1
|
Novy B, Dagunts A, Weishaar T, Holland EE, Adoff H, Hutchinson E, De Maria M, Kampmann M, Tsvetanova NG, Lobingier BT. An engineered trafficking biosensor reveals a role for DNAJC13 in DOR downregulation. Nat Chem Biol 2025; 21:360-370. [PMID: 39223388 PMCID: PMC11867885 DOI: 10.1038/s41589-024-01705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Trafficking of G protein-coupled receptors (GPCRs) through the endosomal-lysosomal pathway is critical to homeostatic regulation of GPCRs following activation with agonist. Identifying the genes involved in GPCR trafficking is challenging due to the complexity of sorting operations and the large number of cellular proteins involved in the process. Here, we developed a high-sensitivity biosensor for GPCR expression and agonist-induced trafficking to the lysosome by leveraging the ability of the engineered peroxidase APEX2 to activate the fluorogenic substrate Amplex UltraRed (AUR). We used the GPCR-APEX2/AUR assay to perform a genome-wide CRISPR interference screen focused on identifying genes regulating expression and trafficking of the δ-opioid receptor (DOR). We identified 492 genes consisting of both known and new regulators of DOR function. We demonstrate that one new regulator, DNAJC13, controls trafficking of multiple GPCRs, including DOR, through the endosomal-lysosomal pathway by regulating the composition of the endosomal proteome and endosomal homeostasis.
Collapse
Affiliation(s)
- Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Aleksandra Dagunts
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Tatum Weishaar
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Emily E Holland
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Emily Hutchinson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA, USA
| | | | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Zhang M, Morice AH. Current and emerging opioids for the treatment of chronic cough: a mini review. Expert Opin Pharmacother 2024; 25:2167-2175. [PMID: 39434699 DOI: 10.1080/14656566.2024.2418983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Chronic cough has increasingly been recognized as a distinct clinical entity that affects a significant portion of the global population. Despite advancements in understanding its pathophysiology, treatment options remain limited. Opioid analgesics have long been used for cough, and some have proven clear antitussive potential. However, these have yet to be approved by regulatory authorities for the treatment of chronic cough. Several novel synthetic opioid modulators that demonstrated antitussive effects in early-stage studies also failed to translate into clinical practice. AREAS COVERED This mini review aims to summarize the implications of opioid receptors in the development of cough medicines and highlight recent advances in opioid analgesics in cough trials. PUB MED/CINAHL/Web of Science/Scopus was searched (September 2024). EXPERT OPINION Our understanding of the precise sites of action and the involvement of peripheral opioid receptors in cough remains limited. Despite these gaps in knowledge, opioids remain a viable option for some patients until more novel effective treatments are available. Due to the frequent opioid side effects, new opioid derivatives with improved properties are needed. The development of tailored or biased delta-opioid receptor ligands and mixed agonists of opioid receptor-like 1/mu receptors may offer hope for new opioid-based drug discovery for chronic cough.
Collapse
Affiliation(s)
- Mengru Zhang
- Centre for Clinical Science, Respiratory Medicine, Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, UK
| | - Alyn H Morice
- Centre for Clinical Science, Respiratory Medicine, Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, UK
| |
Collapse
|
3
|
Meqbil YJ, Aguilar J, Blaine AT, Chen L, Cassell RJ, Pradhan AA, van Rijn RM. Identification of 1,3,8-Triazaspiro[4.5]Decane-2,4-Dione Derivatives as a Novel δ Opioid Receptor-Selective Agonist Chemotype. J Pharmacol Exp Ther 2024; 389:301-309. [PMID: 38621994 PMCID: PMC11125782 DOI: 10.1124/jpet.123.001735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
δ opioid receptors (DORs) hold potential as a target for neurologic and psychiatric disorders, yet no DOR agonist has proven efficacious in critical phase II clinical trials. The exact reasons for the failure to produce quality drug candidates for the DOR are unclear. However, it is known that certain DOR agonists can induce seizures and exhibit tachyphylaxis. Several studies have suggested that those adverse effects are more prevalent in delta agonists that share the (+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80)/4-[(αR*)-α-((2S*,5R*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl]-N,N-diethylbenzamide chemotype. There is a need to find novel lead candidates for drug development that have improved pharmacological properties to differentiate them from the current failed delta agonists. Our objective in this study was to identify novel DOR agonists. We used a β-arrestin assay to screen a small G-protein coupled receptors (GPCR)-focused chemical library. We identified a novel chemotype of DOR agonists that appears to bind to the orthosteric site based of docking and molecular dynamic simulation. The most potent agonist hit compound is selective for the DOR over a panel of 167 other GPCRs, is slightly biased toward G-protein signaling and has anti-allodynic efficacy in a complete Freund's adjuvant model of inflammatory pain in C57BL/6 male and female mice. The newly discovered chemotype contrasts with molecules like SNC80 that are highly efficacious β-arrestin recruiters and may suggest this novel class of DOR agonists could be expanded on to develop a clinical candidate drug. SIGNIFICANCE STATEMENT: δ opioid receptors are a clinical target for various neurological disorders, including migraine and chronic pain. Many of the clinically tested delta opioid agonists share a single chemotype, which carries risks during drug development. Through a small-scale high-throughput screening assay, this study identified a novel δ opioid receptor agonist chemotype, which may serve as alternative for the current analgesic clinical candidates.
Collapse
Affiliation(s)
- Yazan J Meqbil
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Jhoan Aguilar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Arryn T Blaine
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Lan Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Robert J Cassell
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Amynah A Pradhan
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Richard M van Rijn
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| |
Collapse
|
4
|
Kajino K, Tokuda A, Saitoh T. Morphinan Evolution: The Impact of Advances in Biochemistry and Molecular Biology. J Biochem 2024; 175:337-355. [PMID: 38382631 DOI: 10.1093/jb/mvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Morphinan-based opioids, derived from natural alkaloids like morphine, codeine and thebaine, have long been pivotal in managing severe pain. However, their clinical utility is marred by significant side effects and high addiction potential. This review traces the evolution of the morphinan scaffold in light of advancements in biochemistry and molecular biology, which have expanded our understanding of opioid receptor pharmacology. We explore the development of semi-synthetic and synthetic morphinans, their receptor selectivity and the emergence of biased agonism as a strategy to dissociate analgesic properties from undesirable effects. By examining the molecular intricacies of opioid receptors and their signaling pathways, we highlight how receptor-type selectivity and signaling bias have informed the design of novel analgesics. This synthesis of historical and contemporary perspectives provides an overview of the morphinan landscape, underscoring the ongoing efforts to mitigate the problems facing opioids through smarter drug design. We also highlight that most morphinan derivatives show a preference for the G protein pathway, although detailed experimental comparisons are still necessary. This fact underscores the utility of the morphinan skeleton in future opioid drug discovery.
Collapse
Affiliation(s)
- Keita Kajino
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Akihisa Tokuda
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
5
|
Bigliardi P, Junnarkar S, Markale C, Lo S, Bigliardi E, Kalyuzhny A, Ong S, Dunn R, Wahli W, Bigliardi-Qi M. The Opioid Receptor Influences Circadian Rhythms in Human Keratinocytes through the β-Arrestin Pathway. Cells 2024; 13:232. [PMID: 38334624 PMCID: PMC10854934 DOI: 10.3390/cells13030232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The recent emphasis on circadian rhythmicity in critical skin cell functions related to homeostasis, regeneration and aging has shed light on the importance of the PER2 circadian clock gene as a vital antitumor gene. Furthermore, delta-opioid receptors (DOPrs) have been identified as playing a crucial role in skin differentiation, proliferation and migration, which are not only essential for wound healing but also contribute to cancer development. In this study, we propose a significant association between cutaneous opioid receptor (OPr) activity and circadian rhythmicity. To investigate this link, we conducted a 48 h circadian rhythm experiment, during which RNA samples were collected every 5 h. We discovered that the activation of DOPr by its endogenous agonist Met-Enkephalin in N/TERT-1 keratinocytes, synchronized by dexamethasone, resulted in a statistically significant 5.6 h delay in the expression of the core clock gene PER2. Confocal microscopy further confirmed the simultaneous nuclear localization of the DOPr-β-arrestin-1 complex. Additionally, DOPr activation not only enhanced but also induced a phase shift in the rhythmic binding of β-arrestin-1 to the PER2 promoter. Furthermore, we observed that β-arrestin-1 regulates the transcription of its target genes, including PER2, by facilitating histone-4 acetylation. Through the ChIP assay, we determined that Met-Enkephalin enhances β-arrestin-1 binding to acetylated H4 in the PER2 promoter. In summary, our findings suggest that DOPr activation leads to a phase shift in PER2 expression via β-arrestin-1-facilitated chromatin remodeling. Consequently, these results indicate that DOPr, much like its role in wound healing, may also play a part in cancer development by influencing PER2.
