1
|
Hu Y, Schnabl B, Stärkel P. Origin, Function, and Implications of Intestinal and Hepatic Macrophages in the Pathogenesis of Alcohol-Associated Liver Disease. Cells 2025; 14:207. [PMID: 39936998 PMCID: PMC11816606 DOI: 10.3390/cells14030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Macrophages are members of the human innate immune system, and the majority reside in the liver. In recent years, they have been recognized as essential players in the maintenance of liver and intestinal homeostasis as well as key guardians of their respective immune systems, and they are increasingly being recognized as such. Paradoxically, they are also likely involved in chronic pathologies of the gastrointestinal tract and potentially in the alteration of the gut-liver axis in alcohol use disorder (AUD) and alcohol-associated liver disease (ALD). To date, the causal relationship between macrophages, the pathogenesis of ALD, and the immune dysregulation of the gut remains unclear. In this review, we will discuss our current understanding of the heterogeneity of intestinal and hepatic macrophages, their ontogeny, the potential factors that regulate their origin, and the evidence of how they are associated with the manifestation of chronic inflammation. We will also illustrate how the micro-environment of the intestine shapes the phenotypes and functionality of the macrophage compartment in both the intestines and liver and how they change during chronic alcohol abuse. Finally, we highlight the obstacles to current research and the prospects for this field.
Collapse
Affiliation(s)
- Yifan Hu
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
2
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Escudero B, López-Valencia L, Arias Horcajadas F, Orio L. Divergent Roles of APOAI and APOM in the Identification of Alcohol Use Disorder and Their Association With Inflammation and Cognitive Decline: A Pilot Study. Int J Neuropsychopharmacol 2024; 27:pyae029. [PMID: 38970624 PMCID: PMC11287869 DOI: 10.1093/ijnp/pyae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) courses with inflammation and cognitive decline. Apolipoproteins have emerged as novel target compounds related to inflammatory processes and cognition. METHODS A cross-sectional study was performed on abstinent AUD patients with at least 1 month of abstinence (n = 33; 72.7% men) and healthy controls (n = 34; 47.1% men). A battery of plasma apolipoproteins (APOAI, APOAII, APOB, APOCII, APOE, APOJ, and APOM), plasma inflammatory markers (LPS, LBP), and their influence on cognition and presence of the disorder were investigated. RESULTS Higher levels of plasma APOAI, APOB, APOE, and APOJ, as well as the proinflammatory LPS, were observed in the AUD group, irrespective of sex, whereas APOM levels were lower vs controls. Hierarchical logistic regression analyses, adjusting for covariates (age, sex, education), associated APOM with the absence of cognitive impairment in AUD and identified APOAI and APOM as strong predictors of the presence or absence of the disorder, respectively. APOAI and APOM did not correlate with alcohol abuse variables or liver status markers, but they showed an opposite profile in their associations with LPS (positive for APOAI; negative for APOM) and cognition (negative for APOAI; positive for APOM) in the entire sample. CONCLUSIONS The HDL constituents APOAI and APOM were differentially regulated in the plasma of AUD patients compared with controls, playing divergent roles in the disorder identification and associations with inflammation and cognitive decline.
Collapse
Affiliation(s)
- Berta Escudero
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Leticia López-Valencia
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Francisco Arias Horcajadas
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Riapad: Research Network in Primary Care in Addictions, Spain
| | - Laura Orio
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Riapad: Research Network in Primary Care in Addictions, Spain
| |
Collapse
|
4
|
Zhang J, Zhang C, Yu L, Tian F, Chen W, Zhai Q. Analysis of the key genes of Lactobacillus reuteri strains involved in the protection against alcohol-induced intestinal barrier damage. Food Funct 2024; 15:6629-6641. [PMID: 38812427 DOI: 10.1039/d4fo01796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Gastrointestinal inflammation and intestinal barrier function have important effects on human health. Alcohol, an important foodborne hazard factor, damages the intestinal barrier, increasing the risk of disease. Lactobacillus reuteri strains have been reported to reduce gastrointestinal inflammation and strengthen the intestinal barrier. In this study, we selected three anti-inflammatory L. reuteri strains to evaluate their role in the protection of the intestinal barrier and their immunomodulatory activity in a mouse model of gradient alcohol intake. Among the three strains tested (FSCDJY33M3, FGSZY33L6, and FCQHCL8L6), L. reuteri FSCDJY33M3 was found to protect the intestinal barrier most effectively, possibly due to its ability to reduce the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) and increase the expression of tight junction proteins (occludin, claudin-3). Genomic analysis suggested that the protective effects of L. reuteri FSCDJY33M3 may be related to functional genes and glycoside hydrolases associated with energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism, and DNA replication, recombination, and repair. These genes include COG2856, COG1804, COG2071, and COG1061, which encode adenine deaminase, acyl-CoA transferases, glutamine amidotransferase, RNA helicase, and glycoside hydrolases, including GH13_20, GH53, and GH70. Our results identified functional genes that may be related to protection against alcohol-induced intestinal barrier damage, which might be useful for screening lactic acid bacterial strains that can protect the intestinal barrier.
Collapse
Affiliation(s)
- Jiayi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
López-Valencia L, Moya M, Escudero B, García-Bueno B, Orio L. Bacterial lipopolysaccharide forms aggregates with apolipoproteins in male and female rat brains after ethanol binges. J Lipid Res 2024; 65:100509. [PMID: 38295984 PMCID: PMC10907226 DOI: 10.1016/j.jlr.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/01/2024] Open
Abstract
Alcohol binge drinking allows the translocation of bacterial lipopolysaccharide (LPS) from the gut to the blood, which activates the peripheral immune system with consequences in neuroinflammation. A possible access/direct signaling of LPS to/in the brain has not yet been described under alcohol abuse conditions. Apolipoproteins are compounds altered by alcohol with high affinity to LPS which may be involved in its transport to the brain or in its elimination. Here, we explored the expression of small components of LPS, in its free form or bound to apolipoproteins, in the brain of female and male rats exposed to alcohol binges. Animals received ethanol oral gavages (3 g/kg every 8 h) for 4 days. LPS or its components (Lipid A and core), LPS-binding protein, corticosterone, lipoproteins (HDL, LDL), apolipoproteins (ApoAI, ApoB, and ApoE), and their receptors were measured in plasma and/or in nonperfused prefrontal cortex (PFC) and cerebellum. Brain LipidA-apolipoprotein aggregates were determined by Western blotting and confirmed by co-immunoprecipitation. In animals exposed to alcohol binges: 1) plasma LPS-binding protein was elevated in both sexes; 2) females showed elevations in plasma ApoAI and corticosterone levels; 3) Lipid A formed aggregates with ApoAI in the female PFC and with ApoB in males, the latter showing Toll-like receptor 4 upregulation in PFC but not females. These results suggest that small bacterial components are present within the brain, forming aggregates with different apolipoproteins, depending on the sex, after alcohol binge intoxications. Results may have implications for the crosstalk between alcohol, LPS, and neuroinflammation.
Collapse
Affiliation(s)
- L López-Valencia
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain; Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Neuroscience and Mental Health, Madrid, Spain
| | - M Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - B Escudero
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain; Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Neuroscience and Mental Health, Madrid, Spain
| | - B García-Bueno
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Neuroscience and Mental Health, Madrid, Spain; Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), Neurochemistry Research Institute UCM (IUIN), Madrid, Spain; Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - L Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain; Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Neuroscience and Mental Health, Madrid, Spain; RIAPAd: Research network in primary care in addictions ('Red de investigación en atención primaria en adicciones'), Spain.
| |
Collapse
|
6
|
Liang H, Xie Y, Li M, Chen J, Zhou W, Xia R, Ding Q, Yao Y, Zhang Z, Yang Y, Ran C, Zhou Z. The effect of stabilized culture of Lactobacillus rhamnosus GCC-3 on gut and liver health, and anti-viral immunity of zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109074. [PMID: 37714442 DOI: 10.1016/j.fsi.2023.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Probiotics are promising antibiotics alternatives to improve growth and disease resistance of cultured fish. Our study aimed to investigate the effect of dietary stabilized culture of Lactobacillus rhamnosus GCC-3 on growth performance, gut and liver health and anti-viral ability of zebrafish (Danio rerio). Zebrafish (0.161 ± 0.001 g) were fed control and the experimental diet containing 1% GCC-3 culture (1 × 107 CFU/g diet) for four weeks. Growth performance and gut and liver health parameters were monitored after four weeks feeding. The gut microbiota was analyzed by 16S rRNA gene sequencing. In another experiment, zebrafish (0.212 ± 0.001 g) were fed with basal or GCC-3 diets and challenged by spring viremia of carp virus (SVCV) at the end of feeding. The antiviral immune response was evaluated at 2nd and 4th days post SVCV infection and survival rate was calculated 14 days after challenge. The results showed that adding 1% GCC-3 significantly improved growth performance of zebrafish (P < 0.05). The intestinal expression of hypoxia-inducible factor Hif-1α, tight junction protein ZO-1α and ZO-1β was significantly up-regulated in 1% GCC-3 group compared with control (P < 0.05). Besides, 1% GCC-3 decreased the content of MDA and increased total antioxidant capacity in the intestine, and the relative expression of SOD, GST and Gpxa was improved. The abundance of Proteobacteria was reduced while Firmicutes was enriched in the intestinal microbiota of 1% GCC-3 group compared with control (P < 0.05). Zebrafish fed 1% GCC-3 showed higher survival rate after SVCV challenge. Accordingly, the expression of antiviral genes in the spleen was increased at 2nd and 4th days post infection. In conclusion, our results indicate that dietary 1% GCC-3 supplementation can improve gut and liver health as well as antiviral immunity of zebrafish.
