalling pathway in THP-1 cells. Biochem Biophys Rep 2022; 32:101356. [PMID: 36186733 PMCID: PMC9519937 DOI: 10.1016/j.bbrep.2022.101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The incidence rate of ulcerative colitis (UC) is increasing annually, and glucocorticoid (GC) resistance (GCR) is a common cause of UC-induced remission failure. Our previous studies have shown that the expression of miR-642a-5p is downregulated in UC with GCR, suggesting that miR-642a-5p may be related to the GC response. Therefore, we investigated the mechanism by which miR-642a-5p regulates the GC response in THP-1 cells. We found that after treatment with miR-642a-5p mimics and DEX, the expression levels of glucocorticoid receptor (GR) in the nucleus and NF-κB p65 and p50 in the cytoplasm were increased (P < 0.05). miR-642a-5p mimics transfected into THP-1 cells could synergize with dexamethasone (DEX) to reduce lipopolysaccharide (LPS)-induced inflammatory factor levels such as TNF-α, IL-1β, IL-6 and IL-12 (P < 0.05). Bioinformatics analysis and luciferase reporter assays confirmed that TLR4 is a target gene of miR-642a-5p. miR-642a-5p mimic pretreatment enhanced the inhibitory effect of DEX on TLR4 induced by LPS and inhibited the expression of TLR4 on the cell surface (P < 0.05). Additionally, miR-642a-5p further prevented the nuclear import of NF-κB P65 and inhibited the phosphorylation of ERK, p38 and JNK. These results suggest that miR-642a-5p can inhibit the inflammation by suppressing the TLR4 signalling pathway in THP-1 cells. It also highlights the TLR4 signalling pathway as a potential therapeutic target in anti-inflammation. miR-642a-5p can inhibit the TLR4 signalling pathway induced by LPS and increase the glucocorticoid sensitivity in THP-1 cells.
Collapse
|
26
|
Wang H, Li Y, Bian Y, Li X, Wang Y, Wu K, Liu C, Liu Y, Wang X. Potential hepatoprotective effects of Cistanche deserticola Y.C. Ma: Integrated phytochemical analysis using UPLC-Q-TOF-MS/MS, target network analysis, and experimental assessment. Front Pharmacol 2022; 13:1018572. [PMID: 36313288 PMCID: PMC9597371 DOI: 10.3389/fphar.2022.1018572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/27/2022] [Indexed: 10/09/2023] Open
Abstract
Cistanche deserticola Y.C. Ma (CD) possesses hepatoprotective activity, while the active ingredients and involved mechanisms have not been fully explored. The objective of this study was to investigate the chemical composition and hepatoprotective mechanisms of CD. We primarily used ultra-performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) to identify the phenylethanoid glycoside (PhG) components of CD. Then, network analysis was used to correlate and predict the pharmacology of the identified active components of PhGs with hepatoprotection. Next, the mechanisms of the core components and targets of action were explored by cellular assays and toll-like receptor 4 (TLR4) target competition assays. Finally, its hepatoprotective effects were further validated in in vivo experiments. The results showed that a total of 34 PhGs were identified based on the UPLC-Q-TOF-MS/MS method. Echinacoside (ECH) was identified as the key ingredient, and TLR4 and nuclear factor-kappa B (NF-κB) were speculated as the core targets of the hepatoprotective effect of CD via network analysis. The cellular assays confirmed that PhGs had significant anti-inflammatory activity. In addition, the real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot indicated that ECH notably reduced the levels of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), as well as the mRNA expression of TLR4, TNF-α, and IL-6, and decreased the high expression of the TLR4 protein, which in turn downregulated the myeloid differentiation factor 88 (MyD88), p-P65 and TNF-α proteins in the inflammatory model. The target competition experiments suggested that ECH and LPS could competitively bind to the TLR4 receptor, thereby reducing the expression of TLR4 downstream proteins. The results of in vivo studies showed that ECH significantly ameliorated LPS-induced hepatic inflammatory infiltration and liver tissue damage and reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice. Moreover, ECH remarkably inhibited the release of inflammatory factors such as TNF-α, IL-6, IL-1β, and MCP-1 in the serum of mice, exerting the hepatoprotective effect by the TLR4/NF-κB signaling pathway. More importantly, ECH could act as a potential inhibitor of TLR4 and deserves further in-depth study. Our results could provide a basis for exploring the hepatoprotective properties of CD.
Collapse
Affiliation(s)
- Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaying Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Li
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yubei Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhong Liu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
27
|
Dong X, Jiang J, Lin Z, Wen R, Zou L, Luo T, Guan Z, Li X, Wang L, Lu L, Li H, Huang Y, Yang Z, Wang J, Ye X, Hong X, Wang L, Xian S, Chen Z. Nuanxinkang protects against ischemia/reperfusion-induced heart failure through regulating IKKβ/IκBα/NF-κB-mediated macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154093. [PMID: 35447422 DOI: 10.1016/j.phymed.2022.154093] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Heart failure (HF) is a leading cause of death worldwide. Nuanxinkang (NXK) is an effective Chinese herbal formula used in treating HF, but its underlying potential mechanisms have not been fully elucidated. PURPOSE To explore the protective activities of NXK in ischemia/reperfusion (IR)-induced HF through modulating the ratio of proinflammatory (M1) and anti-inflammatory (M2) macrophage populations and leading to the alleviation of inflammation. MATERIALS AND METHODS In vivo, mice were subjected to myocardial IR to generate HF mouse models. Mice in the NXK group were treated with NXK for 28 days. Cardiac function was detected by echocardiography. Major lesions on mouse hearts were determined by hematoxylin-eosin (HE) staining, Masson staining, and TUNEL staining. Inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA) and qPCR examination. Flow cytometric analyses and qPCR examination were utilized for monitoring the temporal dynamics of macrophage infiltration following IR. In vitro, two polarized models were established by stimulating RAW264.7 cells with 200 ng/ml lipopolysaccharide (LPS) or 20 ng/ml interleukin-4 (IL-4). The RAW264.7 cells with nuclear factor-κB (NF-κB) overexpression was generated by transient transfection of NF-κB plasmids, and NXK intervention was conducted on this cell model to further clarify the involvement of NF-κB signaling in the NXK-mediated HF process. RESULTS In the present study, NXK was found to significantly contribute the cardiac function and ameliorate cardiac fibrosis and apoptosis after myocardial IR injury in vivo, which may be partially due to a decrease in inflammation. We therefore hypothesized that NXK reduced inflammatory damage by modulating subtypes of macrophages. And the results demonstrated that the percentage of proinflammatory macrophages infiltrated in the post-IR period was reduced with NXK treatment, and thereby blunting the wave of proinflammatory response and shifting the peak of the anti-inflammatory macrophage-mediated wound healing process towards an earlier time point. The further investigation showed that macrophage polarization was mediated by NXK through inhibiting the phosphorylation and the nuclear translocation of NF-κB. Besides, the phosphorylated IKKβ and IκBα, upstream mediators of the NF-κB pathway, also decreased by NXK. Moreover, the overexpression of NF-κB partially reversed the NXK-induced favorable activities; and successfully compensated the suppressive effect on inflammation and the phosphorylation of NF-κB. CONCLUSION In conclude, our results demonstrated that NXK induced the cardioprotective effects against IR injury through a regulatory axis of IKKβ/IκBα/NF-κB-mediated macrophage polarization. The information gained from this study provide a possible natural strategy for anti-inflammatory treatment of HF.