Collapse
Affiliation(s)
- Paul Bigliardi
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA (C.M.)
- Stem Cell Institue, McGuire Translational Research Facility, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seetanshu Junnarkar
- Agency for Science, Technology and Research, Singapore 138632, Singapore; (S.J.); (S.O.); (R.D.)
| | - Chinmay Markale
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA (C.M.)
- Stem Cell Institue, McGuire Translational Research Facility, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sydney Lo
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA (C.M.)
- Stem Cell Institue, McGuire Translational Research Facility, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena Bigliardi
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA (C.M.)
- Stem Cell Institue, McGuire Translational Research Facility, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex Kalyuzhny
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sheena Ong
- Agency for Science, Technology and Research, Singapore 138632, Singapore; (S.J.); (S.O.); (R.D.)
| | - Ray Dunn
- Agency for Science, Technology and Research, Singapore 138632, Singapore; (S.J.); (S.O.); (R.D.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore;
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore;
- Unité Mixte de Recherche (UMR) 1331, Institut National de la Recherche Agronomique (INRA), ToxAlim, 31000 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mei Bigliardi-Qi
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA (C.M.)
- Stem Cell Institue, McGuire Translational Research Facility, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
7
|
Blaine AT, van Rijn RM. Receptor expression and signaling properties in the brain, and structural ligand motifs that contribute to delta opioid receptor agonist-induced seizures. Neuropharmacology 2023; 232:109526. [PMID: 37004753 PMCID: PMC11078570 DOI: 10.1016/j.neuropharm.2023.109526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The δ opioid receptor (δOR) is a therapeutic target for the treatment of various neurological disorders, such as migraines, chronic pain, alcohol use, and mood disorders. Relative to μ opioid receptor agonists, δOR agonists show lower abuse liability and may be potentially safer analgesic alternatives. However, currently no δOR agonists are approved for clinical use. A small number of δOR agonists reached Phase II trials, but ultimately failed to progress due to lack of efficacy. One side effect of δOR agonism that remains poorly understood is the ability of δOR agonists to produce seizures. The lack of a clear mechanism of action is partly driven by the fact that δOR agonists range in their propensity to induce seizure behavior, with multiple δOR agonists reportedly not causing seizures. There is a significant gap in our current understanding of why certain δOR agonists are more likely to induce seizures, and what signal-transduction pathway and/or brain area is engaged to produce these seizures. In this review we provide a comprehensive overview of the current state of knowledge of δOR agonist-mediated seizures. The review was structured to highlight which agonists produce seizures, which brain regions have been implicated and which signaling mediators have been examined in this behavior. Our hope is that this review will spur future studies that are carefully designed and aimed to solve the question why certain δOR agonists are seizurogenic. Obtaining such insight may expedite the development of novel δOR clinical candidates without the risk of inducing seizures. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Arryn T Blaine
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN, 47907, USA; Purdue University Interdisciplinary Life Science graduate program, West Lafayette, IN, 47907, USA
| | - Richard M van Rijn
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, 47907, USA; Purdue Institute for Drug Discovery, West Lafayette, IN, 47907, USA; Septerna Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
8
|
Dremencov E, Grinchii D, Romanova Z, Chomanic P, Lacinova L, Jezova D. Effects of chronic delta-opioid receptor agonist on the excitability of hippocampal glutamate and brainstem monoamine neurons, anxiety, locomotion, and habituation in rats. Pharmacol Rep 2023; 75:585-595. [PMID: 37060527 DOI: 10.1007/s43440-023-00485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Short-term treatment with non-peptide agonists of delta-opioid receptors, such as agonist SNC80, induced behavioral effects in rodents, which could be modulated via changes in central neurotransmission. The present experiments aimed at testing the hypothesis that chronic treatment with SNC80 induces anxiolytic effects associated with changes in hippocampal glutamate and brainstem monoamine pathways. METHODS Adult male Wistar rats were used in experiments. Rats were treated with SNC80 (3 mg/kg/day) for fourteen days. Neuronal excitability was assessed using extracellular in vivo single-unit electrophysiology. The behavioral parameters were examined using the elevated plus maze and open field tests. RESULTS Chronic SNC80 treatment increased the excitability of hippocampal glutamate and ventral tegmental area dopamine neurons and had no effect on the firing activity of dorsal raphe nucleus serotonin cells. Chronic SNC80 treatment induced anxiolytic effects, which were, however, confounded by increased locomotor activity clearly confirmed in an open field test. The ability to cope with stressful situations and habituation processes in a novel environment was not influenced by chronic treatment with SNC80. CONCLUSION Our study suggests that the psychoactive effects of SNC80 might be explained by its ability to stimulate hippocampal glutamate and mesolimbic dopamine transmission.
Collapse
Affiliation(s)
- Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia.
