1
|
Yang L, Yi Y, Mei Z, Huang D, Tang S, Hu L, Liu L. Circular RNAs in cancer stem cells: Insights into their roles and mechanisms (Review). Int J Mol Med 2025; 55:50. [PMID: 39930823 PMCID: PMC11781527 DOI: 10.3892/ijmm.2025.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Cancer stem cells (CSCs) represent a small, yet pivotal subpopulation of tumor cells that play significant roles in tumor initiation, progression and therapeutic resistance. Circular RNAs (circRNAs) are a distinct class of RNAs characterized by their closed‑loop structures, lacking 5' to 3'ends. There is growing evidence that circRNAs are integral to the development and regulation of CSCs. Aberrant expression of circRNAs in CSCs can contribute to oncogenic properties and drug resistance. Specifically, oncogenic circRNAs modulate CSC behavior via key signaling pathways, thereby promoting CSC self‑renewal and maintenance, as well as tumor progression. This review summarizes the latest research on the functional roles and regulatory mechanisms of circRNAs in CSC behavior and discusses potential applications and challenges of targeting circRNAs in CSCs. Understanding the intricate interactions between circRNAs and CSCs may lead to novel therapeutic strategies that effectively combat treatment resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Lunyu Yang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Yuling Yi
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Zhu Mei
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Dongmei Huang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Sitian Tang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Liyi Hu
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Ling Liu
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| |
Collapse
|
2
|
Sun L, Hu P, Yang H, Ren J, Hu R, Wu S, Wang Y, Du Y, Zheng J, Wang F, Gao H, Yan J, Yuan YF, Guan XY, Xiao J, Li Y. ADARp110 promotes hepatocellular carcinoma progression via stabilization of CD24 mRNA. Proc Natl Acad Sci U S A 2025; 122:e2409724122. [PMID: 39808660 PMCID: PMC11761664 DOI: 10.1073/pnas.2409724122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific Adarp110 knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC. It creates an immunosuppressive microenvironment by inhibiting total immune cells, particularly cytotoxic GZMB+CD8+ T cells infiltration, while augmenting Treg cells, MDSCs, and exhausted CD8+ T cells ratios. Mechanistically, ADARp110 interacts with SNRPD3 and RNPS1 to stabilize CD24 mRNA by inhibiting STAU1-mediated mRNA decay. CD24 protects HCC cells from two indispensable mechanisms: macrophage phagocytosis and oxidative stress. Genetic knockdown or monoclonal antibody treatment of CD24 inhibits ADARp110-overexpressing tumor growth. Our findings unveil different mechanisms for ADARp110 modulation of tumor immune microenvironment and identify CD24 as a promising therapeutic target for HCCs.
Collapse
Affiliation(s)
- Liangzhan Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong999077, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong999077, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen518067, China
- Peking University Shenzhen Graduate School, Peking University, Shenzhen518055, China
| | - Pengchao Hu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Department of Oncology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang441000, China
| | - Hui Yang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jun Ren
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Rong Hu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Shasha Wu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yanchen Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen518000, China
| | - Yuyang Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jingyi Zheng
- Shenzhen Hospital, Southern Medical University, Shenzhen518000, China
| | - Fenfen Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Han Gao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jingsong Yan
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou510060, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong999077, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong999077, China
| | - Jia Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Zhuhai519000, China
| | - Yan Li
- Shenzhen Hospital, Southern Medical University, Shenzhen518000, China
| |
Collapse
|
3
|
Zeng C, Xu C, Wei Y, Ma F, Wang Y. Training and experimental validation a novel anoikis- and epithelial‒mesenchymal transition-related signature for evaluating prognosis and predicting immunotherapy efficacy in gastric cancer. J Cancer 2025; 16:1078-1100. [PMID: 39895782 PMCID: PMC11786038 DOI: 10.7150/jca.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/22/2024] [Indexed: 02/04/2025] Open
Abstract
Anoikis resistance and improper activation of epithelial‒mesenchymal transition (EMT) are critical factors in tumor metastasis and progression. Despite their interaction, the combined impact of anoikis and EMT on prognosis and immunotherapy in gastric cancer remains underexplored. In this study, we identified 354 anoikis- and EMT-related genes (AERGs) through Venn analysis and performed unsupervised clustering to classify gastric cancer patients into two molecular clusters: A and B. Molecular cluster A showed poor prognosis and an immunosuppressive tumor microenvironment, suggesting a "cold tumor" phenotype. Then, a novel AERG-related prognostic model comprising CD24, CRYAB, MMP11, MUC4, PRKAA2, SERPINE1, SKP2, and TP53 was constructed and validated, accurately predicting the 1-, 3-, and 5-year survival rates of gastric cancer patients. Multivariate analysis revealed that the AERG-related risk score was an independent prognostic factor (hazard ratio = 1.651, 95% confidence interval = 1.429-1.907, P<0.001). Further studies demonstrated that, compared to the high-risk group, the low-risk group exhibited higher CD8+ T cell infiltration, tumor mutational burden, immunophenoscores, and lower tumor immune dysfunction and exclusion scores, indicating potential sensitivity to immunotherapy. RT‒qPCR and immunohistochemical staining validated the expression levels of the model's molecular markers. Overall, our AERG-related model shows promise for predicting outcomes and guiding the selection of tailored and precise therapies for gastric cancer patients.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chang Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhan Wei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, 213000, China
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu Province, 213000, China
| |
Collapse
|
4
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
5
|
Sinha S, Hembram KC, Chatterjee S. Targeting signaling pathways in cancer stem cells: A potential approach for developing novel anti-cancer therapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:157-209. [PMID: 38663959 DOI: 10.1016/bs.ircmb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cancer stem cells (CSCs) have emerged as prime players in the intricate landscape of cancer development, progression, and resistance to traditional treatments. These unique cellular subpopulations own the remarkable capability of self-renewal and differentiation, giving rise to the diverse cellular makeup of tumors and fostering their recurrence following conventional therapies. In the quest for developing more effective cancer therapeutics, the focus has now shifted toward targeting the signaling pathways that govern CSCs behavior. This chapter underscores the significance of these signaling pathways in CSC biology and their potential as pivotal targets for the development of novel chemotherapy approaches. We delve into several key signaling pathways essential for maintaining the defining characteristics of CSCs, including the Wnt, Hedgehog, Notch, JAK-STAT, NF-κB pathways, among others, shedding light on their potential crosstalk. Furthermore, we highlight the latest advancements in CSC-targeted therapies, spanning from promising preclinical models to ongoing clinical trials. A comprehensive understanding of the intricate molecular aspects of CSC signaling pathways and their manipulation holds the prospective to revolutionize cancer treatment paradigms. This, in turn, could lead to more efficacious and personalized therapies with the ultimate goal of eradicating CSCs and enhancing overall patient outcomes. The exploration of CSC signaling pathways represents a key step towards a brighter future in the battle against cancer.