Collapse
Affiliation(s)
- Xin Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Jialin Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zhijun Lin
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Ruijia Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Ling Zou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China; Huizhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Tong Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zhuoji Guan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Xuan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Linhai Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Xiaohan Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China; Dongguan Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Xiaohua Hong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China; Huizhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| |
Collapse
|
28
|
He L, Liu N, Wang K, Zhang L, Li D, Wang Z, Xu G, Liu Y, Xu Q. Rosamultin from Potentilla anserine L. exhibits nephroprotection and antioxidant activity by regulating the reactive oxygen species/C/EBP homologous protein signaling pathway. Phytother Res 2021; 35:6343-6358. [PMID: 34533242 DOI: 10.1002/ptr.7285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Rosamultin, a major bioactive constituent from Potentilla anserine L., has antioxidative and hepatoprotective activities. However, its protective effects on cisplatin-induced acute renal injury and the underlying mechanisms remain elusive. In this work, rosamultin could enhance the viability of HEK293 cells treated by cisplatin. In vivo experiment showed that rosamultin effectively decreased kidney index, reduced blood urea nitrogen level, decreased urinary protein excretion, and ameliorated the histopathological damage and fibrosis of renal tissue induced by cisplatin. Besides, rosamultin showed no obvious toxicity in mice. SILAC-based quantitative proteomic analysis identified 4,461 proteins and eight proteins including C/EBP homologous protein (CHOP) were markedly decreased in cisplatin-treated HEK293 cells when exposed to rosamultin. Biochemical experiments further discovered that rosamultin could inhibit p38 and JNK activation, and downregulate the levels of CHOP and proteins in its upstream PERK-eIF2α-ATF4 signaling pathway stimulated by cisplatin or tunicamycin. At the same time, rosamultin reduced the generation of intracellular ROS induced by cisplatin and enhanced the activities of antioxidant enzymes such as SOD, GSH, and CAT. Moreover, rosamultin markedly suppressed the expression of CHOP, apoptosis-associated proteins, and activation of p38 and JNK in renal tissue. These findings suggest that rosamultin might be a potential protectant against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Luan He
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ning Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Kexin Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ling Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Dan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Zhixiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Pang Z, Zhu Q. Traditional Chinese Medicine is an Alternative Therapeutic Option for Treatment of Pseudomonas aeruginosa Infections. Front Pharmacol 2021; 12:737252. [PMID: 34512364 PMCID: PMC8429605 DOI: 10.3389/fphar.2021.737252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening infections in cystic fibrosis patients and immunocompromised individuals, and it is a leading cause of nosocomial infections associated with significant morbidity and mortality. Treatment of P. aeruginosa infections is challenging due to the antibiotic resistance to most of the conventional antibiotics. Development of alternative therapeutic options is urgently demanded for the patients who have antibiotic-resistant infections. Traditional Chinese medicine (TCM) has a clinical history of thousands of years for prevention and treatment of infectious diseases in China, taking advantages of improving clinical outcomes, producing less side effects, inhibiting pathogen, and modulating host immunity. Recent research has revealed a variety of natural products derived from TCM showing significant antimicrobial effects on antibiotic-resistant strains of P. aeruginosa alone or combined with antibiotics in vitro or in animal models, suggesting that TCM is a promising complementary and alternative therapeutic approach for treatment of chronic P. aeruginosa infections. This review summarizes the recent findings attempting to dissect the mechanisms of TCM combating P. aeruginosa infections and highlights the molecular targets of TCM on P. aeruginosa and host.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
30
|
Yin L, Shi C, Zhang Z, Wang W, Li M. Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:395-401. [PMID: 34448457 PMCID: PMC8405437 DOI: 10.4196/kjpp.2021.25.5.395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 12/22/2022]
Abstract
Extended inflammation and cytokine production pathogenically contribute to a number of inflammatory disorders. Formosanin C (FC) is the major diosgenin saponin found in herb Paris formosana Hayata (Liliaceae), which has been shown to exert anti-cancer and immunomodulatory functions. In this study, we aimed to investigate anti-inflammatory activity of FC and the underlying molecular mechanism. RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS) or pre-treated with FC prior to being stimulated with LPS. Thereafter, the macrophages were subjected to analysis of the expression levels of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, as well as two relevant enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). The analysis revealed that FC administration blunted LPS-induced production of NO and PGE in a dose-dependent manner, while the expression of iNOS and COX-2 at both mRNA and protein levels was inhibited in LPS-stimulated macrophages pre-treated with FC. Moreover, LPS stimulation upregulated mRNA expression and medium release of TNF-α, IL-1β, and IL-6, whereas this effect was blocked upon FC pre-administration. Mechanistic studies showed that inhibitory effects of FC on LPS-induced inflammation were associated with a downregulation of IκB kinase, IκB, and p65/NF-κB pathway. Taken together, these data suggest that FC possesses an inflammation-suppressing activity, thus being a potential agent for the treatment of inflammation-associated disorders.
