1
|
Zhao N, Li S, Wu H, Wei D, Pu N, Wang K, Liu Y, Tao Y, Song Z. Ferroptosis: An Energetic Villain of Age-Related Macular Degeneration. Biomedicines 2025; 13:986. [PMID: 40299661 PMCID: PMC12024642 DOI: 10.3390/biomedicines13040986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Iron homeostasis plays an important role in maintaining cellular homeostasis; however, excessive iron can promote the production of reactive oxygen species (ROS). Ferroptosis is iron-dependent programmed cell death that is characterized by excessive iron accumulation, elevated lipid peroxides, and the overproduction of ROS. The maintenance of iron homeostasis is contingent upon the activity of the transferrin receptor (TfR), ferritin (Ft), and ferroportin (FPn). In the retina, iron accumulation and lipid peroxidation can contribute to the development of age-related macular degeneration (AMD). This phenomenon can be explained by the occurrence of the Fenton reaction, in which the interaction between divalent iron and hydrogen peroxide leads to the generation of highly reactive hydroxyl radicals. The hydroxyl radicals exhibit a propensity to attack proteins, lipids, nucleic acids, and carbohydrates, thereby instigating oxidative damage and promoting lipid peroxidation. Ultimately, these processes culminate in cell death and retinal degeneration. In this context, a comprehensive understanding of the exact mechanisms underlying ferroptosis may hold significant importance for developing therapeutic interventions. This review summarizes recent findings on iron metabolism, cellular ferroptosis, and lipid metabolism in the aging retina. We also introduce developments in the therapeutic strategies using iron chelating agents. Further refinements of these knowledges would deepen our comprehension of the pathophysiology of AMD and advance the clinical management of degenerative retinopathy. A comprehensive search strategy was employed to identify relevant studies on the role of ferroptosis in AMD. We performed systematic searches of the PubMed and Web of Science electronic databases from inception to the current date. The keywords used in the search included "ferroptosis", "AMD", "age-related macular degeneration", "iron metabolism", "oxidative stress", and "ferroptosis pathways". Peer-reviewed articles, including original research, reviews, meta-analyses, and clinical studies, were included in this paper, with a focus on the molecular mechanisms of ferroptosis in AMDs. Studies not directly related to ferroptosis, iron metabolism, or oxidative stress in the context of AMD were excluded. Furthermore, articles that lacked sufficient data or were not peer-reviewed (e.g., conference abstracts, editorials, or opinion pieces) were not considered.
Collapse
Affiliation(s)
- Na Zhao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Hao Wu
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Ning Pu
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Kexin Wang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| | - Yashuang Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| | - Zongming Song
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| |
Collapse
|
2
|
Bower DQ, Senft SL, Hanlon RT, Deravi LF. Pigment granule architecture varies across yellow, red, and brown chromatophores in squid Doryteuthis pealeii. Sci Rep 2024; 14:31417. [PMID: 39732938 PMCID: PMC11682086 DOI: 10.1038/s41598-024-83021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Cephalopods produce dynamic colors and skin patterns for communication and camouflage via stratified networks of neuronally actuated yellow, red, and brown chromatophore organs, each filled with thousands of pigment granules. While compositional analysis of chromatophore granules in Doryteuthis pealeii reveals the pigments as ommochromes, the ultrastructural features of the granules and their effects on bulk coloration have not been explored. To investigate this, we isolated granules from specific colored chromatophores and imaged them using multiple modalities. The brown granules are largest with smooth surface coatings. Red granules are intermediate in size with irregular surface textures, and yellow granules are smallest, with rough, porous surfaces. Many of the granules contain sub-granular features that also vary in presentation with color. Correlated light and electron microscopy reveal that differences in hue of individual granules are similarly associated with size, shape, and texture, suggesting that granules may be structurally adapted to modify the dominant visible colors presented within the chromatophores. These findings suggest that granule ultrastructure, not just chemical composition, may be significant in producing the range of colors presented in cephalopod chromatophores.
Collapse
Affiliation(s)
- Duncan Q Bower
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | | | - Roger T Hanlon
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Leila F Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Deravi LF, Cui I, Martin CA. Using cephalopod-inspired chemistry to extend long-wavelength ultraviolet and visible light protection of mineral sunscreens. Int J Cosmet Sci 2024; 46:941-948. [PMID: 39030969 DOI: 10.1111/ics.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
OBJECTIVE The emergence of new human and environmental-related toxicity data associated with some common UV filters has catalysed growing interest in the inclusion of boosters and stabilizing ingredients in sunscreens. One approach is to incorporate alternative materials inspired by or mimetic of systems in biology, which offer a notable evolutionary advantage of multifunctionality and stability with increased biocompatibility. We describe the use of a natural product, Xanthochrome® (INCI: Ammonium Xanthommatin), in a series of studies designed to not only assess its safety with marine systems but also its formulation compatibility and function in water-in-oil mineral sunscreens. Xanthochrome is the synthetic form of the naturally occurring chromophore xanthommatin (XA) present in cephalopod skin, which doubles as a photostable antioxidant; however, it has never been explored in combination with mineral UV filters in finished formulations. METHODS Given the recent controversies associated with the environmental toxicological effects of some chemicals used in sunscreens, the safety of XA with coral cuttings was first validated at concentrations 5× above those used in our formulations. Next, a particle-based delivery of XA was designed and incorporated into a zinc oxide (ZnO)-based water-in-oil sunscreen, where the SPF, critical wavelength, and visible light (VL) blocking potential were measured. RESULTS We observed no adverse effects of XA at 100 mg/L when tested with coral cuttings, demonstrating its safety at concentrations exceeding those used in our sunscreens. When formulated with ZnO-based sunscreens, the inclusion of XA increased the total UV absorbance profile by 28% and the total blocking potential of VL by 45%. The formulations also elicited no dermal irritation or sensitization in a human insult repeat patch test (N = 100 subjects). CONCLUSIONS XA is differentiated as a photostable, water-soluble compound that is a VL booster proven safe for skin and coral cuttings. To the best of our knowledge, there are no other boosters that can be classified as such, despite a growing body of literature highlighting the need in the industry.
Collapse
Affiliation(s)
- Leila F Deravi
- Seaspire, Inc., Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Isabel Cui
- Seaspire, Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
4
|
Huang L, Kim T, Armendarez OJ, Deravi LF, Parvatkar PT, Manetsch R. Efficient Biomimetic Total Synthesis, Characterization, and Antioxidant Activity of Ommatins. JACS AU 2024; 4:4307-4316. [PMID: 39610744 PMCID: PMC11600184 DOI: 10.1021/jacsau.4c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024]
Abstract
Ommatins, natural colorants found in cephalopods and arthropods, are biosynthesized from tryptophan with uncyclized xanthommatin (Uc-Xa) as the key biosynthetic precursor. These pigments change color under oxidative or reductive conditions. Xanthommatin (Xa) and dihydro-xanthommatin (H2-Xa), as well as decarboxylated xanthommatin (Dc-Xa) and decarboxylated-dihydro-xanthommatin (Dc-H2-Xa), are some of the most common and well-studied ommatins. Herein, we describe the biomimetic total synthesis of Xa/H2-Xa on a gram scale by using the Mannich reaction and oxidative dimerization as the key steps. The 7-step linear synthetic sequence achieved an overall yield of 27%. Dc-Xa/Dc-H2-Xa and protected Uc-Xa/Uc-H2-Xa were also synthesized from the common intermediate-protected 3-hydroxykynurenine (3-OHK). The synthesized ommatins underwent thorough characterization using various spectroscopic techniques, including NMR, UV-vis, FTIR, HRMS, and LC-MS. Their optoelectronic properties were studied using spectrophotometry and electrochemical analysis. Furthermore, the antioxidant activity of the synthesized ommatins was evaluated using an oxygen radical antioxidant capacity activity assay. The results indicated that Dc-Xa exhibited the highest antioxidant activity, followed by Xa, while Uc-Xa showed the lowest activity.
Collapse
Affiliation(s)
- Lili Huang
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Taehwan Kim
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Olivia J. Armendarez
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Leila F. Deravi
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Prakash T. Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Roman Manetsch
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Zhao SY, Liu HK, Xie ZS, Wu YM, Wu PL, Liu T, Yang WQ, Wu J, Fu J, Wang CM, James AA, Chen XG. Vision guides the twilight search for oviposition sites of the Asian tiger mosquito, Aedes albopictus. PLoS Negl Trop Dis 2024; 18:e0012674. [PMID: 39602395 PMCID: PMC11602101 DOI: 10.1371/journal.pntd.0012674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Oviposition site selection is an important component of vector mosquito reproductive biology. The Asian Tiger mosquito, Aedes albopictus, is a major and important vector of arboviruses including Dengue. Previous studies documented the preference of gravid females for small, dark-colored water containers as oviposition sites, which they sought during the twilight period (dusk) of their locomotor activity. Vision plays an important role in this behavior, and factors such as the shape, size, and color of the container, light intensity, polarization, spectrum, and other visual cues guide the search for suitable oviposition sites, but the mechanistic factors driving this behavior are unclear. METHODOLOGY/PRINCIPAL FINDINGS We blindfolded adult female compound eyes and observed the effects of a lack of vision on the ability to discriminate and utilize preferred oviposition sites. Furthermore, the transcriptomes of blindfolded mosquitoes were screened to identify genes with vision-sensitive expression profiles and gene-editing was used to create non-functional mutations in two of them, rhodopsin-like (mutation designated 'rho-l△807') and kynurenine hydroxylase (mutation designated 'khw'). Behavioral tests of both mutant and control strains revealed that the rho-l△807 mutant mosquitoes had a significant decrease in their ability to search for preferred oviposition sites that correlated with a reduced ability to recognize long-wavelength red light. The khw mutant mosquitoes also had a reduced ability to identify preferred oviposition sites that correlated with reductions in their ability to respond to variations in daily brightness and their ability to discriminate among different color options of the containers and background monochromatic light. CONCLUSIONS/SIGNIFICANCE This study underscores the importance of visual cues in the oviposition site selection behavior of adult female Ae. albopictus. We demonstrate that wild-type rho-l and kh gene products play a crucial role in this behavior, as mutants exhibit altered sensitivity or recognition of light intensity and substrate colors.