Collapse
Affiliation(s)
- Saptarshi Sinha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States.
| |
Collapse
|
6
|
Krediet RT, Parikova A. Glucose-induced pseudohypoxia and advanced glycosylation end products explain peritoneal damage in long-term peritoneal dialysis. Perit Dial Int 2024; 44:6-15. [PMID: 37723976 DOI: 10.1177/08968608231196033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Long-term peritoneal dialysis is associated with the development of peritoneal membrane alterations, both in morphology and function. Impaired ultrafiltration (UF) is the most important functional change, and peritoneal fibrosis is the major morphological alteration. Both are caused by the continuous exposure to dialysis solutions that are different from plasma water with regard to the buffer substance and the extremely high-glucose concentrations. Glucose has been incriminated as the major cause of long-term peritoneal membrane changes, but the precise mechanism has not been identified. We argue that glucose causes the membrane alterations by peritoneal pseudohypoxia and by the formation of advanced glycosylation end products (AGEs). After a summary of UF kinetics including the role of glucose transporters (GLUT), and a discussion on morphologic alterations, relationships between function and morphology and a survey of the pathogenesis of UF failure (UFF), it will be argued that impaired UF is partly caused by a reduction in small pore fluid transport as a consequence of AGE-related vasculopathy and - more importantly - in diminished free water transport due to pseudohypoxia, caused by increased peritoneal cellular expression of GLUT-1. The metabolism of intracellular glucose will be reviewed. This occurs in the glycolysis and in the polyol/sorbitol pathway, the latter is activated in case of a large supply. In both pathways the ratio between the reduced and oxidised form of nicotinamide dinucleotide (NADH/NAD+ ratio) will increase, especially because normal compensatory mechanisms may be impaired, and activate expression of hypoxia-inducible factor-1 (HIF-1). The latter gene activates various profibrotic factors and GLUT-1. Besides replacement of glucose as an osmotic agent, medical treatment/prevention is currently limited to tamoxifen and possibly Renin/angiotensis/aldosteron (RAA) inhibitors.
Collapse
Affiliation(s)
- Raymond T Krediet
- Division of Nephrology, Department of Medicine, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Alena Parikova
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
7
|
Zhang FX, Xu P, Zhang LJ, Fan R, Zhang HX, Liu DH, Liu K, Shen DY. RARγ promotes the invasion and metastasis of thyroid carcinoma by activating the JAK1-STAT3-CD24/MMPs axis. Int Immunopharmacol 2023; 125:111129. [PMID: 37897947 DOI: 10.1016/j.intimp.2023.111129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
The nuclear receptor superfamily RAR is generally considered to play a crucial role in the development of tumors by regulating the transcription of target genes. Nevertheless, whether RARγ performs tumor-promoting or tumor-suppressing functions and its specific mechanism in thyroid carcinoma (TC) remain unknown. Here, our study demonstrated that RARγ was abnormally overexpressed in TC tissues compared with normal thyroid tissues. Moreover, RARγ expression was remarkably correlated with cell phenotypes such as cell proliferation, migration and invasion. Mechanistically, RARγ knockdown effectively decreased the phosphorylation levels of JAK1 and STAT3, leading to decreased expression of the membrane protein CD24. In a coculture system, TC cells with high levels of CD24 in the membrane were more likely to escape phagocytosis by macrophages via the combination of CD24 with the inhibitory receptor Siglec-10 in the membrane of macrophages. In contrast, the ability of macrophages to engulf TC cells was notably elevated through exogenous addition of CD24 antibody. Collectively, our study revealed a previously undiscovered molecular mechanism of RARγ in promoting the development of TC, shedding light on RARγ as a promising therapeutic target for TC.