Collapse
Affiliation(s)
- Limin Yin
- Department of Pharmacy Intravenous Admixture Services, First People's Hospital of Wenling, Wenling 317500, P.R. China
| | - Chaohong Shi
- Department of Rehabilitation Center, First People's Hospital of Wenling, Wenling 317500, P.R. China
| | - Zhongchen Zhang
- Department of Gastroenterology, First People's Hospital of Wenling, Wenling 317500, P.R. China
| | - Wensheng Wang
- Department of Laboratory Medicine, First People's Hospital of Wenling, Wenling 317500, P.R. China
| | - Ming Li
- Department of Pharmacy Intravenous Admixture Services, First People's Hospital of Wenling, Wenling 317500, P.R. China
| |
Collapse
|
31
|
RKC-B1 Blocks Activation of NF-κB and NLRP3 Signaling Pathways to Suppress Neuroinflammation in LPS-Stimulated Mice. Mar Drugs 2021; 19:md19080429. [PMID: 34436268 PMCID: PMC8398414 DOI: 10.3390/md19080429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
RKC-B1 is a novel fermentation product obtained from the marine micromonospora FIM02-523A. Thus far, there have been few reports about the pharmacological activity of RKC-B1. In our present study, we investigated the anti-neuroinflammatory effects and the possible mechanism of RKC-B1 in LPS-stimulated mice. After treatment with RKC-B1, RNA-seq transcriptome of the cerebral cortex tissue was conducted to find the differentially expressed genes (DEGs). Inflammatory cytokines and proteins were evaluated by ELISA and WB. In RNA-seq analysis, there were 193 genes screened as core genes of RKC-B1 for treatment with neuroinflammation. The significant KEGG enrichment signaling pathways of these core genes were mainly included TNF signaling pathway, IL-17 signaling pathway, NOD-like receptor signaling pathway, NF-κB signaling pathway and others. The corresponding top five KEGG enrichment pathways of three main clusters in PPI network of core genes were closely related to human immune system and immune disease. The results showed that RKC-B1 reduced the levels of pro-inflammatory factors (IL-6, IL-1β, MCP-1, and ICAM-1) and the expression of COX2 in cerebral cortex tissue. Additionally, we found that the anti-neuroinflammation activity of RKC-B1 might be related to suppress activating of NF-κB and NLRP3/cleaved caspase-1 signaling pathways. The current findings suggested that RKC-B1 might be a promising anti-neuroinflammatory agent.
Collapse
|
32
|
Zhuo Y, Yuan R, Chen X, He J, Chen Y, Zhang C, Sun K, Yang S, Liu Z, Gao H. Tanshinone I exerts cardiovascular protective effects in vivo and in vitro through inhibiting necroptosis via Akt/Nrf2 signaling pathway. Chin Med 2021; 16:48. [PMID: 34183021 PMCID: PMC8240219 DOI: 10.1186/s13020-021-00458-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tanshinone I (TI) is a primary component of Salvia miltiorrhiza Bunge (Danshen), which confers a favorable role in a variety of pharmacological activities including cardiovascular protection. However, the exact mechanism of the cardiovascular protection activity of TI remains to be illustrated. In this study, the cardiovascular protective effect and its mechanism of TI were investigated. METHODS In this study, tert-butyl hydroperoxide (t-BHP)-stimulated H9c2 cells model was employed to investigate the protective effect in vitro. The cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) kit. The reactive-oxygen-species (ROS) level and mitochondrial membrane potential (MMP) were investigated by the flow cytometry and JC-1 assay, respectively. While in vivo experiment, the cardiovascular protective effect of TI was determined by using myocardial ischemia-reperfusion (MI/R) model including hematoxylin-eosin (H&E) staining assay and determination of superoxide dismutase (SOD) and malondialdehyde (MDA). Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release were detected by Enzyme-linked immunosorbent assay (ELISA). Receptor interacting protein kinase 1 (RIP1), receptor interacting protein kinase 3 (RIP3), receptor interacting protein kinase 3 (MLKL), protein kinase B (Akt), Nuclear factor erythroid 2 related factor 2 (Nrf2), Heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO-1) were determined by western blotting. RESULTS Our data demonstrated that TI pretreatment attenuated t-BHP and MI/R injury-induced necroptosis by inhibiting the expression of p-RIP1, p-RIP3, and p-MLKL. TI activated the Akt/Nrf2 pathway to promote the expression of antioxidant-related proteins such as phosphorylation of Akt, nuclear factor erythroid 2 related factor 2 (Nrf2), quinone oxidoreductase-1 (NQO-1) and heme oxygenase-1 (HO-1) expression in t-BHP-stimulated H9c2 cells. TI relieved oxidative stress by mitigating ROS generation and reversing MMP loss. In vivo experiment, TI made electrocardiograph (ECG) recovery better and lessened the degree of myocardial tissue damage. The counts of white blood cell (WBC), neutrophil (Neu), lymphocyte (Lym), and the release of TNF-α and IL-6 were reversed by TI treatment. SOD level was increased, while MDA level was decreased by TI treatment. CONCLUSION Collectively, our findings indicated that TI exerted cardiovascular protective activities in vitro and in vivo through suppressing RIP1/RIP3/MLKL and activating Akt/Nrf2 signaling pathways, which could be developed into a cardiovascular protective agent.