Collapse
Affiliation(s)
- Si Yu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Kai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhen Sheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Ming Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei Lin Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tong Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen Qiang Yang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - JunYu Fu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chun Mei Wang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, United States of America
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, United States of America
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Cezário RR, de Almeida J, Peixoto P, Wilts BD, Guillermo-Ferreira RN. The mechanistic origin of amber pigmentation of Perithemis tenera (Say, 1840) wings (Odonata: Libellulidae) and its function in conspecific signalling. ZOOLOGY 2024; 167:126226. [PMID: 39536499 DOI: 10.1016/j.zool.2024.126226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Animal coloration serves various signaling and non-signaling functions. In damselflies and dragonflies (Odonata), such colors may not only play photoprotective and/or thermoregulatory roles but also serve as visual signals during courtship and/or agonistic interactions. Here, we analyzed the coloration of Perithemis tenera wings, a potential secondary sexual ornament, applying spectrophotometry and visual modeling to gain a deeper understanding of their color mechanisms and functions. The amber coloration of the P. tenera wings results from the interaction of light with both the melanized chitin matrix and possibly ommochrome pigments. Additionally, by fitting the absorbance curve of P. tenera wings to the extinction coefficient of different melanins, we deduced that pheomelanin is likely the pigment embedded in the wing's chitinous matrix. The amber coloration of P. tenera wings stands out against their natural habitat, making it detectable by conspecifics. Finding multiple pigments in the P. tenera wings not only enhances our understanding of the functional roles of pigmentation in Odonata but also offer broader insights into how structural and pigment-based colorations evolve as multifunctional traits.
Collapse
Affiliation(s)
- R R Cezário
- Laboratory of Ecological Studies on Ethology and Evolution (LESTES), Department of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil; Graduate Program in Entomology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Jgl de Almeida
- Laboratory of Sexual Selection and Agonistic Interactions (LASEXIA), Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pec Peixoto
- Laboratory of Sexual Selection and Agonistic Interactions (LASEXIA), Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - B D Wilts
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, Salzburg 5020, Austria
| | - R N Guillermo-Ferreira
- Laboratory of Ecological Studies on Ethology and Evolution (LESTES), Department of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil; Graduate Program in Entomology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Popecki MS, Rogers RL, Archer-Hartmann SA, Wares JP, Stanger-Hall KF. The role of pigments in light color variation of the firefly Photinus pyralis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614534. [PMID: 39386434 PMCID: PMC11463521 DOI: 10.1101/2024.09.23.614534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fireflies use bioluminescent signals to communicate with their mates. Luciferase has been thought to be the sole contributor to light color; however, populations of the Photinus pyralis firefly display variation in the color of their emitted signals yet have identical luciferase sequences. Here, we examined whether pigments could be present in the light organs of the twilight-active species P. pyralis and contribute to this variation. We detected patterns of expression that suggest ommochrome and pterin screening pigments are expressed in P. pyralis light organs and could filter light emitted by luciferase and play a role in signal tuning. There were no significant differences between the pigment gene expression of P. pyralis individuals with yellower and greener signals. Our study provides alternative mechanisms that could influence pigments in P. pyralis light organs that could also play a role in modifying signal color.
Collapse
|
8
|
Howard RB, Kniller J, Bolstad KSR, Acosta ML. Biological Sunglasses in a Deep-Sea Squid: Pigment Migration in the Retina of Gonatus onyx. Vision (Basel) 2024; 8:26. [PMID: 38804347 PMCID: PMC11130829 DOI: 10.3390/vision8020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
The outward migration of ommin pigment granules from the bases to the tips of the photoreceptors in response to light has been reported in the retina of several (mostly coastal) squid species. Following exposure to light and then dark conditions, we collected and processed retinal tissue from juvenile specimens of a deep-sea oegopsid squid, Gonatus onyx. We aimed to determine whether the ommin pigment returns to baseline, and to investigate the presence of glutamate neurotransmitter signaling under both dark and light conditions. We confirmed the presence of ommin granules but observed variability in the return of pigment to the basal layer in dark conditions, as well as changes in glutamate distribution. These findings provide support for the migration of retinal ommin pigment granules as a mechanism for regulating incoming light.
Collapse
Affiliation(s)
- Ryan B. Howard
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (R.B.H.)
- School of Optometry and Vision Science, New Zealand National Eye Centre (NZ-NEC), University of Auckland, Auckland 1010, New Zealand
| | - Jessica Kniller
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (R.B.H.)
| | - Kathrin S. R. Bolstad
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (R.B.H.)
| | - Monica L. Acosta
- School of Optometry and Vision Science, New Zealand National Eye Centre (NZ-NEC), University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research (CBR), University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
9
|
Sadhu C, Mitra AK. Synthetic, biological and optoelectronic properties of phenoxazine and its derivatives: a state of the art review. Mol Divers 2024; 28:965-1007. [PMID: 36757655 PMCID: PMC9909160 DOI: 10.1007/s11030-023-10619-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Phenoxazines have sparked a lot of interest owing to their numerous applications in material science, organic light-emitting diodes, photoredox catalyst, dye-sensitized solar cells and chemotherapy. Among other things, they have antioxidant, antidiabetic, antimalarial, anti-alzheimer, antiviral, anti-inflammatory and antibiotic properties. Actinomycin D, which contains a phenoxazine moiety, functions both as an antibiotic and anticancer agent. Several research groups have worked on various structural modifications over the years in order to develop new phenoxazines with improved properties. Both phenothiazines and phenoxazines have gained prominence in medicine as pharmacological lead structures from their traditional uses as dyes and pigments. Organoelectronics and material sciences have recently found these compounds and their derivatives to be quite useful. Due to this, organic synthesis has been used in an unprecedented amount of exploratory alteration of the parent structures in an effort to create novel derivatives with enhanced biological and material capabilities. As a result, it is critical to conduct more frequent reviews of the work done in this area. Various stages of the synthetic transformation of phenoxazine scaffolds have been depicted in this article. This article aims to provide a state of the art review for the better understanding of the phenoxazine derivatives highlighting the progress and prospects of the same in medicinal and material applications.
Collapse
Affiliation(s)
- Chandrita Sadhu
- Department of Chemistry, Rani Rashmoni Green University, Tarakeswar, Hooghly, West Bengal, India
| | - Amrit Krishna Mitra
- Department of Chemistry, Government General Degree College, Singur, Singur, Hooghly, West Bengal, 712409, India.
| |
Collapse
|
10
|
Guidetti G, Kim T, Dutcher A, Presti ML, Ovstrovsky-Snider N, Omenetto FG. Co-modulation of structural and pigmentary coloration in Lyropteryx apollonia butterfly. OPTICS EXPRESS 2023; 31:43712-43721. [PMID: 38178461 DOI: 10.1364/oe.500130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/09/2023] [Indexed: 01/06/2024]
Abstract
Nature produces some of the most striking optical effects through the combination of structural and chemical principles to give rise to a wide range of colors. However, creating non-spectral colors that extend beyond the color spectrum is a challenging task, as it requires meeting the requirements of both structural and pigmentary coloration. In this study, we investigate the magenta non-spectral color found in the scales of the ventral spots of the Lyropteryx apollonia butterfly. By employing correlated optical and electron microscopy, as well as pigment extraction techniques, we reveal how this color arises from the co-modulation of pigmentary and structural coloration. Specifically, the angle-dependent blue coloration results from the interference of visible light with chitin-based nanostructures, while the diffused red coloration is generated by an ommochrome pigment. The ability to produce such highly conspicuous non-spectral colors provides insights for the development of hierarchical structures with precise control over their optical response. These structures can be used to create hierarchically-arranged systems with a broadened color palette.
Collapse
|
11
|
Hanly JJ, Francescutti CM, Loh LS, Corning OBWH, Long DJ, Nakatani MA, Porter AH, Martin A. Genetics of yellow-orange color variation in a pair of sympatric sulphur butterflies. Cell Rep 2023; 42:112820. [PMID: 37481719 DOI: 10.1016/j.celrep.2023.112820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Continuous color polymorphisms can serve as a tractable model for the genetic and developmental architecture of traits. Here we investigated continuous color variation in Colias eurytheme and Colias philodice, two species of sulphur butterflies that hybridize in sympatry. Using quantitative trait locus (QTL) analysis and high-throughput color quantification, we found two interacting large-effect loci affecting orange-to-yellow chromaticity. Knockouts of red Malpighian tubules (red), likely involved in endosomal maturation, result in depigmented wing scales. Additionally, the transcription factor bric-a-brac can act as a modulator of orange pigmentation. We also describe the QTL architecture of other continuously varying traits, together supporting a large-X effect model where the genetic control of species-defining traits is enriched on sex chromosomes. This study sheds light on the range of possible genetic architectures that can underpin a continuously varying trait and illustrates the power of using automated measurement to score phenotypes that are not always conspicuous to the human eye.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC, USA; Smithsonian Tropical Research Institute, Gamboa, Panama.
| | | | - Ling S Loh
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Olaf B W H Corning
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Derek J Long
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Marshall A Nakatani
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Adam H Porter
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
12
|
Ahuja N, Hwaun E, Pungor JR, Rafiq R, Nemes S, Sakmar T, Vogt MA, Grasse B, Diaz Quiroz J, Montague TG, Null RW, Dallis DN, Gavriouchkina D, Marletaz F, Abbo L, Rokhsar DS, Niell CM, Soltesz I, Albertin CB, Rosenthal JJC. Creation of an albino squid line by CRISPR-Cas9 and its application for in vivo functional imaging of neural activity. Curr Biol 2023:S0960-9822(23)00739-X. [PMID: 37343558 DOI: 10.1016/j.cub.2023.05.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function. One emerging cephalopod model, Euprymna berryi, produces large numbers of embryos that can be easily cultured throughout their life cycle and has a sequenced genome. As proof of principle, we used CRISPR-Cas9 in E. berryi to target the gene for tryptophan 2,3 dioxygenase (TDO), an enzyme required for the formation of ommochromes, the pigments present in the eyes and chromatophores of cephalopods. CRISPR-Cas9 ribonucleoproteins targeting tdo were injected into early embryos and then cultured to adulthood. Unexpectedly, the injected specimens were pigmented, despite verification of indels at the targeted sites by sequencing in injected animals (G0s). A homozygote knockout line for TDO, bred through multiple generations, was also pigmented. Surprisingly, a gene encoding indoleamine 2,3, dioxygenase (IDO), an enzyme that catalyzes the same reaction as TDO in vertebrates, was also present in E. berryi. Double knockouts of both tdo and ido with CRISPR-Cas9 produced an albino phenotype. We demonstrate the utility of these albinos for in vivo imaging of Ca2+ signaling in the brain using two-photon microscopy. These data show the feasibility of making gene knockout cephalopod lines that can be used for live imaging of neural activity in these behaviorally sophisticated organisms.
