1
|
Cai J, Wang J, Wang Z, Wang J, Jia Y, Ma X. Perspectives on the α5 nicotinic acetylcholine receptor in lung cancer progression. Front Cell Dev Biol 2025; 13:1489958. [PMID: 40143965 PMCID: PMC11937065 DOI: 10.3389/fcell.2025.1489958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in a variety of cell types and are involved in multiple physiological regulatory mechanisms in cells, tissues and systems. Increasing evidence suggests that the α5 nicotinic acetylcholine receptor (α5-nAChR), encoded by the CHRNA5 gene, is one of a key mediator involved in lung cancer development and immune responses. Several studies have shown that it is a regulator that stimulates processes via various signaling pathways, including STAT3 in lung cancer. In addition, α5-nAChR has a profound effect on lung immune response through multiple immune-related factor pathways. In this review, we focus on the perspectives on α5-nAChR in lung cancer progression, which indicates that targeting α5-nAChR could provide novel anticancer and immune therapy strategies for lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Barrantes FJ. Nicotinic acetylcholine receptors in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:37-54. [PMID: 40340066 DOI: 10.1016/b978-0-443-19088-9.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The nicotinic acetylcholine receptor (nAChR) is the archetypal neurotransmitter receptor within the superfamily of pentameric ligand-gated ion channels (pLGICs). Typically, it mediates fast synaptic transmission in response to its endogenous ligand, acetylcholine, and can also intervene in slower signaling mechanisms via intracellular metabolic cascades in association with G-protein-coupled receptors. This review covers the structural and functional aspects of the different neuronal nAChR subtypes and their cellular and anatomic distribution in the brain. The significant progress in our knowledge on the topic derives from the successful combination of biochemical, neuroanatomic, pharmacologic, and cell biology approaches, complemented by site-directed mutagenesis, single-channel electrophysiology, and structural biophysical studies. This multipronged approach provides a comprehensive description of nAChR in health and disease, offering improved chances of success in tackling neurologic and neuropsychiatric diseases involving phenotypic alterations of nAChRs, particularly in neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina; National Scientific & Technological Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Postu PA, Boiangiu RS, Mihasan M, Stache AB, Tiron A, Hritcu L. The Distinct Biological Effects of 6-Hydroxy-L-Nicotine in Representative Cancer Cell Lines. Molecules 2024; 29:5593. [PMID: 39683752 DOI: 10.3390/molecules29235593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
6-hydroxy-L-nicotine (6HLN) is a nicotine (NIC) derivative with proven therapeutic potential in neurodegenerative disorders. Here, the impact of 6HLN on cell growth, migratory behavior, and inflammatory status of three different cancer cell lines (A549, MCF7, and U87) and two normal cell lines (16HBE14o and MCF10A) was investigated. In silico analyses were conducted to evaluate the binding affinity of 6HLN to nicotinic receptors (nAChRs) containing α9 and α5 subunits. The obtained in silico data revealed that 6HLN might act on the cholinergic system. Interestingly, the in vitro data showed the compound has cancer-stimulatory effects in U87 glioblastoma cells and cancer-inhibitory effects in MCF7 breast cancer cells. In A549 lung cancer cells, no changes were detected upon 6HLN administration. More importantly, 6HLN appears not to be deleterious for normal cells, with the viability of 16HBE14o pulmonary cells and MCF10A mammary cells remaining unchanged.
Collapse
Affiliation(s)
- Paula Alexandra Postu
- Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Adrian Tiron
- Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| |
Collapse
|
4
|
Wang H, Song TY, Reyes-García J, Wang YX. Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells. Cells 2024; 13:1807. [PMID: 39513914 PMCID: PMC11545379 DOI: 10.3390/cells13211807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary artery endothelial cells (PAECs) are a major contributor to hypoxic pulmonary hypertension (PH) due to the possible roles of reactive oxygen species (ROS). However, the molecular mechanisms and functional roles of ROS in PAECs are not well established. In this study, we first used Amplex UltraRed reagent to assess hydrogen peroxide (H2O2) generation. The result indicated that hypoxic exposure resulted in a significant increase in Amplex UltraRed-derived fluorescence (i.e., H2O2 production) in human PAECs. To complement this result, we employed lucigenin as a probe to detect superoxide (O2-) production. Our assays showed that hypoxia largely increased O2- production. Hypoxia also enhanced H2O2 production in the mitochondria from PAECs. Using the genetically encoded H2O2 sensor HyPer, we further revealed the hypoxic ROS production in PAECs, which was fully blocked by the mitochondrial inhibitor rotenone or myxothiazol. Interestingly, hypoxia caused an increase in the migration of PAECs, determined by scratch wound assay. In contrast, nicotine, a major cigarette or e-cigarette component, had no effect. Moreover, hypoxia and nicotine co-exposure further increased migration. Transfection of lentiviral shRNAs specific for the mitochondrial Rieske iron-sulfur protein (RISP), which knocked down its expression and associated ROS generation, inhibited the hypoxic migration of PAECs. Hypoxia largely increased the proliferation of PAECs, determined using Ki67 staining and direct cell number accounting. Similarly, nicotine caused a large increase in proliferation. Moreover, hypoxia/nicotine co-exposure elicited a further increase in cell proliferation. RISP knockdown inhibited the proliferation of PAECs following hypoxia, nicotine exposure, and hypoxia/nicotine co-exposure. Taken together, our data demonstrate that hypoxia increases RISP-mediated mitochondrial ROS production, migration, and proliferation in human PAECs; nicotine has no effect on migration, increases proliferation, and promotes hypoxic proliferation; the effects of nicotine are largely mediated by RISP-dependent mitochondrial ROS signaling. Conceivably, PAECs may contribute to PH via the RISP-mediated mitochondrial ROS.
Collapse
Affiliation(s)
- Harrison Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| | - Teng-Yao Song
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| | - Jorge Reyes-García
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| |
Collapse
|
5
|
Kononenko V, Joukhan A, Bele T, Križaj I, Kralj S, Turk T, Drobne D. Gelatin nanoparticles loaded with 3-alkylpyridinium salt APS7, an analog of marine toxin, are a promising support in human lung cancer therapy. Biomed Pharmacother 2024; 177:117007. [PMID: 38906020 DOI: 10.1016/j.biopha.2024.117007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
This study demonstrates the potential of gelatin nanoparticles as a nanodelivery system for antagonists of nicotinic acetylcholine receptors (nAChRs) to improve chemotherapy efficacy and reduce off-target effects. Too often, chemotherapy for lung cancer does not lead to satisfactory results. Therefore, new approaches directed at multiple pharmacological targets in cancer therapy are being developed. Following the activation of nAChRs (e.g. by nicotine), cancer cells begin to proliferate and become more resistant to chemotherapy-induced apoptosis. This work shows that the 3-alkylpyridinium salt, APS7, a synthetic analog of a toxin from the marine sponge Haliclona (Rhizoneira) sarai, acts as an nAChR antagonist that inhibits the pro-proliferative and anti-apoptotic effects of nicotine on A549 human lung adenocarcinoma cells. In this study, gelatin-based nanoparticles filled with APS7 (APS7-GNPs) were prepared and their effects on A549 cells were compared with that of free APS7. Both APS7 and APS7-GNPs inhibited Ca2+ influx and increased the efficacy of cisplatin chemotherapy in nicotine-stimulated A549 cells. However, significant benefits from APS7-GNPs were observed - a stronger reduction in the proliferation of A549 lung cancer cells and a much higher selectivity in cytotoxicity towards cancer cells compared with non-tumorigenic lung epithelial BEAS-2B cells.
Collapse
Affiliation(s)
- Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana SI-1000, Slovenia.
| | - Ahmad Joukhan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | - Tadeja Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia; Faculty of medicine, University of Ljubljana, Vrazov trg 2, Ljubljana SI-1000, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Tom Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana SI-1000, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
6
|
Joukhan A, Kononenko V, Sollner Dolenc M, Hočevar M, Turk T, Drobne D. Modulation of the Effect of Cisplatin on Nicotine-Stimulated A549 Lung Cancer Cells Using Analog of Marine Sponge Toxin Loaded in Gelatin Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:777. [PMID: 38727371 PMCID: PMC11085658 DOI: 10.3390/nano14090777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Nicotine activates nicotinic acetylcholine receptors (nAChRs), which are overexpressed in numerous cancer types, leading to signaling pathways that increase lung cancer invasiveness and resistance to chemotherapeutic agents. In this study, the effects of APS12-2, a synthetic analog of marine sponge toxin that acts as an antagonist of nAChRs, was investigated in vitro on A549 human lung adenocarcinoma cells and non-tumorigenic human lung epithelial BEAS-2B cells. In addition, gelatin nanoparticles (GNPs) loaded with APS12-2 (APS12-2-GNPs) were prepared and their effects were compared with those of free APS12-2. Nicotine reduced cytotoxicity, the formation of reactive oxygen species, and the formation of lipid droplets caused by cisplatin on A549 cells. The effects of nicotine on the decreased efficacy of cisplatin were reduced by APS12-2 and APS12-2-GNPs. APS12-2-GNPs showed a substantial advantage compared with free APS12-2; the cytotoxicity of APS12-2 on BEAS-2B cells was greatly reduced when APS12-2 was loaded in GNPs, whereas the cytotoxicity on A549 cells was only slightly reduced. Our results suggest that both APS12-2 and APS12-2-GNPs hold promise as supportive agents in the cisplatin-based chemotherapy of lung cancer.
Collapse
Affiliation(s)
- Ahmad Joukhan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Department of Biology, Faculty of Biotechnical, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| | - Veno Kononenko
- Department of Biology, Faculty of Biotechnical, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| | - Marija Sollner Dolenc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Matej Hočevar
- Institute of Metals and Technology, 1000 Ljubljana, Slovenia;
| | - Tom Turk
- Department of Biology, Faculty of Biotechnical, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| | - Damjana Drobne
- Department of Biology, Faculty of Biotechnical, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| |
Collapse
|
7
|
Joukhan A, Kononenko V, Bele T, Sollner Dolenc M, Peigneur S, Pinheiro-Junior EL, Tytgat J, Turk T, Križaj I, Drobne D. Attenuation of Nicotine Effects on A549 Lung Cancer Cells by Synthetic α7 nAChR Antagonists APS7-2 and APS8-2. Mar Drugs 2024; 22:147. [PMID: 38667764 PMCID: PMC11051029 DOI: 10.3390/md22040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Nicotine binds to nicotinic acetylcholine receptors (nAChRs) that are overexpressed in different cancer cells, promoting tumor growth and resistance to chemotherapy. In this study, we aimed to investigate the potential of APS7-2 and APS8-2, synthetic analogs of a marine sponge toxin, to inhibit nicotine-mediated effects on A549 human lung cancer cells. Our electrophysiological measurements confirmed that APS7-2 and APS8-2 act as α7 nAChR antagonists. APS8-2 showed no cytotoxicity in A549 cells, while APS7-2 showed concentration-dependent cytotoxicity in A549 cells. The different cytotoxic responses of APS7-2 and APS8-2 emphasize the importance of the chemical structure in determining their cytotoxicity on cancer cells. Nicotine-mediated effects include increased cell viability and proliferation, elevated intracellular calcium levels, and reduced cisplatin-induced cytotoxicity and reactive oxygen species production (ROS) in A549 cells. These effects of nicotine were effectively attenuated by APS8-2, whereas APS7-2 was less effective. Our results suggest that APS8-2 is a promising new therapeutic agent in the chemotherapy of lung cancer.