Collapse
Affiliation(s)
- Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xinxin Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Yangling Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Chenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Zhenjie Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China.
| |
Collapse
|
33
|
Hu M, Wei J, Yang L, Xu J, He Z, Li H, Ning C, Lu S. Linc-KIAA1737-2 promoted LPS-induced HK-2 cell apoptosis by regulating miR-27a-3p/TLR4/NF-κB axis. J Bioenerg Biomembr 2021; 53:393-403. [PMID: 34076840 PMCID: PMC8360891 DOI: 10.1007/s10863-021-09897-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/29/2021] [Indexed: 11/26/2022]
Abstract
Inflammation and renal cell apoptosis participate in sepsis-induced acute kidney injury. Previous research found the upregulation of long non-coding RNA Linc-KIAA1737–2 in hypoxia- or inflammation-challenged human proximal tubular epithelial cells, but its role in sepsis-induced acute kidney injury is underexplored. In this research, we found that Linc-KIAA1737–2 could be upregulated in HK-2 human proximal tubular epithelial cells by LPS treatment, and knock-down of this lncRNA significantly attenuated LPS-induced apoptosis in HK-2 cells, while its overexpression showed opposite effect. MiR-27a-3p was confirmed to interact with Linc-KIAA1737–2 in HK-2 cells by RNA pull-down and dual-luciferase assay. MiR-27a-3p mimic transfection significantly attenuated LPS-induced HK-2 cell apoptosis by downregulating the protein levels of TLR4 and NF-κB, which was overturned by overexpression of Linc-KIAA1737–2. Our results suggested that Linc-KIAA1737–2 could promote LPS-induced apoptosis in HK-2 cells, and presumably sepsis-induced acute kidney injury, by regulating the miR-27a-3p/TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Ming Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Jing Wei
- Department of General practice, Qingdao Ninth People's Hospital, 2th Chaocheng Road, Qingdao, Shandong, People's Republic of China
| | - Liu Yang
- Department of Neurology, Chongqing Emergency Medical Center, The Affiliated Central Hospital to Chongqing University, Chongqing, China
| | - Jianhua Xu
- Department of Critical Care Medicine, Shandong Province Linyi Central Hospital, Linyi, Shandong, China
| | - Zhaofeng He
- Department of Critical Care Medicine, Shandong Province Juxian People's Hospital, Juxian, Shandong, China
| | - Haiyuan Li
- Department of Critical Care Medicine, Shandong Province Linyi Central Hospital, Linyi, Shandong, China
| | - Chao Ning
- Department of Critical Care Medicine, Shandong Province Linyi Central Hospital, Linyi, Shandong, China
| | - Shijun Lu
- Department of Critical Care Medicine, Shandong Province Linyi Central Hospital, Linyi, Shandong, China.
| |
Collapse
|
34
|
Li XX, Yuan R, Wang QQ, Han S, Liu Z, Xu Q, Yang S, Gao H. Rotundic acid reduces LPS-induced acute lung injury in vitro and in vivo through regulating TLR4 dimer. Phytother Res 2021; 35:4485-4498. [PMID: 33977594 DOI: 10.1002/ptr.7152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is a serious clinical disease. Rotundic acid (RA), a natural ingredient isolated from Ilex rotunda Thunb, exhibits multiple pharmacological activities. However, RA's therapeutic effect and mechanism on ALI remain to be elucidated. The present study aimed to further clarify its regulating effects on inflammation in vitro and in vivo. Our results indicated that RA significantly inhibited the overproduction of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). RA decreased ROS production and calcium influx. In addition, RA inhibited the activation of PI3K, MAPK, and NF-κB pathways and enhanced the activity of nuclear factor E2-related factor 2 (Nrf2) signaling. The cellular thermal shift assay and docking results indicated that RA bind to TLR4 to block TLR4 dimerization. Furthermore, RA pretreatment effectively inhibited ear edema induced by xylene and LPS-induced endotoxin death and had a protective effect on LPS-induced ALI. Our findings collectively indicated that RA has anti-inflammatory effects, which may serve as a potential therapeutic option for pulmonary inflammation.
Collapse
Affiliation(s)
- Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Zhenjie Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Qiongming Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| |
Collapse
|
35
|
Zhang H, Xu X, Liu Z, Sun-Waterhouse D, Wang J, Ma C, Waterhouse GIN, Kang W. Effects of edpetiline from Fritillaria on inflammation and oxidative stress induced by LPS stimulation in RAW264.7 macrophages. Acta Biochim Biophys Sin (Shanghai) 2021; 53:229-237. [PMID: 33399208 DOI: 10.1093/abbs/gmaa160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Indexed: 12/19/2022] Open
Abstract
The dry bulbs of Fritillaria cirrhosa species can help resolve phlegm, soothe cough, clear heat, and moisten the lung, and the main active components responsible for these effect are its alkaloids. However, it is unclear whether or how edpetiline in Fritillaria can inhibit the excessive inflammatory response and oxidative stress. In this research, we aimed to examine this aspect using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages as an inflammatory model. The quantitative real-time polymerase chain reaction and western blot analysis results showed that edpetiline significantly inhibited the content and mRNA expression levels of proinflammatory cytokines (TNF-α and IL-6) in LPS-induced RAW264.7 cells, significantly increased the mRNA expression of IL-4 (anti-inflammatory cytokine), and markedly downregulated the inflammatory mediators inductible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA and protein expression levels. The oxidative stress induced by LPS was also inhibited by edpetiline, as the level of intracellular reactive oxygen species decreased notably. Edpetiline may exert anti-inflammatory and antioxidant effects through inhibiting the phosphorylation of IκB and the nuclear transcription of nuclear transcription factor-κB p65 and decreasing the phosphorylation of p38 and ERK in the mitogen-activated protein kinase signaling pathway, without activating the JNK/mitogen-activated protein kinase signaling pathway. These findings suggest that edpetiline may be a potential therapeutic agent for the prevention or treatment of inflammation- and oxidative stress-related pathophysiological processes and diseases.