Collapse
Affiliation(s)
- Hui Liang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ming Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Chen
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenhao Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Xia
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianwen Ding
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yuanyuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
González-Portilla M, Moya M, Montagud-Romero S, de Fonseca FR, Orio L, Rodríguez-Arias M. Oleoylethanolamide attenuates the stress-mediated potentiation of rewarding properties of cocaine associated with an increased TLR4 proinflammatory response. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110722. [PMID: 36724838 DOI: 10.1016/j.pnpbp.2023.110722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
The lipid-derived messenger oleoylethanolamide (OEA) has been involved in multiple physiological functions including metabolism and the immune response. More recently, OEA has been observed to affect reward-related behavior. Stress is a major risk factor for drug use and a predictor of drug relapse. In the laboratory, social stress has been largely studied using the social defeat (SD) model. Here, we explored the effects of different OEA administration schedules on the increased rewarding properties of cocaine induced by SD. In addition, we evaluated the anti-inflammatory action of OEA pretreatment in TLR4 expression caused by SD in the cerebellum, a novel brain structure that has been involved in the development of cocaine addiction. Adult OF1 mice were assigned to an experimental group according to the stress condition (exploration or SD) and treatment (OEA before SD, OEA before conditioning or subchronic OEA treatment). Mice were administered with OEA i.p (10 mg/kg) 10 min previously to the corresponding event. Three weeks after the last SD encounter, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg). As expected, socially defeated mice presented greater vulnerability to the cocaine reinforcing effects and expressed CPP. Conversely, this effect was not observed under a non-stressed condition. Most importantly, we observed that OEA pretreatment before SD or before conditioning prevented cocaine CPP in defeated mice. Biochemical analysis showed that OEA administration before SD decreased proinflammatory TLR4 upregulation in the cerebellum caused by social stress. In summary, our results suggest that OEA may have a protective effect on stress-induced increased cocaine sensitivity by exerting an anti-inflammatory action.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain.
| | - Marta Moya
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain.
| |
Collapse
|
8
|
Kodali M, Jankay T, Shetty AK, Reddy DS. Pathophysiological basis and promise of experimental therapies for Gulf War Illness, a chronic neuropsychiatric syndrome in veterans. Psychopharmacology (Berl) 2023; 240:673-697. [PMID: 36790443 DOI: 10.1007/s00213-023-06319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
This article describes the pathophysiology and potential treatments for Gulf War Illness (GWI), which is a chronic neuropsychiatric illness linked to a combination of chemical exposures experienced by service personnel during the first Gulf War in 1991. However, there is currently no effective treatment for veterans with GWI. The article focuses on the current status and efficacy of existing therapeutic interventions in preclinical models of GWI, as well as potential perspectives of promising therapies. GWI stems from changes in brain and peripheral systems in veterans, leading to neurocognitive deficits, as well as physiological and psychological effects resulting from multifaceted changes such as neuroinflammation, oxidative stress, and neuronal damage. Aging not only renders veterans more susceptible to GWI symptoms, but also attenuates their immune capabilities and response to therapies. A variety of experimental models are being used to investigate the pathophysiology and develop therapies that have the ability to alleviate devastating symptoms. Over two dozen therapeutic interventions targeting neuroinflammation, mitochondrial dysfunction, neuronal injury, and neurogenesis are being tested, including agents such as curcumin, curcumin nanoparticles, monosodium luminol, melatonin, resveratrol, fluoxetine, rolipram, oleoylethanolamide, ketamine, levetiracetam, nicotinamide riboside, minocycline, pyridazine derivatives, and neurosteroids. Preclinical outcomes show that some agents have promise, including curcumin, resveratrol, and ketamine, which are being tested in clinical trials in GWI veterans. Neuroprotectants and other compounds such as monosodium luminol, melatonin, levetiracetam, oleoylethanolamide, and nicotinamide riboside appear promising for future clinical trials. Neurosteroids have been shown to have neuroprotective and disease-modifying properties, which makes them a promising medicine for GWI. Therefore, accelerated clinical studies are urgently needed to evaluate and launch an effective therapy for veterans displaying GWI.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA
| | - Tanvi Jankay
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA.,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA. .,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
9
|
Rodríguez-González A, Moya M, Rodríguez de Fonseca F, Gómez de Heras R, Orio L. Alcohol binge drinking induces downregulation of blood-brain barrier proteins in the rat frontal cortex -but not in the hippocampus- that is not prevented by OEA pretreatment. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11091. [PMID: 38389819 PMCID: PMC10880752 DOI: 10.3389/adar.2023.11091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2024]
Abstract
Alcohol binge drinking promotes neuroinflammation which could be partially mediated by the passage of ABD-induced peripheral inflammatory molecules to the brain parenchyma through the blood-brain barrier. The BBB is sealed by tight junction proteins, which regulate the access of substances to the brain. Whether ABD alters the BBB or not remains controversial. Here, we measured the expression of BBB proteins in frontal cortex and hippocampus after an ABD procedure that was previously shown to induce neuroinflammation in the FC, and checked neuroinflammation in the hippocampus. Oleoylethanolamide is known to inhibit ABD-induced neuroinflammation in rat FC but the mechanisms of action are not clear: whereas OEA protects against alcohol-induced breakdown of the TJ proteins in the gut barrier reducing peripheral inflammation, its effect in the TJ of the BBB remains unknown. Here, we studied whether OEA (5 mg/kg, before each gavage) prevented alcohol-induced BBB dysfunction by measuring the expression of zona-occludens, occludin, and laminin in FC and hippocampus. ABD animals showed reduced laminin and occludin levels in the FC, indicative of BBB dysfunction, which is concordant with previous findings showing ABD-induced neuroinflammation in this brain region. OEA did not prevent ABD-induced changes in the BBB proteins in the FC, suggesting that the OEA main mechanism of action to inhibit neuroinflammation in this brain region is not related to prevention of TJ proteins alteration in the BBB. In the hippocampus, this ABD protocol did not alter BBB protein levels and no markers of neuroinflammation were found elevated.