Collapse
Affiliation(s)
- Ahmad Joukhan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| | - Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| | - Tadeja Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.B.); (I.K.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Steve Peigneur
- Laboratory of Toxicology and Pharmacology, KU Leuven, 3000 Leuven, Belgium; (S.P.); (E.L.P.-J.); (J.T.)
| | | | - Jan Tytgat
- Laboratory of Toxicology and Pharmacology, KU Leuven, 3000 Leuven, Belgium; (S.P.); (E.L.P.-J.); (J.T.)
| | - Tom Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.B.); (I.K.)
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| |
Collapse
|
8
|
Chen X, Zou Z, Li W, Dong X, Chen Y, Lu Y, Zhu M, Li M, Lin B. α-Conotoxin recombinant protein ImI-AFP3 efficiently inhibits the growth and migration of lung cancer cells. Protein Expr Purif 2024; 215:106405. [PMID: 37979629 DOI: 10.1016/j.pep.2023.106405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
α-Conotoxin ImI is a selective antagonist of alpha7 nicotinic acetylcholine receptor (α7 nAChR) that is involved in cancer development. Human alpha fetoprotein domain 3 (AFP3) is a prototype of anticancer agents. In an effort to design drugs for anticancer treatments, we fused the ImI peptide to AFP3 as a fusion protein for testing. The fusion protein (ImI-AFP3) was highly expressed in the insect Bac-to-Bac system. The purified fusion protein was found to have improved anticancer activity and synergized with the drug gefitinib to inhibit the growth and migration of A549 and NCI-H1299 lung cancer cells. Our data have demonstrated that the recombinant protein ImI-AFP3 is a promising candidate for drug development to suppress lung cancer cell growth, especially to suppress hepatoid adenocarcinoma of the lung (HAL) cell growth.
Collapse
Affiliation(s)
- Xiaobing Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan Province, PR China
| | - Zijuan Zou
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan Province, PR China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan Province, PR China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan Province, PR China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan Province, PR China
| | - Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan Province, PR China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan Province, PR China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan Province, PR China; Institution of Tumor, Hainan Medical University, Haikou, 570102, Hainan Province, PR China.
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan Province, PR China.
| |
Collapse
|
9
|
Prashanth N, Meghana P, Sandeep Kumar Jain R, Pooja S Rajaput, Satyanarayan N D, Raja Naika H, Kumaraswamy H M. Nicotine promotes epithelial to mesenchymal transition and gemcitabine resistance via hENT1/RRM1 signalling in pancreatic cancer and chemosensitizing effects of Embelin-a naturally occurring benzoquinone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169727. [PMID: 38163613 DOI: 10.1016/j.scitotenv.2023.169727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Pancreatic cancer is lethal due to poor prognosis with 5-year survival rate lesser than 5 %. Gemcitabine is currently used to treat pancreatic cancer and development of chemoresistance is a major obstacle to overcome pancreatic cancer. Nicotine is a known inducer of drug resistance in pancreatic tumor micro-environment. Present study evaluates chemoresistance triggered by nicotine while treating with gemcitabine and chemosensitization using Embelin. Embelin is a naturally occurring benzoquinone from Embelia ribes possessing therapeutic potency. To develop nicotine-induced chemo-resistance, pancreatic cancer cells PANC-1 and MIA PaCa-2 were continuously treated with nicotine followed by exposure to gemcitabine. Gemcitabine sensitivity assay and immunoblotting was performed to assess the chemo-resistance. Antiproliferative assays such as migration assay, clonogenic assay, Mitochondrial Membrane Potential (MMP) assay, dual staining assay, comet assay, Reactive Oxygen Species (ROS) assay, cell cycle analysis and immunoblotting assays were performed to witness the protein expression involved in chemoresistance and chemosensitization. Epithelial to mesenchymal transition was observed in nicotine induced chemoresistant cells. Gemcitabine sensitivity assay revealed that relative resistance was increased to 6.26 (p < 0.0001) and 6.45 (p < 0.0001) folds in resistant PANC-1 and MIA PaCa-2 compared to parental cells. Protein expression studies confirmed resistance markers like hENT1 and dCK were downregulated with subsequent increase in RRM1 expression in resistant cells. Embelin considerably decreased the cell viability with an IC50 value of 4.03 ± 0.08 μM in resistant PANC-1 and 2.11 ± 0.04 μM in resistant MIA PaCa-2. Cell cycle analysis showed Embelin treatment caused cell cycle arrest at S phase in resistant PANC-1 cells; in resistant MIA PaCa-2 cells there was an escalation in the Sub G1. Embelin upregulated Bax, γH2AX, p53, ERK1/2 and hENT1 expression with concomitant down regulation of Bcl-2 and RRM1. Bioactive molecule embelin, its combination with gemcitabine could provide new vistas to overcome chemo resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Prashanth N
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Meghana P
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Sandeep Kumar Jain R
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Pooja S Rajaput
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Satyanarayan N D
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur, Chikkamagaluru, 577548, Karnataka, India
| | - Raja Naika H
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Kumaraswamy H M
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India.
| |
Collapse
|
10
|
Ma X, Geng R, Zhao Y, Xu W, Li Y, Jiang Y, Liu Y, Zhao L, Li Y. CHRNA9 as a New Prognostic Marker and Potential Therapeutic Target in Glioma. J Cancer 2024; 15:2095-2109. [PMID: 38495483 PMCID: PMC10937273 DOI: 10.7150/jca.92080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 03/19/2024] Open
Abstract
Background: The nicotinic acetylcholine receptor (nAChR) subunit alpha-9 (CHRNA9) is a unique cholinergic receptor, which is involved in tumor proliferation, apoptosis, metastasis and chemotherapy resistance. However, the correlation between the expression level of CHRNA9 in glioma and the clinical features and prognosis of glioma patients has not been clarified. The aim of this study was to verify the expression level of CHRNA9 in glioma and its effect on prognosis by bioinformatics methods. Methods: The RNA-seq data of glioma and normal samples were obtained from the TCGA and GTEx databases. Bioinformatics methods were utilized to analyze the differential expression of CHRNA9 between tumor samples and normal samples. The potential association between CHRNA9 and the clinicopathological features of glioma patients was also investigated. The Kaplan-Meier method and Cox regression were utilized to analyze the relationship between CHRNA9 expression level and survival time and prognostic value of glioma patients. Enrichment analysis was applied to predict gene function and signaling pathways associated with CHRNA9. Experimental verification was performed using tumor tissues and paracancerous tissues from glioma patients. Results: The results of bioinformatics analysis showed that the expression of CHRNA9 was increased in glioma tissues, correlating with poor prognosis and reduced patient survival time. Enrichment analysis suggested that CHRNA9 may interact with the JAK/STAT pathway. CHRNA9 was also found to be abnormally expressed in various other tumors and associated with the expression levels of numerous immune checkpoints in glioma. The findings from the analysis of clinical samples revealed that the expression levels of both mRNA and protein of CHRNA9 in glioma tissues were higher than those in paracancerous tissues. Similarly, the mRNA expression levels of STAT3, IL-6, and TNF-α, which are crucial factors in the STAT3 pathway, were elevated in glioma tissues compared to paracancerous tissues. Conclusion: CHRNA9 is a potential prognostic marker and immunotherapy target for glioma, with its mechanism of action potentially linked to the STAT3 pathway.
Collapse
Affiliation(s)
- Xiaoshan Ma
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Ren Geng
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yao Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Wanzhen Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Yao Li
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, China
| | - Yining Jiang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yuanhao Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Liyan Zhao
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Arunrungvichian K, Vajragupta O, Hayakawa Y, Pongrakhananon V. Targeting Alpha7 Nicotinic Acetylcholine Receptors in Lung Cancer: Insights, Challenges, and Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:28-41. [PMID: 38230275 PMCID: PMC10789132 DOI: 10.1021/acsptsci.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an ion-gated calcium channel that plays a significant role in various aspects of cancer pathogenesis, particularly in lung cancer. Preclinical studies have elucidated the molecular mechanism underlying α7 nAChR-associated lung cancer proliferation, chemotherapy resistance, and metastasis. Understanding and targeting this mechanism are crucial for developing therapeutic interventions aimed at disrupting α7 nAChR-mediated cancer progression and improving treatment outcomes. Drug research and discovery have determined natural compounds and synthesized chemical antagonists that specifically target α7 nAChR. However, approved α7 nAChR antagonists for clinical use are lacking, primarily due to challenges related to achieving the desired selectivity, efficacy, and safety profiles required for effective therapeutic intervention. This comprehensive review provided insights into the molecular mechanisms associated with α7 nAChR and its role in cancer progression, particularly in lung cancer. Furthermore, it presents an update on recent evidence about α7 nAChR antagonists and addresses the challenges encountered in drug research and discovery in this field.
Collapse
Affiliation(s)
- Kuntarat Arunrungvichian
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Unit
of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| | - Opa Vajragupta
- Research
Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yoshihiro Hayakawa
- Institute
of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Varisa Pongrakhananon
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical
Toxicity and Efficacy Assessment of Medicines and Chemicals Research
Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Liao YC, Cheng TC, Tu SH, Chang J, Guo P, Chen LC, Ho YS. Tumor targeting and therapeutic assessments of RNA nanoparticles carrying α9-nAChR aptamer and anti-miR-21 in triple-negative breast cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:351-366. [PMID: 37547295 PMCID: PMC10400867 DOI: 10.1016/j.omtn.2023.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with a poor prognosis because of a lack of cell markers as drug targets. α9-Nicotinic acetylcholine receptor (nAChR) is expressed abundantly in TNBC; thus, it is a valuable biomarker for TNBC detection and treatment. In this study, we utilized thermodynamically stable three-way junction (3WJ) packaging RNA (pRNA) as the core to construct RNA nanoparticles with an α9-nAChR RNA aptamer as a targeting ligand and an anti-microRNA-21 (miR-21) as a therapeutic module. We compared the configuration of the two RNA nanoparticles and found that 3WJ-B-α9-nAChR-aptamer fluorescent RNA nanoparticles (3WJ-B-α9-apt-Alexa) exhibited better specificity for α9-nAChR in TNBC cells compared with 3WJ-C-α9-nAChR. Furthermore, 3WJ-B-α9-apt-Alexa bound more efficiently to TNBC patient-derived xenograft (PDX) tumors than 3WJ fluorescent RNA nanoparticles (3WJ-Alexa) with little or no accumulation in healthy organs after systemic injection in mice. Moreover, 3WJ-B-α9-nAChR-aptamer RNA nanoparticles carrying anti-miR-21 (3WJ-B-α9-apt-anti-miR-21) significantly suppressed TNBC-PDX tumor growth and induced cell apoptosis because of reduced miR-21 gene expression and upregulated the phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4) proteins. In addition, no pathological changes were detected upon toxicity examination of treated mice. In conclusion, the 3WJ-B-α9-nAChR-aptamer RNA nanoparticles established in this study efficiently deliver therapeutic anti-miR-21, indicating their potential as a novel TNBC therapy.