Collapse
Affiliation(s)
- Hongli Zhang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Xiaoqing Xu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Dongxiao Sun-Waterhouse
- Joint International Research Laboratory of Food & Medicine Resource Function of Henan Province, Kaifeng 475004, China
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center of Henan Province, Kaifeng 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center of Henan Province, Kaifeng 475004, China
| | - Geoffrey I N Waterhouse
- Joint International Research Laboratory of Food & Medicine Resource Function of Henan Province, Kaifeng 475004, China
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center of Henan Province, Kaifeng 475004, China
| |
Collapse
|
36
|
Zhang H, Guo Q, Liang Z, Wang M, Wang B, Sun-Waterhouse D, Waterhouse GI, Wang J, Ma C, Kang W. Anti-inflammatory and antioxidant effects of Chaetoglobosin Vb in LPS-induced RAW264.7 cells: Achieved via the MAPK and NF-κB signaling pathways. Food Chem Toxicol 2021; 147:111915. [DOI: 10.1016/j.fct.2020.111915] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/08/2020] [Accepted: 12/03/2020] [Indexed: 01/21/2023]
|
37
|
Madhukar G, Subbarao N. In-silico prediction of potential inhibitors against phosphatidylinositol 3-kinase catalytic subunit alpha involved in head and neck squamous cell carcinomas. J Biomol Struct Dyn 2020; 40:4697-4712. [PMID: 33356909 DOI: 10.1080/07391102.2020.1861980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers, globally. Its high mortality rates remained unaltered in the last three decades, therefore, there is an enormous need for novel therapeutics. The most frequent somatically mutated oncogenic pathway in HNSCC tumors is the Phosphatidylinositol-3-kinases (PI3K) pathway. PI3Ks are lipid kinases involved in the regulation of cell survival, growth and metabolism. PI3Ks phosphorylates PI (4,5) P2 (PIP2) converting it to PI (3, 4, 5) P3 (PIP3). Alterations such as mutation, gene amplification and overexpression in PIK3CA, encoding the catalytic subunit p110α of PI3K pathway were found to be prevalent. The aberrant activation leads to irregulated cell growth due to improper p110α enzymatic activity. p110α is therefore, considered a potential oncogenic target for cancer therapy. The only FDA approved specific inhibitor of p110α is Alpelisib (BYL719). Therefore, designing more effective and specific p110α inhibitors could be a promising strategy in the treatment of HNSCC. The present study aims to find out the potent and novel inhibitors of p110α using High Throughput Screening (HTS) of huge databases (National Cancer Institute (NCI), Life Chemicals, ChemDiv and ChEMBL) and Molecular Dynamic Simulations. As a result, from more than 400,000 compounds, a total of 3 best candidate compounds (Echinacoside, Isoacteoside, K284-4402) were selected and validated for their binding to catalytic site of p110α and stability during Molecular Dynamics (MD) simulations. The binding free energy (calculated from MM-PBSA) of the selected compounds, Echinacoside, Isoacteoside, K284-4402 were -23.43 kcal/mol, -33.02 kcal/mol and -30.57 kcal/mol, respectively, which suggested these compounds bind to p110α with higher affinity than Alpelisib which has binding free energy -20.9 kcal/mol. This study provides a significant in-depth understanding of p110α inhibitors that can be used in the development of potential therapeutics against HNSCC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Geet Madhukar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
38
|
Li X, Huang R, Liu K, Li M, Luo H, Cui L, Huang L, Luo L. Fucoxanthin attenuates LPS-induced acute lung injury via inhibition of the TLR4/MyD88 signaling axis. Aging (Albany NY) 2020; 13:2655-2667. [PMID: 33323555 PMCID: PMC7880391 DOI: 10.18632/aging.202309] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
Acute lung injury (ALI) is a critical clinical condition with a high mortality rate. It is believed that the inflammatory storm is a critical contributor to the occurrence of ALI. Fucoxanthin is a natural extract from marine seaweed with remarkable biological properties, including antioxidant, anti-tumor, and anti-obesity. However, the anti-inflammatory activity of Fucoxanthin has not been extensively studied. The current study aimed to elucidate the effects and the molecular mechanism of Fucoxanthin on lipopolysaccharide-induced acute lung injury. In this study, Fucoxanthin efficiently reduced the mRNA expression of pro-inflammatory factors, including IL-10, IL-6, iNOS, and Cox-2, and down-regulated the NF-κB signaling pathway in Raw264.7 macrophages. Furthermore, based on the network pharmacological analysis, our results showed that anti-inflammation signaling pathways were screened as fundamental action mechanisms of Fucoxanthin on ALI. Fucoxanthin also significantly ameliorated the inflammatory responses in LPS-induced ALI mice. Interestingly, our results revealed that Fucoxanthin prevented the expression of TLR4/MyD88 in Raw264.7 macrophages. We further validated Fucoxanthin binds to the TLR4 pocket using molecular docking simulations. Altogether, these results suggest that Fucoxanthin suppresses the TLR4/MyD88 signaling axis by targeting TLR4, which inhibits LPS-induced ALI, and fucoxanthin inhibition may provide a novel strategy for controlling the initiation and progression of ALI.
Collapse
Affiliation(s)
- Xiaoling Li
- Experimental Animal Center, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19126, USA
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Marine Medical Research Institute of Zhanjiang, Zhanjiang 524023, Guangdong, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Marine Medical Research Institute of Zhanjiang, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
39
|
Wu L, Georgiev MI, Cao H, Nahar L, El-Seedi HR, Sarker SD, Xiao J, Lu B. Therapeutic potential of phenylethanoid glycosides: A systematic review. Med Res Rev 2020; 40:2605-2649. [PMID: 32779240 DOI: 10.1002/med.21717] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess antibacterial, anticancer, antidiabetic, anti-inflammatory, antiobesity, antioxidant, antiviral, and neuroprotective properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic applications due to their poor bioavailability. The attempts to understand their metabolic pathways to improve their bioavailability are investigated. In this review article, we will first summarize the number of PhGs compounds which is not accurate in the literature. The latest information on the biological activities, structure-activity relationships, mechanisms, and especially the clinical applications of PhGs will be reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Hui Cao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Lutfun Nahar
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Hesham R El-Seedi
- Department of Medicinal Chemistry, Pharmacognosy Group, Uppsala University, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Satyajit D Sarker
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
40
|
Tian XY, Li MX, Lin T, Qiu Y, Zhu YT, Li XL, Tao WD, Wang P, Ren XX, Chen LP. A review on the structure and pharmacological activity of phenylethanoid glycosides. Eur J Med Chem 2020; 209:112563. [PMID: 33038797 DOI: 10.1016/j.ejmech.2020.112563] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Phenylethanoid glycosides (PhGs) are compounds made of phenylethyl alcohol, caffeic acid and glycosyl moieties. The first published references about phenylethanoid glycosides concerned the isolation of echinacoside from Echinaceu ungustifolia (Asteraceae) in 1950 and verbascoside from Verbascum sinuatum (Scrophulariaceae) in 1963. Over the past 60 years, many compounds with these structural characteristics have been isolated from natural sources, and most of these compounds possess significant bioactivities, including antibacterial, antitumor, antiviral, anti-inflammatory, neuro-protective, antioxidant, hepatoprotective, and immunomodulatory activities, among others. In this review, we will summarize the phenylethanoid glycosides described in recent papers and list all the compounds that have been isolated over the past few decades. We will also attempt to present and assess recent studies about the separation, extraction, determination, and pharmacological activity of the excellent natural components, phenylethanoid glycosides.