Collapse
Affiliation(s)
- Alicia Rodríguez-González
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Marta Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
- RIAPAd: Research Network in Primary Care in Addictions (Red de Investigación en Atención Primaria en Adicciones), Madrid, Spain
| | - Raquel Gómez de Heras
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
- RIAPAd: Research Network in Primary Care in Addictions (Red de Investigación en Atención Primaria en Adicciones), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
10
|
Hou Z, Ding Q, Li Y, Zhao Z, Yan F, Li Y, Wang X, Xu J, Chen W, Wu G, Ruan X, Zhao L. Intestinal epithelial β Klotho is a critical protective factor in alcohol-induced intestinal barrier dysfunction and liver injury. EBioMedicine 2022; 82:104181. [PMID: 35908416 PMCID: PMC9352463 DOI: 10.1016/j.ebiom.2022.104181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/26/2022] Open
|
11
|
Yuan X, Liu J, Hu X, Yang S, Zhong S, Yang T, Zhou Y, Zhao G, Jiang Y, Li Y. Alterations in the jejunal microbiota and fecal metabolite profiles of rabbits infected with Eimeria intestinalis. Parasit Vectors 2022; 15:231. [PMID: 35754027 PMCID: PMC9233780 DOI: 10.1186/s13071-022-05340-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Abstract
Background Rabbit coccidiosis is a major disease caused by various Eimeria species and causes enormous economic losses to the rabbit industry. Coccidia infection has a wide impact on the gut microbiota and intestinal biochemical equilibrium. In the present study, we established a model of Eimeria intestinalis infection in rabbits to evaluate the jejunal microbiota and fecal metabolite profiles. Methods Rabbits in the infected group were orally inoculated with 3 × 103E. intestinalis oocysts. On the eighth day of infection, jejunal contents and feces were collected for 16S rRNA gene sequencing and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis, respectively. Jejunum tissues were harvested for hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and immunohistochemistry (IHC) staining. Results Histopathological analysis showed that the whole jejunum was parasitized by E. intestinalis in a range of life cycle stages, and PAS staining showed that E. intestinalis infection caused extensive loss of goblet cells. IHC staining revealed that TNF-α expression was higher in the E. intestinalis infection group. Moreover, both the jejunal microbiota and metabolites significantly altered after E. intestinalis infection. At the genus level, the abundances of Escherichia and Enterococcus significantly increased in the infected group compared with the control group, while those of Oscillospira, Ruminococcus, Bacteroides, Akkermansia, Coprococcus, and Sarcina significantly decreased. In addition, 20 metabolites and two metabolic pathways were altered after E. intestinalis infection, and the major disrupted metabolic pathway was lipid metabolism. Conclusions Eimeria intestinalis infection induced intestinal inflammation and destroyed the intestinal homeostasis at the parasitized sites, leading to significant changes in the gut microbiota and subsequent corresponding changes in metabolites. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Xu Yuan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jin Liu
- Dezhou Agricultural and Rural Bureau, Dezhou, 253000, Shandong, China
| | - Xiaofen Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shanshan Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shengwei Zhong
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Tingyu Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yunxiao Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Guotong Zhao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yijie Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
12
|
Liu X, Vigorito M, Huang W, Khan MAS, Chang SL. The Impact of Alcohol-Induced Dysbiosis on Diseases and Disorders of the Central Nervous System. J Neuroimmune Pharmacol 2022; 17:131-151. [PMID: 34843074 DOI: 10.1007/s11481-021-10033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
The human digestive tract contains a diverse and abundant microbiota that is important for health. Excessive alcohol use can disrupt the balance of these microbes (known as dysbiosis), leading to elevated blood endotoxin levels and systemic inflammation. Using QIAGEN Ingenuity Pathway Analysis (IPA) bioinformatics tool, we have confirmed that peripheral endotoxin (lipopolysaccharide) mediates various cytokines to enhance the neuroinflammation signaling pathway. The literature has identified alcohol-mediated neuroinflammation as a possible risk factor for the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), and psychiatric disorders such as addiction to alcohol and other drugs. In this review, we discuss alcohol-use-induced dysbiosis in the gut and other body parts as a causal factor in the progression of Central Nervous System (CNS) diseases including neurodegenerative disease and possibly alcohol use disorder.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Michael Vigorito
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Psychology, Seton Hall University, South Orange, NJ, 07079, USA
| | - Wenfei Huang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, MA, 02114, USA.
| | - Sulie L Chang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA.
| |
Collapse
|
13
|
del Pozo A, Lehmann L, Knox KM, Barker-Haliski M. Can Old Animals Reveal New Targets? The Aging and Degenerating Brain as a New Precision Medicine Opportunity for Epilepsy. Front Neurol 2022; 13:833624. [PMID: 35572927 PMCID: PMC9096090 DOI: 10.3389/fneur.2022.833624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/07/2022] [Indexed: 02/02/2023] Open
Abstract
Older people represent the fastest growing group with epilepsy diagnosis. For example, cerebrovascular disease may underlie roughly 30-50% of epilepsy in older adults and seizures are also an underrecognized comorbidity of Alzheimer's disease (AD). As a result, up to 10% of nursing home residents may take antiseizure medicines (ASMs). Despite the greater incidence of epilepsy in older individuals and increased risk of comorbid seizures in people with AD, aged animals with seizures are strikingly underrepresented in epilepsy drug discovery practice. Increased integration of aged animals into preclinical epilepsy drug discovery could better inform the potential tolerability and pharmacokinetic interactions in aged individuals as the global population becomes increasingly older. Quite simply, the ASMs on the market today were brought forth based on efficacy in young adult, neurologically intact rodents; preclinical information concerning the efficacy and safety of promising ASMs is not routinely evaluated in aged animals. Integrating aged animals more often into basic epilepsy research may also uncover novel treatments for hyperexcitability. For example, cannabidiol and fenfluramine demonstrated clear efficacy in syndrome-specific pediatric models that led to a paradigm shift in the perceived value of pediatric models for ASM discovery practice; aged rodents with seizures or rodents with aging-related neuropathology represent an untapped resource that could similarly change epilepsy drug discovery. This review, therefore, summarizes how aged rodent models have thus far been used for epilepsy research, what studies have been conducted to assess ASM efficacy in aged rodent seizure and epilepsy models, and lastly to identify remaining gaps to engage aging-related neurological disease models for ASM discovery, which may simultaneously reveal novel mechanisms associated with epilepsy.
Collapse
Affiliation(s)
| | | | | | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Mu S, Lin Y, Xu Y, Wei X, Zeng Z, Lin K, Zhu L, Liu Q, Qi X, Wei L, Liang S, Wang S. A novel rat model for cerebral venous sinus thrombosis: verification of similarity to human disease via clinical analysis and experimental validation. J Transl Med 2022; 20:174. [PMID: 35410343 PMCID: PMC8996223 DOI: 10.1186/s12967-022-03374-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral venous sinus thrombosis (CVST) is a rare neurovascular disorder with highly variable manifestations and clinical courses. Animal models properly matched to the clinical form of CVST are necessary for elucidating the pathophysiology of the disease. In this study, we aimed to establish a rat model that accurately recapitulates the clinical features of CVST in human patients. Methods This study consisted of a clinical analysis and animal experiments. Clinical data for two centres obtained between January 2016 and May 2021 were collected and analysed retrospectively. In addition, a Sprague–Dawley rat model of CVST was established by inserting a water-swellable rubber device into the superior sagittal sinus, following which imaging, histological, haematological, and behavioural tests were used to investigate pathophysiological changes. Principal component analysis and hierarchical clustering heatmaps were used to evaluate the similarity between the animal models and human patients. Results The imaging results revealed the possibility of vasogenic oedema in animal models. Haematological analysis indicated an inflammatory and hypercoagulable state. These findings were mostly matched with the retrospective clinical data. Pathological and serological tests further revealed brain parenchymal damage related to CVST in animal models. Conclusions We successfully established a stable and reproducible rat model of CVST. The high similarity between clinical patients and animal models was verified via cluster analysis. This model may be useful for the study of CVST pathophysiology and potential therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03374-y.
Collapse
|
15
|
Wang P, Guo P, Wang Y, Teng X, Zhang H, Sun L, Xue M, Liang H. Propolis Ameliorates Alcohol-Induced Depressive Symptoms in C57BL/6J Mice by Regulating Intestinal Mucosal Barrier Function and Inflammatory Reaction. Nutrients 2022; 14:nu14061213. [PMID: 35334870 PMCID: PMC8950298 DOI: 10.3390/nu14061213] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Accumulating evidence points to a critical role of the brain gut axis as an important paradigm for many central nervous system diseases. Recent studies suggest that propolis has obvious neuroprotective properties and functionality in regulating intestinal bacteria flora, hinting at a potential key effect at both terminals of this axis regulation. However, currently no clear evidence confirms the effects of propolis on alcohol-induced depression. Here, we establish an alcoholic depression model with C57BL/6J mice and demonstrate that treatment with propolis protects against alcohol-induced depressive symptoms by behavioral tests. In addition, propolis attenuates the injury of nerve cells in the hippocampal region and restores the serum levels of brain-derived neurotrophic factor (BDNF) and dopamine (DA) in mice with alcohol-induced depression. Pathology and biotin tracer assays show that propolis repairs the intestinal leakage caused by alcohol. Additionally, propolis treatment increases the expression levels of intestinal intercellular tight junctions’ (TJs’) structural proteins Claudin-1, Occludin and zona occludens-1 (ZO-1), as well as the activation state of the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) signaling pathway, which is closely related to the intestinal permeability. Furthermore, propolis can reduce the levels of pro-inflammatory, lipopolysaccharide (LPS) and fatty-acid-binding protein 2 (FABP2), suggesting the significance of the inflammatory response in alcoholic depression. Collectively, our findings indicate that propolis exerted an improving effect on alcohol-induced depressive symptoms by ameliorating brain gut dysfunction.