Collapse
Affiliation(s)
- You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Shih-Hsin Tu
- Department of Surgery, Taipei Medical University Hospital, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
- International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Li-Ching Chen
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
13
|
Papapostolou I, Ross-Kaschitza D, Bochen F, Peinelt C, Maldifassi MC. Contribution of the α5 nAChR Subunit and α5SNP to Nicotine-Induced Proliferation and Migration of Human Cancer Cells. Cells 2023; 12:2000. [PMID: 37566079 PMCID: PMC10417634 DOI: 10.3390/cells12152000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Nicotine in tobacco is known to induce tumor-promoting effects and cause chemotherapy resistance through the activation of nicotinic acetylcholine receptors (nAChRs). Many studies have associated the α5 nicotinic receptor subunit (α5), and a specific polymorphism in this subunit, with (i) nicotine administration, (ii) nicotine dependence, and (iii) lung cancer. The α5 gene CHRNA5 mRNA is upregulated in several types of cancer, including lung, prostate, colorectal, and stomach cancer, and cancer severity is correlated with smoking. In this study, we investigate the contribution of α5 in the nicotine-induced cancer hallmark functions proliferation and migration, in breast, colon, and prostate cancer cells. Nine human cell lines from different origins were used to determine nAChR subunit expression levels. Then, selected breast (MCF7), colon (SW480), and prostate (DU145) cancer cell lines were used to investigate the nicotine-induced effects mediated by α5. Using pharmacological and siRNA-based experiments, we show that α5 is essential for nicotine-induced proliferation and migration. Additionally, upon downregulation of α5, nicotine-promoted expression of EMT markers and immune regulatory proteins was impaired. Moreover, the α5 polymorphism D398N (α5SNP) caused a basal increase in proliferation and migration in the DU145 cell line, and the effect was mediated through G-protein signaling. Taken together, our results indicate that nicotine-induced cancer cell proliferation and migration are mediated via α5, adding to the characterization of α5 as a putative therapeutical target.
Collapse
Affiliation(s)
| | | | | | | | - Maria Constanza Maldifassi
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (I.P.); (D.R.-K.); (F.B.); (C.P.)
| |
Collapse
|
14
|
Giraudo A, Pallavicini M, Bolchi C. Small molecule ligands for α9* and α7 nicotinic receptors: a survey and an update, respectively. Pharmacol Res 2023; 193:106801. [PMID: 37236412 DOI: 10.1016/j.phrs.2023.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The α9- and α7-containing nicotinic acetylcholine receptors (nAChRs) mediate numerous physiological and pathological processes by complex mechanisms that are currently the subject of intensive study and debate. In this regard, selective ligands serve as invaluable investigative tools and, in many cases, potential therapeutics for the treatment of various CNS disfunctions and diseases, neuropathic pain, inflammation, and cancer. However, the present scenario differs significantly between the two aforementioned nicotinic subtypes. Over the past few decades, a large number of selective α7-nAChR ligands, including full, partial and silent agonists, antagonists, and allosteric modulators, have been described and reviewed. Conversely, reports on selective α9-containing nAChR ligands are relatively scarce, also due to a more recent characterization of this receptor subtype, and hardly any focusing on small molecules. In this review, we focus on the latter, providing a comprehensive overview, while providing only an update over the last five years for α7-nAChR ligands.
Collapse
Affiliation(s)
- Alessandro Giraudo
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy
| | - Cristiano Bolchi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy.
| |
Collapse
|
15
|
Sahu SS, Gevari MT, Nagy Á, Gestin M, Hååg P, Lewensohn R, Viktorsson K, Karlström AE, Dev A. Multi-marker profiling of extracellular vesicles using streaming current and sequential electrostatic labeling. Biosens Bioelectron 2023; 227:115142. [PMID: 36805937 DOI: 10.1016/j.bios.2023.115142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
High heterogeneity in the membrane protein expression of small extracellular vesicles (sEVs) means that bulk methods relying on antibody-based capture for expression analysis have a drawback that each type of antibody may capture a different sub-population. An improved approach is to capture a representative sEV population, without any bias, and then perform a multiplexed protein expression analysis on this population. However, such a possibility has been largely limited to fluorescence-based methods. Here, we present a novel electrostatic labelling strategy and a microchip-based all-electric method for membrane protein analysis of sEVs. The method allows us to profile multiple surface proteins on the captured sEVs using alternating charge labels. It also permits the comparison of expression levels in different sEV-subtypes. The proof of concept was tested by capturing sEVs both non-specifically (unbiased) as well as via anti-CD9 capture probes (biased), and then profiling the expression levels of various surface proteins using the charge labelled antibodies. The method is the first of its kind, demonstrating an all-electrical and microchip based method that allows for unbiased analysis of sEV membrane protein expression, comparison of expression levels in different sEV subsets, and fractional estimation of different sEV sub-populations. These results were also validated in parallel using a single-sEV fluorescence technique.
Collapse
Affiliation(s)
- Siddharth S Sahu
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden.
| | - Moein T Gevari
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75121, Uppsala, Sweden
| | - Ábel Nagy
- Department of Protein Science, School of Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maxime Gestin
- Department of Protein Science, School of Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, S-171 64, Solna, Sweden
| | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Amelie E Karlström
- Department of Protein Science, School of Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden; Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
16
|
Tae HS, Adams DJ. Nicotinic acetylcholine receptor subtype expression, function, and pharmacology: Therapeutic potential of α-conotoxins. Pharmacol Res 2023; 191:106747. [PMID: 37001708 DOI: 10.1016/j.phrs.2023.106747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The pentameric nicotinic acetylcholine receptors (nAChRs) are typically classed as muscle- or neuronal-type, however, the latter has also been reported in non-neuronal cells. Given their broad distribution, nAChRs mediate numerous physiological and pathological processes including synaptic transmission, presynaptic modulation of transmitter release, neuropathic pain, inflammation, and cancer. There are 17 different nAChR subunits and combinations of these subunits produce subtypes with diverse pharmacological properties. The expression and role of some nAChR subtypes have been extensively deciphered with the aid of knock-out models. Many nAChR subtypes expressed in heterologous systems are selectively targeted by the disulfide-rich α-conotoxins. α-Conotoxins are small peptides isolated from the venom of cone snails, and a number of them have potential pharmaceutical value.
Collapse
|
17
|
The Role of the Acetylcholine System in Common Respiratory Diseases and COVID-19. Molecules 2023; 28:molecules28031139. [PMID: 36770805 PMCID: PMC9920988 DOI: 10.3390/molecules28031139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
As an indispensable component in human beings, the acetylcholine system regulates multiple physiological processes not only in neuronal tissues but also in nonneuronal tissues. However, since the concept of the "Nonneuronal cholinergic system (NNCS)" has been proposed, the role of the acetylcholine system in nonneuronal tissues has received increasing attention. A growing body of research shows that the acetylcholine system also participates in modulating inflammatory responses, regulating contraction and mucus secretion of respiratory tracts, and influencing the metastasis and invasion of lung cancer. In addition, the susceptibility and severity of respiratory tract infections caused by pathogens such as Mycobacterium Tuberculosis and the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can also correlate with the regulation of the acetylcholine system. In this review, we summarized the major roles of the acetylcholine system in respiratory diseases. Despite existing achievements in the field of the acetylcholine system, we hope that more in-depth investigations on this topic will be conducted to unearth more possible pharmaceutical applications for the treatment of diverse respiratory diseases.
Collapse
|
18
|
Bavo F, Pallavicini M, Pucci S, Appiani R, Giraudo A, Oh H, Kneisley DL, Eaton B, Lucero L, Gotti C, Clementi F, Whiteaker P, Bolchi C. Subnanomolar Affinity and Selective Antagonism at α7 Nicotinic Receptor by Combined Modifications of 2-Triethylammonium Ethyl Ether of 4-Stilbenol (MG624). J Med Chem 2023; 66:306-332. [PMID: 36526469 PMCID: PMC9841521 DOI: 10.1021/acs.jmedchem.2c01256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 12/23/2022]
Abstract
Modifications of the cationic head and the ethylene linker of 2-(triethylammonium)ethyl ether of 4-stilbenol (MG624) have been proved to produce selective α9*-nAChR antagonism devoid of any effect on the α7-subtype. Here, single structural changes at the styryl portion of MG624 lead to prevailing α7-nAChR antagonism without abolishing α9*-nAChR antagonism. Nevertheless, rigidification of the styryl into an aromatic bicycle, better if including a H-bond donor NH, such as 5-indolyl (31), resulted in higher and more selective α7-nAChR affinity. Hybridization of this modification with the constraint of the 2-triethylammoniumethyloxy portion into (R)-N,N-dimethyl-3-pyrrolidiniumoxy substructure, previously reported as the best modification for the α7-nAChR affinity of MG624 (2), was a winning strategy. The resulting hybrid 33 had a subnanomolar α7-nAChR affinity and was a potent and selective α7-nAChR antagonist, producing at the α7-, but not at the α9*-nAChR, a profound loss of subsequent ACh function.
Collapse
Affiliation(s)
- Francesco Bavo
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
- Department
of Drug Design and Pharmacology, University
of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Marco Pallavicini
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Susanna Pucci
- Institute
of Neuroscience, CNR, via Vanvitelli 32, I-20129 Milano, Italy
- NeuroMi
Milan Center for Neuroscience, University
of Milano Bicocca, piazza
Ateneo Nuovo 1, I-20126 Milano, Italy
| | - Rebecca Appiani
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Alessandro Giraudo
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Hyoungil Oh
- Department
of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Dana L. Kneisley
- Department
of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Brek Eaton
- Division
of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013, United States
| | - Linda Lucero
- Division
of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013, United States
| | - Cecilia Gotti
- Institute
of Neuroscience, CNR, via Vanvitelli 32, I-20129 Milano, Italy
| | - Francesco Clementi
- Institute
of Neuroscience, CNR, via Vanvitelli 32, I-20129 Milano, Italy
| | - Paul Whiteaker
- Department
of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Cristiano Bolchi
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| |
Collapse
|
19
|
Giovenale AMG, Ruotolo G, Soriano AA, Turco EM, Rotundo G, Casamassa A, D’Anzi A, Vescovi AL, Rosati J. Deepening the understanding of CNVs on chromosome 15q11-13 by using hiPSCs: An overview. Front Cell Dev Biol 2023; 10:1107881. [PMID: 36684422 PMCID: PMC9852989 DOI: 10.3389/fcell.2022.1107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is widely expressed in the central and peripheral nervous systems. This receptor is implicated in both brain development and adult neurogenesis thanks to its ability to mediate acetylcholine stimulus (Ach). Copy number variations (CNVs) of CHRNA7 gene have been identified in humans and are genetically linked to cognitive impairments associated with multiple disorders, including schizophrenia, bipolar disorder, epilepsy, Alzheimer's disease, and others. Currently, α7 receptor analysis has been commonly performed in animal models due to the impossibility of direct investigation of the living human brain. But the use of model systems has shown that there are very large differences between humans and mice when researchers must study the CNVs and, in particular, the CNV of chromosome 15q13.3 where the CHRNA7 gene is present. In fact, human beings present genomic alterations as well as the presence of genes of recent origin that are not present in other model systems as well as they show a very heterogeneous symptomatology that is associated with both their genetic background and the environment where they live. To date, the induced pluripotent stem cells, obtained from patients carrying CNV in CHRNA7 gene, are a good in vitro model for studying the association of the α7 receptor to human diseases. In this review, we will outline the current state of hiPSCs technology applications in neurological diseases caused by CNVs in CHRNA7 gene. Furthermore, we will discuss some weaknesses that emerge from the overall analysis of the published articles.