Collapse
Affiliation(s)
- Xiu-Yu Tian
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Lanzhou University, Lanzhou, 730030, PR China
| | - Mao-Xing Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Lanzhou University, Lanzhou, 730030, PR China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730030, PR China.
| | - Tong Lin
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Yan Qiu
- Department of Pharmacy, Pudong New Area People's Hospital Affiliated to Shanghai Health University, Shanghai, 201299, PR China
| | - Yu-Ting Zhu
- Department of Pharmacy, 3201 Hospital, Hanzhong, 723000, Shaanxi, PR China
| | - Xiao-Lin Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730030, PR China
| | - Wen-Di Tao
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Lanzhou University, Lanzhou, 730030, PR China
| | - Peng Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730030, PR China
| | - Xiao-Xia Ren
- Northwest Normal University, Lanzhou, 730000, PR China
| | - Li-Ping Chen
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| |
Collapse
|
41
|
Wang QQ, Gao H, Yuan R, Han S, Li XX, Tang M, Dong B, Li JX, Zhao LC, Feng J, Yang S. Procyanidin A2, a polyphenolic compound, exerts anti-inflammatory and anti-oxidative activity in lipopolysaccharide-stimulated RAW264.7 cells. PLoS One 2020; 15:e0237017. [PMID: 32756588 PMCID: PMC7406031 DOI: 10.1371/journal.pone.0237017] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Procyandin A2 (PCA2) is a polyphenolic compound which is isolated from grape seeds. It has been reported that PCA2 exhibits antioxidative and anti-inflammatory effects, but its molecular mechanism is still poorly understood. This study tests the hypothesis that PCA2 suppresses lipopolysaccharide (LPS)-induced inflammation and oxidative stress through targeting the nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and NF-E2-related factor 2 (Nrf2) pathways in RAW264.7 cells. PCA2 (20, 40, 80 μM) exhibited no significant cytotoxicity in RAW264.7 cells and showed an inhibitory effect on an LPS-induced nitrite level. Pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), nitric oxide (NO), and reactive oxygen species (ROS) were suppressed by PCA2 with a concentration range of 0–80 μM. The mRNA levels of TNF-α and IL-6 were inhibited by PCA2 (80 μM). The hallmark-protein expression of the NF-κB (p-IKKα/β, p-IκBα, and p-p65) and MAPK (p-p38, p-JNK, and p-ERK) pathways were decreased by PCA2 in LPS-stimulated RAW264.7 cells. In addition, immunofluorescence results indicated that PCA2 (80 μM) promoted the translocation of NF-κB/p65 from the cytoplasm into the nucleus. PCA2 upregulated the expressions of Nrf2 and HO-1 and downregulated the expression of Keap-1. Simultaneously, PCA2 (80 μM) reversed LPS-induced Nrf2 translocation from the nucleus into the cytoplasm. Collectively, PCA2 protect cells against the damage from inflammation and oxidative injury, which suggest a potential therapeutic strategy for inflammatory and oxidative stress through targeting NF-κB, MAPK, and Nrf2 pathways in RAW264.7 cells.
Collapse
Affiliation(s)
- Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Meiwen Tang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Baiqing Dong
- College of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Jun-Xiu Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Li-Chun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
- * E-mail: (LCZ); (JF)
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
- * E-mail: (LCZ); (JF)
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| |
Collapse
|
42
|
NMR-based metabolomics approach reveals effects of antioxidant nutrients in sepsis-induced changes in rat liver injury. J Nutr Biochem 2020; 85:108440. [PMID: 32799135 DOI: 10.1016/j.jnutbio.2020.108440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/03/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress and the production of intracellular reactive oxygen species (ROS) have been implicated in the pathogenesis of sepsis. In excess, oxidative stress is not deemed an unbalanced biochemical reaction in the critically ill rats, but it is a key pathological factor in driving systemic inflammatory response that can result in multiple organ failure in sepsis. Thus, we aimed to explore whether antioxidant nutrients could reduce or delay the oxidative stress condition of sepsis rats, and then play a prospective role in the oxidative stress condition of critical disease. In this investigation, the ability of exogenous and endogenous antioxidant nutrients (ascorbate, taurine and glutathione) to prevent sepsis-induced changes in liver injury was examined using a rat model of sepsis induced by cecal ligation and puncture (CLP), and the underlying mechanisms were also investigated. The effects of three antioxidants on sepsis were assessed based on biochemical assays in combination with an NMR-based metabolomics approach and correlation network analysis. Our results suggested that ascorbate, taurine and glutathione had broadly similar protective effects on reducing oxidative stress. Compared with CLP rats, antioxidant-treated rats exhibited alleviated (P<.05) organ dysfunction and improved liver pathology. Moreover, taurine showed a better efficacy compared with ascorbate and glutathione, evidenced by significantly reversed metabolomics profiles toward normal state. Under conditions of sepsis, antioxidants suppressed inflammatory responses by restraining key signaling pathways, including the redox-sensitive transcription factor pathways of NF-κB and MAPK. Collectively, our findings suggested that antioxidant nutrients exerted beneficial effects on septic rats via protecting mitochondrial.