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Daniil Grinchii
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| | - Zuzana Romanova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Pavol Chomanic
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Lubica Lacinova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
9
|
Coutens B, Ingram SL. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology 2023; 226:109408. [PMID: 36584882 PMCID: PMC9898207 DOI: 10.1016/j.neuropharm.2022.109408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Opioid receptors are G protein-coupled receptors (GPCRs) that regulate activity within peripheral, subcortical and cortical circuits involved in pain, reward, and aversion processing. Opioid receptors are expressed in both presynaptic terminals where they inhibit neurotransmitter release and postsynaptic locations where they act to hyperpolarize neurons and reduce activity. Agonist activation of postsynaptic receptors at the plasma membrane signal via ion channels or cytoplasmic second messengers. Agonist binding initiates regulatory processes that include phosphorylation by G protein receptor kinases (GRKs) and recruitment of beta-arrestins that desensitize and internalize the receptors. Opioid receptors also couple to effectors from endosomes activating intracellular enzymes and kinases. In contrast to postsynaptic opioid receptors, receptors localized to presynaptic terminals are resistant to desensitization such that there is no loss of signaling in the continuous presence of opioids over the same time scale. Thus, the balance of opioid signaling in circuits expressing pre- and postsynaptic opioid receptors is shifted toward inhibition of presynaptic neurotransmitter release during continuous opioid exposure. The functional implication of this shift is not often acknowledged in behavioral studies. This review covers what is currently understood about regulation of opioid/nociceptin receptors, with an emphasis on opioid receptor signaling in pain and reward circuits. Importantly, the review covers regulation of presynaptic receptors and the critical gaps in understanding this area, as well as the opportunities to further understand opioid signaling in brain circuits. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Basile Coutens
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Susan L Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Kelly E, Conibear A, Henderson G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol 2023; 63:491-515. [PMID: 36170657 DOI: 10.1146/annurev-pharmtox-052120-091058] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein- over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| |
Collapse
|
11
|
Ali MD, Gayasuddin Qur F, Alam MS, M Alotaibi N, Mujtaba MA. Global Epidemiology, Clinical Features, Diagnosis and Current Therapeutic Novelties in Migraine Therapy and their Prevention: A Narrative Review. Curr Pharm Des 2023; 29:3295-3311. [PMID: 38270151 DOI: 10.2174/0113816128266227231205114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION The current article reviews the latest information on epidemiology, clinical features, diagnosis, recent advancements in clinical management, current therapeutic novelties, and the prevention of migraines. In a narrative review, all studies as per developed MeSH terms published until February 2023, excluding those irrelevant, were identified through a PubMed literature search. METHODS Overall, migraine affects more than a billion people annually and is one of the most common neurological illnesses. A wide range of comorbidities is associated with migraines, including stress and sleep disturbances. To lower the worldwide burden of migraine, comprehensive efforts are required to develop and enhance migraine treatment, which is supported by informed healthcare policy. Numerous migraine therapies have been successful, but not all patients benefit from them. RESULTS CGRP pathway-targeted therapy demonstrates the importance of translating mechanistic understanding into effective treatment. In this review, we discuss clinical features, diagnosis, and recently approved drugs, as well as a number of potential therapeutic targets, including pituitary adenylate cyclase-activating polypeptide (PACAP), adenosine, opioid receptors, potassium channels, transient receptor potential ion channels (TRP), and acid-sensing ion channels (ASIC). CONCLUSION In addition to providing more treatment options for improved clinical care, a better understanding of these mechanisms facilitates the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa, Dammam 34222, Saudi Arabia
| | - Fehmida Gayasuddin Qur
- Department of Obstetrics and Gynecology, Princess Royal Maternity Hospital, Glasgow, Scotland
| | - Md Sarfaraz Alam
- Department of Pharmaceutics, HIMT College of Pharmacy, Rajpura 8, Institutional Area, Knowledge Park I, Greater Noida, Uttar Pradesh 201301, India
| | - Nawaf M Alotaibi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha Campus, Arar, Saudi Arabia
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha Campus, Arar, Saudi Arabia
| |
Collapse
|
12
|
Blaine AT, Miao Y, Yuan J, Palant S, Liu RJ, Zhang ZY, van Rijn RM. Exploration of beta-arrestin isoform signaling pathways in delta opioid receptor agonist-induced convulsions. Front Pharmacol 2022; 13:914651. [PMID: 36059958 PMCID: PMC9428791 DOI: 10.3389/fphar.2022.914651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
The δ-opioid receptor (δOR) has been considered as a therapeutic target in multiple neurological and neuropsychiatric disorders particularly as δOR agonists are deemed safer alternatives relative to the more abuse-liable µ-opioid receptor drugs. Clinical development of δOR agonists, however, has been challenging in part due to the seizure-inducing effects of certain δOR agonists. Especially agonists that resemble the δOR-selective agonist SNC80 have well-established convulsive activity. Close inspection suggests that many of those seizurogenic δOR agonists efficaciously recruit β-arrestin, yet surprisingly, SNC80 displays enhanced seizure activity in β-arrestin 1 knockout mice. This finding led us to hypothesize that perhaps β-arrestin 1 is protective against, whereas β-arrestin 2 is detrimental for δOR-agonist-induced seizures. To investigate our hypothesis, we characterized three different δOR agonists (SNC80, ADL5859, ARM390) in cellular assays and in vivo in wild-type and β-arrestin 1 and β-arrestin 2 knockout mice for seizure activity. We also investigated downstream kinases associated with β-arrestin-dependent signal transduction. We discovered that δOR agonist-induced seizure activity strongly and positively correlates with β-arrestin 2 efficacy for the agonist, but that indirect inhibition of ERK activation using the MEK inhibitor SL327 did not inhibit seizure potency and duration. Inhibition of the PI3K/AKT/mTOR signaling with honokiol but not PQR530, attenuated SNC80 seizure duration in β-arrestin 1 knockout, but honokiol did not reduce SNC80-induced seizures in wild-type mice. Ultimately, our results indicate that β-arrestin 2 is correlated with δOR agonist-induced seizure intensity, but that global β-arrestin 1 knockout mice are a poor model system to investigate their mechanism of action.
Collapse
Affiliation(s)
- Arryn T. Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN, United States
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Jinling Yuan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Sophia Palant
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Rebecca J. Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Drug Discovery, West Lafayette, IN, United States
- Purdue University Cancer Center, West Lafayette, IN, United States
| | - Richard. M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Drug Discovery, West Lafayette, IN, United States
- Purdue University Cancer Center, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
- *Correspondence: Richard. M. van Rijn,
| |
Collapse
|
13
|
Meqbil YJ, van Rijn RM. Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors. Pharmaceuticals (Basel) 2022; 15:873. [PMID: 35890173 PMCID: PMC9324648 DOI: 10.3390/ph15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
The delta opioid receptor is a Gi-protein-coupled receptor (GPCR) with a broad expression pattern both in the central nervous system and the body. The receptor has been investigated as a potential target for a multitude of significant diseases including migraine, alcohol use disorder, ischemia, and neurodegenerative diseases. Despite multiple attempts, delta opioid receptor-selective molecules have not been translated into the clinic. Yet, the therapeutic promise of the delta opioid receptor remains and thus there is a need to identify novel delta opioid receptor ligands to be optimized and selected for clinical trials. Here, we highlight recent developments involving the delta opioid receptor, the closely related mu and kappa opioid receptors, and in the broader area of the GPCR drug discovery research. We focus on the validity and utility of the available delta opioid receptor structures. We also discuss the increased ability to perform ultra-large-scale docking studies on GPCRs, the rise in high-resolution cryo-EM structures, and the increased prevalence of machine learning and artificial intelligence in drug discovery. Overall, we pose that there are multiple opportunities to enable in silico drug discovery at the delta opioid receptor to identify novel delta opioid modulators potentially with unique pharmacological properties, such as biased signaling.
Collapse
Affiliation(s)
- Yazan J. Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, Computational Interdisciplinary Graduate Program, Purdue University, West Lafayette, IN 47907, USA;
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue Institute for Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Septerna Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
14
|
Jaramillo-Polanco J, Lopez-Lopez C, Yu Y, Neary E, Hegron A, Canals M, Bunnett NW, Reed DE, Lomax AE, Vanner SJ. Opioid-Induced Pronociceptive Signaling in the Gastrointestinal Tract Is Mediated by Delta-Opioid Receptor Signaling. J Neurosci 2022; 42:3316-3328. [PMID: 35256532 PMCID: PMC9034783 DOI: 10.1523/jneurosci.2098-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic in vivo administration of morphine by intraperitoneal injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when intraperitoneally injected in previous morphine administration. Patch-clamp studies of DRG neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or the DOPr agonist [D-Ala2, D-Leu5]-Enkephalin evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 The hyperexcitability induced by DAMGO was reversed after a 1 h washout, but reapplication of low concentrations of DAMGO or [D-Ala2, D-Leu5]-Enkephalin restored the hyperexcitability, an effect mediated by protein kinase C. DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2, and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. Bioluminescence resonance energy transfer studies in HEK cells showed no evidence of switching of G-protein signaling from Gi to a Gs pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high-dose opioid exposure leads to opioid tolerance and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream protein kinase C signaling.SIGNIFICANCE STATEMENT Opioids are effective in the treatment of abdominal pain, but escalating doses can lead to opioid tolerance and potentially opioid-induced hyperalgesia. We found that δ-opioid receptor (DOPr) plays a central role in the development of opioid tolerance and opioid-induced hyperalgesia in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.