Collapse
Affiliation(s)
- Fu-Xing Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China; Department of General Surgery, The First Hospital Affiliated to Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Peng Xu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Lin-Jun Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Rui Fan
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Hao-Xuan Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Dong-Hua Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Ke Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Dong-Yan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China.
| |
Collapse
|
8
|
Moon SY, Han M, Ryu G, Shin SA, Lee JH, Lee CS. Emerging Immune Checkpoint Molecules on Cancer Cells: CD24 and CD200. Int J Mol Sci 2023; 24:15072. [PMID: 37894750 PMCID: PMC10606340 DOI: 10.3390/ijms242015072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer immunotherapy strategies are based on the utilization of immune checkpoint inhibitors to instigate an antitumor immune response. The efficacy of immune checkpoint blockade, directed at adaptive immune checkpoints, has been demonstrated in select cancer types. However, only a limited subset of patients has exhibited definitive outcomes characterized by a sustained response after discontinuation of therapy. Recent investigations have highlighted the significance of immune checkpoint molecules that are overexpressed in cancer cells and inhibit myeloid lineage immune cells within a tumor microenvironment. These checkpoints are identified as potential targets for anticancer immune responses. Notably, the immune checkpoint molecules CD24 and CD200 have garnered attention owing to their involvement in tumor immune evasion. CD24 and CD200 are overexpressed across diverse cancer types and serve as signaling checkpoints by engaging their respective receptors, Siglec-10 and CD200 receptor, which are expressed on tumor-associated myeloid cells. In this review, we summarized and discussed the latest advancements and insights into CD24 and CD200 as emergent immune checkpoint moieties, further delving into their therapeutic potentials for cancer treatment.
Collapse
Affiliation(s)
- Sun Young Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Minjoo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Gyoungah Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Seong-Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea;
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| |
Collapse
|
9
|
Gu Y, Zhou G, Tang X, Shen F, Ding J, Hua K. The biological roles of CD24 in ovarian cancer: old story, but new tales. Front Immunol 2023; 14:1183285. [PMID: 37359556 PMCID: PMC10288981 DOI: 10.3389/fimmu.2023.1183285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
CD24 is a glycosylphosphatidylinositol linked molecular which expressed in diverse malignant tumor cells, particular in ovarian carcinoma cells and ovarian carcinoma stem cells. The CD24 expression is associated with increased metastatic potential and poor prognosis of malignancies. CD24 on the surface of tumor cells could interact with Siglec-10 on the surface of immune cells, to mediate the immune escape of tumor cells. Nowadays, CD24 has been identified as a promising focus for targeting therapy of ovarian cancer. However, the roles of CD24 in tumorigenesis, metastasis, and immune escape are still not clearly demonstrated systematically. In this review, we i) summarized the existing studies on CD24 in diverse cancers including ovarian cancer, ii) illustrated the role of CD24-siglec10 signaling pathway in immune escape, iii) reviewed the existing immunotherapeutic strategies (targeting the CD24 to restore the phagocytic effect of Siglec-10 expressing immune cells) based on the above mechanisms and evaluated the priorities in the future research. These results might provide support for guiding the CD24 immunotherapy as the intervention upon solid tumors.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Guannan Zhou
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Xue Tang
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fang Shen
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jingxin Ding
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
10
|
Ozcan G. The hypoxia-inducible factor-1α in stemness and resistance to chemotherapy in gastric cancer: Future directions for therapeutic targeting. Front Cell Dev Biol 2023; 11:1082057. [PMID: 36846589 PMCID: PMC9945545 DOI: 10.3389/fcell.2023.1082057] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a crucial mediator of intra-tumoral heterogeneity, tumor progression, and unresponsiveness to therapy in tumors with hypoxia. Gastric tumors, one of the most aggressive tumors in the clinic, are highly enriched in hypoxic niches, and the degree of hypoxia is strongly correlated with poor survival in gastric cancer patients. Stemness and chemoresistance in gastric cancer are the two root causes of poor patient outcomes. Based on the pivotal role of HIF-1α in stemness and chemoresistance in gastric cancer, the interest in identifying critical molecular targets and strategies for surpassing the action of HIF-1α is expanding. Despite that, the understanding of HIF-1α induced signaling in gastric cancer is far from complete, and the development of efficacious HIF-1α inhibitors bears various challenges. Hence, here we review the molecular mechanisms by which HIF-1α signaling stimulates stemness and chemoresistance in gastric cancer, with the clinical efforts and challenges to translate anti-HIF-1α strategies into the clinic.
Collapse
Affiliation(s)
- Gulnihal Ozcan
- Department of Medical Pharmacology, School of Medicine, Koç University, Istanbul, Turkiye
- Koç University Research Center for Translational Medicine, Istanbul, Turkiye
| |
Collapse
|
11
|
Martin J, Islam F. Detection and Isolation of Cancer Stem Cells. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:45-69. [DOI: 10.1007/978-981-99-3185-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022; 938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Yamini Pathak
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | | | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
13
|
Kim M, Hui KM, Shi M, Reau N, Aloman C. Differential expression of hepatic cancer stemness and hypoxia markers in residual cancer after locoregional therapies for hepatocellular carcinoma. Hepatol Commun 2022; 6:3247-3259. [PMID: 36097402 PMCID: PMC9592798 DOI: 10.1002/hep4.2079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Transarterial chemoembolization (TACE) and transarterial radioembolization (TARE) treatment to hepatocellular carcinoma (HCC) are effective tools to control tumor growth, prolong survival, palliate symptoms, and improve quality of life for patients with intermediate-stage HCC. Nevertheless, there is high variability of local HCC responses to locoregional therapies; therefore, better and personalized prediction of tumor response to TACE is necessary for management of patients with HCC, especially when these modalities of treatment are used to bridge patients for liver transplant. Here, we investigated differential expression of hepatic cancer stem cell and hypoxia in residual HCC after TACE treatment in comparison with TARE. A publicly available gene data set was screened for differentially expressed genes (DEGs) in TACE_Response compared with TACE_Non-response HCC. Analysis of the GSE104580 data set displayed a total of 406 DEGs, including 196 down-regulated and 210 up-regulated DEGs. Of the 196 down-regulated DEGs, three hepatic cancer stem cell (CSC) markers and 11 hypoxia-related genes were identified. Immunohistochemical staining of hepatic CSC and hypoxia markers on explant liver tissues exhibited more intense positive staining of hepatic CSC markers (CD24, EpCAM) and hypoxia marker carbonic anhydrase 9 (CA9) in residual tumor nodule from patients with HCC treated with TACE compared with nontreated patients. Furthermore, Pearson's correlation analysis revealed the significant correlation between hepatic CSC markers and hypoxia marker, CA9. Conclusion: Hepatic CSC and hypoxia markers predict nonresponse to TACE and are differentially expressed in residual tumor after TACE compared with TARE. In the long term, TACE-induced hypoxia may select an aggressive HCC phenotype.