Collapse
Affiliation(s)
- Angela Maria Giada Giovenale
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giorgia Ruotolo
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Amata Amy Soriano
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elisa Maria Turco
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giovannina Rotundo
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angela D’Anzi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo Luigi Vescovi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy,*Correspondence: Jessica Rosati, ; Angelo Luigi Vescovi,
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,*Correspondence: Jessica Rosati, ; Angelo Luigi Vescovi,
| |
Collapse
|
20
|
Mahmoudzadeh L, Abtahi Froushani SM, Ajami M, Mahmoudzadeh M. Effect of Nicotine on Immune System Function. Adv Pharm Bull 2023; 13:69-78. [PMID: 36721811 PMCID: PMC9871277 DOI: 10.34172/apb.2023.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/30/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023] Open
Abstract
As a parasympathetic alkaloid and the main substance in cigarette smoke, nicotine modulates the immune system, inhibits innate and acquired immunity and is used in treating many autoimmune diseases. It often stimulates the α7 receptor and causes an anti-inflammatory state in the body. This study is designed to evaluate the role of nicotine treatment on immune system. The results showed that nicotine affects many cells in immune system, alters the downstream intracellular mechanisms and changes lymphocytes polarization. This substance alters TLRs and STATs gene expression and thus changes in the innate immune system. All these events inhibit the secretion of pro-inflammatory cytokines and chemokines which increase angiogenesis and metastasis and exacerbates tumors due to increasing survival and cell growth. Nicotine can aggravate tumors in cancer patients, with many positive effects observed in the treating autoimmune disease, Nicotine treatment function in different conditions depends on factors such as concentration, how it is employed, treatment duration and other conditions such as body conditions affecting the immune system, hence, further studies and review of all conditions are required.
Collapse
Affiliation(s)
- leila Mahmoudzadeh
- Division of Immunology, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Marjan Ajami
- Department of Food and Nutrition Policy and Planning Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoudzadeh
- Nutrition Research Center and Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding Author: Maryam Mahmoudzadeh, Fax:+98 41 33363231,
| |
Collapse
|
21
|
Kravchuk DI, Sotkis GV, Shcherbatiuk MM, Kravchuk RM, Nazarenko VG, Gorbyk PP, Shuba YM. Induction of A549 Nonsmall-Cell Lung Cancer Cells Proliferation by Photoreleased Nicotine. Photochem Photobiol 2023; 99:78-82. [PMID: 35569087 DOI: 10.1111/php.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
Caged compounds comprise the group of artificially synthesized, light-sensitive molecules that enable in situ derivation of biologically active constituents capable of affecting cells, tissues and/or biological processes upon exposure to light. Ruthenium-bispyridine (RuBi) complexes are photolyzed by biologically harmless visible light. In the present study, we show that RuBi-caged nicotine can be used as a source of free nicotine to induce proliferation of A549 nonsmall-cell lung cancer (NSCLC) cells by acting on nicotinic acetylcholine receptors expressed in these cells. RuBi-nicotine was photolyzed using LED light source with the spectrum matching RuBi-absorption. Photorelease of free nicotine ([Nic]p/r ) was quantified by high-performance liquid chromatography (HPLC). 5-s-long light exposure of 10 μm of RuBi-nicotine generated 2 μm [Nic]p/r which enhanced A549 cell proliferation similarly to the 2 μm of plain nicotine during 72 h of cell culturing. Both RuBi-nicotine per se and its photolysis byproduct exerted no effect on A549 cells. We conclude that RuBi-nicotine can be a good source of free nicotine for inducing short- and long-term biological effects. Photolysis of RuBi-nicotine is quite effective, and can produce biologically relevant concentrations of nicotine at acceptable concentrations of the source material with the use of simple, inexpensive, and easily accessible light sources.
Collapse
Affiliation(s)
- Danylo I Kravchuk
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ganna V Sotkis
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mykola M Shcherbatiuk
- Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ruslan M Kravchuk
- Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vassili G Nazarenko
- Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Petro P Gorbyk
- Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
22
|
Liang J, Tae HS, Zhao Z, Li X, Zhang J, Chen S, Jiang T, Adams DJ, Yu R. Mechanism of Action and Structure-Activity Relationship of α-Conotoxin Mr1.1 at the Human α9α10 Nicotinic Acetylcholine Receptor. J Med Chem 2022; 65:16204-16217. [PMID: 36137181 DOI: 10.1021/acs.jmedchem.2c00494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
α-Conotoxins (α-CTxs) can selectively target nicotinic acetylcholine receptors (nAChRs) and are important drug leads for the treatment of cancer, chronic pain, and neuralgia. Here, we chemically synthesized a formerly defined rat α7 nAChR targeting α-CTx Mr1.1 and evaluated its activity at human nAChRs. Mr1.1 was most potent at the human (h) α9α10 nAChR with a half-maximal inhibitory concentration (IC50) of 92.0 nM. Molecular dynamic simulations suggested that Mr1.1 favorably binds at the α10(+)α9(-) and α9(+)α9(-) sites via hydrogen bonds and salt bridges, stabilizing the channel in a closed conformation. Although Mr1.1 and another antagonist, α-CTx Vc1.1 share high sequence similarity and disulfide-bond framework, Mr1.1 has distinct orientations at hα9α10. Based on the Mr1.1-hα9α10 model, analogues were generated, and the more potent Mr1.1[S4Dap], antagonized hα9α10 with an IC50 of 4.0 nM. Furthermore, Mr1.1[S4Dap] displayed analgesic activity in the rat chronic constriction injury (CCI) pain model and therefore presents a promising drug candidate.
Collapse
Affiliation(s)
- Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales2522, Australia
| | - Zitong Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Jinghui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Shen Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China.,Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China.,Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| |
Collapse
|
23
|
Margiotta F, Micheli L, Ciampi C, Ghelardini C, McIntosh JM, Di Cesare Mannelli L. Conus regius-Derived Conotoxins: Novel Therapeutic Opportunities from a Marine Organism. Mar Drugs 2022; 20:773. [PMID: 36547920 PMCID: PMC9783627 DOI: 10.3390/md20120773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Conus regius is a marine venomous mollusk of the Conus genus that captures its prey by injecting a rich cocktail of bioactive disulfide bond rich peptides called conotoxins. These peptides selectively target a broad range of ion channels, membrane receptors, transporters, and enzymes, making them valuable pharmacological tools and potential drug leads. C. regius-derived conotoxins are particularly attractive due to their marked potency and selectivity against specific nicotinic acetylcholine receptor subtypes, whose signalling is involved in pain, cognitive disorders, drug addiction, and cancer. However, the species-specific differences in sensitivity and the low stability and bioavailability of these conotoxins limit their clinical development as novel therapeutic agents for these disorders. Here, we give an overview of the main pharmacological features of the C. regius-derived conotoxins described so far, focusing on the molecular mechanisms underlying their potential therapeutic effects. Additionally, we describe adoptable chemical engineering solutions to improve their pharmacological properties for future potential clinical translation.
Collapse
Affiliation(s)
- Francesco Margiotta
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - J. Michael McIntosh
- George E. Wohlen Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA
- School of Biological Sciences University of Utah, Salt Lake City, UT 84112, USA
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| |
Collapse
|
24
|
Khalil Hajiasgharzadeh, Doustvandi MA, Khiabani NA, Mohammadi M, Dastmalchi N, Jafarlou M, Baradaran B. The Effects of siRNA-Mediated Gene Silencing of Alpha-7 Nicotinic Acetylcholine Receptors on Drug Resistance to Oxaliplatin in Colorectal Cancer Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022150109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
25
|
Hone AJ, McIntosh JM. Alkaloid ligands enable function of homomeric human α10 nicotinic acetylcholine receptors. Front Pharmacol 2022; 13:981760. [PMID: 36188578 PMCID: PMC9523446 DOI: 10.3389/fphar.2022.981760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
In the nervous system, nicotinic acetylcholine receptors (nAChRs) rapidly transduce a chemical signal into one that is electrical via ligand-gated ion flux through the central channel of the receptor. However, some nAChR subunits are expressed by non-excitable cells where signal transduction apparently occurs through non-ionic mechanisms. One such nAChR subunit, α10, is present in a discreet subset of immune cells and has been implicated in pathologies including cancer, neuropathic pain, and chronic inflammation. Longstanding convention holds that human α10 subunits require co-assembly with α9 subunits for function. Here we assessed whether cholinergic ligands can enable or uncover ionic functions from homomeric α10 nAChRs. Xenopus laevis oocytes expressing human α10 subunits were exposed to a panel of ligands and examined for receptor activation using voltage-clamp electrophysiology. Functional expression of human α10 nAChRs was achieved by exposing the oocytes to the alkaloids strychnine, brucine, or methyllycaconitine. Furthermore, acute exposure to the alkaloid ligands significantly enhanced ionic responses. Acetylcholine-gated currents mediated by α10 nAChRs were potently inhibited by the snake toxins α-bungarotoxin and α-cobratoxin but not by α-conotoxins that target α9 and α9α10 nAChRs. Our findings indicate that human α10 homomers are expressed in oocytes and exposure to certain ligands can enable ionic functions. To our knowledge, this is the first demonstration that human α10 subunits can assemble as functional homomeric nAChRs. These findings have potential implications for receptor regulatory-mechanisms and will enable structural, functional, and further pharmacological characterization of human α10 nAChRs.
Collapse
Affiliation(s)
- Arik J. Hone
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, United States
| | - J. Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, United States
| |
Collapse
|
26
|
Pal K, Hussain T, Xie H, Li S, Yang P, Mansfield A, Lou Y, Chowdhury S, Mukhopadhyay D. Expression, correlation, and prognostic significance of different nicotinic acetylcholine receptors, programed death ligand 1, and dopamine receptor D2 in lung adenocarcinoma. Front Oncol 2022; 12:959500. [PMID: 36072788 PMCID: PMC9441878 DOI: 10.3389/fonc.2022.959500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The objective of this study is to evaluate the expression of different nicotinic acetylcholine receptors (nAChRs), programmed death ligand-1 (PD-L1), and dopamine receptor D2 (DRD2) as prognostic factors in lung cancer and any correlation among them. Since all of the above genes are typically upregulated in response to smoking, we hypothesized that a correlation might exist between DRD2, PD-L1, and nAChR expression in NSCLC patients with a smoking history and a prediction model may be developed to assess the clinical outcome. Methods We retrospectively analyzed samples from 46 patients with primary lung adenocarcinoma who underwent surgical resection at Mayo Clinic Rochester from June 2000 to October 2008. The expression of PD-L1, DRD2, CHRNA5, CHRNA7, and CHRNA9 were analyzed by quantitative PCR and correlated amongst themselves and with age, stage and grade, smoking status, overall survival (OS), and relapse-free survival (RFS). Results Only PD-L1 showed a statistically significant increase in expression in patients older than 65. All the above genes showed higher expression in stage IIIB than IIIA, but none reached statistical significance. Interestingly, we did not observe significant differences among never, former, and current smokers, but patients with pack years greater than 30 showed significantly higher expression of CHRNA9. We observed a strong positive correlation between PD-L1/DRD2, PD-L1/CHRNA5, and CHRNA5/CHRNA7 and a weak positive correlation between DRD2/CHRNA5 and DRD2/CHRNA7. Older age was independently associated with poor OS, whereas lower CHRNA7 expression was independently associated with better OS. Conclusions We observed strong positive correlations among PD-L1, DRD2, and some of the nAChRs. We investigated their prognostic significance in lung cancer patients and found CHRNA7 to be an independent prognostic factor. Overall, the results obtained from this preliminary study warrant a large cohort-based analysis that may ultimately lead to potential patient-specific stratification biomarkers predicting cancer-treatment outcomes.