Collapse
Affiliation(s)
- Peng Wang
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Peiyu Guo
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Yanhui Wang
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Xiangyun Teng
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Huaqi Zhang
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Lirui Sun
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Ningxia Road 308, Qingdao 266071, China;
| | - Hui Liang
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
- Correspondence: ; Tel.: +86-532-83812434
| |
Collapse
|
16
|
Sphk2 deletion is involved in structural abnormalities and Th17 response but does not aggravate colon inflammation induced by sub-chronic stress. Sci Rep 2022; 12:4073. [PMID: 35260749 PMCID: PMC8904788 DOI: 10.1038/s41598-022-08011-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
The chronic inflammatory process that characterizes inflammatory bowel diseases (IBD) is mainly driven by T-cell response to microbial and environmental antigens. Psychological stress is a potential trigger of clinical flares of IBD, and sphingosine-1-phosphate (S1P) is involved in T-cell recruitment. Hence, stress impact and the absence of sphingosine kinase 2 (Sphk2), an enzyme of S1P metabolism, were evaluated in the colon of mice after sub-chronic stress exposure. Here, we show that sub-chronic stress increased S1P in the mouse colon, possibly due to a decrease in its degradation enzymes and Sphk2. S1P accumulation could lead to inflammation and immune dysregulation reflected by upregulation of toll-like receptor 4 (TLR4) pathway, inhibition of anti-inflammatory mechanisms, cytokine-expression profile towards a T-helper lymphocyte 17 (Th17) polarization, plasmacytosis, decrease in IgA+ lymphoid lineage cells (CD45+)/B cells/plasmablasts, and increase in IgM+ B cells. Stress also enhanced intestinal permeability. Sphk2 knockout mice presented a cytokine-expression profile towards a boosted Th17 response, lower expression of claudin 3,4,7,8, and structural abnormalities in the colon. Intestinal pathophysiology should consider stress and S1P as modulators of the immune response. S1P-based drugs, including Sphk2 potentiation, represent a promising approach to treat IBD.
Collapse
|
17
|
Shi Y, Zou Y, Xiong Y, Zhang S, Song M, An X, Liu C, Zhang W, Chen S. Host Gasdermin D restrains systemic endotoxemia by capturing Proteobacteria in the colon of high-fat diet-feeding mice. Gut Microbes 2021; 13:1946369. [PMID: 34275417 PMCID: PMC8288038 DOI: 10.1080/19490976.2021.1946369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gasdermin D (GSDMD) functions as a key pyroptotic executor through its secreted N-terminal domain (GSDMD-N). However, the functional relevance and mechanistic basis of the precise roles of host colonic GSDMD in high-fat diet (HFD)-induced gut dysbiosis and systemic endotoxemia remain elusive. In this study, we demonstrate that HFD feeding triggers GSDMD-N secretion of both T-lymphocytes and enterocytes in mouse colons. GSDMD deficiency aggravates HFD-induced systemic endotoxemia, gut barrier impairment, and colonic inflammation. More importantly, active GSDMD-N kills the Proteobacteria phylum via directly interacting with Cardiolipin. Mechanistically, we identify that the Glu236 (a known residue for GSDMD protein cleavage) is a bona fide important site for the bacterial recognition of GSDMD. Collectively, our findings explain the mechanism by which colonic GSDMD-N maintains low levels of HFD-induced metabolic endotoxemia. A GSDMD-N mimetic containing an exposed Glu236 site could be an attractive strategy for the treatment of HFD-induced metabolic endotoxemia.
Collapse
Affiliation(s)
- Yujie Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yixin Zou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yonghong Xiong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shiyao Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China,Wenxiang Zhang State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Avenue, Nanjing211198, China
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China,Wenxiang Zhang State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Avenue, Nanjing211198, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China,CONTACT Siyu Chen
| |
Collapse
|
18
|
Rodríguez-González A, Vitali F, Moya M, De Filippo C, Passani MB, Orio L. Effects of Alcohol Binge Drinking and Oleoylethanolamide Pretreatment in the Gut Microbiota. Front Cell Infect Microbiol 2021; 11:731910. [PMID: 34888256 PMCID: PMC8651011 DOI: 10.3389/fcimb.2021.731910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/26/2021] [Indexed: 01/27/2023] Open
Abstract
Introduction Chronic alcohol consumption is known to cause gut dysbiosis (changes in microbiota composition and/or function, disruptive of the normal host–microbiota interactions). However, little is known about the changes that alcohol binge drinking induces in the gut microbiota. Here, we have tested the hypothesis that a protocol of alcohol binge drinking, known to induce neuroinflammation in previous studies, also promotes intestinal dysbiosis, and we explored how oleoylethanolamide (OEA, an acylethanolamide proven to counteract alcohol binge drinking-induced neuroinflammation) pretreatment modulates alcohol-induced dysbiosis. Methods Alcohol binges were forced by gavage three times per day during 4 consecutive days; OEA pretreatment (intraperitoneal or intragastric) was administered before each alcohol gavage. Stool microbiota composition was assessed by next-generation 16S rRNA gene sequencing, prior and after the 4-day alcohol binge protocol. Results Alcohol binge drinking reduced the richness of the gut microbiota and changed the microbial community, reducing Lactobacillus among other genera. Pretreatment with OEA in the alcohol-administered rats decreased the richness, evenness, and Shannon indices to a greater extent with respect to alcohol alone, also changing the community structure. Microbial interactions in the association network were further decreased following OEA administration in the alcohol group, with respect to the water administration. The synergistic interaction between alcohol binge and OEA was affected by the route of administration of OEA, since oral and i.p. administrations differently changed the community structure. Conclusion Results suggest that alcohol binge drinking produces a clear dysbiosis in animals; we observed that the well-known protective actions of OEA in the context of alcohol abuse might not be related to OEA-induced changes in alcohol-induced dysbiosis. These are observational results, and thus, further research will be needed for a complete understanding of the biological significance of the observed changes.
Collapse
Affiliation(s)
- Alicia Rodríguez-González
- Laboratory of Psychobiology, Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Marta Moya
- Laboratory of Psychobiology, Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | | | - Laura Orio
- Laboratory of Psychobiology, Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
19
|
Malazogu F, Rousseau RK, Shivappa N, Huibner S, Walmsley SL, Kovacs CM, Benko E, Reinhard RJ, Rosenes R, Hebert JR, Kaul R. The Dietary Inflammatory Index Is Not Associated With Gut Permeability or Biomarkers of Systemic Inflammation in HIV Immunologic Non-responders. Front Nutr 2021; 8:736816. [PMID: 34881278 PMCID: PMC8646029 DOI: 10.3389/fnut.2021.736816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Immunologic non-responders (INRs) are a subset of individuals living with HIV who have suboptimal blood CD4+ T cell recovery despite effective antiretroviral therapy (ART). They are at an increased risk of serious non-AIDS co-morbidities and death, and demonstrate enhanced systemic immune activation. In other populations diet has been correlated with markers of systemic inflammation through the Diet Inflammatory Index (DII), but this association has not been studied in persons living with HIV (PLWH). Blood was collected from 28 INR PLWH with a blood CD4+ T cell count <350/μL despite ≥2 years of effective ART. Participants completed a Canadian Diet History Questionnaire, and their responses were used to calculate the DII. Plasma inflammatory markers (IFNγ, TNF, IL-6, sVCAM, D-dimer, sCD14 and CRP) were assayed by ELISA, cellular immune activation (HLA-DR and CD38 on CD4+ and CD8+ T cells) was quantified using flow cytometry, and small bowel permeability assessed by calculation of the urine LacMan ratio after drinking a mix of lactulose and mannitol. Participants were a median age of 57 years, had been on effective ART for 15 years, and the median DII was -1.91 (range of -3.78 to +2.23). No correlation was observed between DII and plasma markers of inflammation, levels of T cell activation, gut permeability, or the biomarker of bacterial translocation sCD14. Self-reported alcohol intake, a potential confounder of the relationship between diet and inflammatory biomarkers, was also not associated with systemic inflammation or gut permeability. Our findings suggest that other mechanisms, rather than diet, are likely to be the major driver of systemic inflammation in INR individuals.