Collapse
Affiliation(s)
- Namrata Ahuja
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Ernie Hwaun
- Department of Neurosurgery and Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Judit R Pungor
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ruhina Rafiq
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sal Nemes
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Taylor Sakmar
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Miranda A Vogt
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Bret Grasse
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Juan Diaz Quiroz
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Tessa G Montague
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Ryan W Null
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Danielle N Dallis
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Ferdinand Marletaz
- Centre for Life's Origin & Evolution, Department of Ecology, Evolution & Environment, University College London, WC1E 6BT London, UK
| | - Lisa Abbo
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Ivan Soltesz
- Department of Neurosurgery and Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Caroline B Albertin
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
13
|
How SHC, Banerjee TD, Monteiro A. Vermilion and cinnabar are involved in ommochrome pigment biosynthesis in eyes but not wings of Bicyclus anynana butterflies. Sci Rep 2023; 13:9368. [PMID: 37296302 PMCID: PMC10256707 DOI: 10.1038/s41598-023-36491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
If the same pigment is found in different tissues in a body, it is natural to assume that the same metabolic pathways are deployed similarly in each tissue. Here we show that this is not the case for ommochromes, the red and orange pigments found in the eyes and wings of butterflies. We tested the expression and function of vermilion and cinnabar, two known fly genes in the ommochrome pathway, in the development of pigments in the eyes and in the wings of Bicyclus anynana butterflies, both traits having reddish/orange pigments. By using fluorescent in-situ hybridization (HCR3.0) we localized the expression of vermilion and cinnabar in the cytoplasm of pigment cells in the ommatidia but observed no clear expression for either gene on larval and pupal wings. We then disrupted the function of both genes, using CRISPR-Cas9, which resulted in the loss of pigment in the eyes but not in the wings. Using thin-layer chromatography and UV-vis spectroscopy we identified the presence of ommochrome and ommochrome precursors in the orange wing scales and in the hemolymph of pupae. We conclude that the wings either synthesize ommochromes locally, with yet unidentified enzymes or incorporate these pigments synthesized elsewhere from the hemolymph. Different metabolic pathways or transport mechanisms, thus, lead to the presence of ommochromes in the wings and eyes of B. anynana butterflies.
Collapse
Affiliation(s)
- Shaun Hong Chuen How
- Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore.
| | - Antόnia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore.
| |
Collapse
|
14
|
Genome editing of the vermilion locus generates a visible eye color marker for Oncopeltus fasciatus. Sci Rep 2023; 13:4188. [PMID: 36918709 PMCID: PMC10015096 DOI: 10.1038/s41598-023-31145-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Insects display a vast array of eye and body colors. Genes encoding products involved in biosynthesis and deposition of pigments are ideal genetic markers, contributing, for example, to the power of Drosophila genetics. Oncopeltus fasciatus is an emerging model for hemimetabolous insects, a member of the piercing-sucking feeding order Hemiptera, that includes pests and disease vectors. To identify candidate visible markers for O. fasciatus, we used parental and nymphal RNAi to identify genes that altered eye or body color while having no deleterious effects on viability. We selected Of-vermilion for CRISPR/Cas9 genome editing, generating three independent loss-of-function mutant lines. These studies mapped Of-vermilion to the X-chromosome, the first assignment of a gene to a chromosome in this species. Of-vermilion homozygotes have bright red, rather than black, eyes and are fully viable and fertile. We used these mutants to verify a role for Of-xdh1, ortholog of Drosophila rosy, in contributing to red pigmentation using RNAi. Rather than wild-type-like red bodies, bugs lacking both vermilion and xdh1 have bright yellow bodies, suggesting that ommochromes and pteridines contribute to O. fasciatus body color. Our studies generated the first gene-based visible marker for O. fasciatus and expanded the genetic toolkit for this model system.
Collapse
|
15
|
Forman KA, Thulin CD. Ommochrome Wing Pigments in the Monarch Butterfly Danaus plexippus (Lepidoptera: Nymphalidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:12. [PMID: 36562324 PMCID: PMC9780745 DOI: 10.1093/jisesa/ieac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Monarch butterflies (Danaus plexippus) use bright orange coloration to warn off predators as well as for sexual selection. Surprisingly the underlying pigment compounds have not been previously characterized. We used LCMS and fragmentation MS (including MSMS and MSn) of extracted pigments from nonmigratory summer-generation female monarch forewings to identify and provide relative quantitation of various orange pigments from D. plexippus. We observed seven ommochrome pigments, with xanthommatin and decarboxylated xanthommatin being the most abundant followed by xanthommatin methyl ester. Among the seven pigments, we also observed molecules that correspond to deaminated forms of these three amine-containing pigments. To the best of our knowledge, these deaminated compounds have not been previously discovered. A seventh pigment that we observed was α-hydroxyxanthommatin methyl ester, previously described in other nymphalid butterflies. We also show that chemical reduction of pigment extracts results in a change of their color from yellow to red, concomitant with the appearance of dihydro-xanthommatin and similarly reduced forms of the other pigment compounds. These findings indicate that monarchs may employ differences in the redox states of these pigments in order to achieve different hues of orange.
Collapse
Affiliation(s)
- Kyri A Forman
- Department of Chemistry, Utah Valley University, Orem, UT 84058, USA
| | | |
Collapse
|
16
|
Ilić M, Chen PJ, Pirih P, Meglič A, Prevc J, Yago M, Belušič G, Arikawa K. Simple and complex, sexually dimorphic retinal mosaic of fritillary butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210276. [PMID: 36058236 PMCID: PMC9441240 DOI: 10.1098/rstb.2021.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/30/2022] [Indexed: 01/23/2023] Open
Abstract
Butterflies have variable sets of spectral photoreceptors that underlie colour vision. The photoreceptor organization may be optimized for the detection of body coloration. Fritillaries (Argynnini) are nymphalid butterflies exhibiting varying degrees of sexual dimorphism in wing coloration. In two sister species, the females have orange (Argynnis paphia) and dark wings (Argynnis sagana), respectively, while the males of both species have orange wings with large patches of pheromone-producing androconia. In spite of the differences in female coloration, the eyes of both species exhibit an identical sexual dimorphism. The female eyeshine is uniform yellow, while the males have a complex retinal mosaic with yellow and red-reflecting ommatidia. We found the basic set of ultraviolet-, blue- and green-peaking photoreceptors in both sexes. Males additionally have three more photoreceptor classes, peaking in green, yellow and red, respectively. The latter is the basal R9, indirectly measured through hyperpolarizations in the green-peaking R1-2. In many nymphalid tribes, including the closely related Heliconiini, the retinal mosaic is complex in both sexes. We hypothesize that the simple mosaic of female Argynnini is a secondary reduction, possibly driven by the use of olfaction for intraspecific recognition, whereas vision remains the primary sense for the task in the males. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Marko Ilić
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| | - Primož Pirih
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Jošt Prevc
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Masaya Yago
- The University Museum, The University of Tokyo, Hongo, 113-0033 Tokyo, Japan
| | - Gregor Belušič
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| |
Collapse
|
17
|
Francescutti CM, Martin A, Hanly JJ. Knockdowns of red Malphigian tubules reveal pigmentation roles in the milkweed bug. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:382-387. [PMID: 35189035 DOI: 10.1002/jez.b.23123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Classical Drosophila eye color mutations have unearthed a toolkit of genes that have permitted candidate gene studies of the outstanding diversity of coloration patterns in other insects. The gene underlying the eye color phenotypes of the red Malphigian tubules (red) fly mutant was mapped to a LysM domain gene of unknown molecular function. Here, we used RNAi to test the role of a red ortholog in the pigmentation of the milkweed bug Oncopeltus fasciatus, and contrast its effect with the ommochrome biosynthetic pathway gene vermilion (ver). Pigmentation was reduced in the cuticle of embryonic legs and first instar abdomens following parental RNAi against red, but not against ver, likely reflecting an effect on pterin biogenesis. Nymphal RNAi of red and ver both resulted in adult eye depigmentation, consistent with an effect on ommochrome content. These results suggest red loss-of-function impacts biochemically distinct types of pigments, and we discuss its putative role in the biogenesis of lysosome-related organelles such as ommochromasomes and pterinosomes.
Collapse
Affiliation(s)
- Caroline M Francescutti
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
18
|
Lewis-Luján LM, Rosas-Burgos EC, Ezquerra-Brauer JM, Burboa-Zazueta MG, Assanga SBI, del Castillo-Castro T, Penton G, Plascencia-Jatomea M. Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments. J Microbiol Biotechnol 2022; 32:989-1002. [PMID: 35909165 PMCID: PMC9628961 DOI: 10.4014/jmb.2206.06043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.