Collapse
Affiliation(s)
- Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Tabish Hussain
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Hao Xie
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Shenduo Li
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Ping Yang
- Department of Quantitative Health Sciences, Mayo Clinic Scottsdale, AZ, United States
| | - Aaron Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Yanyan Lou
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
27
|
Zhang B, Ren M, Yang F, Li R, Yu L, Luo A, Zhangsun D, Luo S, Dong S. Oligo-basic amino acids, potential nicotinic acetylcholine receptor inhibitors. Biomed Pharmacother 2022; 152:113215. [PMID: 35667234 DOI: 10.1016/j.biopha.2022.113215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Oligo-basic amino acids have been extensively studied in molecular biology and pharmacology, but the inhibitory activity on nicotinic acetylcholine receptors (nAChRs) was unknown. In this study, the inhibitory activity of 8 oligopeptides, including both basic and acidic amino acids, was evaluated on 9 nAChR subtypes by a two-electrode voltage clamp (TEVC). Among them, the oligo-lysine K9, K12, d-K9, d-K9F, and oligo-arginine R9 showed nanomolar inhibitory activity on various nAChRs, especially for α7 and α9α10 nAChRs. d-K9 containing N-Fmoc protecting group (d-K9F) has an enhanced inhibitory activity on most of the nAChRs, including 47-fold promotion on α1β1δε nAChR. However, H9 and H12 only showed weak inhibitory activity on α9α10 and α1β1δε nAChRs, and the acidic oligopeptide D9 has no inhibitory activity on nAChRs. Flexible docking of K9 in α10(+) α9(-) and α7(+) α7(-) binding pockets showed particularly strong dipole-dipole interactions, which may be responsible for the inhibition of nAChRs. These results demonstrated that oligo-basic amino acids have the potential to be the lead compounds as selective nAChR subtype inhibitors, and oligo-lysines deserved to be modified for further exploitation and utilization. On the other hand, the toxicity and side effects of these nAChR inhibitory peptides should be contemplated in the application.
Collapse
Affiliation(s)
- Baojian Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Maomao Ren
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Fang Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Rui Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liutong Yu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - An Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| |
Collapse
|
28
|
Bavo F, Pallavicini M, Pucci S, Appiani R, Giraudo A, Eaton B, Lucero L, Gotti C, Moretti M, Whiteaker P, Bolchi C. From 2-Triethylammonium Ethyl Ether of 4-Stilbenol (MG624) to Selective Small-Molecule Antagonists of Human α9α10 Nicotinic Receptor by Modifications at the Ammonium Ethyl Residue. J Med Chem 2022; 65:10079-10097. [PMID: 35834819 PMCID: PMC9339509 DOI: 10.1021/acs.jmedchem.2c00746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine receptors containing α9 subunits (α9*-nAChRs) are potential druggable targets arousing great interest for pain treatment alternative to opioids. Nonpeptidic small molecules selectively acting as α9*-nAChRs antagonists still remain an unattained goal. Here, through modifications of the cationic head and the ethylene linker, we have converted the 2-triethylammonium ethyl ether of 4-stilbenol (MG624), a well-known α7- and α9*-nAChRs antagonist, into some selective antagonists of human α9*-nAChR. Among these, the compound with cyclohexyldimethylammonium head (7) stands out for having no α7-nAChR agonist or antagonist effect along with very low affinity at both α7- and α3β4-nAChRs. At supra-micromolar concentrations, 7 and the other selective α9* antagonists behaved as partial agonists at α9*-nAChRs with a very brief response, followed by rebound current once the application is stopped and the channel is disengaged. The small or null postapplication activity of ACh seems to be related to the slow recovery of the rebound current.
Collapse
Affiliation(s)
- Francesco Bavo
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy,Department
of Drug Design and Pharmacology, University
of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Marco Pallavicini
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Susanna Pucci
- Institute
of Neuroscience, CNR, via Vanvitelli 32, I-20129 Milano, Italy,NeuroMi
Milan Center for Neuroscience, University
of Milano Bicocca, piazza
Ateneo Nuovo 1, I-20126 Milano, Italy
| | - Rebecca Appiani
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Alessandro Giraudo
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Brek Eaton
- Division
of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013, United States
| | - Linda Lucero
- Division
of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013, United States
| | - Cecilia Gotti
- Institute
of Neuroscience, CNR, via Vanvitelli 32, I-20129 Milano, Italy
| | - Milena Moretti
- Institute
of Neuroscience, CNR, via Vanvitelli 32, I-20129 Milano, Italy,Department
of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via Vanvitelli 32, I-20129 Milano, Italy
| | - Paul Whiteaker
- Department
of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Cristiano Bolchi
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy,. Phone: +390250319347
| |
Collapse
|
29
|
Di Lascio S, Fornasari D, Benfante R. The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. Int J Mol Sci 2022; 23:ijms23073463. [PMID: 35408823 PMCID: PMC8998457 DOI: 10.3390/ijms23073463] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
CHRFAM7A is a relatively recent and exclusively human gene arising from the partial duplication of exons 5 to 10 of the α7 neuronal nicotinic acetylcholine receptor subunit (α7 nAChR) encoding gene, CHRNA7. CHRNA7 is related to several disorders that involve cognitive deficits, including neuropsychiatric, neurodegenerative, and inflammatory disorders. In extra-neuronal tissues, α7nAChR plays an important role in proliferation, differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis, and tumor progression, as well as in the modulation of the inflammatory response through the “cholinergic anti-inflammatory pathway”. CHRFAM7A translates the dupα7 protein in a multitude of cell lines and heterologous systems, while maintaining processing and trafficking that are very similar to the full-length form. It does not form functional ion channel receptors alone. In the presence of CHRNA7 gene products, dupα7 can assemble and form heteromeric receptors that, in order to be functional, should include at least two α7 subunits to form the agonist binding site. When incorporated into the receptor, in vitro and in vivo data showed that dupα7 negatively modulated α7 activity, probably due to a reduction in the number of ACh binding sites. Very recent data in the literature report that the presence of the duplicated gene may be responsible for the translational gap in several human diseases. Here, we will review the studies that have been conducted on CHRFAM7A in different pathologies, with the intent of providing evidence regarding when and how the expression of this duplicated gene may be beneficial or detrimental in the pathogenesis, and eventually in the therapeutic response, to CHRNA7-related neurological and non-neurological diseases.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
- NeuroMi, Milan Center for Neuroscience, University of Milano Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
30
|
Pucci S, Zoli M, Clementi F, Gotti C. α9-Containing Nicotinic Receptors in Cancer. Front Cell Neurosci 2022; 15:805123. [PMID: 35126059 PMCID: PMC8814915 DOI: 10.3389/fncel.2021.805123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors containing the α9 or the α9 and α10 subunits are expressed in various extra-neuronal tissues. Moreover, most cancer cells and tissues highly express α9-containing receptors, and a number of studies have shown that they are powerful regulators of responses that stimulate cancer processes such as proliferation, inhibition of apoptosis, and metastasis. It has also emerged that their modulation is a promising target for drug development. The aim of this review is to summarize recent data showing the involvement of these receptors in controlling the downstream signaling cascades involved in the promotion of cancer.
Collapse
Affiliation(s)
- Susanna Pucci
- Institute of Neuroscience, National Research Council (CNR), Milan, Italy
- NeuroMi Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Clementi
- Institute of Neuroscience, National Research Council (CNR), Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Gotti
- Institute of Neuroscience, National Research Council (CNR), Milan, Italy
- NeuroMi Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
- *Correspondence: Cecilia Gotti
| |
Collapse
|
31
|
Zhang Q, Jia Y, Pan P, Zhang X, Jia Y, Zhu P, Chen X, Jiao Y, Kang G, Zhang L, Ma X. α5-nAChR associated with Ly6E modulates cell migration via TGF-β1/Smad signaling in non-small cell lung cancer. Carcinogenesis 2022; 43:393-404. [PMID: 34994389 DOI: 10.1093/carcin/bgac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The α5-nicotinic acetylcholine receptor (α5-nAChR) is closely associated with nicotine-related lung cancer, offering a novel perspective for investigating the molecular pathogenesis of this disease. However, the mechanism by which α5-nAChR functions in lung carcinogenesis remains to be elucidated. Lymphocyte antigen 6 (Ly6) proteins, like snake three-finger alpha toxins such as α-bungarotoxin, can modulate nAChR signaling. Ly6E, a member of the Ly6 family, is a biomarker of poor prognosis in smoking-induced lung carcinogenesis and is involved in the regulation of TGF-β1/Smad signaling. Here, we explored the underlying mechanisms linking α5-nAChR and Ly6E in non-small cell lung cancer (NSCLC). The expression of α5-nAChR was correlated with Ly6 expression, smoking status and lower survival in NSCLC tissues. In vitro, α5-nAChR mediated Ly6E, the phosphorylation of the TGF-β1 downstream molecule Smad3 (pSmad3, a key mediator of TGF-β1 signaling), the epithelial-mesenchymal transition (EMT) markers Zeb1, N-cadherin and vimentin expression in NSCLC cells. The downregulation of Ly6E reduced α5-nAChR, pSmad3, Zeb1, N-cadherin and vimentin expression. Functionally, silencing both α5-nAChR and Ly6E significantly inhibited cell migration compared to silencing α5-nAChR or Ly6E alone. Furthermore, the functional effects of α5-nAchR and Ly6E were confirmed in chicken embryo chorioallantoic membrane (CAM) and mouse xenograft models. Therefore, our findings uncover a new interaction between α5-nAChR and Ly6E that inhibits cancer cell migration by modulating the TGF-β1/Smad signaling pathway in NSCLC, which may serve as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Jia
- Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Pan Pan
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuping Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Zhu
- Department of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Xiaowei Chen
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiao
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guiyu Kang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Lulu Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Medical Laboratory, Weifang Medical University, Weifang, China.,Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
32
|
Evidence of a dual mechanism of action underlying the anti-proliferative and cytotoxic effects of ammonium-alkyloxy-stilbene-based α7- and α9-nicotinic ligands on glioblastoma cells. Pharmacol Res 2021; 175:105959. [PMID: 34756924 DOI: 10.1016/j.phrs.2021.105959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 10/23/2021] [Indexed: 01/07/2023]
Abstract
Glioblastomas (GBMs), the most frequent brain tumours, are highly invasive and their prognosis is still poor despite the use of combination treatment. MG624 is a 4-oxystilbene derivative that is active on α7- and α9-containing neuronal nicotinic acetylcholine receptor (nAChR) subtypes. Hybridisation of MG624 with a non-nicotinic resveratrol-derived pro-oxidant mitocan has led to two novel compounds (StN-4 and StN-8) that are more potent than MG624 in reducing the viability of GBM cells, but less potent in reducing the viability of mouse astrocytes. Functional analysis of their activity on α7 receptors showed that StN-4 is a silent agonist, whereas StN-8 is a full antagonist, and neither alters intracellular [Ca2+] levels when acutely applied to U87MG cells. After 72 h of exposure, both compounds decreased U87MG cell proliferation, and pAKT and oxphos ATP levels, but only StN-4 led to a significant accumulation of cells in phase G1/G0 and increased apoptosis. One hour of exposure to either compound also decreased the mitochondrial and cytoplasmic ATP production of U87MG cells, and this was not paralleled by any increase in the production of reactive oxygen species. Knocking down the α9 subunit (which is expressed at relatively high levels in U87MG cells) decreased the potency of the effects of both compounds on cell viability, but cell proliferation, ATP production, pAKT levels were unaffected by the presence of the noncell-permeable α7/α9-selective antagonist αBungarotoxin. These last findings suggest that the anti-tumoral effects of StN-4 and StN-8 on GBM cells are not only due to their action on nAChRs, but also to other non-nicotinic mechanisms.