Collapse
Affiliation(s)
- Miran Kim
- Division of Digestive Diseases and Nutrition, Section of HepatologyRush UniversityChicagoIllinoisUSA
| | - Kam Man Hui
- Department of Cellular & Molecular ResearchNational Cancer Center SingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Institute of Molecular and Cell BiologyA*STARSingapore
- Duke‐NUS Medical SchoolSingapore
| | - Ming Shi
- Department of Liver SurgeryCancer Center, Sun Yat‐sen UniversityGuangzhouChina
| | - Nancy Reau
- Division of Digestive Diseases and Nutrition, Section of HepatologyRush UniversityChicagoIllinoisUSA
| | - Costica Aloman
- Division of Digestive Diseases and Nutrition, Section of HepatologyRush UniversityChicagoIllinoisUSA
| |
Collapse
|
14
|
Cancer Stem Cells: From an Insight into the Basics to Recent Advances and Therapeutic Targeting. Stem Cells Int 2022; 2022:9653244. [PMID: 35800881 PMCID: PMC9256444 DOI: 10.1155/2022/9653244] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer is characterized by an abnormal growth of the cells in an uncontrolled manner. These cells have the potential to invade and can eventually turn into malignancy, leading to highly fatal forms of tumor. Small subpopulations of cancer cells that are long-lived with the potential of excessive self-renewal and tumor formation are called cancer stem cells (CSCs) or cancer-initiating cells or tumor stem cells. CSCs can be found in tissues, such as breast, brain, lung, liver, ovary, and testis; however, their origin is still a matter of debate. These cells can differentiate and possess self-renewal capacity maintained by numerous intracellular signal transduction pathways, such as the Wnt/β-catenin signaling, Notch signaling, transforming growth factor-β signaling, and Hedgehog signaling. They can also contribute to numerous malignancies and are an important reason for tumor recurrence and metastasis because they are resistant to the known therapeutic strategies that mainly target the bulk of the tumor cells. This review contains collected and compiled information after analyzing published works of the last three decades. The goal was to gather information of recent breakthroughs related to CSCs, strategies to target CSCs' niche (e.g., nanotechnology with tumor biology), and their signaling pathways for cancer therapy. Moreover, the role of metformin, an antidiabetic drug, acting as a chemotherapeutic agent on CSCs by inhibiting cellular transformation and its selective killing is also addressed.
Collapse
|
15
|
Sharma A, Sinha S, Shrivastava N. Therapeutic Targeting Hypoxia-Inducible Factor (HIF-1) in Cancer: Cutting Gordian Knot of Cancer Cell Metabolism. Front Genet 2022; 13:849040. [PMID: 35432450 PMCID: PMC9008776 DOI: 10.3389/fgene.2022.849040] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Metabolic alterations are one of the hallmarks of cancer, which has recently gained great attention. Increased glucose absorption and lactate secretion in cancer cells are characterized by the Warburg effect, which is caused by the metabolic changes in the tumor tissue. Cancer cells switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis due to changes in glucose degradation mechanisms, a process known as “metabolic reprogramming”. As a result, proteins involved in mediating the altered metabolic pathways identified in cancer cells pose novel therapeutic targets. Hypoxic tumor microenvironment (HTM) is anticipated to trigger and promote metabolic alterations, oncogene activation, epithelial-mesenchymal transition, and drug resistance, all of which are hallmarks of aggressive cancer behaviour. Angiogenesis, erythropoiesis, glycolysis regulation, glucose transport, acidosis regulators have all been orchestrated through the activation and stability of a transcription factor termed hypoxia-inducible factor-1 (HIF-1), hence altering crucial Warburg effect activities. Therefore, targeting HIF-1 as a cancer therapy seems like an extremely rational approach as it is directly involved in the shift of cancer tissue. In this mini-review, we present a brief overview of the function of HIF-1 in hypoxic glycolysis with a particular focus on novel therapeutic strategies currently available.
Collapse
Affiliation(s)
- Abhilasha Sharma
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, India
| | | | - Neeta Shrivastava
- Shri B.V. Patel Education Trust, Ahmedabad, India
- *Correspondence: Neeta Shrivastava,
| |
Collapse
|
16
|
Ni YH, Zhao X, Wang W. CD24, A Review of its Role in Tumor Diagnosis, Progression and Therapy. Curr Gene Ther 2021; 20:109-126. [PMID: 32576128 DOI: 10.2174/1566523220666200623170738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
CD24, is a mucin-like GPI-anchored molecules. By immunohistochemistry, it is widely detected in many solid tumors, such as breast cancers, genital system cancers, digestive system cancers, neural system cancers and so on. The functional roles of CD24 are either fulfilled by combination with ligands or participate in signal transduction, which mediate the initiation and progression of neoplasms. However, the character of CD24 remains to be intriguing because there are still opposite voices about the impact of CD24 on tumors. In preclinical studies, CD24 target therapies, including monoclonal antibodies, target silencing by RNA interference and immunotherapy, have shown us brighten futures on the anti-tumor application. Nevertheless, evidences based on clinical studies are urgently needed. Here, with expectancy to spark new ideas, we summarize the relevant studies about CD24 from a tumor perspective.