Collapse
Affiliation(s)
- Lidianys María Lewis-Luján
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Ema Carina Rosas-Burgos
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Josafat Marina Ezquerra-Brauer
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - María Guadalupe Burboa-Zazueta
- Departamento de Investigaciones Científicas y Tecnológicas, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, México
| | - Simon Bernard Iloki Assanga
- Department of Biological Chemical Sciences. Sonora University, Blvd. Luis Encinas y Rosales. Col. Centro, 83000 Hermosillo, Sonora, México
| | - Teresa del Castillo-Castro
- Department of Research on Polymers and Materials, Sonora University. Blvd. Luis Encinas y Rosales. Col. Centro, 83000 Hermosillo, Sonora, México
| | - Giselle Penton
- Centro de Ingeniería Genética y Biotecnología, Ave 31 entre 158 y 190, Cubanacán, Playa, Habana, CP 6162, Cuba
| | - Maribel Plascencia-Jatomea
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico,Corresponding author Phone/Fax: +52-662-259-2207 E-mail:
| |
Collapse
|
19
|
Lewis LLM, Dörschmann P, Seeba C, Thalenhorst T, Roider J, Iloki Assanga SB, Ruiz JCG, Del Castillo Castro T, Rosas-Burgos EC, Plascencia-Jatomea M, Ezquerra Brauer JM, Klettner A. Properties of Cephalopod Skin Ommochromes to Inhibit Free Radicals, and the Maillard Reaction and Retino-Protective Mechanisms in Cellular Models Concerning Oxidative Stress, Angiogenesis, and Inflammation. Antioxidants (Basel) 2022; 11:antiox11081574. [PMID: 36009293 PMCID: PMC9404994 DOI: 10.3390/antiox11081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Ommochromes are pigments of invertebrates that exhibit oxidative stress protection. The aim of this study was to investigate ommochromes extracted from cephalopod’s skin for their ability to inhibit age-related-macular degeneration (AMD)-related factors such as H2O2-induced and iron-dependent oxidative stress (ferroptosis and erastin), accumulation of advanced glycation end-products (AGEs), as well as vascular endothelial growth factor (VEGF), and inflammatory cytokines (interleukin 6 and interleukin 8) secretion. As cell systems, we used primary porcine retinal pigment epithelium (RPE), human retinal pigment epithelium cell line ARPE-19 and uveal melanoma cell line OMM-1. In vitro, ommochromes produced an antiglycation effect by the inhibition of fructosylation reaction. The ommochromes showed protective effects against erastin- induced cell death in ARPE-19. In addition, in long-term stimulation (7 days) ommochromes decreased constitutively secreted VEGF, as well as interleukin 6 and interleukin 8 induced by Poly I:C in primary RPE. No relevant effects were detected in OMM-1 cells. The effects are dependent on the cell system, time of exposition, and concentration. This substance is of interest for further research concerning age-related macular degeneration.
Collapse
Affiliation(s)
- Luján Lidianys María Lewis
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Philipp Dörschmann
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Charlotte Seeba
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Tabea Thalenhorst
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Johann Roider
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Simon Bernard Iloki Assanga
- Department of Biological Chemical Sciences, Sonora University, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Juan Carlos Gálvez Ruiz
- Department of Biological Chemical Sciences, Sonora University, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Teresa Del Castillo Castro
- Department of Research on Polymers and Materials, Sonora University, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Maribel Plascencia-Jatomea
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Josafat Marina Ezquerra Brauer
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Alexa Klettner
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-431-500-24283
| |
Collapse
|
20
|
Kwak Y, Argandona JA, Degnan PH, Hansen AK. Chromosomal-level assembly of Bactericera cockerelli reveals rampant gene family expansions impacting genome structure, function and insect-microbe-plant-interactions. Mol Ecol Resour 2022; 23:233-252. [PMID: 35925827 PMCID: PMC10087415 DOI: 10.1111/1755-0998.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Lineage specific expansions and gene duplications are some of the most important sources of evolutionary novelty in eukaryotes. Although not as prevalent in eukaryotes compared to bacteria, horizontal gene transfer events can also result in key adaptations for insects, especially for those involved in insect-microbe interactions. In this study we assemble the first chromosomal assembly of the psyllid Bactericera cockerelli and reveal that the B. cockerelli genome has experienced significantly more gene expansion events compared to other Hemipteran representatives with fully sequenced genomes. We also reveal that B. cockerelli's genome is the largest psyllid genome (567 Mb) sequenced to date and is ~15% larger than the other two psyllid species genomes sequenced (Pachypsylla venusta and Diaphorina citri). Structurally, B. cockerelli appears to have an additional chromosome compared to the distantly related psyllid species P. venusta due to a previous chromosomal fission or fusion event. The increase in genome size and dynamic nature of the B. cockerelli genome may largely be contributed to the widespread expansion of type I and type II repeat elements that are rampant across all of B. cockerelli's. chromosomes. These repeat elements are distributed near equally in both euchromatic and heterochromatic regions. Furthermore, significant gene family expansions and gene duplications were uncovered for genes that are expected to be important in its adaptation to insect-plant and microbe interactions, which include transcription factors, proteases, odorant receptors, and horizontally transferred genes that are involved in the nutritional symbioses with their long-term nutritional endosymbiont Carsonella.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Entomology, University of California, CA, USA
| | | | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, CA, USA
| | | |
Collapse
|
21
|
Autofluorescent Biomolecules in Diptera: From Structure to Metabolism and Behavior. Molecules 2022; 27:molecules27144458. [PMID: 35889334 PMCID: PMC9318335 DOI: 10.3390/molecules27144458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Light-based phenomena in insects have long attracted researchers’ attention. Surface color distribution patterns are commonly used for taxonomical purposes, while optically-active structures from Coleoptera cuticle or Lepidoptera wings have inspired technological applications, such as biosensors and energy accumulation devices. In Diptera, besides optically-based phenomena, biomolecules able to fluoresce can act as markers of bio-metabolic, structural and behavioral features. Resilin or chitinous compounds, with their respective blue or green-to-red autofluorescence (AF), are commonly related to biomechanical and structural properties, helpful to clarify the mechanisms underlying substrate adhesion of ectoparasites’ leg appendages, or the antennal abilities in tuning sound detection. Metarhodopsin, a red fluorescing photoproduct of rhodopsin, allows to investigate visual mechanisms, whereas NAD(P)H and flavins, commonly relatable to energy metabolism, favor the investigation of sperm vitality. Lipofuscins are AF biomarkers of aging, as well as pteridines, which, similarly to kynurenines, are also exploited in metabolic investigations. Beside the knowledge available in Drosophila melanogaster, a widely used model to study also human disorder and disease mechanisms, here we review optically-based studies in other dipteran species, including mosquitoes and fruit flies, discussing future perspectives for targeted studies with various practical applications, including pest and vector control.
Collapse
|
22
|
Niitepõld K, Parry HA, Harris NR, Appel AG, de Roode JC, Kavazis AN, Hood WR. Flying on empty: Reduced mitochondrial function and flight capacity in food-deprived monarch butterflies. J Exp Biol 2022; 225:275693. [PMID: 35694960 DOI: 10.1242/jeb.244431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Mitochondrial function is fundamental to organismal performance, health, and fitness - especially during energetically challenging events, such as migration. With this investigation, we evaluated mitochondrial sensitivity to ecologically relevant stressors. We focused on an iconic migrant, the North American monarch butterfly (Danaus plexippus), and examined the effects of two stressors: seven days of food deprivation, and infection by the protozoan parasite Ophryocystis elektroscirrha (known to reduce survival and flight performance). We measured whole-animal resting (RMR) and peak flight metabolic rate, and mitochondrial respiration of isolated mitochondria from the flight muscles. Food deprivation reduced mass-independent RMR and peak flight metabolic rate, whereas infection did not. Fed monarchs used mainly lipids in flight (respiratory quotient 0.73), but the respiratory quotient dropped in food-deprived individuals, possibly indicating switching to alternative energy sources, such as ketone bodies. Food deprivation decreased mitochondrial maximum oxygen consumption but not basal respiration, resulting in lower respiratory control ratio (RCR). Furthermore, food deprivation decreased mitochondrial complex III activity, but increased complex IV activity. Infection did not result in any changes in these mitochondrial variables. Mitochondrial maximum respiration rate correlated positively with mass-independent RMR and flight metabolic rate, suggesting a link between mitochondria and whole-animal performance. In conclusion, low food availability negatively affects mitochondrial function and flight performance, with potential implications on migration, fitness, and population dynamics. Although previous studies have reported poor flight performance in infected monarchs, we found no differences in physiological performance, suggesting that reduced flight capacity may be due to structural differences or low energy stores.
Collapse
Affiliation(s)
- Kristjan Niitepõld
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.,The Finnish Science Centre Heureka, 01300 Vantaa, Finland
| | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - Natalie R Harris
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | | | | | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
23
|
Pacheco ID, Walling LL, Atkinson PW. Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives. Front Bioeng Biotechnol 2022; 10:900785. [PMID: 35747496 PMCID: PMC9209771 DOI: 10.3389/fbioe.2022.900785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
The origin of the order Hemiptera can be traced to the late Permian Period more than 230 MYA, well before the origin of flowering plants 100 MY later in during the Cretaceous period. Hemipteran species consume their liquid diets using a sucking proboscis; for phytophagous hemipterans their mouthparts (stylets) are elegant structures that enable voracious feeding from plant xylem or phloem. This adaptation has resulted in some hemipteran species becoming globally significant pests of agriculture resulting in significant annual crop losses. Due to the reliance on chemical insecticides for the control of insect pests in agricultural settings, many hemipteran pests have evolved resistance to insecticides resulting in an urgent need to develop new, species-specific and environmentally friendly methods of pest control. The rapid advances in CRISPR/Cas9 technologies in model insects such as Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and Aedes aegypti has spurred a new round of innovative genetic control strategies in the Diptera and Lepidoptera and an increased interest in assessing genetic control technologies for the Hemiptera. Genetic control approaches in the Hemiptera have, to date, been largely overlooked due to the problems of introducing genetic material into the germline of these insects. The high frequency of CRISPR-mediated mutagenesis in model insect species suggest that, if the delivery problem for Hemiptera could be solved, then gene editing in the Hemiptera might be quickly achieved. Significant advances in CRISPR/Cas9 editing have been realized in nine species of Hemiptera over the past 4 years. Here we review progress in the Hemiptera and discuss the challenges and opportunities for extending contemporary genetic control strategies into species in this agriculturally important insect orderr.