Collapse
Affiliation(s)
- Josue Jaramillo-Polanco
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Cintya Lopez-Lopez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Yang Yu
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Emma Neary
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Alan Hegron
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York 10010
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York 10010
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| |
Collapse
|
15
|
Massaly N, Markovic T, Creed M, Al-Hasani R, Cahill CM, Moron JA. Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 157:31-68. [PMID: 33648672 DOI: 10.1016/bs.irn.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Across centuries and civilizations opioids have been used to relieve pain. In our modern societies, opioid-based analgesics remain one of the most efficient treatments for acute pain. However, the long-term use of opioids can lead to the development of analgesic tolerance, opioid-induced hyperalgesia, opioid use disorders, and overdose, which can ultimately produce respiratory depressant effects with fatal consequences. In addition to the nociceptive sensory component of pain, negative affective states arising from persistent pain represent a risk factor for developing an opioid use disorder. Several studies have indicated that the increase in prescribed opioid analgesics since the 1990s represents the root of our current opioid epidemic. In this review, we will present our current knowledge on the endogenous opioid system within the pain neuroaxis and the plastic changes occurring in this system that may underlie the occurrence of pain-induced negative affect leading to misuse and abuse of opioid medications. Dissecting the allostatic neuronal changes occurring during pain is the most promising avenue to uncover novel targets for the development of safer pain medications. We will discuss this along with current and potential approaches to treat pain-induced negative affective states that lead to drug misuse. Moreover, this chapter will provide a discussion on potential avenues to reduce the abuse potential of new analgesic drugs and highlight a basis for future research and drug development based on recent advances in this field.
Collapse
Affiliation(s)
- Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States.
| | - Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States
| | - Meaghan Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, United States; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, CA, United States; Shirley and Stefan Hatos Center for Neuropharmacology, University of California Los Angeles, Los Angeles, CA, United States; Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Jose A Moron
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
16
|
Identification of a Novel Delta Opioid Receptor Agonist Chemotype with Potential Negative Allosteric Modulator Capabilities. Molecules 2021; 26:molecules26237236. [PMID: 34885825 PMCID: PMC8659279 DOI: 10.3390/molecules26237236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
The δ-opioid receptor (δOR) holds great potential as a therapeutic target. Yet, clinical drug development, which has focused on δOR agonists that mimic the potent and selective tool compound SNC80 have largely failed. It has increasingly become apparent that the SNC80 scaffold carries with it potent and efficacious β-arrestin recruitment. Here, we screened a relatively small (5120 molecules) physical drug library to identify δOR agonists that underrecruit β-arrestin, as it has been suggested that compounds that efficaciously recruit β-arrestin are proconvulsant. The screen identified a hit compound and further characterization using cellular binding and signaling assays revealed that this molecule (R995045, compound 1) exhibited ten-fold selectivity over µ- and κ-opioid receptors. Compound 1 represents a novel chemotype at the δOR. A subsequent characterization of fourteen analogs of compound 1, however did not identify a more potent δOR agonist. Computational modeling and in vitro characterization of compound 1 in the presence of the endogenous agonist leu-enkephalin suggest compound 1 may also bind allosterically and negatively modulate the potency of Leu-enkephalin to inhibit cAMP, acting as a ‘NAM-agonist’ in this assay. The potential physiological utility of such a class of compounds will need to be assessed in future in vivo assays.
Collapse
|
17
|
Sharma KK, Cassell RJ, Meqbil YJ, Su H, Blaine AT, Cummins BR, Mores KL, Johnson DK, van Rijn RM, Altman RA. Modulating β-arrestin 2 recruitment at the δ- and μ-opioid receptors using peptidomimetic ligands. RSC Med Chem 2021; 12:1958-1967. [PMID: 34825191 DOI: 10.1039/d1md00025j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
μ-Opioid receptor agonists provide potent and effective acute analgesia; however, their therapeutic window narrows considerably upon repeated administration, such as required for treating chronic pain. In contrast, bifunctional μ/δ opioid agonists, such as the endogenous enkephalins, have potential for treating both acute and chronic pain. However, enkephalins recruit β-arrestins, which correlate with certain adverse effects at μ- and δ-opioid receptors. Herein, we identify the C-terminus of Tyr-ψ[(Z)CF[double bond, length as m-dash]CH]-Gly-Leu-enkephalin, a stable enkephalin derivative, as a key site to regulate bias of both δ- and μ-opioid receptors. Using in vitro assays, substitution of the Leu5 carboxylate with amides (NHEt, NMe2, NCyPr) reduced β-arrestin recruitment efficacy through both the δ-opioid and μ-opioid, while retaining affinity and cAMP potency. For this series, computational studies suggest key ligand-receptor interactions that might influence bias. These findings should enable the discovery of a range of tool compounds with previously unexplored biased μ/δ opioid agonist pharmacological profiles.
Collapse
Affiliation(s)
- Krishna K Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University USA
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - Yazan J Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Computational Interdisciplinary Graduate Program (CIGP), Purdue University USA
| | - Hongyu Su
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - Arryn T Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Purdue Interdisciplinary Life Science Graduate Program, Purdue University USA
| | | | - Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - David K Johnson
- Computational Chemical Biology Core and Molecular Graphics and Modeling Laboratory, The University of Kansas USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Purdue Institute for Drug Discovery, Purdue University USA.,Purdue Institute for Integrative Neuroscience, Purdue University USA
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Department of Chemistry, Purdue University USA
| |
Collapse
|
18
|
Ko MJ, Chiang T, Mukadam AA, Mulia GE, Gutridge AM, Lin A, Chester JA, van Rijn RM. β-Arrestin-dependent ERK signaling reduces anxiety-like and conditioned fear-related behaviors in mice. Sci Signal 2021; 14:14/694/eaba0245. [PMID: 34344831 DOI: 10.1126/scisignal.aba0245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
G protein-coupled receptors (GPCRs) are implicated in the regulation of fear and anxiety. GPCR signaling involves canonical G protein pathways but can also engage downstream kinases and effectors through scaffolding interactions mediated by β-arrestin. Here, we investigated whether β-arrestin signaling regulates anxiety-like and fear-related behavior in mice in response to activation of the GPCR δ-opioid receptor (δOR or DOR). Administration of β-arrestin-biased δOR agonists to male C57BL/6 mice revealed β-arrestin 2-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the dorsal hippocampus and amygdala and β-arrestin 1-dependent activation of ERK1/2 in the nucleus accumbens. In mice, β-arrestin-biased agonist treatment was associated with reduced anxiety-like and fear-related behaviors, with some overlapping and isoform-specific input. In contrast, applying a G protein-biased δOR agonist decreased ERK1/2 activity in all three regions as well as the dorsal striatum and was associated with increased fear-related behavior without effects on baseline anxiety. Our results indicate a complex picture of δOR neuromodulation in which β-arrestin 1- and 2-dependent ERK signaling in specific brain subregions suppresses behaviors associated with anxiety and fear and opposes the effects of G protein-biased signaling. Overall, our findings highlight the importance of noncanonical β-arrestin-dependent GPCR signaling in the regulation of these interrelated emotions.
Collapse
Affiliation(s)
- Mee Jung Ko
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA
| | - Terrance Chiang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Arbaaz A Mukadam
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Grace E Mulia
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA
| | - Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA
| | - Angel Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Julia A Chester
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA.,Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA. .,Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA.,Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Moye LS, Siegersma K, Dripps I, Witkowski W, Mangutov E, Wang D, Scherrer G, Pradhan AA. Delta opioid receptor regulation of calcitonin gene-related peptide dynamics in the trigeminal complex. Pain 2021; 162:2297-2308. [PMID: 33605657 PMCID: PMC8730473 DOI: 10.1097/j.pain.0000000000002235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
ABSTRACT Migraine is highly prevalent and is the sixth leading cause worldwide for years lost to disability. Therapeutic options specifically targeting migraine are limited, and delta opioid receptor (DOP) agonists were recently identified as a promising pharmacotherapy. The mechanisms by which DOPs regulate migraine are currently unclear. Calcitonin gene-related peptide (CGRP) has been identified as an endogenous migraine trigger and plays a critical role in migraine initiation and susceptibility. The aim of this study was to determine the behavioral effects of DOP agonists on the development of chronic migraine-associated pain and to investigate DOP coexpression with CGRP and CGRP receptor (CGRPR) in the trigeminal system. Chronic migraine-associated pain was induced in mice through repeated intermittent injection of the known human migraine trigger, nitroglycerin. Chronic nitroglycerin resulted in severe chronic cephalic allodynia which was prevented with cotreatment of the DOP-selective agonist, SNC80. In addition, a corresponding increase in CGRP expression in the trigeminal ganglia and trigeminal nucleus caudalis was observed after chronic nitroglycerin, an augmentation that was blocked by SNC80. Moreover, DOP was also upregulated in these head pain-processing regions following the chronic migraine model. Immunohistochemical analysis of the trigeminal ganglia revealed coexpression of DOP with CGRP as well as with a primary component of the CGRPR, RAMP1. In the trigeminal nucleus caudalis, DOP was not coexpressed with CGRP but was highly coexpressed with RAMP1 and calcitonin receptor-like receptor. These results suggest that DOP agonists inhibit migraine-associated pain by attenuating CGRP release and blocking pronociceptive signaling of the CGRPR.