Collapse
Affiliation(s)
- Yang-Hong Ni
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| |
Collapse
|
17
|
Chang Y, Roy S, Pan Z. Store-Operated Calcium Channels as Drug Target in Gastroesophageal Cancers. Front Pharmacol 2021; 12:668730. [PMID: 34012400 PMCID: PMC8126661 DOI: 10.3389/fphar.2021.668730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Gastroesophageal cancers, including tumors occurring in esophagus and stomach, usually have poor prognosis and lack effective chemotherapeutic drugs for treatment. The association between dysregulated store-operated calcium entry (SOCE), a key intracellular Ca2+ signaling pathway and gastroesophageal cancers are emerging. This review summarizes the recent advances in understanding the contribution of SOCE-mediated intracellular Ca2+ signaling to gastroesophageal cancers. It assesses the pathophysiological role of each component in SOCE machinery, such as Orais and STIMs in the cancer cell proliferation, migration, and invasion as well as stemness maintenance. Lastly, it discusses efforts towards development of more specific and potent SOCE inhibitors, which may be a new set of chemotherapeutic drugs appearing at the horizon, to provide either targeted therapy or adjuvant treatment to overcome drug resistance for gastroesophageal cancers.
Collapse
Affiliation(s)
- Yan Chang
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Souvik Roy
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX, United States
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
18
|
Razmi M, Ghods R, Vafaei S, Sahlolbei M, Saeednejad Zanjani L, Madjd Z. Clinical and prognostic significances of cancer stem cell markers in gastric cancer patients: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:139. [PMID: 33639931 PMCID: PMC7912890 DOI: 10.1186/s12935-021-01840-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is considered one of the most lethal malignancies worldwide, which is accompanied by a poor prognosis. Although reports regarding the importance of cancer stem cell (CSC) markers in gastric cancer progression have rapidly developed over the last few decades, their clinicopathological and prognostic values in gastric cancer still remain inconclusive. Therefore, the current meta-analysis aimed to quantitatively re-evaluate the association of CSC markers expression, overall and individually, with GC patients’ clinical and survival outcomes. Methods Literature databases including PubMed, Scopus, ISI Web of Science, and Embase were searched to identify the eligible articles. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were recorded or calculated to determine the relationships between CSC markers expression positivity and overall survival (OS), disease-free survival (DFS)/relapse-free survival (RFS), disease-specific survival (DSS)/ cancer-specific survival (CSS), and clinicopathological features. Results We initially retrieved 4,425 articles, of which a total of 66 articles with 89 studies were considered as eligible for this meta-analysis, comprising of 11,274 GC patients. Overall data analyses indicated that the overexpression of CSC markers is associated with TNM stage (OR = 2.19, 95% CI 1.84–2.61, P = 0.013), lymph node metastasis (OR = 1.76, 95% CI 1.54–2.02, P < 0.001), worse OS (HR = 1.65, 95% CI 1.54–1.77, P < 0.001), poor CSS/DSS (HR = 1.69, 95% CI 1.33–2.15, P < 0.001), and unfavorable DFS/RFS (HR = 2.35, 95% CI 1.90–2.89, P < 0.001) in GC patients. However, CSC markers expression was found to be slightly linked to tumor differentiation (OR = 1.25, 95% CI 1.01–1.55, P = 0.035). Sub-analysis demonstrated a significant positive relationship between most of the individual markers, specially Gli-1, Oct-4, CD44, CD44V6, and CD133, and clinical outcomes as well as the reduced survival, whereas overexpression of Lgr-5, Nanog, and sonic hedgehog (Shh) was not found to be related to the majority of clinical outcomes in GC patients. Conclusion The expression of CSC markers is mostly associated with worse outcomes in patients with GC, both overall and individual. The detection of a combined panel of CSC markers might be appropriate as a prognostic stratification marker to predict tumor aggressiveness and poor prognosis in patients with GC, which probably results in identifying novel potential targets for therapeutic approaches.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sahlolbei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Du K, Ren J, Fu Z, Wu X, Zheng J, Li X. ANXA3 is upregulated by hypoxia-inducible factor 1-alpha and promotes colon cancer growth. Transl Cancer Res 2020; 9:7440-7449. [PMID: 35117344 PMCID: PMC8797770 DOI: 10.21037/tcr-20-994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/30/2020] [Indexed: 11/06/2022]
Abstract
Background Annexin A3 (ANXA3) is overexpressed in various cancers and is a potential target for cancer treatment. However, clinical implication and biological function of ANXA3 in colon cancer remain unknown. This study aimed to investigate the relationship between hypoxia-inducible factor 1-alpha (HIF-1α) and ANXA3, and explore the function of ANXA3 in colon carcinoma. Methods Expression levels of HIF-1α and ANXA3 in human colon carcinoma specimens and colon cancer cell lines were detected by immunohistochemistry, real-time PCR and Western blot analysis. The proliferation of colon cancer cells was examined. Nude mice were used for xenograft tumor model, and HIF-1α siRNA or control adenovirus was injected into the tumor. Results HIF-1α and ANXA3 expression levels were higher in colon cancer tissues than their expression levels in normal colon tissues. In addition, HIF-1α and ANXA3 expression increased in colon cancer cells under hypoxic condition. Knockdown of HIF-1α decreased HIF-1α and ANXA3 expression, and inhibited the proliferation and growth of colon cancer cells. In nude mouse model, silencing HIF-1α decreased volume of xenograft tumor and ANXA3 expression. Conclusions ANXA3 expression is upregulated by HIF-1α in colon cancer in response to hypoxic stress and contributes to colon tumor growth. ANXA3 may represent a new therapeutic target for colon carcinoma.
