1
|
Dong Z, Wang X, Hu G, Huang Q, Zhang Y, Jia Y, Du S, Zhu C, Wei F, Zhang D, Wang Y, Cai Q. A KSHV-targeted small molecule efficiently blocks SARS-CoV-2 infection via inhibiting expression of EGFR and Cyclin A2. Emerg Microbes Infect 2025; 14:2440490. [PMID: 39655540 DOI: 10.1080/22221751.2024.2440490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to numerous cases of co-infection with SARS-CoV-2 and other viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), worldwide. This co-infection has increased patient mortality due to the lack of efficient bi-targeted drugs. Cambogin, a bioactive natural product, has been shown to effectively induce regression of KSHV-latently infected tumours in xenograft mice models; however, its impact on SARS-CoV-2 infection remains unclear. Here, we report that Cambogin targets 46 host genes commonly affected by both SARS-CoV-2 and KSHV infections, as identified through bioinformatics analysis. These genes are related with 14 key upstream signalling pathways, particularly those involved in inflammation regulation, protein phosphorylation, metabolic processes, and cellular stress response. Within the transcriptional factor (TF)-miRNA co-regulatory network, ten out of 46 hub-target genes are closely linked to Cambogin and KSHV/SARS-CoV-2. Importantly, Cambogin not only efficiently blocks the replication and virion production of SARS-CoV-2 in vitro and in vivo by reducing the expression of EGFR and Cyclin A2, but also simultaneously inhibits both SARS-CoV-2 infection and the growth of KSHV-induced tumours in vivo using a murine xenograft model. These findings provide an alternative strategy for the potential use of Cambogin in the treatment of SARS-CoV-2 patients, particularly those with KSHV co-infection.
Collapse
Affiliation(s)
- Zhongwei Dong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xinyu Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Gaowei Hu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qingye Huang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yulin Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Sciences, Jinan, People's Republic of China
| | - Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Sciences, Jinan, People's Republic of China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Expert Workstation, Baoji Central Hospital, Baoji, People's Republic of China
- Qidong-Fudan Innovative Institute of Medical Science, Qidong, People's Republic of China
| |
Collapse
|
2
|
Zhao X, Ye X, Gu Y, Lou Y, Zhou Z, Ji Y, Xu D. Oxymatrine for inflammatory bowel disease in preclinical studies: a systematic review and meta-analysis. Front Med (Lausanne) 2025; 12:1542953. [PMID: 40370726 PMCID: PMC12075229 DOI: 10.3389/fmed.2025.1542953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Background Inflammatory Bowel Disease (IBD) is a chronic, idiopathic inflammatory disorder of the intestines. Oxymatrine (OMT) is a naturally active substance found in the desiccated roots of Sophora flavescens. It possesses anti-tumor, antiviral, and anti-inflammatory properties. In recent years, its therapeutic role in IBD has gradually been discovered. This review aims to explore the impact of OMT on inflammatory bowel disease by animal models. Methods Conduct a systematic search in the PubMed, Embase, Web of Science, Cochrane, and Medline databases. Using SYRCLE's risk of bias tool to assess the bias risk and quality of the included studies. For some data presented as figures, Web Plot Digitizer 4.2 software was used to extract it. STATA 16.0 was selected for the final meta-analysis. Results After rigorous literature screening, 12 studies were included. The data analysis results indicated that the disease activity index (DAI), histopathological score (HS), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), and myeloperoxidase (MPO) activity in the IBD animal models significantly decreased following intervention with oxymatrine. Furthermore, OMT also extended the colon length in the animal models and improved the expression level of zonula occludens-1(ZO-1) and occludin. These results suggested that OMT may improve the condition of IBD through anti-inflammatory, antioxidative stress and protecting the intestinal barrier. Conclusion Meta-analysis suggests oxymatrine positively affects IBD animal models. This provides new insights for the clinical treatment of inflammatory bowel disease. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024570580, identifier [CRD42024570580].
Collapse
Affiliation(s)
- Xuan Zhao
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaolu Ye
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuting Gu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yijie Lou
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhanyi Zhou
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yunxi Ji
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Daogun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Sharma N, Sharma M, Thakkar D, Kumar H, Smetanova S, Buresova L, Andrla P, Khairnar A. Chronic DSS-Induced Colitis Exacerbates Parkinson's Disease Phenotype and Its Pathological Features Following Intragastric Rotenone Exposure. ACS Pharmacol Transl Sci 2025; 8:346-367. [PMID: 39974653 PMCID: PMC11833723 DOI: 10.1021/acsptsci.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/15/2024] [Accepted: 01/09/2025] [Indexed: 02/21/2025]
Abstract
Background: Parkinson's disease (PD) is intricately linked to gastrointestinal inflammation and the presence of neurotoxins in the gut, integrating α-syn pathologic alterations and subsequent neurodegeneration into the brain. Objectives: This study aimed to explore the enduring impact of dextran sodium sulfate (DSS)-mediated colitis on the vulnerability of central dopaminergic neurons to subsequent rotenone exposure. Methods: To induce chronic colitis, 10-month-old C57BL/6 mice were pre-exposed to 3 cycles of 1 week of 1% (w/v) DSS administration in drinking water followed by 2 weeks of regular drinking water. After colitis induction, animals received a low dose of intragastric rotenone for the next 8 weeks, followed by testing for Parkinsonian behavior and GI phenotypes of inflammation. At the end of the 17th week, colon, brain stem, and midbrain tissue were isolated and analyzed for α-syn, inflammatory markers, and dopaminergic neuronal loss. Gut microbial composition was assessed by 16S rRNA sequencing analysis. Results: We found that chronic rotenone administration in the presence of preexisting colitis led to a further increase in colonic pro-inflammatory mediator expressions, α-syn expression, and reduced colonic tight junction protein expressions. We also found early impairment of GI functions and worsened grip strength in rotenone-exposed colitic mice. Furthermore, α-syn pathology specific to the colitic mice exposed to rotenone showed dopaminergic neurons degeneration and astroglial activation in substantia nigra and striatum, including regions of the brain stem, i.e., dorsal motor of the vagus and locus coeruleus. Finally, the result of 16S rRNA gene sequencing analysis indicated that colitic mice, after being exposed to rotenone, exhibited a discernible trend in their microbiota composition (Catenibacterium, Turicibactor, and clostridium sensue stricto 1), linking it to the development of PD. Conclusions: These findings indicate that prolonged low-dose rotenone exposure, combined with an early inflammatory intestinal milieu, provides a preconditioning effect on α-syn pathology and exerts neurodegeneration in the intragastric rotenone PD mouse model.