Collapse
Affiliation(s)
- Inaiara D. Pacheco
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Peter W. Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Peter W. Atkinson,
| |
Collapse
|
24
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
de Souza Pacheco I, Doss ALA, Vindiola BG, Brown DJ, Ettinger CL, Stajich JE, Redak RA, Walling LL, Atkinson PW. Efficient CRISPR/Cas9-mediated genome modification of the glassy-winged sharpshooter Homalodisca vitripennis (Germar). Sci Rep 2022; 12:6428. [PMID: 35440677 PMCID: PMC9018754 DOI: 10.1038/s41598-022-09990-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 technology enables the extension of genetic techniques into insect pests previously refractory to genetic analysis. We report the establishment of genetic analysis in the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, which is a significant leafhopper pest of agriculture in California. We use a novel and simple approach of embryo microinjection in situ on the host plant and obtain high frequency mutagenesis, in excess of 55%, of the cinnabar and white eye pigmentation loci. Through pair matings, we obtained 100% transmission of w and cn alleles to the G3 generation and also established that both genes are located on autosomes. Our analysis of wing phenotype revealed an unexpected discovery of the participation of pteridine pigments in wing and wing-vein coloration, indicating a role for these pigments beyond eye color. We used amplicon sequencing to examine the extent of off-target mutagenesis in adults arising from injected eggs, which was found to be negligible or non-existent. Our data show that GWSS can be easily developed as a genetic model system for the Hemiptera, enabling the study of traits that contribute to the success of invasive pests and vectors of plant pathogens. This will facilitate novel genetic control strategies.
Collapse
Affiliation(s)
| | - Anna-Louise A Doss
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Beatriz G Vindiola
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Dylan J Brown
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Cassandra L Ettinger
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Jason E Stajich
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, 92521, USA.,Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Richard A Redak
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Linda L Walling
- Department of Botany & Plant Sciences, University of California, Riverside, CA, 92521, USA. .,Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, CA, 92521, USA. .,Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
26
|
CRISPR-mediated knockout of cardinal and cinnabar eye pigmentation genes in the western tarnished plant bug. Sci Rep 2022; 12:4917. [PMID: 35322099 PMCID: PMC8943060 DOI: 10.1038/s41598-022-08908-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/11/2022] [Indexed: 11/08/2022] Open
Abstract
The western tarnished plant bug, Lygus hesperus, is a key hemipteran pest of numerous agricultural, horticultural, and industrial crops in the western United States and Mexico. A lack of genetic tools in L. hesperus hinders progress in functional genomics and in developing innovative pest control methods such as gene drive. Here, using RNA interference (RNAi) against cardinal (LhCd), cinnabar (LhCn), and white (LhW), we showed that knockdown of LhW was lethal to developing embryos, while knockdown of LhCd or LhCn produced bright red eye phenotypes, in contrast to wild-type brown eyes. We further used CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) genome editing to generate germline knockouts of both LhCd (Card) and LhCn (Cinn), producing separate strains of L. hesperus characterized by mutant eye phenotypes. Although the cardinal knockout strain Card exhibited a gradual darkening of the eyes to brown typical of the wild-type line later in nymphal development, we observed bright red eyes throughout all life stages in the cinnabar knockout strain Cinn, making it a viable marker for tracking gene editing in L. hesperus. These results provide evidence that CRISPR/Cas9 gene editing functions in L. hesperus and that eye pigmentation genes are useful for tracking the successful genetic manipulation of this insect.
Collapse
|
27
|
Bottino-Rojas V, Ferreira-Almeida I, Nunes RD, Feng X, Pham TB, Kelsey A, Carballar-Lejarazú R, Gantz V, Oliveira PL, James AA. Beyond the eye: Kynurenine pathway impairment causes midgut homeostasis dysfunction and survival and reproductive costs in blood-feeding mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103720. [PMID: 34999199 PMCID: PMC11055609 DOI: 10.1016/j.ibmb.2022.103720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Insect ommochrome biosynthesis pathways metabolize tryptophan to generate eye-color pigments and wild-type alleles of pathway genes are useful phenotypic markers in transgenesis studies. Pleiotropic effects of mutations in some genes exert a load on both survival and reproductive success in blood-feeding species. Here, we investigated the challenges imposed on mosquitoes by the increase of tryptophan metabolites resulting from blood meal digestion and the impact of disruptions of the ommochrome biosynthesis pathway. Female mosquitoes with spontaneous and induced mutations in the orthologs of the genes encoding kynurenine hydroxylase in Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus exhibited impaired survival and reproductive phenotypes that varied in type and severity among the species. A compromised midgut permeability barrier function was also observed in An. stephensi. Surprisingly, mutant mosquitoes displayed an increase in microbiota compared to controls that was not accompanied by a general induction of immune genes. Antibiotic treatment rescued some deleterious traits implicating a role for the kynurenine pathway (KP) in midgut homeostasis. Supplemental xanthurenic acid, a KP end-product, rescued lethality and limited microbiota proliferation in Ae. aegypti. These data implicate the KP in the regulation of the host/microbiota interface. These pleiotropic effects on mosquito physiology are important in the development of genetic strategies targeting vector mosquitoes.
Collapse
Affiliation(s)
- Vanessa Bottino-Rojas
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | - Igor Ferreira-Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo D Nunes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | - Adam Kelsey
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | | | - Valentino Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
28
|
Wilson DJ, Martín-Martínez FJ, Deravi LF. Wearable Light Sensors Based on Unique Features of a Natural Biochrome. ACS Sens 2022; 7:523-533. [PMID: 35138085 DOI: 10.1021/acssensors.1c02342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Overexposure to complete solar radiation (combined ultraviolet, visible, and infrared) is correlated with several harmful biological consequences including hyperpigmentation, skin cancer, eye damage, and immune suppression. With limited effective therapeutic options available for these conditions, significant efforts have been directed toward promoting preventative habits. Recently, wearable solar radiometers have emerged as practical tools for managing personal exposure to sunlight. However, designing simple and inexpensive sensors that can measure energy across multiple spectral regions without incorporating electronic components remains challenging, largely due to inherent spectral limitations of photoresponsive indicators. In this work, we report the design, fabrication, and characterization of wearable radiation sensors that leverage an unexpected feature of a natural biochrome, xanthommatin-its innate sensitivity to both ultraviolet and visible through near-infrared radiation. We found that xanthommatin-based sensors undergo a visible shift from yellow to red in the presence of complete sunlight. This color change is driven by intrinsic photoreduction of the molecule, which we investigated using computational modeling and supplemented by radiation-driven formation of complementary reducing agents. These sensors are responsive to dermatologically relevant doses of erythemally weighted radiation, as well as cumulative doses of high-energy ultraviolet radiation used for germicidal sterilization. We incorporated these miniature sensors into pressure-activated microfluidic systems to illustrate on-demand activation of a wearable and mountable form factor. When taken together, our findings encompass an important advancement toward accessible, quantitative measurements of UVC and complete solar radiation for a variety of use cases.
Collapse
Affiliation(s)
- Daniel J. Wilson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Kostas Research Institute for Homeland Security, Northeastern University, 141 South Bedford Street, Burlington, Massachusetts 01803, United States
| | - Francisco J. Martín-Martínez
- Department of Chemistry, Swansea University, Swansea SA2 8PP, Wales, U.K
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Leila F. Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
29
|
Heryanto C, Hanly JJ, Mazo-Vargas A, Tendolkar A, Martin A. Mapping and CRISPR homology-directed repair of a recessive white eye mutation in Plodia moths. iScience 2022; 25:103885. [PMID: 35243245 PMCID: PMC8861637 DOI: 10.1016/j.isci.2022.103885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
The pantry moth Plodia interpunctella is a worldwide pest of stored food products and a promising laboratory model system for lepidopteran functional genomics. Here we describe efficient methods for precise genome editing in this insect. A spontaneous recessive white-eyed phenotype maps to a frameshift deletion (c.737delC) in the white gene. CRISPR NHEJ mutagenesis of white replicates this phenotype with high rates of somatic biallelic knockout. G0 individuals with mutant clones on both eyes produced 100% mutant progeny, making white an ideal marker for co-conversion when targeting other genes. CRISPR HDR experiments corrected c.737delC and reverted white eyes to a pigmented state in 37% of G0 mosaic adults. These repaired alleles showed practical rates of germline transmission in backcrosses, demonstrating the potential of the technique for precise genome editing. Plodia offers a promising avenue for research in this taxon because of its lab-ready features, egg injectability, and editability. Plodia pantry moths are an emerging model organism for functional genomics in Lepidoptera Spontaneous and CRISPR-induced white mutations yield recessive-white eye phenotypes CRISPR HDR repair with ssODN donor result in practical rates of base editing We provide optimized protocols for Plodia handling and genome editing
Collapse
|
30
|
ESPARZA-ESPINOZA DM, SANTACRUZ-ORTEGA HDC, CHAN-HIGUERA JE, CÁRDENAS-LÓPEZ JL, BURGOS-HERNÁNDEZ A, CARBONELL-BARRACHINA ÁA, EZQUERRA-BRAUER JM. Chemical structure and antioxidant activity of cephalopod skin ommochrome pigment extracts. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.56520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Glenszczyk M, Outomuro D, Gregorič M, Kralj-Fišer S, Schneider JM, Nilsson DE, Morehouse NI, Tedore C. The jumping spider Saitis barbipes lacks a red photoreceptor to see its own sexually dimorphic red coloration. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2021; 109:6. [PMID: 34894274 PMCID: PMC8665921 DOI: 10.1007/s00114-021-01774-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/01/2022]
Abstract
Examining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spider Saitis barbipes is distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor. No colored filters within the lens or retina could be found to shift green sensitivity to red. To quantify and visualize whether females may nevertheless be capable of discriminating red from black color patches, we take multispectral images of males and calculate photoreceptor excitations and color contrasts between color patches. Red patches would be, at best, barely discriminable from black, and not discriminable from a low-luminance green. Some color patches that appear achromatic to human eyes, such as beige and white, strongly absorb UV wavelengths and would appear as brighter "spider-greens" to S. barbipes than the red color patches. Unexpectedly, we discover an iridescent UV patch that contrasts strongly with the UV-absorbing surfaces dominating the rest of the spider. We propose that red and black coloration may serve identical purposes in sexual signaling, functioning to generate strong achromatic contrast with the visual background. The potential functional significance of red coloration outside of sexual signaling is discussed.