Collapse
|
33
|
Hollenhorst MI, Krasteva-Christ G. Nicotinic Acetylcholine Receptors in the Respiratory Tract. Molecules 2021; 26:6097. [PMID: 34684676 PMCID: PMC8539672 DOI: 10.3390/molecules26206097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are widely distributed in neuronal and non-neuronal tissues, where they play diverse physiological roles. In this review, we highlight the recent findings regarding the role of nAChR in the respiratory tract with a special focus on the involvement of nAChR in the regulation of multiple processes in health and disease. We discuss the role of nAChR in mucociliary clearance, inflammation, and infection and in airway diseases such as asthma, chronic obstructive pulmonary disease, and cancer. The subtype diversity of nAChR enables differential regulation, making them a suitable pharmaceutical target in many diseases. The stimulation of the α3β4 nAChR could be beneficial in diseases accompanied by impaired mucociliary clearance, and the anti-inflammatory effect due to an α7 nAChR stimulation could alleviate symptoms in diseases with chronic inflammation such as chronic obstructive pulmonary disease and asthma, while the inhibition of the α5 nAChR could potentially be applied in non-small cell lung cancer treatment. However, while clinical studies targeting nAChR in the airways are still lacking, we suggest that more detailed research into this topic and possible pharmaceutical applications could represent a valuable tool to alleviate the symptoms of diverse airway diseases.
Collapse
|
34
|
Zhang L, Bing S, Dong M, Lu X, Xiong Y. Targeting ion channels for the treatment of lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188629. [PMID: 34610420 DOI: 10.1016/j.bbcan.2021.188629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer is caused by several environmental and genetic variables and is globally associated with elevated morbidity and mortality. Among these variables, membrane-bound ion channels have a key role in regulating multiple signaling pathways in tumor cells and dysregulation of ion channel expression and function is closely related to proliferation, migration, and metastasis of lung cancer. This work reviews and summarizes current knowledge about the role of ion channels in lung cancer, focusing on the changes in the expression and function of various ion channels in lung cancer and how these changes affect lung cancer cell biology both in vitro and in vivo as evidenced by both genetic and pharmacological studies. It can help understand the molecular mechanisms of various ion channels influencing the initiation and progression of lung cancer and shed new insights into their roles in the development and treatment of this deadly disease.
Collapse
Affiliation(s)
- Liqin Zhang
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China.
| | - Shuya Bing
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Mo Dong
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Xiaoqiu Lu
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Yuancheng Xiong
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| |
Collapse
|
35
|
Bychkov ML, Shulepko MA, Shlepova OV, Kulbatskii DS, Chulina IA, Paramonov AS, Baidakova LK, Azev VN, Koshelev SG, Kirpichnikov MP, Shenkarev ZO, Lyukmanova EN. SLURP-1 Controls Growth and Migration of Lung Adenocarcinoma Cells, Forming a Complex With α7-nAChR and PDGFR/EGFR Heterodimer. Front Cell Dev Biol 2021; 9:739391. [PMID: 34595181 PMCID: PMC8476798 DOI: 10.3389/fcell.2021.739391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted Ly6/uPAR-related protein 1 (SLURP-1) is a secreted Ly6/uPAR protein that negatively modulates the nicotinic acetylcholine receptor of α7 type (α7-nAChR), participating in control of cancer cell growth. Previously we showed, that a recombinant analogue of human SLURP-1 (rSLURP-1) diminishes the lung adenocarcinoma A549 cell proliferation and abolishes the nicotine-induced growth stimulation. Here, using multiplex immunoassay, we demonstrated a decrease in PTEN and mammalian target of rapamycin (mTOR) kinase phosphorylation in A549 cells upon the rSLURP-1 treatment pointing on down-regulation of the PI3K/AKT/mTOR signaling pathway. Decreased phosphorylation of the platelet-derived growth factor receptor type β (PDGFRβ) and arrest of the A549 cell cycle in the S and G2/M phases without apoptosis induction was also observed. Using a scratch migration assay, inhibition of A549 cell migration under the rSLURP-1 treatment was found. Affinity extraction demonstrated that rSLURP-1 in A549 cells forms a complex not only with α7-nAChR, but also with PDGFRα and epidermal growth factor receptor (EGFR), which are known to be involved in regulation of cancer cell growth and migration and are able to form a heterodimer. Knock-down of the genes encoding α7-nAChR, PDGFRα, and EGFR confirmed the involvement of these receptors in the anti-migration effect of SLURP-1. Thus, SLURP-1 can target the α7-nAChR complexes with PDGFRα and EGFR in the membrane of epithelial cells. Using chimeric proteins with grafted SLURP-1 loops we demonstrated that loop I is the principal active site responsible for the SLURP-1 interaction with α7-nAChR and its antiproliferative effect. Synthetic peptide mimicking the loop I cyclized by a disulfide bond inhibited ACh-evoked current at α7-nAChR, as well as A549 cell proliferation and migration. This synthetic peptide represents a promising prototype of new antitumor drug with the properties close to that of the native SLURP-1 protein.
Collapse
Affiliation(s)
- Maxim L. Bychkov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Mikhail A. Shulepko
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Olga V. Shlepova
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmitrii S. Kulbatskii
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Irina A. Chulina
- Group of Peptide Chemistry, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Alexander S. Paramonov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ludmila K. Baidakova
- Group of Peptide Chemistry, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Viatcheslav N. Azev
- Group of Peptide Chemistry, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Sergey G. Koshelev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Zakhar O. Shenkarev
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ekaterina N. Lyukmanova
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
36
|
Borroni V, Barrantes FJ. Homomeric and Heteromeric α7 Nicotinic Acetylcholine Receptors in Health and Some Central Nervous System Diseases. MEMBRANES 2021; 11:membranes11090664. [PMID: 34564481 PMCID: PMC8465519 DOI: 10.3390/membranes11090664] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in the modulation of essential brain functions such as memory, learning, and attention. Homomeric α7 nAChR, formed exclusively by five identical α7 subunits, is involved in rapid synaptic transmission, whereas the heteromeric oligomers composed of α7 in combination with β subunits display metabotropic properties and operate in slower time frames. At the cellular level, the activation of nAChRs allows the entry of Na+ and Ca2+; the two cations depolarize the membrane and trigger diverse cellular signals, depending on the type of nAChR pentamer and neurons involved, the location of the intervening cells, and the networks of which these neuronal cells form part. These features make the α7 nAChR a central player in neurotransmission, metabolically associated Ca2+-mediated signaling, and modulation of diverse fundamental processes operated by other neurotransmitters in the brain. Due to its ubiquitous distribution and the multiple functions it displays in the brain, the α7 nAChR is associated with a variety of neurological and neuropsychiatric disorders whose exact etiopathogenic mechanisms are still elusive.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1127AAR, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina
- Correspondence:
| |
Collapse
|
37
|
Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?-A Systematic Review. Int J Mol Sci 2021; 22:ijms22168413. [PMID: 34445117 PMCID: PMC8395098 DOI: 10.3390/ijms22168413] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Neonicotinoids are a class of insecticides that exert their effect through a specific action on neuronal nicotinic acetylcholine receptors (nAChRs). The success of these insecticides is due to this mechanism of action, since they act as potent agonists of insect nAChRs, presenting low affinity for vertebrate nAChRs, which reduces potential toxic risk and increases safety for non-target species. However, although neonicotinoids are considered safe, their presence in the environment could increase the risk of exposure and toxicity. On the other hand, although neonicotinoids have low affinity for mammalian nAChRs, the large quantity, variety, and ubiquity of these receptors, combined with its diversity of functions, raises the question of what effects these insecticides can produce in non-target species. In the present systematic review, we investigate the available evidence on the biochemical and behavioral effects of neonicotinoids on the mammalian nervous system. In general, exposure to neonicotinoids at an early age alters the correct neuronal development, with decreases in neurogenesis and alterations in migration, and induces neuroinflammation. In adulthood, neonicotinoids induce neurobehavioral toxicity, these effects being associated with their modulating action on nAChRs, with consequent neurochemical alterations. These alterations include decreased expression of nAChRs, modifications in acetylcholinesterase activity, and significant changes in the function of the nigrostriatal dopaminergic system. All these effects can lead to the activation of a series of intracellular signaling pathways that generate oxidative stress, neuroinflammation and, finally, neuronal death. Neonicotinoid-induced changes in nAChR function could be responsible for most of the effects observed in the different studies.
Collapse
|
38
|
Önder Narin G, Aydın B, Cabadak H. Studies on the role of alpha 7 nicotinic acetylcholine receptors in K562 cell proliferation and signaling. Mol Biol Rep 2021; 48:5045-5055. [PMID: 34143396 DOI: 10.1007/s11033-021-06498-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
The results we obtained from this study gave information about the determination of alpha 7 nicotinic acetylcholine receptor (α7-nACh) expression in human erythroleukemia cells, as well as whether it has a role in calcium release and cell proliferation in the presence of nicotinic agonist, antagonists. Determining the roles of α7 nicotinic receptors in erythroleukemia cells will also contribute to leukemia-related signal transduction studies. This study is primarily to determine the role of nicotinic agonists and antagonists in cell proliferation, α7 nicotinic acetylcholine receptor expression, and calcium release. The aim of this study, which is a continuation and an important part of our previous studies on the cholinergic system, has contributed to the literature on the human erythroleukemia cell signaling mechanism. Cell viability was evaluated by the trypan blue exclusion test and Bromodeoxyuridine/5-Bromo-2'-deoxyuridine (BrdU) labeling. Acetylcholine, nicotinic alpha 7 receptor antagonist methyllycaconitine citrate, and cholinergic antagonist atropine were used to determine the role of α7-nACh in K562 cell proliferation. In our experiments, the fluorescence spectrophotometer was used in Ca2+ measurements. The expression of nicotinic alpha 7 receptor was evaluated by western blot. The stimulating effect of acetylcholine in K562 cell proliferation was reversed by both the α7 nicotinic antagonist methyllycaconitine citrate and the cholinergic antagonist, atropine. Methyllycaconitine citrate inhibited K562 cell proliferation partially explained the roles of nicotinic receptors in signal transduction. While ACh caused an increase in intracellular Ca2+, methyllycaconitine citrate decreased intracellular Ca2+ level in K562 cell. The effects of nicotinic agonists and/or antagonists on erythroleukemic cells on proliferation, calcium level contributed to the interaction of nicotinic receptors with different signaling pathways. Proliferation mechanisms in erythroleukemic cells are under the control of the α7 nicotinic acetylcholine receptor via calcium influx and different signalling pathway.