Collapse
Affiliation(s)
- Nishant Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Monika Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Disha Thakkar
- Department
of Pharmaceutical Analysis, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Hemant Kumar
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Sona Smetanova
- RECETOX,
Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Lucie Buresova
- RECETOX,
Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Petr Andrla
- RECETOX,
Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Amit Khairnar
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Brno 62500, Czech Republic
- International
Clinical Research Centre, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
4
|
Huang W, Hong Q, Wang H, Zhu Z, Gong S. MicroRNA-155 Inhibition Activates Wnt/β-Catenin Signaling to Restore Th17/Treg Cell Balance and Protect against Acute Ischemic Stroke. eNeuro 2025; 12:ENEURO.0347-24.2024. [PMID: 39788733 PMCID: PMC11842039 DOI: 10.1523/eneuro.0347-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Acute ischemic stroke (AIS) is a severe neurological disease associated with Th17/Treg cell imbalance and dysregulation of the Wnt/β-catenin signaling pathway. This study investigates whether miR-155 inhibition can activate Wnt/β-catenin signaling, improve Th17/Treg balance, and provide neuroprotection against stroke. We conducted a multilevel experimental design, including high-throughput sequencing, bioinformatics analysis, in vivo mouse models, and in vitro cell experiments. High-throughput sequencing revealed significant differential gene expression between the miR-155 antagomir-treated and control groups (BioProject: PRJNA1152758). Bioinformatics analysis identified key genes linked to Wnt/β-catenin signaling and Th17/Treg imbalance. In vitro experiments confirmed that miR-155 inhibition activated Wnt/β-catenin signaling and improved Th17/Treg ratios. In vivo studies demonstrated that miR-155 antagomir treatment provided significant neuroprotection against AIS. These findings suggest that targeting miR-155 could be a promising therapeutic strategy for stroke by modulating immune balance and key signaling pathways.
Collapse
Affiliation(s)
- Wenli Huang
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362002, China
| | - Quanlong Hong
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362002, China
| | - Huimin Wang
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362002, China
| | - Zhihua Zhu
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362002, China
| | - Shujie Gong
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362002, China
| |
Collapse
|
5
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2025; 52:145-156. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms, including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
6
|
Chen R, Zhang H, Li L, Li J, Xie J, Weng J, Tan H, Liu Y, Guo T, Wang M. Roles of ubiquitin-specific proteases in inflammatory diseases. Front Immunol 2024; 15:1258740. [PMID: 38322269 PMCID: PMC10844489 DOI: 10.3389/fimmu.2024.1258740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Linke Li
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiang Xie
- Department of Pediatrics, Chengdu Third People's Hospital, Chengdu, Sichuan, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huan Tan
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tailin Guo
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Zhu MZ, Yang MF, Song Y, Xu HM, Xu J, Yue NN, Zhang Y, Tian CM, Shi RY, Liang YJ, Yao J, Wang LS, Nie YQ, Li DF. Exploring the efficacy of herbal medicinal products as oral therapy for inflammatory bowel disease. Biomed Pharmacother 2023; 165:115266. [PMID: 37541177 DOI: 10.1016/j.biopha.2023.115266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) encompasses a collection of idiopathic diseases characterized by chronic inflammation in the gastrointestinal (GI) tract. Patients diagnosed with IBD often experience necessitate long-term pharmacological interventions. Among the multitude of administration routes available for treating IBD, oral administration has gained significant popularity owing to its convenience and widespread utilization. In recent years, there has been extensive evaluation of the efficacy of orally administered herbal medicinal products and their extracts as a means of treating IBD. Consequently, substantial evidence has emerged, supporting their effectiveness in IBD treatment. This review aimed to provide a comprehensive summary of recent studies evaluating the effects of herbal medicinal products in the treatment of IBD. We delved into the regulatory role of these products in modulating immunity and maintaining the integrity of the intestinal epithelial barrier. Additionally, we examined their impact on antioxidant activity, anti-inflammatory properties, and the modulation of intestinal flora. By exploring these aspects, we aimed to emphasize the significant advantages associated with the use of oral herbal medicinal products in the treatment of IBD. Of particular note, this review introduced the concept of herbal plant-derived exosome-like nanoparticles (PDENs) as the active ingredient in herbal medicinal products for the treatment of IBD. The inclusion of PDENs offers distinct advantages, including enhanced tissue penetration and improved physical and chemical stability. These unique attributes not only demonstrate the potential of PDENs but also pave the way for the modernization of herbal medicinal products in IBD treatment.