Collapse
Affiliation(s)
- Laura S Moye
- Department of Psychiatry, University of Illinois at Chicago
| | | | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago
| | | | | | - Dong Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Neurosurgery, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- New York Stem Cell Foundation – Robertson Investigator
| | | |
Collapse
|
20
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
21
|
Chakraborty S, Majumdar S. Natural Products for the Treatment of Pain: Chemistry and Pharmacology of Salvinorin A, Mitragynine, and Collybolide. Biochemistry 2021; 60:1381-1400. [PMID: 32930582 PMCID: PMC7982354 DOI: 10.1021/acs.biochem.0c00629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pain remains a very pervasive problem throughout medicine. Classical pain management is achieved through the use of opiates belonging to the mu opioid receptor (MOR) class, which have significant side effects that hinder their utility. Pharmacologists have been trying to develop opioids devoid of side effects since the isolation of morphine from papaver somniferum, more commonly known as opium by Sertürner in 1804. The natural products salvinorin A, mitragynine, and collybolide represent three nonmorphinan natural product-based targets, which are potent selective agonists of opioid receptors, and emerging next-generation analgesics. In this work, we review the phytochemistry and medicinal chemistry efforts on these templates and their effects on affinity, selectivity, analgesic actions, and a myriad of other opioid-receptor-related behavioral effects.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
22
|
Bertels Z, Witkowski WD, Asif S, Siegersma K, van Rijn RM, Pradhan AA. A non-convulsant delta-opioid receptor agonist, KNT-127, reduces cortical spreading depression and nitroglycerin-induced allodynia. Headache 2021; 61:170-178. [PMID: 33326598 PMCID: PMC8082730 DOI: 10.1111/head.14019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to determine if the non-convulsant delta-opioid receptor (DOR) agonist, KNT-127, could inhibit migraine-associated endpoints. BACKGROUND The DOR has been identified as a therapeutic target for migraine. However, the development of delta agonists is limited as some ligands have seizurogenic properties, which may be related to their ability to induce receptor internalization. While both pro- and non-convulsant delta agonists can reduce migraine-associated allodynia, only the proconvulsant agonist, SNC80, has been shown to decrease cortical spreading depression (CSD). It is unclear if the ability of delta agonists to modulate cortical activity is related to the same signaling mechanisms that produce proconvulsant effects. METHODS The effects of the non-convulsant delta agonist, KNT-127, were examined. Repetitive CSD was induced in female C57BL6/J (n = 6/group) mice by continuous application of KCl and the effect of KNT-127/vehicle (Veh) on both local field potentials and optical intrinsic signals was determined. To assess the effect of KNT-127 on established chronic migraine-associated pain, male and female C57BL6/J mice were treated with nitroglycerin (NTG; 10 mg/kg, ip) every other day for 9 days and tested with KNT-127 (5 mg/kg, sc) or Veh on day 10 (n = 6/group). DOR-enhanced green fluorescent protein mice (n = 4/group) were used to confirm the internalization properties of KNT-127 in the trigeminal ganglia, trigeminal nucleus caudalis, and somatosensory cortex. RESULTS KNT-127 inhibited CSD events (t(10) = 3.570, p = 0.0051). In addition, this delta agonist also reversed established cephalic allodynia in the NTG model of chronic migraine (F(1, 20) = 12.80, p < 0.01). Furthermore, KNT-127 caused limited internalization of DOR in key migraine processing regions. CONCLUSIONS This study shows that the antimigraine effects of DOR agonists can be separated from their proconvulsant effects. This data provides valuable information for the continued development of delta agonists for the treatment of migraine.
Collapse
Affiliation(s)
| | | | - Sarah Asif
- Department of Psychiatry, University of Illinois at Chicago
| | | | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Integrative Neuroscience, Purdue Institute for Drug Discovery, Purdue University
| | | |
Collapse
|
23
|
Gurevich EV, Gurevich VV. GRKs as Modulators of Neurotransmitter Receptors. Cells 2020; 10:52. [PMID: 33396400 PMCID: PMC7823573 DOI: 10.3390/cells10010052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.
Collapse
Affiliation(s)
- Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 27232, USA;
| | | |
Collapse
|
24
|
Mahmoodkhani M, Amini M, Derafshpour L, Ghasemi M, Mehranfard N. Negative relationship between brain α 1A-AR neurotransmission and βArr2 levels in anxious adolescent rats subjected to early life stress. Exp Brain Res 2020; 238:2833-2844. [PMID: 33025031 DOI: 10.1007/s00221-020-05937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/27/2020] [Indexed: 01/06/2023]
Abstract
Early-life stress is correlated with the development of anxiety-related behavior in adolescence, but underlying mechanisms remain poorly known. The α1A-adrenergic receptor (AR) is linked to mood regulation and its function is assumed to be regulated by β-arrestins (βArrs) via desensitization and downregulation. Here, we investigated correlation between changes in α1A-AR and βArr2 levels in the prefrontal cortex (PFC) and hippocampus of adolescent and adult male rats subjected to maternal separation (MS) and their relationship with anxiety-like behavior in adolescence. MS was performed 3 h per day from postnatal days 2-11 and anxiety-like behavior was evaluated in the elevated plus-maze and open field tests. The protein levels were examined using western blot assay. MS decreased α1A-AR expression and increased βArr2 expression in both brain regions of adolescent rats, while induced reverse changes in adulthood. MS adolescent rats demonstrated higher anxiety-type behavior and lower activity in behavioral tests than controls. Decreased α1A-AR levels in MS adolescence strongly correlated with reduced time spent in the open field central area, consistent with increased anxiety-like behavior. An anxiety-like phenotype was mimicked by acute and chronic treatment of developing rats with prazosin, an α1A-AR antagonist, suggesting α1A-AR downregulation may facilitate anxiety behavior in MS adolescent rats. Together, our results indicate a negative correlation between α1A-AR neurotransmission and βArr2 levels in both adults and anxious-adolescent rats and suggest that increased βArr2 levels may contribute to posttranslational regulation of α1A-AR and modulation of anxiety-like behavior in adolescent rats. This may provide a path to develop more effective anxiolytic treatments.