Collapse
Affiliation(s)
- Kunli Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiahui Ren
- Department of Anus and Intestine Surgery, Xi'an Mayinglong Anorectal Hospital, Xi'an, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingye Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xing Li
- Nanjing Yuheming Medical Nutrition Research Institute, Nanjing, China
| |
Collapse
|
20
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 567] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
21
|
Molecular Bases of Mechanisms Accounting for Drug Resistance in Gastric Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12082116. [PMID: 32751679 PMCID: PMC7463778 DOI: 10.3390/cancers12082116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer, the fifth according to the frequency and the third among the deadliest cancers. GAC high mortality is due to a combination of factors, such as silent evolution, late clinical presentation, underlying genetic heterogeneity, and effective mechanisms of chemoresistance (MOCs) that make the available antitumor drugs scarcely useful. MOCs include reduced drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), low proportion of active agents in tumor cells due to impaired pro-drug activation or active drug inactivation (MOC-2), changes in molecular targets sensitive to anticancer drugs (MOC-3), enhanced ability of cancer cells to repair drug-induced DNA damage (MOC-4), decreased function of pro-apoptotic factors versus up-regulation of anti-apoptotic genes (MOC-5), changes in tumor cell microenvironment altering the response to anticancer agents (MOC-6), and phenotypic transformations, including epithelial-mesenchymal transition (EMT) and the appearance of stemness characteristics (MOC-7). This review summarizes updated information regarding the molecular bases accounting for these mechanisms and their impact on the lack of clinical response to the pharmacological treatment currently used in GAC. This knowledge is required to identify novel biomarkers to predict treatment failure and druggable targets, and to develop sensitizing strategies to overcome drug refractoriness in GAC.
Collapse
|
22
|
Yin SS, Gao FH. Molecular Mechanism of Tumor Cell Immune Escape Mediated by CD24/Siglec-10. Front Immunol 2020; 11:1324. [PMID: 32765491 PMCID: PMC7379889 DOI: 10.3389/fimmu.2020.01324] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor immune escape is an important part of tumorigenesis and development. Tumor cells can develop a variety of immunosuppressive mechanisms to combat tumor immunity. Exploring tumor cells that escape immune surveillance through the molecular mechanism of related immunosuppression in-depth is helpful to develop the treatment strategies of targeted tumor immune escape. The latest studies show that CD24 on the surface of tumor cells interacts with Siglec-10 on the surface of immune cells to promote the immune escape of tumor cells. It is necessary to comment on the molecular mechanism of inhibiting the activation of immune cells through the interaction between CD24 on tumor cells and Siglec-10 on immune cells, and a treatment strategy of tumors through targeting CD24 on the surface of tumor cells or Siglec-10 on immune cells.
Collapse
Affiliation(s)
- Shan-Shan Yin
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Hou Gao
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1175] [Impact Index Per Article: 235.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
24
|
Parikova A, Hruba P, Krejcik Z, Stranecky V, Franekova J, Krediet RT, Viklicky O. Peritoneal dialysis induces alterations in the transcriptome of peritoneal cells before detectible peritoneal functional changes. Am J Physiol Renal Physiol 2020; 318:F229-F237. [DOI: 10.1152/ajprenal.00274.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long-term peritoneal dialysis (PD) is associated with functional and structural alterations of the peritoneal membrane. Inflammation may be the key moment, and, consequently, fibrosis may be the end result of chronic inflammatory reaction. The objective of the present study was to identify genes involved in peritoneal alterations during PD by comparing the transcriptome of peritoneal cells in patients with short- and long-term PD. Peritoneal effluent of the long dwell of patients with stable PD was centrifuged to obtain peritoneal cells. The gene expression profiles of peritoneal cells using microarray between patients with short- and long-term PD were compared. Based on microarray analysis, 31 genes for quantitative RT-PCR validation were chosen. A 4-h peritoneal equilibration test was performed on the day after the long dwell. Transport parameters and protein appearance rates were assessed. Genes involved in the immune system process, immune response, cell activation, and leukocyte and lymphocyte activation were found to be substantially upregulated in the long-term group. Quantitative RT-PCR validation showed higher expression of CD24, lymphocyte antigen 9 ( LY9), TNF factor receptor superfamily member 4 ( TNFRSF4), Ig associated-α ( CD79A), chemokine (C-C motif) receptor 7 ( CCR7), carcinoembryonic antigen-related cell adhesion molecule 1 ( CEACAM1), and IL-2 receptor-α ( IL2RA) in patients with long-term PD, with CD24 having the best discrimination ability between short- and long-term treatment. A relationship between CD24 expression and genes for collagen and matrix formation was shown. Activation of CD24 provoked by pseudohypoxia due to extremely high glucose concentrations in dialysis solutions might play the key role in the development of peritoneal membrane alterations.