Collapse
Affiliation(s)
- Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yang Song
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
8
|
Chantree P, Martviset P, Thongsepee N, Sangpairoj K, Sornchuer P. Anti-Inflammatory Effect of Garcinol Extracted from Garcinia dulcis via Modulating NF-κB Signaling Pathway. Nutrients 2023; 15:nu15030575. [PMID: 36771283 PMCID: PMC9918937 DOI: 10.3390/nu15030575] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Garcinia is a significant medicinal plant with many beneficial phytoconstituents, including garcinol. This study investigated the anti-inflammatory effect of garcinol isolated from Garcinia dulcis fruit in LPS-activated THP-1 and Raw 264.7 macrophages. The results demonstrated that the low concentration of garcinol did not alter cell viability. Furthermore, co-incubation of garcinol with LPS inhibited the production of pro-inflammatory cytokines, including TNF-α, IL-8, IL-6, IL-1β, and pro-inflammatory mediators, including iNOS and COX-2 at the mRNA and protein expression levels. Garcinol also decreased the secretion of TNF-α, IL-6, IL-1β, PGE2, and NO. Moreover, the anti-inflammatory effects involved an alteration in the NF-κB signaling pathway. Downregulation of pIKKα/β, pIκBα, and pNF-κB was observed, hence reducing the translocation of pNF-κB from the cytosol into the nucleus, which subsequently decreased the production of pro-inflammatory molecules. Therefore, garcinol isolated from Garcinia dulcis is a potential candidate as an anti-inflammatory agent for inflammation-related disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-846-171-817
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
9
|
Zhong Y, Xiao Q, Kang Z, Huang J, Ge W, Wan Q, Wang H, Zhou W, Zhao H, Liu D. Astragalus polysaccharide alleviates ulcerative colitis by regulating the balance of Tfh/Treg cells. Int Immunopharmacol 2022; 111:109108. [PMID: 35926271 DOI: 10.1016/j.intimp.2022.109108] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
The immunomodulatory function of natural active ingredients has long been a focus of scientific research, with recent hotspots reporting targeted modulation of the follicular helper T cells (Tfh)/regulatory T cells (Treg) balance as an emerging strategy for the treatment of ulcerative colitis (UC). Here, dextran sodium sulfate induced mice UC and Astragalus polysaccharide (APS, 200 mg/kg/day) was administered simultaneously. In this study, APS effectively alleviated colitis in mice by improving survival rate, disease activity index (DAI), the change rate of body weight, colonic length and weight, and histopathological injury of the colon. Moreover, APS regulated the expression of inflammatory cytokines interleukin (IL)-2, IL-6, IL-12p70, IL-23, Tumour necrosis factor (TNF)-ɑ, and transforming growth factor (TGF)-β1 in colonic tissues of colitis mice. Importantly, APS significantly downregulated Tfh cell and the expression of its related nuclear transcription factors Blimp-1 and Bcl-6, and cytokine IL-21. Meanwhile, APS regulated the differentiation of Tfh subpopulations in colitis mice, with Tfh10 and Tfr significantly upregulated while Tfh1, Tfh17, and Tfh21 significantly downregulated. In addition, APS significantly upregulated Treg cells and the levels of its associated nuclear transcription factor Foxp3, and cytokine IL-10 in colitis mice. In conclusion, APS effectively alleviated UC by reshaping the balance of Tfh/Treg cells.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, Jiangxi Province, China
| | - Zengping Kang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wei Ge
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Qi Wan
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Haiyan Wang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wen Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Nanchang Medical College, Nanchang 330004, Jiangxi Province, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
10
|
Qiu D, Zhang W, Song Z, Xue M, Zhang Y, Yang Y, Tong C, Cai D. Berberine suppresses cecal ligation and puncture induced intestinal injury by enhancing Treg cell function. Int Immunopharmacol 2022; 106:108564. [DOI: 10.1016/j.intimp.2022.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
|
11
|
Zhou L, Ouyang T, Li M, Hong T, Mhs A, Meng W, Zhang N. Ubiquitin-Specific Peptidase 7: A Novel Deubiquitinase That Regulates Protein Homeostasis and Cancers. Front Oncol 2021; 11:784672. [PMID: 34869041 PMCID: PMC8640129 DOI: 10.3389/fonc.2021.784672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-Specific Peptidase 7 (USP7), or herpes virus-associated protease (HAUSP), is the largest family of the deubiquitinating enzymes (DUBs). Recent studies have shown that USP7 plays a vital role in regulating various physiological and pathological processes. Dysregulation of these processes mediated by USP7 may contribute to many diseases, such as cancers. Moreover, USP7 with aberrant expression levels and abnormal activity are found in cancers. Therefore, given the association between USP7 and cancers, targeting USP7 could be considered as an attractive and potential therapeutic approach in cancer treatment. This review describes the functions of USP7 and the regulatory mechanisms of its expression and activity, aiming to emphasize the necessity of research on USP7, and provide a better understanding of USP7-related biological processes and cancer.