Collapse
Affiliation(s)
- Maryam Mahmoodkhani
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amini
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Derafshpour
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
25
|
Abstract
Pain is an essential protective mechanism that the body uses to alert or prevent further damage. Pain sensation is a complex event involving perception, transmission, processing, and response. Neurons at different levels (peripheral, spinal cord, and brain) are responsible for these pro- or antinociceptive activities to ensure an appropriate response to external stimuli. The terminals of these neurons, both in the peripheral endings and in the synapses, are equipped with G protein-coupled receptors (GPCRs), voltage- and ligand-gated ion channels that sense structurally diverse stimuli and inhibitors of neuronal activity. This review will focus on the largest class of sensory proteins, the GPCRs, as they are distributed throughout ascending and descending neurons and regulate activity at each step during pain transmission. GPCR activation also directly or indirectly controls the function of co-localized ion channels. The levels and types of some GPCRs are significantly altered in different pain models, especially chronic pain states, emphasizing that these molecules could be new targets for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, St. Louis College of Pharmacology and Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
26
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
27
|
Faouzi A, Varga BR, Majumdar S. Biased Opioid Ligands. Molecules 2020; 25:E4257. [PMID: 32948048 PMCID: PMC7570672 DOI: 10.3390/molecules25184257] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Achieving effective pain management is one of the major challenges associated with modern day medicine. Opioids, such as morphine, have been the reference treatment for moderate to severe acute pain not excluding chronic pain modalities. Opioids act through the opioid receptors, the family of G-protein coupled receptors (GPCRs) that mediate pain relief through both the central and peripheral nervous systems. Four types of opioid receptors have been described, including the μ-opioid receptor (MOR), κ-opioid receptor (KOR), δ-opioid receptor (DOR), and the nociceptin opioid peptide receptor (NOP receptor). Despite the proven success of opioids in treating pain, there are still some inherent limitations. All clinically approved MOR analgesics are associated with adverse effects, which include tolerance, dependence, addiction, constipation, and respiratory depression. On the other hand, KOR selective analgesics have found limited clinical utility because they cause sedation, anxiety, dysphoria, and hallucinations. DOR agonists have also been investigated but they have a tendency to cause convulsions. Ligands targeting NOP receptor have been reported in the preclinical literature to be useful as spinal analgesics and as entities against substance abuse disorders while mixed MOR/NOP receptor agonists are useful as analgesics. Ultimately, the goal of opioid-related drug development has always been to design and synthesize derivatives that are equally or more potent than morphine but most importantly are devoid of the dangerous residual side effects and abuse potential. One proposed strategy is to take advantage of biased agonism, in which distinct downstream pathways can be activated by different molecules working through the exact same receptor. It has been proposed that ligands not recruiting β-arrestin 2 or showing a preference for activating a specific G-protein mediated signal transduction pathway will function as safer analgesic across all opioid subtypes. This review will focus on the design and the pharmacological outcomes of biased ligands at the opioid receptors, aiming at achieving functional selectivity.
Collapse
MESH Headings
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Arrestin/metabolism
- Furans/chemistry
- Furans/metabolism
- Humans
- Ligands
- Pain/drug therapy
- Pyrones/chemistry
- Pyrones/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | | | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63131, USA; (A.F.); (B.R.V.)
| |
Collapse
|
28
|
Bagheri Tudashki H, Haddad Y, Charfi I, Couture R, Pineyro G. Ligand-specific recycling profiles determine distinct potential for chronic analgesic tolerance of delta-opioid receptor (DOPr) agonists. J Cell Mol Med 2020; 24:5718-5730. [PMID: 32279433 PMCID: PMC7214178 DOI: 10.1111/jcmm.15234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
δ-opioid receptor (DOPr) agonists have analgesic efficacy in chronic pain models but development of tolerance limits their use for long-term pain management. Although agonist potential for inducing acute analgesic tolerance has been associated with distinct patterns of DOPr internalization, the association between trafficking and chronic tolerance remains ill-defined. In a rat model of streptozotocin (STZ)-induced diabetic neuropathy, deltorphin II and TIPP produced sustained analgesia following daily (intrathecal) i.t. injections over six days, whereas similar treatment with SNC-80 or SB235863 led to progressive tolerance and loss of the analgesic response. Trafficking assays in murine neuron cultures showed no association between the magnitude of ligand-induced sequestration and development of chronic tolerance. Instead, ligands that supported DOPr recycling were also the ones producing sustained analgesia over 6-day treatment. Moreover, endosomal endothelin-converting enzyme 2 (ECE2) blocker 663444 prevented DOPr recycling by deltorphin II and TIPP and precipitated tolerance by these ligands. In conclusion, agonists, which support DOPr recycling, avoid development of analgesic tolerance over repeated administration.
Collapse
Affiliation(s)
| | - Youssef Haddad
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Iness Charfi
- Centre de RechercheCentre Hospitalier Universitaire Ste-JustineMontréalQCCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Rejean Couture
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Graciela Pineyro
- Centre de RechercheCentre Hospitalier Universitaire Ste-JustineMontréalQCCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| |
Collapse
|
29
|
Berthiaume S, Abdallah K, Blais V, Gendron L. Alleviating pain with delta opioid receptor agonists: evidence from experimental models. J Neural Transm (Vienna) 2020; 127:661-672. [PMID: 32189076 DOI: 10.1007/s00702-020-02172-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The use of opioids for the relief of pain and headache disorders has been studied for years. Nowadays, particularly because of its ability to produce analgesia in various pain models, delta opioid receptor (DOPr) emerges as a promising target for the development of new pain therapies. Indeed, their potential to avoid the unwanted effects commonly observed with clinically used opioids acting at the mu opioid receptor (MOPr) suggests that DOPr agonists could be a therapeutic option. In this review, we discuss the use of opioids in the management of pain in addition to describing the evidence of the analgesic potency of DOPr agonists in animal models.
Collapse
Affiliation(s)
- Sophie Berthiaume
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Khaled Abdallah
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Véronique Blais
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
30
|
Conibear AE, Asghar J, Hill R, Henderson G, Borbely E, Tekus V, Helyes Z, Palandri J, Bailey C, Starke I, von Mentzer B, Kendall D, Kelly E. A Novel G Protein-Biased Agonist at the δ Opioid Receptor with Analgesic Efficacy in Models of Chronic Pain. J Pharmacol Exp Ther 2020; 372:224-236. [PMID: 31594792 PMCID: PMC6978697 DOI: 10.1124/jpet.119.258640] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/26/2019] [Indexed: 11/22/2022] Open
Abstract
Agonists at the δ opioid receptor are known to be potent antihyperalgesics in chronic pain models and effective in models of anxiety and depression. However, some δ opioid agonists have proconvulsant properties while tolerance to the therapeutic effects can develop. Previous evidence indicates that different agonists acting at the δ opioid receptor differentially engage signaling and regulatory pathways with significant effects on behavioral outcomes. As such, interest is now growing in the development of biased agonists as a potential means to target specific signaling pathways and potentially improve the therapeutic profile of δ opioid agonists. Here, we report on PN6047 (3-[[4-(dimethylcarbamoyl)phenyl]-[1-(thiazol-5-ylmethyl)-4-piperidylidene]methyl]benzamide), a novel G protein-biased and selective δ opioid agonist. In cell-based assays, PN6047 fully engages G protein signaling but is a partial agonist in both the arrestin recruitment and internalization assays. PN6047 is effective in rodent models of chronic pain but shows no detectable analgesic tolerance following prolonged treatment. In addition, PN6047 exhibited antidepressant-like activity in the forced swim test, and importantly, the drug had no effect on chemically induced seizures. PN6047 did not exhibit reward-like properties in the conditioned place preference test or induce respiratory depression. Thus, δ opioid ligands with limited arrestin signaling such as PN6047 may be therapeutically beneficial in the treatment of chronic pain states. SIGNIFICANCE STATEMENT: PN6047 (3-[[4-(dimethylcarbamoyl)phenyl]-[1-(thiazol-5-ylmethyl)-4-piperidylidene]methyl]benzamide) is a selective, G protein-biased δ opioid agonist with efficacy in preclinical models of chronic pain. No analgesic tolerance was observed after prolonged treatment, and PN6047 does not display proconvulsant activity or other opioid-mediated adverse effects. Our data suggest that δ opioid ligands with limited arrestin signaling will be beneficial in the treatment of chronic pain.