Collapse
Affiliation(s)
- Mateusz Glenszczyk
- Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.,Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - David Outomuro
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Matjaž Gregorič
- Research Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Novi trg 2, Ljubljana, Slovenia
| | - Simona Kralj-Fišer
- Research Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Novi trg 2, Ljubljana, Slovenia
| | - Jutta M Schneider
- Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany
| | - Dan-Eric Nilsson
- Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| | - Nathan I Morehouse
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Cynthia Tedore
- Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.
| |
Collapse
|
32
|
Bonnard M, Boury B, Parrot I. Xanthurenic Acid in the Shell Purple Patterns of Crassostrea gigas: First Evidence of an Ommochrome Metabolite in a Mollusk Shell. Molecules 2021; 26:7263. [PMID: 34885845 PMCID: PMC8658808 DOI: 10.3390/molecules26237263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ommochromes are one of the least studied groups of natural pigments, frequently confused with melanin and, so far, exclusively found in invertebrates such as cephalopods and butterflies. In this study focused on the purple color of the shells of a mollusk, Crassostrea gigas, the first evidence of a metabolite of ommochromes, xanthurenic acid (XA), was obtained by liquid chromatography combined with mass spectrometry (UPLC-MS). In addition to XA and various porphyrins previously identified, a second group of high molecular weight acid-soluble pigments (HMASP) has been identified with physicochemical and structural characteristics similar to those of ommochromes. In addition, fragmentation of HMASP by tandem mass spectrometry (MS/MS) has revealed a substructure common to XA and ommochromes of the ommatin type. Furthermore, the presence of melanins was excluded by the absence of characteristic by-products among the oxidation residues of HMASP. Altogether, these results show that the purple color of the shells of Crassostrea gigas is a complex association of porphyrins and ommochromes of potentially ommatin or ommin type.
Collapse
Affiliation(s)
- Michel Bonnard
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
- TARBOURIECH-MEDITHAU, 34340 Marseillan, France
| | - Bruno Boury
- ICGM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Isabelle Parrot
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
33
|
The effects of high-monosaccharide diets on development and biochemical composition of white-eyed mutant strain of house cricket (Acheta domesticus). Sci Rep 2021; 11:21147. [PMID: 34707140 PMCID: PMC8551166 DOI: 10.1038/s41598-021-00393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Tryptophan (TRP) is one of the essential amino acids in the animal body. Its exogenicity and low concentrations mean that it can be regarded as one of the key regulatory molecules at the cellular as well as physiological level. It has been shown to have a number of essential functions, such as in the production of other biologically active molecules. The main objective of this project was to investigate the effects of a high monosaccharide diet (HMD) on a hemimetabolic insect-house cricket (Acheta domesticus) and a mutant strain with impaired visual pigment synthesis (closely related to the tryptophan and kynurenine (KYN) metabolic pathway)-white eye. This study was aimed at determining the effects of glucose and fructose on cricket development and biochemical composition. A parallel goal was to compare the response of both cricket strains to HMD. ELISA assays indicated dysfunction of the TRP-KYN pathway in white strain insects and an elevated KYN/TRP ratio. Biochemical analyses demonstrated the effects of HMD mainly on fat and glycogen content. A decrease in food intake was also observed in the groups on HMD. However, no changes in imago body weight and water content were observed. The results of the study indicate a stronger response of the white strain to HMD compared to the wild-type strain. At the same time, a stronger detrimental effect of fructose than of glucose was apparent. Sex was found to be a modulating factor in the response to HMD.
Collapse
|
34
|
Tomihara K, Satta K, Matsuzaki S, Yoshitake K, Yamamoto K, Uchiyama H, Yajima S, Futahashi R, Katsuma S, Osanai-Futahashi M, Kiuchi T. Mutations in a β-group of solute carrier gene are responsible for egg and eye coloration of the brown egg 4 (b-4) mutant in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103624. [PMID: 34333110 DOI: 10.1016/j.ibmb.2021.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The brown egg 4 (b-4) is a recessive mutant in the silkworm (Bombyx mori), whose egg and adult compound eyes exhibit a reddish-brown color instead of normal purple and black, respectively. By double digest restriction-site associated DNA sequencing (ddRAD-seq) analysis, we narrowed down a region linked to the b-4 phenotype to approximately 1.1 Mb that contains 69 predicted gene models. RNA-seq analysis in a b-4 strain indicated that one of the candidate genes had a different transcription start site, which generates a short open reading frame. We also found that exon skipping was induced in the same gene due to an insertion of a transposable element in other two b-4 mutant strains. This gene encoded a putative amino acid transporter that belongs to the β-group of solute carrier (SLC) family and is orthologous to Drosophila eye color mutant gene, mahogany (mah). Accordingly, we named this gene Bmmah. We performed CRISPR/Cas9-mediated gene knockout targeting Bmmah. Several adult moths in generation 0 (G0) had totally or partially reddish-brown compound eyes. We also established three Bmmah knockout strains, all of which exhibit reddish-brown eggs and adult compound eyes. Furthermore, eggs from complementation crosses between the b-4 mutants and the Bmmah knockout mutants also exhibited reddish-brown color, which was similar to the b-4 mutant eggs, indicating that Bmmah is responsible for the b-4 phenotypes.
Collapse
Affiliation(s)
- Kenta Tomihara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuya Satta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shohei Matsuzaki
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kimiko Yamamoto
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Science, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan; Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Susumu Katsuma
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mizuko Osanai-Futahashi
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan.
| | - Takashi Kiuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
35
|
Figon F, Hurbain I, Heiligenstein X, Trépout S, Lanoue A, Medjoubi K, Somogyi A, Delevoye C, Raposo G, Casas J. Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments. Proc Natl Acad Sci U S A 2021; 118:e2103020118. [PMID: 34433668 PMCID: PMC8536372 DOI: 10.1073/pnas.2103020118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pigment organelles of vertebrates belong to the lysosome-related organelle (LRO) family, of which melanin-producing melanosomes are the prototypes. While their anabolism has been extensively unraveled through the study of melanosomes in skin melanocytes, their catabolism remains poorly known. Here, we tap into the unique ability of crab spiders to reversibly change body coloration to examine the catabolism of their pigment organelles. By combining ultrastructural and metal analyses on high-pressure frozen integuments, we first assess whether pigment organelles of crab spiders belong to the LRO family and second, how their catabolism is intracellularly processed. Using scanning transmission electron microscopy, electron tomography, and nanoscale Synchrotron-based scanning X-ray fluorescence, we show that pigment organelles possess ultrastructural and chemical hallmarks of LROs, including intraluminal vesicles and metal deposits, similar to melanosomes. Monitoring ultrastructural changes during bleaching suggests that the catabolism of pigment organelles involves the degradation and removal of their intraluminal content, possibly through lysosomal mechanisms. In contrast to skin melanosomes, anabolism and catabolism of pigments proceed within the same cell without requiring either cell death or secretion/phagocytosis. Our work hence provides support for the hypothesis that the endolysosomal system is fully functionalized for within-cell turnover of pigments, leading to functional maintenance under adverse conditions and phenotypic plasticity. First formulated for eye melanosomes in the context of human vision, the hypothesis of intracellular turnover of pigments gets unprecedented strong support from pigment organelles of spiders.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, 37200 Tours, France;
| | - Ilse Hurbain
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | | | - Sylvain Trépout
- Institut Curie, INSERM U1196, CNRS UMR 9187, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, Équipe d'Accueil 2106, Université de Tours, 37200 Tours, France
| | | | | | - Cédric Delevoye
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | - Graça Raposo
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, 37200 Tours, France;
| |
Collapse
|
36
|
Figon F, Deravi LF, Casas J. Barriers and Promises of the Developing Pigment Organelle Field. Integr Comp Biol 2021; 61:1481-1489. [PMID: 34283212 DOI: 10.1093/icb/icab164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Many colors and patterns in nature are regulated by the packaging and processing of intracellular pigment-containing organelles within cells. Spanning both molecular and tissue-level spatial scales with chemical and physical (structural) elements of coloration, pigment organelles represent an important but largely understudied feature of every biological system capable of coloration. Although vertebrate melanosomes have historically been the best-known and most studied pigment organelle, recent reports suggest a surge in studies focusing on other pigment organelles producing a variety of non-melanic pigments, optic crystals and structural colors through their geometric arrangement. In this issue, we showcase the importance these integrative and comparative studies and discuss their results which aid in our understanding of organelle form and function in their native environment. Specifically, we highlight how pigment organelles can be studied at different scales of organization, across multiple species in biology, and with an interdisciplinary approach to better understand the biological and chemical mechanisms underlying color. This type of comparative approach provides evidence for a common origin and identity of membrane-bound pigment organelles not only in vertebrates, as was originally postulated 40 years ago, but in all animals. This indicates that we have much to gain by studying a variety of pigment organelles, as the specific biological context may provide important and unique insights into various aspects of its life. We conclude by highlighting some barriers to this research and discussing strategies to overcome them through a discussion of future directions for pigment organelle research.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| | - Leila F Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| |
Collapse
|
37
|
Disruption of kynurenine pathway reveals physiological importance of tryptophan catabolism in Henosepilachna vigintioctopunctata. Amino Acids 2021; 53:1091-1104. [PMID: 34089391 DOI: 10.1007/s00726-021-03009-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
Kynurenine pathway is critically important to catabolize tryptophan, to produce eye chromes, and to protect nervous system in insects. However, several issues related to tryptophan degradation remain to be clarified. In the present paper, we identified three genes (karmoisin, vermilion and cardinal) involved in kynurenine pathway in Henosepilachna vigintioctopunctata. The karmoisin and cardinal were highly expressed in the pupae and adults having compound eyes. Consistently, high-performance liquid chromatography result showed that three ommochrome peaks were present in adult heads rather than bodies (thoraces, legs, wings and abdomens). RNA interference (RNAi)-aided knockdown of vermilion caused accumulation of tryptophan in both adult heads and bodies, disappearance of ommochromes in the heads and a complete loss of eye color in both pupae and adults. Depletion of cardinal brought about excess of 3-hydroxykynurenine and insufficient ommochromes in the heads and decolored eyes. RNAi of karmoisin resulted in a decrease in ommochromes in the heads, and a partial loss of eye color. Moreover, a portion of karmoisin-, vermilion- or cardinal-silenced adults exhibited negative phototaxis, whereas control beetles showed positive phototaxis. Furthermore, dysfunctions of tryptophan catabolism impaired climbing ability. Our findings clearly illustrated several issues related to kynurenine pathway and provided a new insight into the physiological importance of tryptophan catabolism in H. vigintioctopunctata.