Collapse
Affiliation(s)
- Lin Zhou
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Alriashy Mhs
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Negi S, Saini S, Tandel N, Sahu K, Mishra RP, Tyagi RK. Translating Treg Therapy for Inflammatory Bowel Disease in Humanized Mice. Cells 2021; 10:1847. [PMID: 34440615 PMCID: PMC8393385 DOI: 10.3390/cells10081847] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Crohn's disease and ulcerative colitis, two major forms of inflammatory bowel disease (IBD) in humans, afflicted in genetically predisposed individuals due to dysregulated immune response directed against constituents of gut flora. The defective immune responses mounted against the regulatory mechanisms amplify and maintain the IBD-induced mucosal inflammation. Therefore, restoring the balance between inflammatory and anti-inflammatory immunepathways in the gut may contribute to halting the IBD-associated tissue-damaging immune response. Phenotypic and functional characterization of various immune-suppressive T cells (regulatory T cells; Tregs) over the last decade has been used to optimize the procedures for in vitro expansion of these cells for developing therapeutic interventional strategies. In this paper, we review the mechanisms of action and functional importance of Tregs during the pathogenesis of IBD and modulating the disease induced inflammation as well as role of mouse models including humanized mice repopulated with the human immune system (HIS) to study the IBD. "Humanized" mouse models provide new tools to analyze human Treg ontogeny, immunobiology, and therapy and the role of Tregs in developing interventional strategies against IBD. Overall, humanized mouse models replicate the human conditions and prove a viable tool to study molecular functions of human Tregs to harness their therapeutic potential.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/therapy
- Crohn Disease/genetics
- Crohn Disease/immunology
- Crohn Disease/metabolism
- Crohn Disease/therapy
- Disease Models, Animal
- Hematopoietic Stem Cell Transplantation
- Humans
- Mice, Transgenic
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Sushmita Negi
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
- BERPDC Department, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Sheetal Saini
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India;
| | - Kiran Sahu
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| | - Ravi P.N. Mishra
- BERPDC Department, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Rajeev K. Tyagi
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| |
Collapse
|
13
|
Chang Y, Zhai L, Peng J, Wu H, Bian Z, Xiao H. Phytochemicals as regulators of Th17/Treg balance in inflammatory bowel diseases. Biomed Pharmacother 2021; 141:111931. [PMID: 34328111 DOI: 10.1016/j.biopha.2021.111931] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder that is difficult to cure and characterized by periods of relapse. To face the challenges of limited treatment strategies and drawbacks of conventional medications, developing new and promising strategies as well as safe and effective drugs for treatment of IBD has become an urgent demand for clinics. The imbalance of Th17/Treg is a crucial event for the development of IBD, and studies have verified that correcting the imbalance of Th17/Treg is an effective strategy for preventing and treating IBD. Recently, a growing body of studies has indicated that phytochemicals derived from natural products are potent regulators of Th17/Treg, and exert preferable protective benefits against colonic inflammation. In this review, the great potential of anti-colitis agents derived from natural products through targeting Th17/Treg cells and their action mechanisms for the treatment or prevention of IBD in recent research is summarized, which may help further the development of new drugs for IBD treatment.
Collapse
Affiliation(s)
- Yaoyao Chang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
14
|
Dong CL, Qin Y, Ma JX, Cui WQ, Chen XR, Hou LY, Chen XY, God’spower BO, Eliphaz N, Qin JJ, Guo WX, Ding WY, Li YH. The Active Ingredients Identification and Antidiarrheal Mechanism Analysis of Plantago asiatica L. Superfine Powder. Front Pharmacol 2021; 11:612478. [PMID: 33542689 PMCID: PMC7851704 DOI: 10.3389/fphar.2020.612478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022] Open
Abstract
Plantago asiatica L. is a natural medicinal plant that has been widely used for its various pharmacological effects such as antidiarrheal, anti-inflammatory, and wound healing. This study aims to explore the antidiarrheal active ingredients of Plantago asiatica L. that can be used as quality markers to evaluate P. asiatica L. superfine powder (PSP). Molecular docking experiment was performed to identify the effective components of P. asiatica L., which were further evaluated by an established mouse diarrhea model. Na+/K+-ATPase and creatine kinase (CK) activities and the Na+/K+ concentrations were determined. The gene expression of ckb and Atp1b3 was detected. PSP was prepared and evaluated in terms of the tap density and the angle of repose. The structures of PSPs of different sizes were measured by infrared spectra. The active ingredient contents of PSPs were determined by HPLC. The results indicated that the main antidiarrheal components of P. asiatica L. were luteolin and scutellarein that could increase the concentration of Na+ and K+ by upregulating the activity and gene level of CK and Na+/K+-ATPase. In addition, luteolin and scutellarein could also decrease the volume and weight of small intestinal contents to exert antidiarrheal activity. Moreover, as the PSP size decreased from 6.66 to 3.55 μm, the powder tended to be amorphous and homogenized and of good fluidity, the content of active compounds gradually increased, and the main structure of the molecule remained steady. The optimum particle size of PSP with the highest content of active components was 3.55 μm, and the lowest effective dose for antidiarrhea was 2,000 mg/kg. Therefore, the antidiarrheal active ingredients of PSP were identified as luteolin and scutellarein that exert antidiarrheal activity by binding with Na+/K+-ATPase. PSP was successfully prepared and could be used as a new dosage form for the diarrhea treatment.
Collapse
Affiliation(s)
- Chun-Liu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yue Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Jin-Xin Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Wen-Qiang Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xing-Ru Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Li-Ya Hou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xue-Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Bello-Onaghise God’spower
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Nsabimana Eliphaz
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Jun-Jie Qin
- Veterinary Medicine Engineering Laboratory, Beijing Centre Technology Co., Ltd., Beijing, China
| | - Wen-Xin Guo
- Heilongjiang Provincial Agricultural Products and Veterinary Medicine Technical Appraisal Station, Harbin, China
| | - Wen-Ya Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
15
|
Ghattamaneni NKR, Brown L. Functional foods from the tropics to relieve chronic normobaric hypoxia. Respir Physiol Neurobiol 2020; 286:103599. [PMID: 33333240 DOI: 10.1016/j.resp.2020.103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Functional foods with antioxidant and anti-inflammatory properties are regarded as a complementary therapy to improve chronic diseases such as obesity and inflammatory bowel disease (IBD). Obesity is a chronic low-grade inflammatory state leading to organ damage with increased risk of common diseases including cardiovascular and metabolic disease, non-alcoholic fatty liver disease, osteoarthritis and some cancers. IBD is a chronic intestinal inflammation categorised as Crohn's disease and ulcerative colitis depending on the location of inflammation. These inflammatory states are characterised by normobaric hypoxia in adipose and intestinal tissues, respectively. Tropical foods especially from Australia and South America are discussed in this review to show their potential in attenuation of these chronic diseases. The phytochemicals from these foods have antioxidant and anti-inflammatory activities to reduce chronic normobaric hypoxia in the tissues. These health benefits of the tropical foods are relevant not only for health economy but also in providing a global solution by improving the sustainability of their cultivation and assisting the local economies.