Collapse
Affiliation(s)
- Alexandra E Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Junaid Asghar
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Rob Hill
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Eva Borbely
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Valeria Tekus
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Zsuzsanna Helyes
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Josephine Palandri
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Chris Bailey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Ingemar Starke
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Bengt von Mentzer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - David Kendall
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| |
Collapse
|
31
|
Fossler MJ, Schmith V, Greene SA, Lohmer L, Kramer MS, Arscott K, James IE, Demitrack MA. A Phase I, Randomized, Single‑Blind, Placebo‑Controlled, Single Ascending Dose Study of the Safety, Tolerability, and Pharmacokinetics of Subcutaneous and Oral TRV250, a G Protein-Selective Delta Receptor Agonist, in Healthy Subjects. CNS Drugs 2020; 34:853-865. [PMID: 32676977 PMCID: PMC7392943 DOI: 10.1007/s40263-020-00738-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The delta opioid receptor (DOR) has been identified as a therapeutic target for migraine, with DOR agonists exhibiting low abuse potential compared with conventional µ-opioid agonists. TRV250 is a novel small molecule agonist of the DOR that is preferentially selective for G-protein signaling, with relatively little activation of the β-arrestin2 post-receptor signaling pathway. This selectivity provides reduced susceptibility to proconvulsant activity seen with non-selective DOR agonists. TRV250 significantly reduced nitroglycerin-evoked hyperalgesia in rodents, indicating a potential utility in acute migraine without the risk of seizure activity or abuse potential. OBJECTIVE This trial evaluated the safety, tolerability, and pharmacokinetics of ascending dose levels of TRV250 administered subcutaneously (SC) and the relative bioavailability of TRV250 administered orally compared with SC administration. METHODS This was a two-part, single ascending dose study. Part A included four cohorts of healthy adults (N = 38). Each cohort was dosed on three occasions (placebo and two different dose levels of TRV250, allocated in randomized order and administered by SC route). In Part B, a single cohort of nine subjects received an oral dose of either TRV250 (n = 7) or placebo (n = 2) in a fed or fasted state. Serial blood samples were obtained for pharmacokinetic determination across a 24-h post-dose period. Safety assessments included clinical laboratory measures, vital signs, 12-lead electrocardiogram (ECG), and electroencephalogram (EEG) pre- and post-dosing. RESULTS TRV250 was well tolerated. There were no serious adverse events (SAEs), and all AEs were mild in severity. Injection-site reactions and headache were the most common AEs. One subject was withdrawn from the study due to a TRV250-related AE of postural orthostatic tachycardia. There were no clinically relevant changes in physical examination, hematology, clinical chemistry, urinalysis, suicidal ideation, or vital signs, with the exception of orthostatic changes in some subjects. No subject experienced abnormalities in EEGs or experienced a change from baseline in heart-rate-corrected QT interval (QTcF) > 60 ms, or an absolute QTcF interval > 480 ms at any post-dosing observation. Peak and total plasma exposure to TRV250 increased in a dose-proportional manner following 0.1-30 mg SC doses, with the mean half-life ranging from 2.39 to 3.76 h. Oral bioavailability of TRV250 ranged from 14% (fasting) to 19% (fed) relative to SC dosing, while administration with food increased the AUC but decreased the rate of absorption as reflected by a modest delay in median time to maximum concentration and a slight reduction in maximum concentration. CONCLUSION The findings from the first-in-human study support further evaluation of TRV250, a G-protein selective DOR agonist, in the treatment of acute migraine.
Collapse
Affiliation(s)
- Michael J. Fossler
- Clinical Development and Quantitative Sciences, Trevena, Inc., 955 Chesterbrook Boulevard, Suite 110, Chesterbrook, PA 19087 USA
| | | | | | | | - Michael S. Kramer
- Scientific Operations and Alliance Management, Trevena Inc, 955 Chesterbrook Boulevard, Suite 110, Chesterbrook, PA 19087 USA
| | - Kelly Arscott
- Clinical Operations and Medical Affairs Department, Trevena Inc, 955 Chesterbrook Boulevard, Suite 110, Chesterbrook, PA 19087 USA
| | - Ian E. James
- Clinical Operations and Medical Affairs Department, Trevena Inc, 955 Chesterbrook Boulevard, Suite 110, Chesterbrook, PA 19087 USA
| | - Mark A. Demitrack
- Clinical Operations and Medical Affairs Department, Trevena Inc, 955 Chesterbrook Boulevard, Suite 110, Chesterbrook, PA 19087 USA
| |
Collapse
|
32
|
Cassell RJ, Sharma KK, Su H, Cummins BR, Cui H, Mores KL, Blaine AT, Altman RA, van Rijn RM. The Meta-Position of Phe 4 in Leu-Enkephalin Regulates Potency, Selectivity, Functional Activity, and Signaling Bias at the Delta and Mu Opioid Receptors. Molecules 2019; 24:molecules24244542. [PMID: 31842282 PMCID: PMC6943441 DOI: 10.3390/molecules24244542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
As tool compounds to study cardiac ischemia, the endogenous δ-opioid receptors (δOR) agonist Leu5-enkephalin and the more metabolically stable synthetic peptide (d-Ala2, d-Leu5)-enkephalin are frequently employed. However, both peptides have similar pharmacological profiles that restrict detailed investigation of the cellular mechanism of the δOR’s protective role during ischemic events. Thus, a need remains for δOR peptides with improved selectivity and unique signaling properties for investigating the specific roles for δOR signaling in cardiac ischemia. To this end, we explored substitution at the Phe4 position of Leu5-enkephalin for its ability to modulate receptor function and selectivity. Peptides were assessed for their affinity to bind to δORs and µ-opioid receptors (µORs) and potency to inhibit cAMP signaling and to recruit β-arrestin 2. Additionally, peptide stability was measured in rat plasma. Substitution of the meta-position of Phe4 of Leu5-enkephalin provided high-affinity ligands with varying levels of selectivity and bias at both the δOR and µOR and improved peptide stability, while substitution with picoline derivatives produced lower-affinity ligands with G protein biases at both receptors. Overall, these favorable substitutions at the meta-position of Phe4 may be combined with other modifications to Leu5-enkephalin to deliver improved agonists with finely tuned potency, selectivity, bias and drug-like properties.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cricetulus
- Enkephalin, Leucine/genetics
- Enkephalin, Leucine/pharmacology
- Humans
- Phenylalanine
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Robert J. Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Krishna K. Sharma
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
| | - Hongyu Su
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | | | - Haoyue Cui
- College of Wuya, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Kendall L. Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Arryn T. Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Ryan A. Altman
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
- Correspondence: (R.A.A.); (R.M.v.R.)
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (R.A.A.); (R.M.v.R.)