Collapse
Affiliation(s)
- Fat Malazogu
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Rodney K Rousseau
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, United States.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States.,Department of Nutrition, Connecting Health Innovations Limited Liability Corporation (LLC), Columbia, SC, United States
| | - Sanja Huibner
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Sharon L Walmsley
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Colin M Kovacs
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada.,Maple Leaf Medical Clinic, Toronto, ON, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, ON, Canada
| | | | | | - James R Hebert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, United States.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States.,Department of Nutrition, Connecting Health Innovations Limited Liability Corporation (LLC), Columbia, SC, United States
| | - Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University Health Network, Toronto, ON, Canada
| |
Collapse
|
20
|
Zhao M, Chen C, Yuan Z, Li W, Zhang M, Cui N, Duan Y, Zhang X, Zhang P. Dietary Bacillus subtilis supplementation alleviates alcohol-induced liver injury by maintaining intestinal integrity and gut microbiota homeostasis in mice. Exp Ther Med 2021; 22:1312. [PMID: 34630666 PMCID: PMC8461600 DOI: 10.3892/etm.2021.10747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Alcoholic liver disease (ALD) is a worldwide health problem with limited therapeutic options, which is associated with gut-derived endotoxins, particularly lipopolysaccharide (LPS) and intestinal microbiota dysbiosis. Recently, probiotics, synbiotics and other food additive interventions have been shown to be effective in decreasing or preventing the progression of ALD. Bacillus subtilis (B. subtilis) and its metabolic products are widely used as food additives to maintain intestinal health, but the protective effects of B. subtilis against alcohol-induced liver injury are poorly understood. In the present study a chronic alcohol-induced liver injury model was constructed based on the Lieber-DeCarli diet and it aimed to determine whether dietary B. subtilis supplementation may alleviate alcohol-induced liver injury. Results revealed that prophylactic B. subtilis supplementation partially restored gut microbiota homeostasis and relieved alcohol-induced intestinal barrier injury, which significantly decreased the translocation of bacterial endotoxins to the blood. In addition, the decreased serum LPS alleviated hepatic inflammation via the toll-like receptor 4 pathway, resulting in improved hepatic structure and function. These results demonstrated that dietary B. subtilis supplementation imparts novel hepatoprotective functions by improving intestinal permeability and homeostasis.
Collapse
Affiliation(s)
- Meiqi Zhao
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Chuanai Chen
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Zhoujie Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China.,Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wenwen Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China.,Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Mohan Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Nailing Cui
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yitao Duan
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Xiaoqian Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China.,Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Peng Zhang
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
21
|
A Duet Between Histamine and Oleoylethanolamide in the Control of Homeostatic and Cognitive Processes. Curr Top Behav Neurosci 2021; 59:389-410. [PMID: 34410679 DOI: 10.1007/7854_2021_236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In ballet, a pas de deux (in French it means "step of two") is a duet in which the two dancers perform ballet steps together. The suite of dances shares a common theme of partnership. How could we better describe the fine interplay between oleoylethanolamide (OEA) and histamine, two phylogenetically ancient molecules controlling metabolic, homeostatic and cognitive processes? Contrary to the pas de deux though, the two dancers presumably never embrace each other as a dancing pair but execute their "virtuoso solo" constantly exchanging interoceptive messages presumably via vagal afferents, the blood stream, the neuroenteric system. With one exception, which is in the control of liver ketogenesis, as in hepatocytes, OEA biosynthesis strictly depends on the activation of histaminergic H1 receptors. In this review, we recapitulate our main findings that evidence the interplay of histamine and OEA in the control of food consumption and eating behaviour, in the consolidation of emotional memory and mood, and finally, in the synthesis of ketone bodies. We will also summarise some of the putative underlying mechanisms for each scenario.
Collapse
|
22
|
Moya M, San Felipe D, Ballesta A, Alén F, Rodríguez de Fonseca F, García-Bueno B, Marco EM, Orio L. Cerebellar and cortical TLR4 activation and behavioral impairments in Wernicke-Korsakoff Syndrome: Pharmacological effects of oleoylethanolamide. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110190. [PMID: 33271211 DOI: 10.1016/j.pnpbp.2020.110190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
Wernicke-Korsakoff Syndrome (WKS) is a neuropsychiatric disorder whose etiology is a thiamine deficiency (TD), with alcoholism being the main underlying cause. Previous evidence suggests the presence of initial neuroinflammation and oxidative/nitrosative stress in the physiopathology, although the specific molecular mechanisms underlying TD-induced brain damage and behavioral disabilities are unknown. We explored the specific role of the innate immune receptor TLR4 in three murine models of WKS, based on the combination of a thiamine-deficient diet and pyrithiamine injections (0.25 mg/kg, i.p.) over time. The Symptomatic Model (SM) allowed us to describe the complete neurological/neurobehavioral symptomatology over 16 days of TD. Animals showed an upregulation of the TLR4 signaling pathway both in the frontal cortex (FC) and cerebellum and clear motor impairments related with cerebellar dysfunction. However, in the Pre-Symptomatic Model (PSM), 12 days of TD induced the TLR4 pathway upregulation in the FC, which correlated with disinhibited-like behavior, but not in the cerebellum, and no motor impairments. In addition, we tested the effects of the biolipid oleoylethanolamide (OEA, 10 mg/kg, i.p., once daily, starting before any symptom of the pathology is manifested) through the Glucose-Precipitated Model (GPM), which was generated by glucose loading (5 g/kg, i.v., last day) in thiamine-deficient animals to accelerate damage. Pretreatment with OEA prevented the TLR4-induced signature in the FC, as well as an underlying incipient memory disability and disinhibited-like behavior. This study suggests a key role for TLR4 in TD-induced neuroinflammation in the FC and cerebellum, and it reveals different vulnerability of these brain regions in WKS over time. Pre-treatment with OEA counteracts TD-induced TLR4-associated neuroinflammation and may serve as co-adjuvant therapy to prevent WKS-induced neurobehavioral alterations.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego San Felipe
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, UCM, Spain
| | - Antonio Ballesta
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco Alén
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional de Málaga, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Spain
| | - Eva M Marco
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, UCM, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Laura Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
23
|
Janicova A, Haag F, Xu B, Garza AP, Dunay IR, Neunaber C, Nowak AJ, Cavalli P, Marzi I, Sturm R, Relja B. Acute Alcohol Intoxication Modulates Monocyte Subsets and Their Functions in a Time-Dependent Manner in Healthy Volunteers. Front Immunol 2021; 12:652488. [PMID: 34084163 PMCID: PMC8167072 DOI: 10.3389/fimmu.2021.652488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Background Excessive alcohol intake is associated with adverse immune response-related effects, however, acute and chronic abuse differently modulate monocyte activation. In this study, we have evaluated the phenotypic and functional changes of monocytes in acutely intoxicated healthy volunteers (HV). Methods Twenty-two HV consumed individually adjusted amounts of alcoholic beverages until reaching a blood alcohol level of 1‰ after 4h (T4). Peripheral blood was withdrawn before and 2h (T2), 4h (T4), 6h (T6), 24h (T24), and 48h (T48) after starting the experiment and stained for CD14, CD16 and TLR4. CD14brightCD16-, CD14brightCD16+ and CD14dimCD16+ monocyte subsets and their TLR4 expression were analyzed by flow cytometry. Inflammasome activation via caspase-1 in CD14+ monocytes was measured upon an ex vivo in vitro LPS stimulation. Systemic IL-1β and adhesion capacity of isolated CD14+ monocytes upon LPS stimulation were evaluated. Results The percentage of CD14+ monocyte did not change following alcohol intoxication, whereas CD14brightCD16- monocyte subset significantly increased at T2 and T24, CD14brightCD16+ at T2, T4 and T6 and CD14dimCD16+ at T4 and T6. The relative fraction of TLR4 expressing CD14+ monocytes as well as the density of TLR4 surface presentation increased at T2 and decreased at T48 significantly. TLR4+CD14+ monocytes were significantly enhanced in all subsets at T2. TLR4 expression significantly decreased in CD14brightCD16- at T48, in CD14brightCD16+ at T24 and T48, increased in CD14dimCD16+ at T2. IL-1β release upon LPS stimulation decreased at T48, correlating with TLR4 receptor expression. Alcohol downregulated inflammasome activation following ex vivo in vitro stimulation with LPS between T2 and T48 vs. T0. The adhesion capacity of CD14+ monocytes decreased from T2 with significance at T4, T6 and T48. Following LPS administration, a significant reduction of adhesion was observed at T4 and T6. Conclusions Alcohol intoxication immediately redistributes monocyte subsets toward the pro-inflammatory phenotype with their subsequent differentiation into the anti-inflammatory phenotype. This is paralleled by a significant functional depression, suggesting an alcohol-induced time-dependent hyporesponsiveness of monocytes to pathogenic triggers.