Collapse
Affiliation(s)
- Naga K R Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia.
| |
Collapse
|
16
|
Xiao Y, Huang Q, Wu Z, Chen W. Roles of protein ubiquitination in inflammatory bowel disease. Immunobiology 2020; 225:152026. [PMID: 33190004 DOI: 10.1016/j.imbio.2020.152026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/19/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) seriously affects the quality of life for patients. The pathogenesis of IBD contains the environmental, host genetic and epigenetic factors. In recent years, the studies of protein ubiquitination, an important protein post-translational modification as an epigenetic factor, have emerged in the pathogenesis and development of IBD. In the past few years, accumulative evidence illustrated that six E3 ubiquitin ligases, namely, ring finger protein (RNF) 183, RNF 20, A20, Pellino 3, TRIM62 and Itch, exhibited clear mechanisms in the development of IBD. They regulate the intestinal inflammation by facilitating the ubiquitination of targeted proteins which participate in different inflammatory signaling pathways. Besides, it was reported that some deubiquitinating enzymes such as Cylindromatosis and USP7 were involved in the development of IBD, but the molecular mechanism was still unclear. This review summarized the role and regulatory mechanism of protein ubiquitination in the pathogenesis and development of IBD, providing insights to develop a new therapeutic strategy in IBD treatments.
Collapse
Affiliation(s)
- Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Department of Immunology, School of Medicine, Shenzhen University, Shenzhen 516080, China
| | - Qi Huang
- Department of Pediatric Orthopaedics, Shenzhen Children's Hospital, Shenzhen 518035, China
| | - Zherui Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Department of Immunology, School of Medicine, Shenzhen University, Shenzhen 516080, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Department of Immunology, School of Medicine, Shenzhen University, Shenzhen 516080, China.
| |
Collapse
|
17
|
Sui H, Zhang L, Gu K, Chai N, Ji Q, Zhou L, Wang Y, Ren J, Yang L, Zhang B, Hu J, Li Q. YYFZBJS ameliorates colorectal cancer progression in Apc Min/+ mice by remodeling gut microbiota and inhibiting regulatory T-cell generation. Cell Commun Signal 2020; 18:113. [PMID: 32677955 PMCID: PMC7367414 DOI: 10.1186/s12964-020-00596-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Progression of Colorectal cancer (CRC) is influenced by single or compounded environmental factors. Accumulating evidence shows that microbiota can influence the outcome of cancer immunotherapy. T cell, one of the main populations of effector immune cells in antitumor immunity, has been considered as a double-edged sword during the progression of CRC. Our previous studies indicate that traditional Chinese herbs (TCM) have potential anticancer effects in improving quality of life and therapeutic effect. However, little is known about the mechanism of TCM formula in cancer prevention. METHODS Here, we used C57BL/6 J ApcMin/+ mice, an animal model of human intestinal tumorigenesis, to investigate the gut bacterial diversity and their mechanisms of action in gastrointestinal adenomas, and to evaluate the effects of Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) on of colon carcinogenesis in vivo and in vitro. Through human-into-mice fecal microbiota transplantation (FMT) experiments from YYFZBJS volunteers or control donors, we were able to differentially modulate the tumor microbiome and affect tumor growth as well as tumor immune infiltration. RESULTS We report herein, YYFZBJS treatment blocked tumor initiation and progression in ApcMin/+ mice with less change of body weight and increased immune function. Moreover, diversity analysis of fecal samples demonstrated that YYFZBJS regulated animal's natural gut flora, including Bacteroides fragilis, Lachnospiraceae and so on. Intestinal tumors from conventional and germ-free mice fed with stool from YYFZBJS volunteers had been decreased. Some inflammation' expression also have been regulated by the gut microbiota mediated immune cells. Intestinal lymphatic, and mesenteric lymph nodes (MLN), accumulated CD4+ CD25+ Foxp3 positive Treg cells were reduced by YYFZBJS treatment in ApcMin/+ mice. Although YYFZBJS had no inhibition on CRC cell proliferation by itself, the altered Tregs mediated by YYFZBJS repressed CRC cancer cell growth, along with reduction of the phosphorylation of β-catenin. CONCLUSIONS In conclusion, we demonstrated that gut microbiota and Treg were involved in CRC development and progression, and we propose YYFZBJS as a new potential drug option for the treatment of CRC. Video abstract.
Collapse
Affiliation(s)
- Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Lu Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Kaijuan Gu
- Preclinical Medicine College of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd, Shanghai, 201203, P.R. China
| | - Ni Chai
- Yueyang Hospital of Integrated of Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Junze Ren
- Changhai Hospital of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, P.R. China
| | - Limei Yang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Rd, Hongkou District, Shanghai, 200080, P.R. China.
| | - Jing Hu
- Preclinical Medicine College of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd, Shanghai, 201203, P.R. China.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.
| |
Collapse
|
18
|
Tryptophan Metabolism, Regulatory T Cells, and Inflammatory Bowel Disease: A Mini Review. Mediators Inflamm 2020; 2020:9706140. [PMID: 32617076 PMCID: PMC7306093 DOI: 10.1155/2020/9706140] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract resulting from the homeostasis imbalance of intestinal microenvironment, immune dysfunction, environmental and genetic factors, and so on. This disease is associated with multiple immune cells including regulatory T cells (Tregs). Tregs are a subset of T cells regulating the function of various immune cells to induce immune tolerance and maintain intestinal immune homeostasis. Tregs are correlated with the initiation and progression of IBD; therefore, strategies that affect the differentiation and function of Tregs may be promising for the prevention of IBD-associated pathology. It is worth noting that tryptophan (Trp) metabolism is effective in inducing the differentiation of Tregs through microbiota-mediated degradation and kynurenine pathway (KP), which is important for maintaining the function of Tregs. Interestingly, patients with IBD show Trp metabolism disorder in the pathological process, including changes in the concentrations of Trp and its metabolites and alteration in the activities of related catalytic enzymes. Thus, manipulation of Treg differentiation through Trp metabolism may provide a potential target for prevention of IBD. The purpose of this review is to highlight the relationship between Trp metabolism and Treg differentiation and the role of this interaction in the pathogenesis of IBD.