Collapse
Affiliation(s)
- Gözde Önder Narin
- Department of Biophysics, Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Banu Aydın
- Department of Biophysics, School of Medicine, Marmara University, Başıbüyük Health Campus, Basic Medical Sciences Building, Maltepe, 34854, Istanbul, Turkey
| | - Hülya Cabadak
- Department of Biophysics, School of Medicine, Marmara University, Başıbüyük Health Campus, Basic Medical Sciences Building, Maltepe, 34854, Istanbul, Turkey.
| |
Collapse
|
39
|
Temporal proteomic changes induced by nicotine in human cells: A quantitative proteomics approach. J Proteomics 2021; 241:104244. [PMID: 33895337 DOI: 10.1016/j.jprot.2021.104244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Nicotine is a prominent active compound in tobacco and many smoking cessation products. Some of the biological effects of nicotine are well documented in in vitro and in vivo systems; however, data are scarce concerning the time-dependent changes on protein and phosphorylation events in response to nicotine. Here, we profiled the proteomes of SH-SY5Y and A549 cell lines subjected to acute (15 min, 1 h and 4 h) or chronic (24 h, 48 h) nicotine exposures. We used sample multiplexing (TMTpro16) and quantified more than 9000 proteins and over 7000 phosphorylation events per cell line. Among our findings, we determined a decrease in mitochondrial protein abundance for SH-SY5Y, while we detected alterations in several immune pathways, such as the complement system, for A549 following nicotine treatment. We also explored the proposed association between smoking (specifically nicotine) and SARS-CoV2. Here, we found several host proteins known to interact with viral proteins that were affected by nicotine in a time dependent manner. This dataset can be mined further to investigate the potential role of nicotine in different biological contexts. SIGNIFICANCE: Smoking is a major public health issue that is associated with several serious chronic, yet preventable diseases, including stroke, heart disease, type 2 diabetes, cancer, and susceptibility to infection. Tobacco smoke is a complex mixture of thousands of different compounds, among which nicotine is the main addictive compound. The biological effects of nicotine have been reported in several models, however very little data are available concerning the temporal proteomic and phosphoproteomic changes in response to nicotine. Here, we provide a dataset exploring the potential role of nicotine on different biological processes over time, including implications in the study of SARS-CoV2.
Collapse
|
40
|
Bai S, Wen W, Hou X, Wu J, Yi L, Zhi Y, Lv Y, Tan X, Liu L, Wang P, Zhou H, Dong Y. Inhibitory effect of sinomenine on lung cancer cells via negative regulation of α7 nicotinic acetylcholine receptor. J Leukoc Biol 2021; 109:843-852. [PMID: 32726882 DOI: 10.1002/jlb.6ma0720-344rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with a high morbidity and less than 20% survival rate. Therefore, new treatment strategies and drugs are needed to reduce the mortality of patients with lung cancer. α7 nicotinic acetylcholine receptor (α7 nAChR), as a receptor of nicotine and its metabolites, is a potential target for lung cancer treatment. Our previous studies revealed that sinomenine plays anti-inflammation roles via α7 nAChR and down-regulates the expression of this receptor, thus increasing the inflammatory response. Hence, sinomenine is possibly a natural ligand of this receptor. In the present study, the effects of sinomenine on lung cancer A549 cells and tumor-bearing mice were determined to investigate whether this alkaloid has an inhibitory effect on lung cancer via α7 nAChR. CCK-8 assay, wound-healing test, and flow cytometry were performed for cell proliferation, cell migration, and apoptosis analysis in vitro, respectively. Xenograft mice were used to evaluate the effects of sinomenine in vivo. Results showed that sinomenine decreased cell proliferation and migration abilities but increased the percentage of apoptotic cells. Tumor volume in tumor-bearing mice was significantly reduced after sinomenine treatment compared with that in the vehicle group mice (p < 0.05). Furthermore, the effects of sinomenine were abolished by the α7 nAChR antagonist mecamylamine and the allosteric modulator PNU-120596, but no change occurred when the mice were pretreated with the muscarinic acetylcholine receptor antagonist atropine. Meanwhile, sinomenine suppressed α7 nAChR expression in vitro and in vivo, as well as the related signaling molecules pERK1/2 and ERK1/2 and the transcription factors TTF-1 and SP-1. By contrast, sinomenine up-regulated the expression of another transcription factor, Egr-1. These effects were restricted by mecamylamine and PNU but not by atropine. Results suggested that sinomenine can inhibit lung cancer via α7 nAChR in a negative feedback mode.
Collapse
Affiliation(s)
- Shasha Bai
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Wenhao Wen
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Xuenan Hou
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Jiexiu Wu
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Lang Yi
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Yingkun Zhi
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Yanjun Lv
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Xiaoqin Tan
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, P. R. China
| | - Peixun Wang
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, P. R. China
| | - Yan Dong
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| |
Collapse
|
41
|
Benfante R, Di Lascio S, Cardani S, Fornasari D. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clin Exp Res 2021; 33:823-834. [PMID: 31583530 DOI: 10.1007/s40520-019-01359-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/18/2019] [Indexed: 11/26/2022]
Abstract
Neuroinflammation and cholinergic dysfunction, leading to cognitive impairment, are hallmarks of aging and neurodegenerative disorders, including Alzheimer's disease (AD). Acetylcholinesterase inhibitors (AChEI), the symptomatic therapy in AD, attenuate and delay the cognitive deficit by enhancing cholinergic synapses. The α7 nicotinic acetylcholine (ACh) receptor has shown a double-edged sword feature, as it binds with high affinity Aβ1-42, promoting intracellular accumulation and Aβ-induced tau phosphorylation, but also exerts neuroprotection by stimulating anti-apoptotic pathways. Moreover, it mediates peripheral and central anti-inflammatory response, being the effector player of the activation of the cholinergic anti-inflammatory pathway (CAIP), that, by decreasing the release of TNF-α, IL-1β, and IL-6, it may have a role in improving cognition. The finding in preclinical models that, in addition to their major function (choline esterase inhibition) AChEIs have neuroprotective properties mediated via α7nAChR and modulate innate immunity, possibly as a result of the increased availability of acetylcholine activating the CAIP, pave the way for new pharmacological intervention in AD and other neurological disorders that are characterized by neuroinflammation. CHRFAM7A is a human-specific gene acting as a dominant negative inhibitor of α7nAChR function, also suggesting a role in affecting human cognition and memory by altering α7nAChR activities in the central nervous system (CNS). This review will summarize the current knowledge on the cholinergic anti-inflammatory pathway in aging-related disorders, and will argue that the presence of the human-restricted CHRFAM7A gene might play a fundamental role in the regulation of CAIP and in the response to AChEI.
Collapse
Affiliation(s)
- Roberta Benfante
- CNR-Neuroscience Institute, Via Vanvitelli 32, 20129, Milan, Italy.
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy.
| | - Simona Di Lascio
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy
| | - Silvia Cardani
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy
| | - Diego Fornasari
- CNR-Neuroscience Institute, Via Vanvitelli 32, 20129, Milan, Italy
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy
| |
Collapse
|
42
|
Ertle CM, Rommel FR, Tumala S, Moriwaki Y, Klein J, Kruse J, Gieler U, Peters EMJ. New Pathways for the Skin's Stress Response: The Cholinergic Neuropeptide SLURP-1 Can Activate Mast Cells and Alter Cytokine Production in Mice. Front Immunol 2021; 12:631881. [PMID: 33815383 PMCID: PMC8012551 DOI: 10.3389/fimmu.2021.631881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The alpha7 nicotinic acetylcholine receptor (Chrna7) plays an essential anti-inflammatory role in immune homeostasis and was recently found on mast cells (MC). Psychosocial stress can trigger MC hyperactivation and increases pro-inflammatory cytokines in target tissues such as the skin. If the cholinergic system (CS) and Chrna7 ligands play a role in these cascades is largely unknown. Objective: To elucidate the role of the CS in the response to psychosocial stress using a mouse-model for stress-triggered cutaneous inflammatory circuits. Methods: Key CS markers (ACh, Ch, SLURP-1, SLURP-2, Lynx1, Chrm3, Chrna7, Chrna9, ChAT, VAChT, Oct3, AChE, and BChE) in skin and its MC (sMC), MC activation, immune parameters (TNFα, IL1β, IL10, TGFβ, HIF1α, and STAT3) and oxidative stress were analyzed in skin from 24 h noise-stressed mice and in cultured MC (cMC) from C57BL/6 or Chrna7-Knockout mice. Results: First, Chrna7 and SLURP-1 mRNA were exclusively upregulated in stressed skin. Second, histomorphometry located Chrna7 and SLURP-1 in nerves and sMC and demonstrated upregulated contacts and increased Chrna7+ sMC in stressed skin, while 5 ng/mL SLURP-1 degranulated cMC. Third, IL1β+ sMC were high in stressed skin, and while SLURP-1 alone had no significant effect on cMC cytokines, it upregulated IL1β in cMC from Chrna7-KO and in IL1β-treated wildtype cMC. In addition, HIF1α+ sMC were high in stressed skin and Chrna7-agonist AR-R 17779 induced ROS in cMC while SLURP-1 upregulated TNFα and IL1β in cMC when HIF1α was blocked. Conclusions: These data infer that the CS plays a role in the regulation of stress-sensitive inflammatory responses but may have a surprising pro-inflammatory effect in healthy skin, driving IL1β expression if SLURP-1 is involved.
Collapse
Affiliation(s)
- Christoph M Ertle
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Frank R Rommel
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Susanne Tumala
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yasuhiro Moriwaki
- Department of Pharmacology, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Jochen Klein
- Department of Pharmacology, Biocenter N260, Goethe University Frankfurt, Frankfurt, Germany
| | - Johannes Kruse
- Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Clinic for Psychosomatic Medicine and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Uwe Gieler
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| | - Eva M J Peters
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Charité Center 12 for Internal Medicine and Dermatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
43
|
Mussina K, Toktarkhanova D, Filchakova O. Nicotinic Acetylcholine Receptors of PC12 Cells. Cell Mol Neurobiol 2021; 41:17-29. [PMID: 32335772 PMCID: PMC11448595 DOI: 10.1007/s10571-020-00846-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have gained much attention in the scientific community since they play a significant role in multiple physiological and pathophysiological processes. Multiple approaches to study the receptors exist, with characterization of the receptors' functionality at a single cellular level using cell culturing being one of them. Derived from an adrenal medulla tumor, PC12 cells express nicotinic receptor subunits and form functional nicotinic receptors. Thus, the cells offer a convenient environment to address questions related to the functionality of the receptors. The review summarizes the findings on nicotinic receptors' expression and functions which were conducted using PC12 cells. Specific focus is given to α3-containing receptors as well as α7 receptor. Critical evaluation of findings is provided alongside insights into what can still be learned about nAChRs, using PC12 cells.