Collapse
|
38
|
Tong X, Qiao L, Luo J, Ding X, Wu S. The evolution and genetics of lepidopteran egg and caterpillar coloration. Curr Opin Genet Dev 2021; 69:140-146. [PMID: 34030080 DOI: 10.1016/j.gde.2021.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Insect colors and color patterns have fascinated biologists for centuries. While extensive research has focused on the adult colors of Drosophila and butterflies, our understanding of how colors are generated and diversified in embryonic and larval stages remains limited, especially, the genetics behind the protective coloration of the immobile embryonic and larval stages. Lepidoptera, one of the most widespread and species-rich insect orders, are extremely helpful uncovering those mechanisms due to their remarkable diverse colors in eggs and caterpillars within or among species, and these colors usually are variable in different developmental stages or in response to different environments. Here we review the recent progress on coloration of lepidopteran eggs and caterpillars, focusing on the genetic basis, developmental mechanisms, ecology, and evolution underlying the remarkable color diversity.
Collapse
Affiliation(s)
- Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jiangwen Luo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Songyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
39
|
G‐Santoyo I, González‐Tokman D, Tapia‐Rodríguez M, Córdoba‐Aguilar A. What doesn't kill you makes you stronger: Detoxification ability as a mechanism of honesty in a sexually selected signal. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Isaac G‐Santoyo
- Neuroecology Lab Facultad de Psicología Universidad Nacional Autónoma de MéxicoCiudad Universitaria Ciudad de México México
| | | | - Miguel Tapia‐Rodríguez
- Unidad de MicroscopíaInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria Ciudad de México México
| | - Alex Córdoba‐Aguilar
- Instituto de Ecología Universidad Nacional Autónoma de MéxicoCiudad Universitaria Ciudad de México México
| |
Collapse
|
40
|
Figon F, Casas J. The integrative biology of pigment organelles, a quantum chemical approach. Integr Comp Biol 2021; 61:1490-1501. [PMID: 33940609 DOI: 10.1093/icb/icab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coloration is a complex phenotypic trait involving both physical and chemical processes at a multiscale level, from molecules to tissues. Pigments, whose main property is to absorb specific wavelengths of visible light, are usually deposited in specialized organelles or complex matrices comprising proteins, metals, ions and redox compounds, among others. By modulating electronic properties and stability, interactions between pigments and these molecular actors can lead to color tuning. Furthermore, pigments are not only important for visual effects but also provide other critical functions, such as detoxification and antiradical activity. Hence, integrative studies of pigment organelles are required to understand how pigments interact with their cellular environment. In this review, we show how quantum chemistry, a computational method that models the molecular and optical properties of pigments, has provided key insights into the mechanisms by which pigment properties, from color to reactivity, are modulated by their organellar environment. These results allow to rationalize and to predict the way pigments behave in supramolecular complexes, up to the complete modelling of pigment organelles. We also discuss the main limitations of quantum chemistry, emphasizing the need for carrying experimental work with identical vigor. We finally suggest that taking into account the ecology of pigments (i.e. how they interact with these various other cellular components and at higher organizational levels) will lead to a greater understanding of how and why animals are vividly and variably colored, two fundamental questions in organismal biology.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| |
Collapse
|
41
|
Yoshimura H, Yamada YY, Sasaki K. Identification of biogenic amines involved in photoperiod-dependent caste-fate determination during the adult stage in a temperate paper wasp. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104223. [PMID: 33711330 DOI: 10.1016/j.jinsphys.2021.104223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
In the temperate paper wasp Polistes jokahamae, caste is influenced by photoperiod during the adult stage, but the mechanisms underlying the caste-fate determination system have been unclear. We measured the brain levels of monoamines and related substances in females kept isolated for two weeks under different photoperiods. Except for in the first-emerging group, the females developed ovaries under long-day conditions, whereas they stored lipids under short-day conditions. The levels of tyramine in the brain were significantly higher under long-day than under short-day conditions and positively correlated with maximum oocyte lengths. These results suggest that tyramine was produced in response to long daylength during the adult stage and associated with ovarian development, which is the principal characteristic of reproductive workers. There was also a significant positive correlation between dopamine levels in the brain and maximum oocyte length, independent of photoperiod, suggesting that dopamine is involved in reproductive function with tyramine resulting in the induction of reproductive workers. Meanwhile, higher levels of tryptophan in the brain were found in short-day conditions and positively correlated with lipid stores. However, serotonin synthesized from tryptophan and N-acetylserotonin were not associated with lipid stores without photoperiodic responses, suggesting that tryptophan is involved in the physiological changes toward gyne under short daylength, independently of serotonin signaling. In conclusion, tyramine and tryptophan are candidates for mediating photoperiod-dependent caste-fate determination in P. jokahamae: the former is involved in generating the worker caste while the latter is involved in generating the gyne caste.
Collapse
Affiliation(s)
- Hideto Yoshimura
- Insect Ecology Laboratory, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Yoshihiro Y Yamada
- Insect Ecology Laboratory, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan.
| |
Collapse
|
42
|
Liu G, Liu W, Zhao R, He J, Dong Z, Chen L, Wan W, Chang Z, Wang W, Li X. Genome-wide identification and gene-editing of pigment transporter genes in the swallowtail butterfly Papilio xuthus. BMC Genomics 2021; 22:120. [PMID: 33596834 PMCID: PMC7891156 DOI: 10.1186/s12864-021-07400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/19/2021] [Indexed: 02/03/2023] Open
Abstract
Background Insect body coloration often functions as camouflage to survive from predators or mate selection. Transportation of pigment precursors or related metabolites from cytoplasm to subcellular pigment granules is one of the key steps in insect pigmentation and usually executed via such transporter proteins as the ATP-binding cassette (ABC) transmembrane transporters and small G-proteins (e.g. Rab protein). However, little is known about the copy numbers of pigment transporter genes in the butterfly genomes and about the roles of pigment transporters in the development of swallowtail butterflies. Results Here, we have identified 56 ABC transporters and 58 Rab members in the genome of swallowtail butterfly Papilio xuthus. This is the first case of genome-wide gene copy number identification of ABC transporters in swallowtail butterflies and Rab family in lepidopteran insects. Aiming to investigate the contribution of the five genes which are orthologous to well-studied pigment transporters (ABCG: white, scarlet, brown and ok; Rab: lightoid) of fruit fly or silkworm during the development of swallowtail butterflies, we performed CRISPR/Cas9 gene-editing of these genes using P. xuthus as a model and sequenced the transcriptomes of their morphological mutants. Our results indicate that the disruption of each gene produced mutated phenotypes in the colors of larvae (cuticle, testis) and/or adult eyes in G0 individuals but have no effect on wing color. The transcriptomic data demonstrated that mutations induced by CRISPR/Cas9 can lead to the accumulation of abnormal transcripts and the decrease or dosage compensation of normal transcripts at gene expression level. Comparative transcriptomes revealed 606 ~ 772 differentially expressed genes (DEGs) in the mutants of four ABCG transporters and 1443 DEGs in the mutants of lightoid. GO and KEGG enrichment analysis showed that DEGs in ABCG transporter mutants enriched to the oxidoreductase activity, heme binding, iron ion binding process possibly related to the color display, and DEGs in lightoid mutants are enriched in glycoprotein binding and protein kinases. Conclusions Our data indicated these transporter proteins play an important role in body color of P. xuthus. Our study provides new insights into the function of ABC transporters and small G-proteins in the morphological development of butterflies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07400-z.
Collapse
Affiliation(s)
- Guichun Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jinwu He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhou Chang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, Yunnan, China.
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
43
|
Okude G, Futahashi R. Pigmentation and color pattern diversity in Odonata. Curr Opin Genet Dev 2021; 69:14-20. [PMID: 33482606 DOI: 10.1016/j.gde.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
The order Odonata (dragonflies and damselflies) comprises diurnal insects with well-developed vision, showing diverse colors in adult wings and bodies. It is one of the most ancestral winged insect groups. Because Odonata species use visual cues to recognize each other, color patterns have been investigated from ecological and evolutionary viewpoints. Here we review the recent progress on molecular mechanisms of pigmentation, especially focused on light-blue coloration. Results from histology and pigment analysis showed that ommochrome pigments on the proximal layer and pteridine pigments on the distal layer of the epidermis are essential for light-blue coloration. We also summarize genes involved in the biosynthesis of three major insect pigments conserved across insects and discuss that gene-functional analysis deserves future studies.