Collapse
|
19
|
Zhu F, Li H, Liu Y, Tan C, Liu X, Fan H, Wu H, Dong Y, Yu T, Chu S, He H, Zhu X. miR-155 antagomir protect against DSS-induced colitis in mice through regulating Th17/Treg cell balance by Jarid2/Wnt/β-catenin. Biomed Pharmacother 2020; 126:109909. [PMID: 32135463 DOI: 10.1016/j.biopha.2020.109909] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Th subsets particularly T helper 17 and regulatory T cells play a critical role in immune balance in colonic mucosa of Inflammatory Bowel Disease. Recent studies have indicated miR-155 is overexpressed in the colonic mucosa in IBD patients. Thus, whether and how miR-155 influences Th17/Treg cell balance in IBD patients is worthy of researching. METHODS We divided mice into four groups: the mice oral administration of 3.0 % DSS in fresh drinking water for 7 days except normal group. In this period, starting from the fifth day, the miR-155 and NC antagomir group were carried out by intraperitoneal injection of miR-155 antagomirs and corresponding negative controls. In vitro, we isolated naïve CD4+T cells and divided into two groups: the cells were transfected with mmu-miR-155-5p inhibitor or corresponding negative controls and then induced differentiation. RESULTS We found miR-155 antagomir can reach colon tissues in DSS-induced colitis and indeed ameliorated DSS-induced experimental colitis. Subsequently, we proved the levels of Th17 cells in spleens and Mesenteric lymph nodes and its associated IL-6, IL-17A and RORγt in colonic tissues were dramatically decreased and TGF-β1 raised in DSS + miR-155 antagomir group. However, miR-155 antagomir significantly increased the expression of Tregs. In vitro, we found miR-155 inhibitor could improve the Tregs but decrease Th17 cells. Finally, we dig out that Jarid2 was apparently improved by miR-155 antagomir, Wnt/β-catenin and its associated T cell factor-4 (TCF-4) and Cyclin D1 expression were positively correlated with Jarid2. CONCLUSION Silencing of miR-155 attenuates DSS-induced colitis by regulating Th17/Treg cell balance and Jarid2/Wnt/β-catenin participated in the process.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huarong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Tan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Si Chu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongxia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiwen Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
20
|
Jiang Y, Xiao L, Fu W, Tang Y, Lertnimitphun P, Kim N, Zheng C, Tan H, Lu Y, Xu H. Gaudichaudione H Inhibits Inflammatory Responses in Macrophages and Dextran Sodium Sulfate-Induced Colitis in Mice. Front Pharmacol 2020; 10:1561. [PMID: 32009962 PMCID: PMC6978770 DOI: 10.3389/fphar.2019.01561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
Macrophages-involved inflammation is considered to induce the damage in various diseases. Herein, novel therapeutics inhibiting over-activation of macrophages could prove an effective strategy to prevent inflammation-related diseases. Gaudichaudione H (GH), which is a natural small molecular compound isolated from Garcinia oligantha Merr. (Clusiaceae) has previously been demonstrated its anti-cancer effects on several cancer cell lines. However, no report has been published about the anti-inflammatory effect of GH to date. This study aims to examine the anti-inflammatory effects and potential molecular mechanism of GH, and provide new insights toward the treatment of inflammation. GH inhibited nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, cytokine interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production, and messenger RNA (mRNA) expression to attenuate inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 cells or stimulated bone marrow-derived macrophages (BMDMs). GH inhibited nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, the nuclear translocation of transcription factors NF-κB and activator protein 1 (AP-1), as well as upstream signaling of the toll-like receptor 4 (TLR4)-myeloid differentiation primary response 88 (MyD88) pathway in stimulated macrophages. Furthermore, the result of the intracellular signaling array showed that the phosphorylation of adenosine 5'-monophosphate-activated protein kinase-α (AMPKα), proline-rich Akt substrate of 40 kDa (PRAS40), and p38 could be down regulated by GH in BMDMs, indicating that the mechanism by which GH inhibited inflammation may be also associated with the energy metabolism pathway, PRAS40-mediated NF-κB pathway, cell proliferation, apoptosis, and autophagy, etc. In addition, GH alleviated dextran sodium sulfate (DSS)-induced colitis in mice by ameliorating weight loss, stool consistency change, blood in the stool, and colon shortening. GH decreased the protein and mRNA levels of IL-6 and TNF-α, iNOS and COX-2 mRNA expression, the activation of NF-κB and MAPK pathways, the phosphorylation of AMPKα and PRAS40, histological damage, and infiltration of macrophages in the colons of mice with DSS-induced colitis. Taken together, our results support that GH exerts the anti-inflammatory effects in macrophages in vitro through regulation of NF-κB and MAPK pathways, and DSS-induced colitis mouse model in vivo. These findings suggest that GH may be a promising candidate in treating macrophage-related inflammatory disease.