Collapse
Affiliation(s)
- Alena Parikova
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdenek Krejcik
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Viktor Stranecky
- Institute of Inherited Metabolic Disorders, Prague, Czech Republic
| | - Janka Franekova
- Department of Laboratory Methods, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Raymond T. Krediet
- Department of Nephrology, Amsterdam UMC University of Amsterdam, Amsterdam, The Netherlands
| | - Ondrej Viklicky
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
25
|
Zhao S, Min P, Liu L, Zhang L, Zhang Y, Wang Y, Zhao X, Ma Y, Xie H, Zhu C, Jiang H, Du J, Gu L. NEDD9 Facilitates Hypoxia-Induced Gastric Cancer Cell Migration via MICAL1 Related Rac1 Activation. Front Pharmacol 2019; 10:291. [PMID: 31019460 PMCID: PMC6458266 DOI: 10.3389/fphar.2019.00291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Aims and Hypothesis: NEDD9 is highly expressed in gastric cancer and has a significant involvement in its pathogenesis. However, the mechanism behind hypoxia-promoted cancer cell migration and its regulation because of NEDD9 is still unknown. The aim of this study is to investigate the involvement of NEDD9 in gastric cancer cell migration under hypoxia and explore the underlying potential molecular mechanisms.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Pengxiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Lei Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Lin Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xuyang Zhao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yadong Ma
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Hui Xie
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Department of Implantology, Changzhou Stomatological Hospital, Changzhou, China
| | - Chenchen Zhu
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Haonan Jiang
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Murugesan T, Rajajeyabalachandran G, Kumar S, Nagaraju S, Jegatheesan SK. Targeting HIF-2α as therapy for advanced cancers. Drug Discov Today 2018; 23:1444-1451. [DOI: 10.1016/j.drudis.2018.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
|
27
|
Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S. Cancer Stem Cell Metabolism and Potential Therapeutic Targets. Front Oncol 2018; 8:203. [PMID: 29922594 PMCID: PMC5996058 DOI: 10.3389/fonc.2018.00203] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors contain heterogeneous populations of cells in various states of proliferation and differentiation. The presence of cancer stem or initiating cells is a well-established concept wherein quiescent and poorly differentiated cells within a tumor mass contribute to drug resistance, and under permissive conditions, are responsible for tumor recurrence and metastasis. A number of studies have identified molecular markers that are characteristic of tissue-specific cancer stem cells (CSCs). Isolation of CSCs has enabled studies on the metabolic status of CSCs. As metabolic plasticity is a hallmark of cancer cell adaptation, the intricacies of CSC metabolism and their phenotypic behavior are critical areas of research. Unlike normal stem cells, which rely heavily on oxidative phosphorylation (OXPHOS) as their primary source of energy, or cancer cells, which are primarily glycolytic, CSCs demonstrate a unique metabolic flexibility. CSCs can switch between OXPHOS and glycolysis in the presence of oxygen to maintain homeostasis and, thereby, promote tumor growth. Here, we review key factors that impact CSC metabolic phenotype including heterogeneity of CSCs across different histologic tumor types, tissue-specific variations, tumor microenvironment, and CSC niche. Furthermore, we discuss how targeting key players of glycolytic and mitochondrial pathways has shown promising results in cancer eradication and attenuation of disease recurrence in preclinical models. In addition, we highlight studies on other potential therapeutic targets including complex interactions within the microenvironment and cellular communications in the CSC niche to interfere with CSC growth, resistance, and metastasis.
Collapse
Affiliation(s)
- Vusala Snyder
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Tamika C Reed-Newman
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Levi Arnold
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States.,Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States.,Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shrikant Anant
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS, United States.,Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
28
|
Yuan CL, Liang R, Liu ZH, Li YQ, Luo XL, Ye JZ, Lin Y. Bone morphogenetic protein and activin membrane-bound inhibitor overexpression inhibits gastric tumor cell invasion via the transforming growth factor-β/epithelial-mesenchymal transition signaling pathway. Exp Ther Med 2018; 15:5422-5430. [PMID: 29805551 PMCID: PMC5958702 DOI: 10.3892/etm.2018.6083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/22/2018] [Indexed: 12/15/2022] Open
Abstract
Gastric carcinoma is one of the most common human malignancies and remains the second leading cause of cancer-associated mortality worldwide. Gastric carcinoma is characterized by early-stage metastasis and is typically diagnosed in the advanced stage. Previous results have indicated that bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) overexpression has been demonstrated to inhibit growth and metastasis of gastric cancer cells. However, the molecular mechanisms of the BAMBI-mediated signaling pathway in the progression of gastric cancer are poorly understood. In the present study, to assess whether BAMBI overexpression inhibited the growth and aggressiveness of gastric carcinoma cells through regulation of transforming growth factor (TGF)-β/epithelial-mesenchymal transition (EMT) signaling pathway, the growth and metastasis of gastric carcinoma cells were analyzed following BAMBI overexpression and knockdown in vitro and in vivo. Molecular changes in the TGF-β/EMT signaling pathway were studied in gastric carcinoma cells following BAMBI overexpression and knockdown. DNA methylation of the gene regions encoding the TGF-β/EMT signaling pathway was investigated in gastric carcinoma cells. Tumor growth in tumor-bearing mice was analyzed after mice were subjected to endogenous overexpression of BAMBI. Results indicated that BAMBI overexpression significantly inhibited gastric carcinoma cell growth and aggressiveness, whereas knockdown of BAMBI significantly promoted its growth and metastasis compared with the control (P<0.01). The TGF-β/EMT signaling pathway was downregulated in BAMBI-overexpressed gastric carcinoma cells; however, signaling was promoted following BAMBI knockdown. In addition, it was observed that BAMBI overexpression significantly downregulated the DNA methylation of the gene regions encoding the TGF-β/EMT signaling pathway (P<0.01). Furthermore, RNA interference-mediated BAMBI overexpression also promoted apoptosis in gastric cancer cells and significantly inhibited growth of gastric tumors in murine xenografts (P<0.01). In conclusion, the present findings suggest that BAMBI overexpression inhibited the TGF-β/EMT signaling pathway and suppressed the invasiveness of gastric tumors, suggesting BAMBI may be a potential target for the treatment of gastric carcinoma via regulation of the TGF-β/EMT signaling pathway.