Collapse
Affiliation(s)
- Andrea Janicova
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Florian Haag
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Baolin Xu
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Alejandra P Garza
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Aleksander J Nowak
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Paola Cavalli
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Ramona Sturm
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany.,Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| |
Collapse
|
24
|
Zhang T, Li J, Liu CP, Guo M, Gao CL, Zhou LP, Long Y, Xu Y. Butyrate ameliorates alcoholic fatty liver disease via reducing endotoxemia and inhibiting liver gasdermin D-mediated pyroptosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:873. [PMID: 34164507 PMCID: PMC8184481 DOI: 10.21037/atm-21-2158] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alcoholic fatty liver disease (AFLD) is characterized by hepatic steatosis and carries an elevated risk of cirrhosis and hepatocellular carcinoma. However, the mechanism of AFLD has not been elucidated thoroughly, and there are still no efficient therapies in clinic. Notably, butyrate, one kind of short-chain fatty acids produced by gut microbiota, has been shown to improve methionine-choline-deficient diet-induced non-alcoholic steatohepatitis. And our previous study found that butyrate ameliorated endotoxemia in db/db mice. In this study, we aimed to explore the role of butyrate in the development of AFLD. METHODS C57BL/6 mice were treated with saline (normal control), alcohol with or without butyrate by gavage for 6 months. AFLD was evaluated by the levels of serum alcohol, aspartate aminotransferase (AST), alanine transaminase (ALT), triglyceride (TG) and intrahepatic TG. And the histology and inflammation in liver and colon were analyzed using hematoxylin-eosin (H&E) staining, immunohistochemistry and western blot. In addition, gut microbiota composition was analyzed using the V3-V4 regions of the bacterial 16S ribosomal RNA gene by sequence. Furthermore, we performed in vitro experiment to verify the role of butyrate in hepatocyte by western blot and transmission electron microscopy. RESULTS We found that butyrate ameliorated alcohol-induced hepatic steatosis and inflammation. Furthermore, chronic alcohol feeding induced dysbiosis and dysfunction of the gut microbiota, disrupted the intestinal barrier, and increased serum endotoxin levels. Meanwhile, butyrate improved the intestinal barrier disruption and endotoxemia induced by alcohol, but did not significantly alleviate the microbiome dysfunction. Mechanistically, butyrate ameliorated AFLD by inhibiting gasdermin D (GSDMD)-mediated pyroptosis. CONCLUSIONS In summary, we found butyrate ameliorated alcoholic fatty liver by down-regulating GSDMD-mediated pyroptosis. We speculate that butyrate improves AFLD mainly by maintaining intestinal barrier function and alleviating gut leakage. These findings suggest that butyrate may have the potential to serve as a novel treatment for AFLD.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jun Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Cui-Ping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Man Guo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chen-Lin Gao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu-Ping Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Long
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| |
Collapse
|
25
|
Qin C, Hu J, Wan Y, Cai M, Wang Z, Peng Z, Liao Y, Li D, Yao P, Liu L, Rong S, Bao W, Xu G, Yang W. Narrative review on potential role of gut microbiota in certain substance addiction. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110093. [PMID: 32898589 DOI: 10.1016/j.pnpbp.2020.110093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
As a neuropsychiatric disorder, substance addiction represents a major public health issue with high prevalence and mortality in many countries. Recently, gut microbiota has been certified to play a part in substance addiction through various mechanisms. Hence, we mainly focused on three substance including alcohol, cocaine and methamphetamine in this review, and summarized their relationships with gut microbiota, respectively. Besides, we also concluded the possible treatments for substance addiction from the perspective of applying gut microbiota. This review aims to build a bridge between substance addiction and gut microbiota according to existing evidences, so as to excavate the possible bi-directional function of microbiota-gut-brain axis in substance addiction for developing therapeutic strategies in the future.
Collapse
Affiliation(s)
- Chenyuan Qin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Jiawei Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yiming Wan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Mengyao Cai
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhenting Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA
| | - Guifeng Xu
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
26
|
García-Baos A, Alegre-Zurano L, Cantacorps L, Martín-Sánchez A, Valverde O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110054. [PMID: 32758518 DOI: 10.1016/j.pnpbp.2020.110054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a psychoactive substance highly used worldwide, whose harmful use might cause a broad range of mental and behavioural disorders. Underlying brain impact, the neuroinflammatory response induced by alcohol is recognised as a key contributing factor in the progression of other neuropathological processes, such as neurodegeneration. These sequels are determined by multiple factors, including age of exposure. Strikingly, it seems that the endocannabinoid system modulation could regulate the alcohol-induced neuroinflammation. Although direct CB1 activation can worsen alcohol consequences, targeting other components of the expanded endocannabinoid system may counterbalance the pro-inflammatory response. Indeed, specific modulations of the expanded endocannabinoid system have been proved to exert anti-inflammatory effects, primarily through the CB2 and PPARγ signalling. Among them, some endo- and exogeneous cannabinoids can block certain pro-inflammatory mediators, such as NF-κB, thereby neutralizing the neuroinflammatory intracellular cascades. Furthermore, a number of cannabinoids are able to activate complementary anti-inflammatory pathways, which are necessary for the transition from chronically overactivated microglia to a regenerative microglial phenotype. Thus, cannabinoid modulation provides cooperative anti-inflammatory mechanisms that may be advantageous to resolve a pathological neuroinflammation in an alcohol-dependent context.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
27
|
Wei ZX, Chen L, Zhang JJ, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in substance use disorders: a meta-analysis of 74 studies. Addiction 2020; 115:2257-2267. [PMID: 32533781 DOI: 10.1111/add.15160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
AIMS To characterize the peripheral inflammatory cytokine profile in people with substance use disorders (SUDs). DESIGN Systematic review and meta-analysis. SETTING Clinical studies that evaluated peripheral blood inflammatory cytokine levels in patients with SUDs and healthy controls PARTICIPANTS: SUD patients and healthy controls. MEASUREMENTS PubMed and Web of Science were systematically searched for relevant studies. Two investigators independently selected studies and extracted data. A total of 77 articles were included in the meta-analysis, containing 5649 patients with SUDs and 4643 healthy controls. Data were pooled using a random-effects model by the Comprehensive Meta-Analysis version 2 software. FINDINGS Concentrations of interleukin (IL)-6) in 32 studies, tumor necrosis factor (TNF)-α in 28 studies, IL-10 in 20 studies, IL-8 in 17 studies, C-reactive protein in 14 studies, IL-4 in 10 studies, IL-12 in seven studies, monocyte chemoattractant protein (MCP)-1 in 6 studies, TNF-receptor 2 (TNF-R2) in four studies and granulocyte-macrophage colony-stimulating factor (GM-CSF) in three studies were significantly higher in patients with SUDs compared with healthy controls, while concentrations of leptin in 14 studies were significantly lower in patients with SUDs compared with healthy controls. The findings were inconclusive for the associations between interferon-γ, IL-1β, IL-2, IL-1 receptor antagonist (IL-1RA), transforming growth factor (TGF)-β1, G-CSF, C-C motif chemokine 11, TGF-α and SUDs. CONCLUSIONS People with substance use disorders (SUDs) appear to have higher peripheral concentrations of IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, C-reactive protein, MCP-1, TNF-R2 and GM-CSF and lower peripheral concentrations of leptin than people without SUDs. This strengthens the view that SUD is accompanied by an inflammatory response.
Collapse
Affiliation(s)
- Ze-Xu Wei
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
28
|
Che SY, Yuan JW, Zhang L, Ruan Z, Sun XM, Lu H. Puerarin prevents epithelial tight junction dysfunction induced by ethanol in Caco-2 cell model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Zhao C, Bobe G, Wang Y, Zhang X, Zhao Z, Zhang S, Sun G, Yuan X, Li X, Liu G. Potential Role of SLC5A8 Expression in the Etiology of Subacute Ruminal Acidosis. Front Vet Sci 2020; 7:394. [PMID: 32850999 PMCID: PMC7406710 DOI: 10.3389/fvets.2020.00394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 12/23/2022] Open
Abstract
Rumen fluid of cows with subacute ruminal acidosis (SARA) has high concentrations of short chain fatty acids (SCFA). However, the mechanism of SCFA accumulation is unknown. The solute-linked carrier 5a8 (SLC5A8) plays a key role in the transportation and absorption of SCFA in the intestinal epithelium. The objective of the current study was to investigate (1) SLC5A8 gene and protein expression in various parts of the bovine gastrointestinal tract, (2) the effect of SCFA on SLC5A8 expression in rumen epithelial cells, and (3) SLC5A8 gene and protein expression in SARA and healthy cows. A total of 10 dairy cows, 84 ± 26 days in milk and in their second to fourth parity were allocated to control (n = 5) and SARA groups (n = 5). Three cows from the control group and three calves (1-day-old, female, 45–50 kg, healthy, fasting) were chosen to collect a total of 10 sections of digestive tract, from rumen to rectum, and then bovine ruminal epithelial cells were isolated from the three calves. Gene and protein expression of SLC5A8 was detected in all tested regions of the gastrointestinal tract in calves and adult cows by Western blot and quantitative real-time PCR and were both highest in the rumen. Gene and protein expression of SLC5A8 was more than 50% lower in the rumen epithelium of SARA vs. control cows and was partly restored after therapy of SARA cows. Compared with SCFA concentrations typical for control cows (60 mM acetate, 30 mM propionate, and 20 mM butyrate), gene and protein expression of SLC5A8 in rumen epithelium was lower at elevated SCFA concentrations typical for SARA cows (90 mM acetate, 40 mM propionate, and 30 mM butyrate), specifically for elevated concentrations of propionate or butyrate in contrast to elevated concentrations of acetate increased gene and protein expression of SLC5A8 in rumen epithelium. In conclusion, the elevated concentrations of propionate and butyrate inhibit ruminal absorption of SCFA via downregulation of SLC5A8 in SARA cows; the expression of SLC5A8 plays an important role in the etiology of SARA.