Collapse
Affiliation(s)
- Yiwen Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianbo Xiao
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuexun Tang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Nami Kim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Kim N, Lertnimitphun P, Jiang Y, Tan H, Zhou H, Lu Y, Xu H. Andrographolide inhibits inflammatory responses in LPS-stimulated macrophages and murine acute colitis through activating AMPK. Biochem Pharmacol 2019; 170:113646. [PMID: 31545974 DOI: 10.1016/j.bcp.2019.113646] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
Andrographolide (Andro), a well-known labdane diterpenoid of Andrographis paniculata, has been reported to have anti-inflammatory effects in various inflammatory disease models. Despite ongoing efforts to elucidate the anti-inflammatory mechanism of Andro, its specific mechanism is not entirely clear. In this study, we confirmed the inhibitory effect of Andro on inflammatory activity and studied its mechanism in depth to find potential anti-inflammatory targets of Andro using lipopolysaccharide (LPS)-induced macrophages in vitro and a dextran sulfate sodium (DSS)-induced mouse model of acute colitis in vivo. We found that Andro significantly reduced proinflammatory cytokines by suppressing nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and their upstream signaling pathways and activating the AMP activated protein kinase (AMPK) pathway in LPS-induced macrophages. Interestingly, Andro could not regulate the activation of the AMPK/NF-κB/MAPK pathway nor inhibit NF-κB and activator protein 1 (AP-1) nuclear translocation and nitric oxide (NO) production following knockdown of AMPKα2. Moreover, Andro attenuated DSS-induced intestinal barrier dysfunction and inflammation by suppressing the NF-κB and MAPK pathways in colon tissues while activating the AMPK pathway. In conclusion, our study demonstrates that Andro effectively inhibits LPS-induced inflammatory responses via AMPK activation in macrophages, whereby Andro can ameliorate DSS-induced acute colitis in mice.
Collapse
Affiliation(s)
- Nami Kim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Peeraphong Lertnimitphun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Yiwen Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.
| |
Collapse
|
22
|
Berberis lycium fruit extract attenuates oxi-inflammatory stress and promotes mucosal healing by mitigating NF-κB/c-Jun/MAPKs signalling and augmenting splenic Treg proliferation in a murine model of dextran sulphate sodium-induced ulcerative colitis. Eur J Nutr 2019; 59:2663-2681. [DOI: 10.1007/s00394-019-02114-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
|
23
|
Protective effects of oxymatrine against DSS-induced acute intestinal inflammation in mice via blocking the RhoA/ROCK signaling pathway. Biosci Rep 2019; 39:BSR20182297. [PMID: 31262973 PMCID: PMC6639456 DOI: 10.1042/bsr20182297] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Oxymatrine (OMT) is an important quinoxaline alkaloid that has a wide range of pharmacological effects and has been shown to alleviate ulcerative colitis due to its profound anti-inflammatory effects. The RhoA/ROCK (Rho kinase) signaling pathway has been shown to be related to the pathogenesis of several autoimmune diseases; however, the specific mechanisms of RhoA/ROCK signaling in inflammatory bowel disease (IBD) remain elusive. Therefore, we sought to determine whether OMT could ameliorate acute intestinal inflammation by targeting the RhoA/ROCK signaling pathway. The potential therapeutic effect of OMT on acute intestinal inflammation and its impact on the RhoA/ROCK signaling pathway were assessed in six groups of mice treated with low, medium and high doses of OMT (25, 50 and 100 mg/kg, respectively), and an inhibitor of ROCK, Y-27632, as a positive control, after initiating dextran sodium sulfate (DSS)-induced acute intestinal inflammation. The model group and normal group were injected intraperitoneally with equal doses of PBS. Our results showed that OMT treatment could protect the integrity of the epithelial barrier, relieve oxidative stress, inhibit the expression of inflammatory mediators and pro-inflammatory cytokines, restrain the differentiation of Th17 cells and promote the differentiation of Treg cells via inhibition of the RhoA/ROCK pathway, thus providing therapeutic benefits for ulcerative colitis (UC). Therefore, inhibiting the RhoA/ROCK pathway might be a new approach that can be used in UC therapy, which deserves to be investigated further.
Collapse
|
24
|
Wang A, Zhu F, Liang R, Li D, Li B. Regulation of T cell differentiation and function by ubiquitin-specific proteases. Cell Immunol 2019; 340:103922. [PMID: 31078284 DOI: 10.1016/j.cellimm.2019.103922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
T cells play critical roles in immune responses to pathogens, autoimmunity, and antitumor immunity. During the past few decades, increasing numbers of studies have demonstrated the significance of protein ubiquitination in T cell-mediated immunity. Several E3 ubiquitin ligases and deubiquitinases (DUBs) have been identified as either positive or negative regulators of T cell development and function. In this review, we mainly focus on the roles of DUBs (especially ubiquitin-specific proteases (USPs)) in modulating T cell differentiation and function, as well as the molecular mechanisms. Understanding how T cell development and function is regulated by ubiquitination and deubiquitination will provide novel strategies for treating infection, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Aiting Wang
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Fangming Zhu
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Bio-energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Rui Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
25
|
Li D, Zhuo Y, Zhang Q, Zhang L, Zhang S, Lv Y, Li C, Cui L, Guan X, Yang L, Wang X. Purification of 3, 4-dihydroxyphenylethyl alcohol glycoside from Sargentodoxa cuneata (Oliv.) Rehd. et Wils. and its protective effects against DSS-induced colitis. Sci Rep 2019; 9:3222. [PMID: 30824734 PMCID: PMC6397144 DOI: 10.1038/s41598-019-38926-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
Sargentodoxa cuneata is a tropical plant used in traditional Chinese medicine to treat intestinal inflammation. In this study, 3, 4-dihydroxyphenylethyl alcohol glycoside (DAG) was purified from the stem of S. cuneata using macroporous resins and its bioactivity was also investigated. The adsorption/desorption of DAG on macroporous resins was investigated systematically. HPD300 resin was selected as the most suitable medium for DAG purification. Further dynamic absorption/desorption experiments on the HPD300 column were conducted to obtain the optimal parameters. To obtain more than 95% DAG, a second stage procedure was developed to purify the DAG using SiliaSphere C18 with 8% v/v acetonitrile through elution at low pressure. Further investigation showed that DAG pretreatment significantly reversed the shortening of colon length, the increase in the disease activity index (DAI) scores and histological damage in the colon. Moreover, DAG greatly increased SOD and GPx activities, significantly decreased MPO and MDA activities and reduced the levels of pro-inflammatory cytokines in the colon. Free radical scavenging activities of DAG were assessed using DPPH, with an IC50 value of 17.03 ug/mL. Additionally, DAG suppressed ROS and proinflammatory cytokine production in LPS-stimulated RAW 264.7 macrophages by suppressing activation of the ERK1/2 and NF-κB pathways. The results were indicative of the antioxidant and anti-inflammatory properties of DAG. When viewed together, these findings indicated that DAG can be used to expand future pharmacological research and to potentially treat colitis.