| |
Collapse
|
33
|
Jordan CJ, Cao J, Newman AH, Xi ZX. Progress in agonist therapy for substance use disorders: Lessons learned from methadone and buprenorphine. Neuropharmacology 2019; 158:107609. [PMID: 31009632 PMCID: PMC6745247 DOI: 10.1016/j.neuropharm.2019.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022]
Abstract
Substance use disorders (SUD) are serious public health problems worldwide. Although significant progress has been made in understanding the neurobiology of drug reward and the transition to addiction, effective pharmacotherapies for SUD remain limited and a majority of drug users relapse even after a period of treatment. The United States Food and Drug Administration (FDA) has approved several medications for opioid, nicotine, and alcohol use disorders, whereas none are approved for the treatment of cocaine or other psychostimulant use disorders. The medications approved by the FDA for the treatment of SUD can be divided into two major classes - agonist replacement therapies, such as methadone and buprenorphine for opioid use disorders (OUD), nicotine replacement therapy (NRT) and varenicline for nicotine use disorders (NUD), and antagonist therapies, such as naloxone for opioid overdose and naltrexone for promoting abstinence. In the present review, we primarily focus on the pharmacological rationale of agonist replacement strategies in treatment of opioid dependence, and the potential translation of this rationale to new therapies for cocaine use disorders. We begin by describing the neural mechanisms underlying opioid reward, followed by preclinical and clinical findings supporting the utility of agonist therapies in the treatment of OUD. We then discuss recent progress of agonist therapies for cocaine use disorders based on lessons learned from methadone and buprenorphine. We contend that future studies should identify agonist pharmacotherapies that can facilitate abstinence in patients who are motivated to quit their illicit drug use. Focusing on those that are able to achieve abstinence from cocaine will provide a platform to broaden the effectiveness of medication and psychosocial treatment strategies for this underserved population. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Chloe J Jordan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
34
|
Conibear AE, Kelly E. A Biased View of μ-Opioid Receptors? Mol Pharmacol 2019; 96:542-549. [PMID: 31175184 PMCID: PMC6784500 DOI: 10.1124/mol.119.115956] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 01/29/2023] Open
Abstract
The field of biased agonism has grown substantially in recent years and the μ-opioid receptor has been one of the most intensively studied receptor targets for developing biased agonists. Yet, despite extensive research efforts, the development of analgesics with reduced adverse effects remains a significant challenge. In this review we discuss the evidence to support the prevailing hypothesis that a G protein-biased agonist at the μ-opioid receptor would be an effective analgesic without the accompanying adverse effects associated with conventional μ-opioid agonists. We also assess the current status of established and novel μ-opioid-receptor ligands that are proposed to be biased ligands. SIGNIFICANCE STATEMENT: The idea that biased agonists at the μ-opioid receptor might provide a therapeutic advantage in terms of producing effective analgesia with fewer adverse effects has driven the design of novel G protein-biased agonists. However, is the desirability of G protein-biased agonists at μ-opioid receptor substantiated by what we know of the physiology and pharmacology of the receptor? Also, do any of the novel biased agonists live up to their initial promise? Here we address these issues by critically examining the evidence that G protein bias really is desirable and also by discussing whether the ligands so far developed are clearly biased in vitro and whether this produces responses in vivo that might be commensurate with such bias.
Collapse
Affiliation(s)
- Alexandra E Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
35
|
DiCello JJ, Saito A, Rajasekhar P, Sebastian BW, McQuade RM, Gondin AB, Veldhuis NA, Canals M, Carbone SE, Poole DP. Agonist-dependent development of delta opioid receptor tolerance in the colon. Cell Mol Life Sci 2019; 76:3033-3050. [PMID: 30904952 PMCID: PMC11105391 DOI: 10.1007/s00018-019-03077-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
The use of opioid analgesics is severely limited due to the development of intractable constipation, mediated through activation of mu opioid receptors (MOR) expressed by enteric neurons. The related delta opioid receptor (DOR) is an emerging therapeutic target for chronic pain, depression and anxiety. Whether DOR agonists also promote sustained inhibition of colonic transit is unknown. This study examined acute and chronic tolerance to SNC80 and ARM390, which were full and partial DOR agonists in neural pathways controlling colonic motility, respectively. Excitatory pathways developed acute and chronic tolerance to SNC80, whereas only chronic tolerance developed in inhibitory pathways. Both pathways remained functional after acute or chronic ARM390 exposure. Propagating colonic motor patterns were significantly reduced after acute or chronic SNC80 treatment, but not by ARM390 pre-treatment. These findings demonstrate that SNC80 has a prolonged inhibitory effect on propagating colonic motility. ARM390 had no effect on motor patterns and thus may have fewer gastrointestinal side-effects.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Benzamides/pharmacology
- Colon/drug effects
- Colon/physiology
- Drug Tolerance
- Electric Stimulation
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Muscle Contraction/drug effects
- Neurons/metabolism
- Piperazines/pharmacology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Jesse J DiCello
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC, Australia.
| | - Ayame Saito
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC, Australia
| | - Pradeep Rajasekhar
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC, Australia
| | - Benjamin W Sebastian
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Rachel M McQuade
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC, Australia
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC, Australia
| | - Simona E Carbone
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC, Australia
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
36
|
Moye LS, Tipton AF, Dripps I, Sheets Z, Crombie A, Violin JD, Pradhan AA. Delta opioid receptor agonists are effective for multiple types of headache disorders. Neuropharmacology 2019; 148:77-86. [PMID: 30553828 PMCID: PMC6467218 DOI: 10.1016/j.neuropharm.2018.12.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/19/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
Headaches are highly disabling and are among the most common neurological disorders worldwide. Despite the high prevalence of headache, therapeutic options are limited. We recently identified the delta opioid receptor (DOR) as an emerging therapeutic target for migraine. In this study, we examined the effectiveness of a hallmark DOR agonist, SNC80, in disease models reflecting diverse headache disorders including: chronic migraine, post-traumatic headache (PTH), medication overuse headache by triptans (MOH), and opioid-induced hyperalgesia (OIH). To model chronic migraine C57BL/6J mice received chronic intermittent treatment with the known human migraine trigger, nitroglycerin. PTH was modeled by combining the closed head weight drop model with the nitroglycerin model of chronic migraine. For MOH and OIH, mice were chronically treated with sumatriptan or morphine, respectively. The development of periorbital and peripheral allodynia was observed in all four models; and SNC80 significantly inhibited allodynia in all cases. In addition, we also determined if chronic daily treatment with SNC80 would induce MOH/OIH, and we observed limited hyperalgesia relative to sumatriptan or morphine. Together, our results indicate that DOR agonists could be effective in multiple headache disorders, despite their distinct etiology, thus presenting a novel therapeutic target for headache.
Collapse
Affiliation(s)
- Laura S Moye
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - Alycia F Tipton
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - Zoie Sheets
- Department of Psychiatry, University of Illinois at Chicago, USA
| | | | | | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, USA.
| |
Collapse
|
37
|
Vicente-Sanchez A, Dripps IJ, Tipton AF, Akbari H, Akbari A, Jutkiewicz EM, Pradhan AA. Tolerance to high-internalizing δ opioid receptor agonist is critically mediated by arrestin 2. Br J Pharmacol 2018; 175:3050-3059. [PMID: 29722902 DOI: 10.1111/bph.14353] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Opioid δ receptor agonists are potent antihyperalgesics in chronic pain models, but tolerance develops after prolonged use. Previous evidence indicates that distinct forms of tolerance occur depending on the internalization properties of δ receptor agonists. As arrestins are important in receptor internalization, we investigated the role of arrestin 2 (β-arrestin 1) in mediating the development of tolerance induced by high- and low-internalizing δ receptor agonists. EXPERIMENTAL APPROACH We evaluated the effect of two δ receptor agonists with similar analgesic potencies, but either high-(SNC80) or low-(ARM390) internalization properties in wild-type (WT) and arrestin 2 knockout (KO) mice. We compared tolerance to the antihyperalgesic effects of these compounds in a model of inflammatory pain. We also examined tolerance to the convulsant effect of SNC80. Furthermore, effect of chronic treatment with SNC80 on δ agonist-stimulated [35 S]-GTPγS binding was determined in WT and KO mice. KEY RESULTS Arrestin 2 KO resulted in increased drug potency, duration of action and decreased acute tolerance to the antihyperalgesic effects of SNC80. In contrast, ARM390 produced similar effects in both WT and KO animals. Following chronic treatment, we found a marked decrease in the extent of tolerance to SNC80-induced antihyperalgesia and convulsions in arrestin 2 KO mice. Accordingly, δ receptors remained functionally coupled to G proteins in arrestin 2 KO mice chronically treated with SNC80. CONCLUSIONS AND IMPLICATIONS Overall, these results suggest that δ receptor agonists interact with arrestins in a ligand-specific manner, and tolerance to high- but not low-internalizing agonists are preferentially regulated by arrestin 2.
Collapse
Affiliation(s)
- Ana Vicente-Sanchez
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Isaac J Dripps
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Alycia F Tipton
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Heba Akbari
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Areeb Akbari
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|