Collapse
|
43
|
Gao H, Kang N, Hu C, Zhang Z, Xu Q, Liu Y, Yang S. Ginsenoside Rb1 exerts anti-inflammatory effects in vitro and in vivo by modulating toll-like receptor 4 dimerization and NF-kB/MAPKs signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153197. [PMID: 32146298 DOI: 10.1016/j.phymed.2020.153197] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/10/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGOUND Ginsenoside Rb1, the main active constituent of Panax ginseng, displays significant anti-inflammatory activity, although the mechanism has not been clearly unraveled. In this study, Rb1's mechanism of anti-inflammatory effects were investigated. METHODS The flow cytometry and enzyme-linked immunosorbent assay (ELISA) were empolyed to detect pro-inflammatory cytokines release. The related protein and gene expression was investigated by western blotting and qRT-PCR. The dimerization of TLR4 was measured by co-immunoprecipitation and molecular docking assays. Cellular thermal shift assay was used for the determination of the binding of Rb1 and TLR4. For animal moldels, LPS- or cantharidin-induced acute kidney injury, LPS-induced septic death, and dimethyl benzene-induced ear edema were employed to investigate Rb1's anti-inflammatory activity in vivo. RESULTS Rb1 significantly decreased inflammatory cytokines release in LPS-stimulated RAW264.7 cells and BMDMs, as well as COX-2 and iNOS amounts. Rb1 reduced LPS-associated calcium influx, ROS production, and NO generation. The NF-κB and MAPK axes participated in Rb1's anti-inflammatory effects. Molecular docking simulation indicated Rb1 bound to TLR4 to prevent TLR4 dimerization, as confirmed by co-immunoprecipitation and cellular thermal shift assay. Furthermore, MyD88 recruitment and TAK1 expression were altered by reduced TLR4 dimerization, indicating the TLR4-MyD88-NF-κB/MAPK pathways contributed to Rb1's anti-inflammatory process. In animal models, Rb1 markedly alleviated LPS- or cantharidin-induced acute kidney injury, rescued LPS-induced septic mice from death, and inhibited dimethyl benzene-induced mouse ear edema. CONCLUSION Overall, these findings demonstrate Rb1 exhibits marked anti-inflammatory effects, suggesting Rb1 represents an optimal molecule for treating inflammatory diseases.
Collapse
Affiliation(s)
- Hongwei Gao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Naixin Kang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Chao Hu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Ziyu Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Qiongming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Yanli Liu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Shilin Yang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
44
|
Liu Y, Wang S, Kan J, Zhang J, Zhou L, Huang Y, Zhang Y. Chinese Herbal Medicine Interventions in Neurological Disorder Therapeutics by Regulating Glutamate Signaling. Curr Neuropharmacol 2020; 18:260-276. [PMID: 31686629 PMCID: PMC7327939 DOI: 10.2174/1570159x17666191101125530] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system, and its signaling is critical for excitatory synaptic transmission. The well-established glutamate system involves glutamate synthesis, presynaptic glutamate release, glutamate actions on the ionotropic glutamate receptors (NMDA, AMPA, and kainate receptors) and metabotropic glutamate receptors, and glutamate uptake by glutamate transporters. When the glutamate system becomes dysfunctional, it contributes to the pathogenesis of neurodegenerative and neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease, depression, epilepsy, and ischemic stroke. In this review, based on regulating glutamate signaling, we summarize the effects and underlying mechanisms of natural constituents from Chinese herbal medicines on neurological disorders. Natural constituents from Chinese herbal medicine can prevent the glutamate-mediated excitotoxicity via suppressing presynaptic glutamate release, decreasing ionotropic and metabotropic glutamate receptors expression in the excitatory synapse, and promoting astroglial glutamate transporter expression to increase glutamate clearance from the synaptic cleft. However, some natural constituents from Chinese herbal medicine have the ability to restore the collapse of excitatory synapses by promoting presynaptic glutamate release and increasing ionotropic and metabotropic glutamate receptors expression. These regulatory processes involve various signaling pathways, which lead to different mechanistic routes of protection against neurological disorders. Hence, our review addresses the underlying mechanisms of natural constituents from Chinese herbal medicines that regulate glutamate systems and serve as promising agents for the treatment of the above-mentioned neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunlong Zhang
- Address correspondence to this author at the Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Tel: +86-20-37105182;, E-mail: and Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China; E-mail:
| |
Collapse
|
45
|
Han S, Gao H, Chen S, Wang Q, Li X, Du LJ, Li J, Luo YY, Li JX, Zhao LC, Feng J, Yang S. Procyanidin A1 Alleviates Inflammatory Response induced by LPS through NF-κB, MAPK, and Nrf2/HO-1 Pathways in RAW264.7 cells. Sci Rep 2019; 9:15087. [PMID: 31636354 PMCID: PMC6803657 DOI: 10.1038/s41598-019-51614-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a complex physiological process that poses a serious threat to people’s health. However, the potential molecular mechanisms of inflammation are still not clear. Moreover, there is lack of effective anti-inflammatory drugs that meet the clinical requirement. Procyanidin A1 (PCA1) is a monomer component isolated from Procyanidin and shows various pharmacological activities. This study further demonstrated the regulatory role of PCA1 on lipopolysaccharide (LPS)-stimulated inflammatory response and oxidative stress in RAW264.7 cells. Our data showed that PCA1 dramatically attenuated the production of pro-inflammatory cytokines such as NO, iNOS, IL-6, and TNF-α in RAW264.7 cells administrated with LPS. PCA1 blocked IκB-α degradation, inhibited IKKα/β and IκBα phosphorylation, and suppressed nuclear translocation of p65 in RAW264.7 cells induced by LPS. PCA1 also suppressed the phosphorylation of JNK1/2, p38, and ERK1/2 in LPS-stimulated RAW264.7 cells. In addition, PCA1 increased the expression of HO-1, reduced the expression of Keap1, and promoted Nrf2 into the nuclear in LPS-stimulated RAW264.7 cells. Cellular thermal shift assay indicated that PCA1 bond to TLR4. Meanwhile, PCA1 inhibited the production of intracellular ROS and alleviated the depletion of mitochondrial membrane potential in vitro. Collectively, our data indicated that PCA1 exhibited a significant anti-inflammatory effect, suggesting that it is a potential agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Shaoru Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, 44272, USA
| | - Qinqin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Xinxing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Li-Jun Du
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Ying-Ying Luo
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Jun-Xiu Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Li-Chun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China. .,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China.
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China. .,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China.