Collapse
Affiliation(s)
- Genta Okude
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
44
|
Dontsov AE, Sakina NL, Yakovleva MA, Bastrakov AI, Bastrakova IG, Zagorinsky AA, Ushakova NA, Feldman TB, Ostrovsky MA. Ommochromes from the Compound Eyes of Insects: Physicochemical Properties and Antioxidant Activity. BIOCHEMISTRY (MOSCOW) 2021; 85:668-678. [PMID: 32586230 DOI: 10.1134/s0006297920060048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objective of this study was screening of ommochromes from the compound eyes of insects and comparison of their antioxidant properties. Ommochromes were isolated in preparative quantities from insects of five different families: Stratiomyidae, Sphingidae, Blaberidae, Acrididae, and Tenebrionidae. The yield of ommochromes (dry pigment weight) was 0.9-5.4% of tissue wet weight depending on the insect species. Isolated pigments were analyzed by high-performance liquid chromatography and represented a mixture of several ommochromes of the ommatin series. The isolated ommochromes displayed a pronounced fluorescence with the emission maxima at 435-450 nm and 520-535 nm; furthermore, the emission intensity increased significantly upon ommochrome oxidation with hydrogen peroxide. The ommochromes produced a stable EPR signal consisting of a singlet line with g = 2.0045-2.0048, width of 1.20-1.27 mT, and high concentration of paramagnetic centers (> 1017 spin/g dry weight). All the investigated ommochromes demonstrated high antiradical activity measured from the degree of chemiluminescence quenching in a model system containing luminol, hemoglobin, and hydrogen peroxide. The ommochromes strongly inhibited peroxidation of the photoreceptor cell outer segments induced by visible light in the presence of lipofuscin granules from the human retinal pigment epithelium, as well as suppressed iron/ascorbate-mediated lipid peroxidation. The obtained results are important for understanding the biological functions of ommochromes in invertebrates and identifying invertebrate species that could be used as efficient sources of ommochromes for pharmacological preparations to prevent and treat pathologies associated with the oxidative stress development.
Collapse
Affiliation(s)
- A E Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - N L Sakina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - M A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - A I Bastrakov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
| | - I G Bastrakova
- All-Russian Research Institute of Silviculture and Mechanization of Forestry, Pushkino, Moscow Region, 141200, Russia
| | - A A Zagorinsky
- Russian Forest Protection Center, Pushkino, Moscow Region, 141202, Russia
| | - N A Ushakova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
| | - T B Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - M A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
45
|
Stavenga DG, Leertouwer HL, Arikawa K. Coloration principles of the Great purple emperor butterfly (Sasakia charonda). ZOOLOGICAL LETTERS 2020; 6:13. [PMID: 33292721 PMCID: PMC7664033 DOI: 10.1186/s40851-020-00164-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The dorsal wings of male Sasakia charonda butterflies display a striking blue iridescent coloration, which is accentuated by white, orange-yellow and red spots, as well as by brown margins. The ventral wings also have a variegated, but more subdued, pattern. We investigated the optical basis of the various colors of intact wings as well as isolated wing scales by applying light and electron microscopy, imaging scatterometry and (micro)spectrophotometry. The prominent blue iridescence is due to scales with tightly packed, multilayered ridges that contain melanin pigment. The scales in the brown wing margins also contain melanin. Pigments extracted from the orange-yellow and red spots indicate the presence of 3-OH-kynurenine and ommochrome pigment. The scales in the white spots also have multilayered ridges but lack pigment. The lower lamina of the scales plays a so-far undervalued but often crucial role. Its thin-film properties color the majority of the ventral wing scales, which are unpigmented and have large windows. The lower lamina acting as a thin-film reflector generally contributes to the reflectance of the various scale types.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Surfaces and thin films, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747, AG, Groningen, the Netherlands.
| | - Hein L Leertouwer
- Surfaces and thin films, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747, AG, Groningen, the Netherlands
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, Sokendai-Hayama, The Graduate University for Advanced Studies, Hayama, 240-0193, Japan
| |
Collapse
|
46
|
van der Burg KRL, Lewis JJ, Brack BJ, Fandino RA, Mazo-Vargas A, Reed RD. Genomic architecture of a genetically assimilated seasonal color pattern. Science 2020; 370:721-725. [DOI: 10.1126/science.aaz3017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 06/16/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022]
Affiliation(s)
| | - James J. Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Benjamin J. Brack
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Richard A. Fandino
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Robert D. Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
47
|
Abstract
Cephalopods fascinate us but have been out of the reach of experimental manipulations at the genetic level. A new study describes editing of a gene in a squid using CRISPR.
Collapse
Affiliation(s)
- Robert E Steele
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
48
|
Crawford K, Diaz Quiroz JF, Koenig KM, Ahuja N, Albertin CB, Rosenthal JJC. Highly Efficient Knockout of a Squid Pigmentation Gene. Curr Biol 2020; 30:3484-3490.e4. [PMID: 32735817 PMCID: PMC7484294 DOI: 10.1016/j.cub.2020.06.099] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
Seminal studies using squid as a model led to breakthroughs in neurobiology. The squid giant axon and synapse, for example, laid the foundation for our current understanding of the action potential [1], ionic gradients across cells [2], voltage-dependent ion channels [3], molecular motors [4-7], and synaptic transmission [8-11]. Despite their anatomical advantages, the use of squid as a model receded over the past several decades as investigators turned to genetically tractable systems. Recently, however, two key advances have made it possible to develop techniques for the genetic manipulation of squid. The first is the CRISPR-Cas9 system for targeted gene disruption, a largely species-agnostic method [12, 13]. The second is the sequencing of genomes for several cephalopod species [14-16]. If made genetically tractable, squid and other cephalopods offer a wealth of biological novelties that could spur discovery. Within invertebrates, not only do they possess by far the largest brains, they also express the most sophisticated behaviors [17]. In this paper, we demonstrate efficient gene knockout in the squid Doryteuthis pealeii using CRISPR-Cas9. Ommochromes, the pigments found in squid retinas and chromatophores, are derivatives of tryptophan, and the first committed step in their synthesis is normally catalyzed by Tryptophan 2,3 Dioxygenase (TDO [18-20]). Knocking out TDO in squid embryos efficiently eliminated pigmentation. By precisely timing CRISPR-Cas9 delivery during early development, the degree of pigmentation could be finely controlled. Genotyping revealed knockout efficiencies routinely greater than 90%. This study represents a critical advancement toward making squid genetically tractable.
Collapse
Affiliation(s)
- Karen Crawford
- Biology Department, St. Mary's College of Maryland, 18952 E. Fisher Road, St. Mary's City, MD 20650, USA; The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Juan F Diaz Quiroz
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01451, USA; John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 01451, USA
| | - Namrata Ahuja
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Caroline B Albertin
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
49
|
Figon F, Munsch T, Croix C, Viaud-Massuard MC, Lanoue A, Casas J. Uncyclized xanthommatin is a key ommochrome intermediate in invertebrate coloration. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103403. [PMID: 32574597 DOI: 10.1016/j.ibmb.2020.103403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Ommochromes are widespread pigments that mediate multiple functions in invertebrates. The two main families of ommochromes are ommatins and ommins, which both originate from the kynurenine pathway but differ in their backbone, thereby in their coloration and function. Despite its broad significance, how the structural diversity of ommochromes arises in vivo has remained an open question since their first description. In this study, we combined organic synthesis, analytical chemistry and organelle purification to address this issue. From a set of synthesized ommatins, we derived a fragmentation pattern that helped elucidating the structure of new ommochromes. We identified uncyclized xanthommatin as the elusive biological intermediate that links the kynurenine pathway to the ommatin pathway within ommochromasomes, the ommochrome-producing organelles. Due to its unique structure, we propose that uncyclized xanthommatin functions as a key branching metabolite in the biosynthesis and structural diversification of ommatins and ommins, from insects to cephalopods.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200, Tours, France.
| | - Thibaut Munsch
- Biomolécules et Biotechnologies Végétales, EA 2106, Université de Tours, 37200, Tours, France
| | - Cécile Croix
- Génétique, Immunothérapie, Chimie et Cancer, UMR CNRS 7292, Université de Tours, 37200, Tours, France
| | | | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA 2106, Université de Tours, 37200, Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200, Tours, France
| |
Collapse
|
50
|
Zhuravlev AV, Vetrovoy OV, Ivanova PN, Savvateeva-Popova EV. 3-Hydroxykynurenine in Regulation of Drosophila Behavior: The Novel Mechanisms for Cardinal Phenotype Manifestations. Front Physiol 2020; 11:971. [PMID: 32848886 PMCID: PMC7426499 DOI: 10.3389/fphys.2020.00971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/16/2020] [Indexed: 01/21/2023] Open
Abstract
Dysfunctions of kynurenine pathway of tryptophan metabolism (KPTM) are associated with multiple neuropathologies in vertebrates and invertebrates. Drosophila mutants with altered content of kynurenines are model objects for studying the molecular processes of neurodegeneration and senile dementia. The mutant cardinal (cd1) with accumulation of the redox stress inductor 3-hydroxykynurenine (3-HOK) shows age-dependent impairments of the courtship song and middle-term memory. The molecular mechanisms for 3-HOK accumulation in cd1 are still unknown. Here, we have studied age-dependent differences in spontaneous locomotor activity (SLA) for the wild type strain Canton-S (CS), cd1, and cinnabar (cn1) with an excess of neuroprotective kynurenic acid (KYNA). We have also estimated the level and distribution of protein-bound 3-HOK (PB-3-HOK) in Drosophila brains (Br) and head tissues. The middle-age cd1 show the higher running speed and lower run frequency compared to CS, for cn1 the situation is the opposite. There is a decrease in the index of activity for 40-day-old cd1 that seems to be an effect of the oxidative stress development. Surprisingly, PB-3-HOK level in Drosophila heads, brains, and head capsules (HC) is several times lower for cd1 compared to CS. This complements the traditional hypothesis that cd1 phenotype results from a mutation in phenoxazinone synthase (PHS) gene governing the brown eye pigment xanthommatin synthesis. In addition to 3-HOK dimerization, cd1 mutation affects protein modification by 3-HOK. The accumulation of free 3-HOK in cd1 may result from the impairment of 3-HOK conjugation with some proteins of the brain and head tissues.
Collapse
Affiliation(s)
- Aleksandr V Zhuravlev
- Laboratory of Neurogenetics, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| | - Oleg V Vetrovoy
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Polina N Ivanova
- Laboratory of Neurogenetics, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Anatomy and Physiology of Humans and Animals, Faculty of Biology, Herzen State Pedagogical University of Russia, Saint Petersburg, Russia
| | - Elena V Savvateeva-Popova
- Laboratory of Neurogenetics, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|