Collapse
Affiliation(s)
- Chenxu Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gerd Bobe
- Department of Animal Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Yazhou Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinyue Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhibo Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shiqi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guoquan Sun
- College of Animal Science and Technology, Inner Mongolia National University, Tongliao, China
| | - Xue Yuan
- College of Animal Science and Technology, Inner Mongolia National University, Tongliao, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
30
|
Lama A, Provensi G, Amoriello R, Pirozzi C, Rani B, Mollica MP, Raso GM, Ballerini C, Meli R, Passani MB. The anti-inflammatory and immune-modulatory effects of OEA limit DSS-induced colitis in mice. Biomed Pharmacother 2020; 129:110368. [PMID: 32559625 DOI: 10.1016/j.biopha.2020.110368] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Fatty acid ethanolamides acting on proliferator-activated receptor (PPAR)-α are among the endogenous lipid molecules that attenuate inflammatory processes and pain sensitivity. Whereas these properties are well-known for palmitoylethanolamide (PEA), the efficacy of oleoylethanolamide (OEA, first described as a satiety hormone synthesized in the jejunum) has been overlooked. In this study, we aimed to evaluate the effect of OEA administration in a mouse model of colitis. C57BL/6J mice were exposed to 2.5% dextran sodium sulphate (DSS) in drinking water for 5 days. Daily i.p. administration of 10 mg/kg OEA started 3 days before DSS and lasted for 12 days. The DSS-untreated control group received only ultrapure water. DSS mice treated with OEA had a significant improvement of disease score. OEA restored mRNA transcription of PPAR-α, of tight junctions and protective factors of colon integrity disrupted by DSS. The improvement correlated with significant decrease of colonic and systemic levels of pro-inflammatory cytokines compared to the DSS group. OEA antiinflammatory effects were mediated by the selective targeting of the TLR4 axis causing a downstream inhibition of nuclear factor kappa B (NF-κB)- MyD88-dependent and NLRP3 inflammation pathways. OEA treatment also inhibited DSS-induced increase of inflammatory cytokines levels in the mesenteric lymph nodes. CONCLUSIONS AND IMPLICATIONS: These results underscore the validity of OEA as a potent protective and anti-inflammatory agent in ulcerative colitis that may be exploited to broaden the pharmacological strategies against inflammatory bowel disease.
Collapse
Affiliation(s)
- Adriano Lama
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Napoli (I), Italy
| | - Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Universitá di Firenze (I), Italy
| | - Roberta Amoriello
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze (I), Italy
| | - Claudio Pirozzi
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Napoli (I), Italy
| | - Barbara Rani
- Dipartimento di Scienze della Salute, Università di Firenze (I), Italy
| | - Maria Pina Mollica
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Napoli (I), Italy
| | | | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze (I), Italy
| | - Rosaria Meli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Napoli (I), Italy.
| | | |
Collapse
|
31
|
Rodriguez-Gonzalez A, Orio L. Microbiota and Alcohol Use Disorder: Are Psychobiotics a Novel Therapeutic Strategy? Curr Pharm Des 2020; 26:2426-2437. [PMID: 31969090 DOI: 10.2174/1381612826666200122153541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an exciting focus of research attempting to understand neuropsychiatric disorders from a holistic perspective in order to determine the role of gut microbiota in the aetiology and pathogenesis of such disorders. Thus, the possible therapeutic benefits of targeting gut microbiota are being explored for conditions such as stress, depression or schizophrenia. Growing evidence indicates that there is bidirectional communication between gut microbiota and the brain that has an effect on normal CNS functioning and behavioural responses. Alcohol abuse damages the gastrointestinal tract, alters gut microbiota and induces neuroinflammation and cognitive decline. The relationship between alcohol abuse and hypothalamic-pituitary-adrenal axis activation, inflammation and immune regulation has been well documented. In this review, we explore the connection between microbiota, brain function and behaviour, as well as the mechanisms through which alcohol induces microbiota dysbiosis and intestinal barrier dysfunction. Finally, we propose the study of psychobiotics as a novel pharmaceutical strategy to treat alcohol use disorders.
Collapse
Affiliation(s)
- Alicia Rodriguez-Gonzalez
- Department of Psychobiology and Methods in Behavioural Sciences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioural Sciences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
32
|
Cazzola R, Rondanelli M. N-Oleoyl-Phosphatidyl-Ethanolamine and Epigallo Catechin-3-Gallate Mitigate Oxidative Stress in Overweight and Class I Obese People on a Low-Calorie Diet. J Med Food 2020; 23:319-325. [PMID: 31928490 DOI: 10.1089/jmf.2019.0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and lipid peroxidation are considered key factors linking obesity with its associated complications. Epigallo catechin-3-gallate (EGCG) and oleoylethanolamide, together with its phospholipid precursor N-oleoyl-phosphatidylethanolamine (NOPE), are nutritional compounds that might improve the oxidative stress status of obese people. Unfortunately, the bioavailability of these compounds is low; however, the coadministration of NOPE with EGCG has been shown to ameliorate both the plasma availability of EGCG and the intestinal levels of NOPE in rats. This double-blind placebo-controlled study investigated the effects of 2 months' supplementation with EGCG complexed with NOPE, combined with moderate energy restriction, on plasma oxidative status of overweight and class I obese subjects. A total of 138 subjects (body mass index: 25-35 kg/m2) were recruited and randomized into two groups: the first (n = 67) received caps of placebo and the second (n = 71) caps of an oily dispersion of EGCG complexed with NOPE for 2 months. Subjects' supplementation was combined with moderate energy restriction (-800 kcal/day). Plasma oxidative status was determined by measuring the levels of oxidized low-density lipoprotein (Ox-LDL), malondialdehyde and reactive oxygen metabolites, and by calculating the lag time and the slope of Cu-induced lipid peroxidation kinetics. In total 116 subjects (27 M/89 F) completed the supplementation period, 49 in the placebo group and 67 in the treated group. Treatment induced a similar significant weight reduction in the two groups. Moreover, we found the mean changes of Ox-LDL significantly lower and the mean changes of antioxidant capacity (lag time) significantly higher in NOPE-EGCG group than in placebo group (treatment effect mean difference: -3.15 UL, P < .044 and +5.37 min, P < .0347, respectively). EGCG plasma levels were detectable only after 2 months of NOPE-EGCG diet. The NOPE-EGCG integration to a low-energy diet seems, therefore, useful for ameliorating oxidative stress-related markers, which are concomitant causes of obesity-induced disorders.
Collapse
Affiliation(s)
- Roberta Cazzola
- Department of Clinical and Biomedical Sciences "L. Sacco," University of Milan, Milan, Italy
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Italy.,Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
33
|
Orio L. The multifaceted potential of the lipid transmitter oleoylethanolamide to treat alcohol-induced neuroinflammation and alcohol use disorders. Neural Regen Res 2020; 15:71-72. [PMID: 31535652 PMCID: PMC6862416 DOI: 10.4103/1673-5374.264457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Laura Orio
- Department of Psychobiology and Methods in Behavioural Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
34
|
Ali SM, Khan NA, Sagathevan K, Anwar A, Siddiqui R. Biologically active metabolite(s) from haemolymph of red-headed centipede Scolopendra subspinipes possess broad spectrum antibacterial activity. AMB Express 2019; 9:95. [PMID: 31254123 PMCID: PMC6598926 DOI: 10.1186/s13568-019-0816-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022] Open
Abstract
The discovery of novel antimicrobials from animal species under pollution is an area untapped. Chinese red-headed centipede is one of the hardiest arthropod species commonly known for its therapeutic value in traditional Chinese medicine. Here we determined the antibacterial activity of haemolymph and tissue extracts of red-headed centipede, Scolopendra subspinipes against a panel of Gram-positive and Gram-negative bacteria. Lysates exhibited potent antibacterial activities against a broad range of bacteria tested. Chemical characterization of biologically active molecules was determined via liquid chromatography mass spectrometric analysis. From crude haemolymph extract, 12 compounds were identified including: (1) L-Homotyrosine, (2) 8-Acetoxy-4-acoren-3-one, (3) N-Undecylbenzenesulfonic acid, (4) 2-Dodecylbenzenesulfonic acid, (5) 3H-1,2-Dithiole-3-thione, (6) Acetylenedicarboxylate, (7) Albuterol, (8) Tetradecylamine, (9) Curcumenol, (10) 3-Butylidene-7-hydroxyphthalide, (11) Oleoyl Ethanolamide and (12) Docosanedioic acid. Antimicrobial activities of the identified compounds were reported against Gram-positive and Gram-negative bacteria, fungi, viruses and parasites, that possibly explain centipede's survival in harsh and polluted environments. Further research in characterization, molecular mechanism of action and in vivo testing of active molecules is needed for the development of novel antibacterials.