Collapse
Affiliation(s)
- Dihua Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Yuzhen Zhuo
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Qi Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lanqiu Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Shukun Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Yuanshan Lv
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Caixia Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lihua Cui
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Xin Guan
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lei Yang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China.
| | - Ximo Wang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China. .,Department of Surgery, Tianjin Nankai Hospital, Tianjin, 300100, China.
| |
Collapse
|
26
|
Gu J, Liu J, Huang T, Zhang W, Jia B, Mu N, Zhang K, Hao Q, Li W, Liu W, Zhang W, Zhang Y, Xue X, Zhang C, Li M. The protective and anti-inflammatory effects of a modified glucagon-like peptide-2 dimer in inflammatory bowel disease. Biochem Pharmacol 2018; 155:425-433. [PMID: 30040929 DOI: 10.1016/j.bcp.2018.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent, and remitting inflammatory disease resulting from immune dysregulation in the gut. As a clinically frequent disease, it can affect individuals throughout their lives, with multiple complications. Glucagon-like peptide 2 (GLP-2) is a potent epithelium-specific intestinal growth factor. However, native GLP-2 has a relatively short half-life in human circulation because of extensive renal clearance and rapid degradation by the proteolytic enzyme dipeptidyl peptidase-IV (DPP-IV). Previously, We prepared a recombinant GLP-2 variant (GLP-2②), which has increased half-life and activity as compared to the [Gly2]GLP-2 monomer. The aim of the present study was to investigate the protective potential of GLP-2② in IBD models. LPS-induced in vitro model and dextran sulfate sodium (DSS)-induced in vivo model were used to study the anti-inflammatory and therapeutic effect of GLP-2②. We found that treated with GLP-2② showed a significantly reduction in the secretion of inflammatory cytokines. Furthermore, GLP-2② alleviated symptoms of DSS-induced colitis. GLP-2② treated mice displayed an increase in body weight, lower colitis scores, and fewer mucosal damage compared with GLP-2 treated mice. MPO activities, protein expression of NLRP3 and COX2 in the colon tissues were significantly reduced in GLP-2② groups. Importantly, the ameliorative effect of GLP-2② was related to anti-apoptosis effect in colon tissues. These findings demonstrated that GLP-2② may offer a superior therapeutic benefit over [Gly2]GLP-2 monomer for treatment of IBD.
Collapse
Affiliation(s)
- Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Tonglie Huang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Nan Mu
- Department of Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
27
|
Lu Y, Kim NM, Jiang YW, Zhang H, Zheng D, Zhu FX, Liang R, Li B, Xu HX. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol 2018; 175:1085-1099. [PMID: 29352742 PMCID: PMC5843713 DOI: 10.1111/bph.14150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Background and Purpose Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract, and an impaired immune response plays a critical role in IBD. The current drugs and therapies for IBD treatment are of limited use, therefore, there is a need to find novel drugs or therapies for this disease. We investigated the effect of cambogin in a mouse model of dextran sulphate sodium (DSS)‐induced colitis and whether cambogin attenuates inflammation via a Treg‐cell‐mediated effect on the immune response. Experimental Approach Chronic colitis was established in mice using 2% DSS, and cambogin (10 mg·kg−1, p.o.) was administered for 10 days. Body weight, colon length and colon histology were assessed. Cytokine production was measured using elisa and quantitative real‐time PCR. To evaluate the mechanism of cambogin, human CD4+CD25hiCD127lo Treg cells were isolated from peripheral blood mononuclear cells. Major signalling profiles involved in Treg cell stability were measured. Key Results Cambogin attenuated diarrhoea, colon shortening and colon histological injury and IL‐6, IFN‐γ and TNF‐α production in DSS‐treated mice. Cambogin also up‐regulated Treg cell numbers in both the spleen and mesenteric lymph nodes. Furthermore, cambogin (10 μM) prevented Foxp3 loss in human primary Treg cells in vitro, and promoted USP7‐mediated Foxp3 deubiquitination and increased Foxp3 protein expression in LPS‐treated cells. Conclusions and Implications The effect of cambogin on DSS‐induced colitis is expedited by a Treg‐cell‐mediated modification of the immune response, suggesting that cambogin could be applied as a novel agent for treating colitis and other Treg cell‐related diseases.
Collapse
Affiliation(s)
- Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na-Mi Kim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Wen Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fu-Xiang Zhu
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Liang
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin Li
- Unit of Molecular Immunology, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|