Collapse
Affiliation(s)
- Kamilla Mussina
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan
| | - Dana Toktarkhanova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan
| | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan.
| |
Collapse
|
44
|
Li X, Tae HS, Chu Y, Jiang T, Adams DJ, Yu R. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacol Ther 2020; 222:107792. [PMID: 33309557 DOI: 10.1016/j.pharmthera.2020.107792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
α-Conotoxins are disulfide-rich and well-structured peptides, most of which can block nicotinic acetylcholine receptors (nAChRs) with exquisite selectivity and potency. There are various nAChR subtypes, of which the α9α10 nAChR functions as a heteromeric ionotropic receptor in the mammalian cochlea and mediates postsynaptic transmission from the medial olivocochlear. The α9α10 nAChR subtype has also been proposed as a target for the treatment of neuropathic pain and the suppression of breast cancer cell proliferation. Therefore, α-conotoxins targeting the α9α10 nAChR are potentially useful in the development of specific therapeutic drugs and pharmacological tools. Despite dissimilarities in their amino acid sequence and structures, these conopeptides are potent antagonists of the α9α10 nAChR subtype. Consequently, the activity and stability of these peptides have been subjected to chemical modifications. The resulting synthetic analogues have not only functioned as molecular probes to explore ligand binding sites of the α9α10 nAChR, but also have the potential to become candidates for drug development. From the perspectives of medicinal chemistry and pharmacology, we highlight the structure and function of the α9α10 nAChR and review studies of α-conotoxins targeting it, including their three-dimensional structures, structure optimization strategies, and binding modes at the α9α10 nAChR, as well as their therapeutic potential.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Yanyan Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
45
|
Pucci S, Fasoli F, Moretti M, Benfante R, Di Lascio S, Viani P, Daga A, Gordon TJ, McIntosh M, Zoli M, Clementi F, Gotti C. Choline and nicotine increase glioblastoma cell proliferation by binding and activating α7- and α9- containing nicotinic receptors. Pharmacol Res 2020; 163:105336. [PMID: 33276105 DOI: 10.1016/j.phrs.2020.105336] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Glioblastomas (GBMs), the most frequent and aggressive human primary brain tumours, have altered cell metabolism, and one of the strongest indicators of malignancy is an increase in choline compounds. Choline is also a selective agonist of some neuronal nicotinic acetylcholine receptor (nAChR) subtypes. As little is known concerning the expression of nAChR in glioblastoma cells, we analysed in U87MG human grade-IV astrocytoma cell line and GBM5 temozolomide-resistant glioblastoma cells selected from a cancer stem cell-enriched culture, molecularly, pharmacologically and functionally which nAChR subtypes are expressed and,whether choline and nicotine can affect GBM cell proliferation. We found that U87MG and GBM5 cells express similar nAChR subtypes, and choline and nicotine increase their proliferation rate and activate the anti-apoptotic AKT and pro-proliferative ERK pathways. These effects are blocked by the presence of non-cell-permeable peptide antagonists selective for α7- and α9-containing nicotinic receptors. siRNA-mediated silencing of α7 or α9 subunit expression also selectively prevents the effects of nicotine and choline on GBM cell proliferation. Our findings indicate that nicotine and choline activate the signalling pathways involved in the proliferation of GBM cells, and that these effects are mediated by α7 and α9-containing nAChRs. This suggests that these nicotinic receptors may contribute to the aggressive behaviour of this tumor and may indicate new therapeutic strategies against high-grade human brain tumours.
Collapse
Affiliation(s)
- Susanna Pucci
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy; Hunimed University, Via Rita Levi-Montalcini 4, 20090 Pieve Emanuele (MI), Italy
| | - Francesca Fasoli
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy
| | - Milena Moretti
- CNR, Institute of Neuroscience, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Antonio Daga
- Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas J Gordon
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Francesco Clementi
- CNR, Institute of Neuroscience, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Gotti
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
46
|
Hsu CC, Su YF, Tsai KY, Kuo FC, Chiang CF, Chien CY, Chen YC, Lee CH, Wu YC, Wang K, Liu SY, Shieh YS. Gamma synuclein is a novel nicotine responsive protein in oral cancer malignancy. Cancer Cell Int 2020; 20:300. [PMID: 32669976 PMCID: PMC7350738 DOI: 10.1186/s12935-020-01401-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Background The mechanisms of neuronal protein γ-synuclein (SNCG) in the malignancy of oral squamous cell carcinoma (OSCC) are not clear. This study tested the hypothesis that SNCG is involved in nicotine-induced malignant behaviors of OSCC. The effect of nicotine on SNCG expression and epithelial-to-mesenchymal transition (EMT) markers were examined. Methods Short hairpin RNA (shRNA) and an antagonist specific for α7-nicotine acetylcholine receptors (α7-nAChRs) were used to examine the role of α7-nAChRs in mediating the effects of nicotine. Knockdown of SNCG in nicotine-treated cells was performed to investigate the role of SNCG in cancer malignancy. The in vivo effect of nicotine was examined using a nude mouse xenotransplantation model. Results Nicotine increased SNCG expression in a time- and dose-dependent manner. Nicotine treatment also increased E-cadherin and ZO-1 and decreased fibronectin and vimentin expression. After specific knockdown of α7-nAChRs and inhibition of the PI3/AKT signal, the effect of nicotine on SNCG expression was attenuated. Silencing of SNCG abolished nicotine-induced invasion and migration of OSCC cells. The xenotransplantation model revealed that nicotine augmented tumor growth and SNCG expression. Conclusion Nicotine upregulated SNCG expression by activating the α7-nAChRs/PI3/AKT signaling that are participated in nicotine-induced oral cancer malignancy.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114 Taiwan
| | - Yu-Fu Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114 Taiwan.,Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Kuo-Yang Tsai
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua, 500 Taiwan.,College of Nursing and Health Science, Da-Yeh University, Changhua, 515 Taiwan
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Chi-Fu Chiang
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec.6, Min-Chuan East Rd., Nei-Hu, Taipei, 114 Taiwan
| | - Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114 Taiwan
| | - Ying-Chen Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114 Taiwan
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Yu-Chiao Wu
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec.6, Min-Chuan East Rd., Nei-Hu, Taipei, 114 Taiwan
| | - Kun Wang
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shyun-Yeu Liu
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan, 710 Taiwan
| | - Yi-Shing Shieh
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec.6, Min-Chuan East Rd., Nei-Hu, Taipei, 114 Taiwan.,Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, 114 Taiwan
| |
Collapse
|
47
|
Papke RL, Lindstrom JM. Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology 2020; 168:108021. [PMID: 32146229 PMCID: PMC7610230 DOI: 10.1016/j.neuropharm.2020.108021] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022]
Abstract
Postsynaptic nAChRs in the peripheral nervous system are critical for neuromuscular and autonomic neurotransmission. Pre- and peri-synaptic nAChRs in the brain modulate neurotransmission and are responsible for the addictive effects of nicotine. Subtypes of nAChRs in lymphocytes and non-synaptic locations may modulate inflammation and other cellular functions. All AChRs that function as ligand-gated ion channels are formed from five homologous subunits organized to form a central cation channel whose opening is regulated by ACh bound at extracellular subunit interfaces. nAChR subtype subunit composition can range from α7 homomers to α4β2α6β2β3 heteromers. Subtypes differ in affinities for ACh and other agonists like nicotine and in efficiencies with which their channels are opened and desensitized. Subtypes also differ in affinities for antagonists and for positive and negative allosteric modulators. Some agonists are "silent" with respect to channel opening, and AChRs may be able to signal metabotropic pathways by releasing G-proteins independent of channel opening. Electrophysiological studies that can resolve single-channel openings and molecular genetic approaches have allowed characterization of the structures of ligand binding sites, the cation channel, and the linkages between them, as well as the organization of AChR subunits and their contributions to function. Crystallography and cryo-electron-microscopy are providing increasing insights into the structures and functions of AChRs. However, much remains to be learned about both AChR structure and function, the in vivo functional roles of some AChR subtypes, and the development of better pharmacological tools directed at AChRs to treat addiction, pain, inflammation, and other medically important issues. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA.
| | - Jon M Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Bolchi C, Bavo F, Appiani R, Roda G, Pallavicini M. 1,4-Benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: A review of its recent applications in drug design. Eur J Med Chem 2020; 200:112419. [PMID: 32502862 DOI: 10.1016/j.ejmech.2020.112419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
1,4-Benzodioxane has long been a versatile template widely employed to design molecules endowed with diverse bioactivities. Its use spans the last decades of medicinal chemistry until today concerning many strategies of drug discovery, not excluding the most advanced ones. Here, more than fifty benzodioxane-related lead compounds, selected from recent literature, are presented showing the different approaches with which they have been developed. Agonists and antagonists at neuronal nicotinic, α1 adrenergic and serotoninergic receptor subtypes and antitumor and antibacterial agents form the most representative classes, but a variety of other biological targets are addressed by benzodioxane-containing compounds.
Collapse
Affiliation(s)
- Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Francesco Bavo
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Rebecca Appiani
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy.
| |
Collapse
|
49
|
Liang J, Tae HS, Xu X, Jiang T, Adams DJ, Yu R. Dimerization of α-Conotoxins as a Strategy to Enhance the Inhibition of the Human α7 and α9α10 Nicotinic Acetylcholine Receptors. J Med Chem 2020; 63:2974-2985. [PMID: 32101438 DOI: 10.1021/acs.jmedchem.9b01536] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The affinity of α-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) peptide inhibitors, can be enhanced by dendrimerization. It has been hypothesized that this improvement arose from simultaneous binding of the α-conotoxins to several spatially adjacent sites. We here engineered several α-conotoxin dimers using a linker length compatible between neighboring binding sites on the same receptor. Remarkably, the dimer of α-conotoxin PeIA compared to the monomer displayed an increase in potency by 11-fold (IC50 = 1.9 nM) for the human α9α10 nAChR. The dimerization of α-conotoxin RgIA# resulted in a dual inhibitor that targets both α9α10 and α7 nAChR subtypes with an IC50 = ∼50 nM. The RgIA# dimer is therapeutically interesting because it is the first dual inhibitor that potently and selectively inhibits these two nAChR subtypes, which are both involved in the etiology of several cancers. We propose that the dimerization of α-conotoxins is a simpler and efficient alternative strategy to dendrimers for enhancing the activity of α-conotoxins.
Collapse
Affiliation(s)
- Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Xiaoxiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
50
|
Shulepko MA, Bychkov ML, Shlepova OV, Shenkarev ZO, Kirpichnikov MP, Lyukmanova EN. Human secreted protein SLURP-1 abolishes nicotine-induced proliferation, PTEN down-regulation and α7-nAChR expression up-regulation in lung cancer cells. Int Immunopharmacol 2020; 82:106303. [PMID: 32106059 DOI: 10.1016/j.intimp.2020.106303] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
Human Ly-6/uPAR-related protein-1 (SLURP-1) is an allosteric negative modulator of the α7-type nicotinic acetylcholine receptor (α7-nAChR), one of the key receptors promoting nicotine-induced proliferation of lung cancer cells. Incubation of lung adenocarcinoma A549 cells with recombinant SLURP-1 (rSLURP-1) at concentrations >10 nM resulted in the significant decrease of the cell growth (~70%), while treatment of normal lung-derived WI-38 fibroblasts with rSLURP-1 did not influence the cell proliferation up to 1 μM of the protein. rSLURP-1 fully abolished the nicotine-induced increase of the cell proliferation, down-regulation of the expression of PTEN (the negative regulator of the AKT pathway, controlling the growth, survival, and proliferation of cancer cells), and up-regulation of the α7-nAChR expression in the A549 cells. Using the siRNA against α7-nAChR and inhibitors of different cell-surface receptors, we showed that rSLURP-1 antiproliferative effect in A549 cells is connected with α7-nAChR, epidermal growth factor receptors, and β-adrenergic receptors. Moreover, we found that downstream effectors of rSLURP-1 are IP3 receptors and the STAT3 transcription factor. Implication of the IP3 receptors and PTEN in the rSLURP-1 antiproliferative activity points on the AKT-mediated signaling pathway. Co-application of rSLURP-1 with gefitinib and bortezomib (currently used anticancer drugs) resulted in an additive suppression of the A549 cells proliferation up to ~44% and 35%, respectively. Thus, rSLURP-1 could be considered a promising prototype of drugs to prevent nicotine-induced pathologies and cancer treatment.
Collapse
Affiliation(s)
- Mikhail A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russian Federation.
| | - Maxim L Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russian Federation.
| | - Olga V Shlepova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russian Federation.
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russian Federation.
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russian Federation; Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russian Federation.
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russian Federation.
| |
Collapse
|