Collapse
Affiliation(s)
- Salwa Mansur Ali
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - K. Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| |
Collapse
|
35
|
Romero-Sanchiz P, Nogueira-Arjona R, Pastor A, Araos P, Serrano A, Boronat A, Garcia-Marchena N, Mayoral F, Bordallo A, Alen F, Suárez J, de la Torre R, Pavón FJ, Rodríguez de Fonseca F. Plasma concentrations of oleoylethanolamide in a primary care sample of depressed patients are increased in those treated with selective serotonin reuptake inhibitor-type antidepressants. Neuropharmacology 2019; 149:212-220. [DOI: 10.1016/j.neuropharm.2019.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/03/2019] [Accepted: 02/21/2019] [Indexed: 11/15/2022]
|
36
|
Liu SY, Ma YL, Hsu WL, Chiou HY, Lee EHY. Protein inhibitor of activated STAT1 Ser 503 phosphorylation-mediated Elk-1 SUMOylation promotes neuronal survival in APP/PS1 mice. Br J Pharmacol 2019; 176:1793-1810. [PMID: 30849179 DOI: 10.1111/bph.14656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Protein inhibitor of activated STAT1 (PIAS1) is phosphorylated by IKKα at Ser90 in a PIAS1 E3 ligase activity-dependent manner. Whether PIAS1 is also phosphorylated at other residues and the functional significance of these additional phosphorylation events are not known. The transcription factor Elk-1 remains SUMOylated under basal conditions, but the role of Elk-1 SUMOylation in brain is unknown. Here, we examined the functional significance of PIAS1-mediated Elk-1 SUMOylation in Alzheimer's disease (AD) using the APP/PS1 mouse model of AD and amyloid β (Aβ) microinjections in vivo. EXPERIMENTAL APPROACH Novel phosphorylation site(s) on PIAS1 were identified by LC-MS/MS, and MAPK/ERK-mediated phosphorylation of Elk-1 demonstrated using in vitro kinase assays. Elk-1 SUMOylation by PIAS1 in brain was determined using in vitro SUMOylation assays. Apoptosis in hippocampus was assessed by measuring GADD45α expression by western blotting, and apoptosis of hippocampal neurons in APP/PS1 mice was assessed by TUNEL assay. KEY RESULTS Using LC-MS/MS, we identified a novel MAPK/ERK-mediated phosphorylation site on PIAS1 at Ser503 and showed this phosphorylation determines PIAS1 E3 ligase activity. In rat brain, Elk-1 was SUMOylated by PIAS1, which decreased Elk-1 phosphorylation and down-regulated GADD45α expression. Moreover, lentiviral-mediated transduction of Elk-1-SUMO1 reduced the number of hippocampal apoptotic neurons in APP/PS1 mice. CONCLUSIONS AND IMPLICATIONS MAPK/ERK-mediated phosphorylation of PIAS1 at Ser503 determines PIAS1 E3 ligase activity. Moreover, PIAS1 mediates SUMOylation of Elk-1, which functions as an endogenous defence mechanism against Aβ toxicity in vivo. Targeting Elk-1 SUMOylation could be considered a novel therapeutic strategy against AD.
Collapse
Affiliation(s)
- Shau-Yu Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun-Li Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Lun Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ying Chiou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Eminy H Y Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
37
|
Orio L, Alen F, Pavón FJ, Serrano A, García-Bueno B. Oleoylethanolamide, Neuroinflammation, and Alcohol Abuse. Front Mol Neurosci 2019; 11:490. [PMID: 30687006 PMCID: PMC6333756 DOI: 10.3389/fnmol.2018.00490] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neuroinflammation is a complex process involved in the physiopathology of many central nervous system diseases, including addiction. Alcohol abuse is characterized by induction of peripheral inflammation and neuroinflammation, which hallmark is the activation of innate immunity toll-like receptors 4 (TLR4). In the last years, lipid transmitters have generated attention as modulators of parts of the addictive process. Specifically, the bioactive lipid oleoylethanolamide (OEA), which is an endogenous acylethanolamide, has shown a beneficial profile for alcohol abuse. Preclinical studies have shown that OEA is a potent anti-inflammatory and antioxidant compound that exerts neuroprotective effects in alcohol abuse. Exogenous administration of OEA blocks the alcohol-induced TLR4-mediated pro-inflammatory cascade, reducing the release of proinflammatory cytokines and chemokines, oxidative and nitrosative stress, and ultimately, preventing the neural damage in frontal cortex of rodents. The mechanisms of action of OEA are discussed in this review, including a protective action in the intestinal barrier. Additionally, OEA blocks cue-induced reinstatement of alcohol-seeking behavior and reduces the severity of withdrawal symptoms in animals, together with the modulation of alcohol-induced depression-like behavior and other negative motivational states associated with the abstinence, such as the anhedonia. Finally, exposure to alcohol induces OEA release in blood and brain of rodents. Clinical evidences will be highlighted, including the OEA release and the correlation of plasma OEA levels with TLR4-dependent peripheral inflammatory markers in alcohol abusers. In base of these evidences we hypothesize that the endogenous release of OEA could be a homeostatic signal to counteract the toxic action of alcohol and we propose the exploration of OEA-based pharmacotherapies to treat alcohol-use disorders.
Collapse
Affiliation(s)
- Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco Alen
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Francisco Javier Pavón
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, IMAS and IUING, Madrid, Spain
| |
Collapse
|
38
|
Antón M, Rodríguez-González A, Ballesta A, González N, Del Pozo A, de Fonseca FR, Gómez-Lus ML, Leza JC, García-Bueno B, Caso JR, Orio L. Alcohol binge disrupts the rat intestinal barrier: the partial protective role of oleoylethanolamide. Br J Pharmacol 2018; 175:4464-4479. [PMID: 30248186 DOI: 10.1111/bph.14501] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic alcohol consumption alters the gut-brain axis, but little is known about alcohol binge episodes on the functioning of the intestinal barrier. We investigated the influence of ethanol binges on bacterial translocation, gut inflammation and immunity, and tight junction (TJ) structure and the ability of the biolipid oleoylethanolamide (OEA) to prevent ethanol binge-induced intestinal barrier dysfunction. EXPERIMENTAL APPROACH OEA was injected i.p. before repeated ethanol administration by oral gavage. Plasma, spleen, liver and mesenteric lymph nodes (MLN) were collected in sterile conditions for determination of bacterial load. Immune/inflammatory parameters, TJ proteins and apoptotic markers were determined in colonic tissue by RT-PCR and Western blotting. TJ ultrastructure was examined by transmission electron microscopy. KEY RESULTS Ethanol binges induced bacterial translocation to the MLN (mainly) and spleen. Colonic tissues showed signs of inflammation, and activation of innate (Toll-like receptor-4) and adaptive (IgA) immune systems and TJ proteins (occludin and claudin-3) were decreased after ethanol binges. Pretreatment with OEA reduced intestinal inflammation and immune activation and partially preserved the TJ structure affected by alcohol binges but had no effect on alcohol-induced apoptosis. Ultrastructural analyses of colonic TJs revealed dilated TJs in all ethanol groups, with less electron-dense material in non-pretreated rats. The protective effects of i.p. OEA did not reduce bacterial translocation to the MLN. However, intragastric OEA administration significantly reduced plasma LPS levels and bacterial translocation to the MLN. CONCLUSION AND IMPLICATIONS OEA-based pharmacotherapies could potentially be useful to treat disorders characterized by intestinal barrier dysfunction, including alcohol abuse.
Collapse
Affiliation(s)
- M Antón
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Rodríguez-González
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Ballesta
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - N González
- Department of Medicine Microbiology, Faculty of Medicine, UCM, Madrid, Spain
| | - A Del Pozo
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - F R de Fonseca
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M L Gómez-Lus
- Department of Medicine Microbiology, Faculty of Medicine, UCM, Madrid, Spain
| | - J C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - B García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - J R Caso
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - L Orio
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|