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| |
Collapse
|
46
|
Qiao Z, Tang J, Wu W, Tang J, Liu M. Acteoside inhibits inflammatory response via JAK/STAT signaling pathway in osteoarthritic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:264. [PMID: 31590658 PMCID: PMC6781407 DOI: 10.1186/s12906-019-2673-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative disease of synovial joints caused by inflammation. Acteoside (ACT), a major component and lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha, has been reported to regulate the inflammation and immune response. The study aims to investigate the effects of ACT on inflammatory responses and joint protection in OA rats. METHODS Cell proliferation was examined by MTT and colony formation assay. Apoptosis was analyzed using flow cytometry with Annexin V/PI staining. ELISA was employed to examine the concentration of inflammatory cytokines. OA rat model was established by surgery stimulation. RESULTS ACT treatment significantly inhibited the upregulation of inflammatory cytokines induced by IL-1β in primary chondrocytes, including IL-6, IL-12, TNF-α and IFN-γ. ACT stimulation also enhanced the cell proliferation, while inhibited cell apoptosis in IL-1β-treated chondrocytes. Consistently, ACT treatment led to downregulation of cleaved-caspase-3 and apoptosis regulator Bax, and upregulation of Bcl-2. Furthermore, ACT treatment inhibited IL-1β-induced activation of JAK/STAT pathway. The results were confirmed in surgery-induced OA rat model. Moreover, ACT treatment significantly inhibited synovial inflammation and articular chondrocyte apoptosis in OA rats. CONCLUSION Our findings indicate that ACT has the potential therapeutic effect on OA through inhibiting the inflammatory responses via inactivating JAK/STAT signaling pathway.
Collapse
|
47
|
Hepatoprotective Effect of the Ethanol Extract of Illicium henryi against Acute Liver Injury in Mice Induced by Lipopolysaccharide. Antioxidants (Basel) 2019; 8:antiox8100446. [PMID: 31581526 PMCID: PMC6826918 DOI: 10.3390/antiox8100446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
The root bark of Illicium henryi has been used in traditional Chinese medicine to treat lumbar muscle strain and rheumatic pain. Its ethanol extract (EEIH) has been previously reported to attenuate lipopolysaccharide (LPS)-induced acute kidney injury in mice. The present study aimed to evaluate the in vitro antioxidant activities and in vivo protective effects of EEIH against LPS-induced acute liver injury (ALI) in mice as well as explore its molecular mechanisms. The mice were injected intraperitoneally (i.p.) with EEIH at the doses of 1.25, 2.5, and 5.0 mg/kg every day for 5 days. One hour after the last administration, the mice were administered i.p. with LPS (8 mg/kg). After fasting for 12 h, blood and liver tissues were collected to histopathological observation, biochemical assay, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot analyses. EEIH possessed 2,2-diphenyl-1-picrylhydrazil (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiozoline-6-sulfonic acid) disodium salt (ABTS) radical scavenging activities and ferric-reducing antioxidant capacity in vitro. The histopathological examination, serum biochemical analysis, and liver myeloperoxidase (MPO) activity showed that EEIH pretreatment alleviated LPS-induced liver injury in mice. EEIH significantly dose-dependently decreased the mRNA and protein expression levels of inflammatory factors TNF-α, IL-1β, IL-6, and COX-2 in liver tissue of LPS-induced ALI mice via downregulating the mRNA and protein expressions of toll-like receptor 4 (TLR4) and inhibiting the phosphorylation of nuclear factor-κB (NF-κB) p65. Furthermore, EEIH markedly ameliorated liver oxidative and nitrosative stress burden in LPS-treated mice through reducing the content of thiobarbituric acid reactive substances (TBARS), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) levels, restoring the decreased superoxide dismutase (SOD) and reduced glutathione (GSH) levels, and up-regulating nuclear factor erythroid 2 related factor 2 (Nrf2). These results demonstrate that EEIH has protective effects against ALI in mice via alleviating inflammatory response, oxidative and nitrosative stress burden through activating the Nrf2 and suppressing the TLR4/NF-κB signaling pathways. The hepatoprotective activity of EEIH might be attributed to the flavonoid compounds such as catechin (1), 3',4',7-trihydroxyflavone (2), and taxifolin (7) that most possibly act synergistically.
Collapse
|
48
|
Yuan R, Huang L, Du LJ, Feng JF, Li J, Luo YY, Xu QM, Yang SL, Gao H, Feng YL. Dihydrotanshinone exhibits an anti-inflammatory effect in vitro and in vivo through blocking TLR4 dimerization. Pharmacol Res 2019; 142:102-114. [DOI: 10.1016/j.phrs.2019.02.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/02/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
|
49
|
Li HD, Meng XM, Huang C, Zhang L, Lv XW, Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front Pharmacol 2019; 10:376. [PMID: 31057404 PMCID: PMC6482429 DOI: 10.3389/fphar.2019.00376] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Jun Li, ;
| |
Collapse
|
50
|
Gao H, Huang L, Ding F, Yang K, Feng Y, Tang H, Xu QM, Feng J, Yang S. Simultaneous purification of dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA from Salvia miltiorrhiza and their anti-inflammatory activities investigation. Sci Rep 2018. [PMID: 29855534 DOI: 10.1038/s41598-018-26828-023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA are major lipid-soluble constituents isolated from Salvia miltiorrhiza Bunge (Danshen). In the present study, a systematic method was developed to simultaneously isolate and purify those compounds using macroporous adsorption resins and semi-preparative HPLC with a dynamic axial compress (DAC) system. The Danshen extract (95% alcohol) was divided into three fractions using different concentrations of alcohol (0%, 45%, and 90%) on D101 column. The content of total tanshinones of 90% alcohol eluent (TTS) was over 97%. Furthermore, the anti-inflammatory effects of those samples were investigated on LPS-stimulated RAW264.7 cells and three animal models. The results showed that the anti-inflammatory effect of TTS in vitro was superior to the one of any other sample including 0% and 45% eluent, and total tanshinones capsules. In addition, TTS exhibited a stronger anti-inflammatory effect than that of dihydrotanshinone, tanshinone IIA, cryptotanshinone, and tanshinone I, respectively. For animal models, TTS could significantly suppress xylene-induced ear oedema and rescue LPS-induced septic death and acute kidney injury in mice. In summary, the separation process developed in the study was high-efficiency, economic, and low-contamination, which was fit to industrial producing. TTS is a potential agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hongwei Gao
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liting Huang
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Fang Ding
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Ke Yang
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Hongzhen Tang
- Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Qiong-Ming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Jianfang Feng
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shilin Yang
- Guangxi University of Chinese Medicine, Nanning, 530000, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|