Collapse
Affiliation(s)
- Chun-Ling Yuan
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong Liang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Hui Liu
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong-Qiang Li
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Ling Luo
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Zhou Ye
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan Lin
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
29
|
Lu S, Yao Y, Xu G, Zhou C, Zhang Y, Sun J, Jiang R, Shao Q, Chen Y. CD24 regulates sorafenib resistance via activating autophagy in hepatocellular carcinoma. Cell Death Dis 2018; 9:646. [PMID: 29844385 PMCID: PMC5974417 DOI: 10.1038/s41419-018-0681-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma is one of most common solid cancers worldwide. Sorafenib is indicated as a treatment for advanced hepatocellular carcinoma (HCC). However, the clinical efficacy of sorafenib has been severely compromised by the development of drug resistance, and the precise mechanisms of drug resistance remain largely unknown. Here we found that a cell surface molecule, CD24, is overexpressed in tumor tissues and sorafenib-resistant hepatocellular carcinoma cell lines. Moreover, there is a positive correlation between CD24 expression levels and sorafenib resistance. In sorafenib-resistant HCC cell lines, depletion of CD24 caused a notable increase of sorafenib sensitivity. In addition, we found that CD24-related sorafenib resistance was accompanied by the activation of autophagy and can be blocked by the inhibition of autophagy using either pharmacological inhibitors or essential autophagy gene knockdown. In further research, we found that CD24 overexpression also leads to an increase in PP2A protein production and induces the deactivation of the mTOR/AKT pathway, which enhances the level of autophagy. These results demonstrate that CD24 regulates sorafenib resistance via activating autophagy in HCC. This is the first report to describe the relationships among CD24, autophagy, and sorafenib resistance. In conclusion, the combination of autophagy modulation and CD24 targeted therapy is a promising therapeutic strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Shuai Lu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 211166, China
| | - Yao Yao
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.,Department of Head and Neck Surgery, Cancer biotherapy Center, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210018, China
| | - Guolong Xu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 211166, China
| | - Chao Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 211166, China
| | - Yuan Zhang
- Department of Head and Neck Surgery, Cancer biotherapy Center, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210018, China
| | - Jie Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Runqiu Jiang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Qing Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yun Chen
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China. .,Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 211166, China. .,Department of Head and Neck Surgery, Cancer biotherapy Center, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210018, China.
| |
Collapse
|
30
|
Li J, Wang X, Lu W, Xiao Y, Yu Y, Wang X, Xu C, Shen B. Comprehensive analysis of differentially expressed non-coding RNAs and mRNAs in gastric cancer cells under hypoxic conditions. Am J Transl Res 2018; 10:1022-1035. [PMID: 29636891 PMCID: PMC5883142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia commonly occurs in solid cancers, especially in gastric cancer due to its rapid growth. The ability of gastric cancer cells to survive and progress under hypoxic conditions has been known for decades, but the mechanisms underlying this characteristic remain poorly understood. As cancer cells undergo changes in their genetic profile under certain conditions, we investigated the expression profile of non-coding RNAs (circRNAs, lncRNAs, and miRNAs) and mRNAs in gastric cancer MKN-28 cells under hypoxic conditions via sequencing and subsequent bioinformatic analyses. In addition, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to validate the results. We identified a number of significantly differentially expressed circRNAs, lncRNAs, miRNAs, and mRNAs in hypoxia-exposed MKN-28 cells relative to the normoxia control, and results of qRT-PCR were consistent with sequencing data. Pathway enrichment analyses revealed the principal functions of the significantly deregulated genes. Furthermore, examination of co-expression and competing endogenous RNA (ceRNAs) networks illustrated the complex regulatory pathways among non-coding RNAs and mRNAs, implicating these pathways in gastric cancer. In conclusion, our findings provide a novel perspective on non-coding RNAs and mRNAs and lay the foundation for future research on the potential roles of non-coding RNAs in gastric cancer under hypoxic conditions.
Collapse
Affiliation(s)
- Jia Li
- Department of Paediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Xinjing Wang
- Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Wenli Lu
- Department of Paediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Yuan Xiao
- Department of Paediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Yi Yu
- Department of Paediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Xinqiong Wang
- Department of Paediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Chundi Xu
- Department of Paediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Baiyong Shen
- Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
31
|
Goswami S, Sharma-Walia N. Crosstalk between osteoprotegerin (OPG), fatty acid synthase (FASN) and, cycloxygenase-2 (COX-2) in breast cancer: implications in carcinogenesis. Oncotarget 2018; 7:58953-58974. [PMID: 27270654 PMCID: PMC5312288 DOI: 10.18632/oncotarget.9835] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/13/2016] [Indexed: 12/26/2022] Open
Abstract
The crosstalk between malignant and nonmalignant cells in the tumor microenvironment, as maneuvered by cytokines/chemokines, drives breast cancer progression. In our previous study, we discovered Osteoprotegerin (OPG) as one of the cytokines heavily secreted by breast cancer cells. We demonstrated that OPG is expressed and secreted at very high levels from the highly invasive breast cancer cell lines SUM149PT and SUM1315MO2 as compared to normal human mammary epithelial HMEC cells. OPG was involved in modulating aneuploidy, cell proliferation, and angiogenesis in breast cancer. Mass spectrometry analysis performed in this study revealed OPG interacts with fatty acid synthase (FASN), which is a key enzyme of the fatty acid biosynthetic pathway in breast cancer cells. Further, electron microscopy, immunofluorescence, and fluorescence quantitation assays highlighted the presence of a large number of lipid bodies (lipid droplets) in SUM149PT and SUM1315MO2 cells in comparison to HMEC. We recently showed upregulation of the COX-2 inflammatory pathway and its metabolite PGE2 secretion in SUM149PT and SUM1315MO2 breast cancer cells. Interestingly, human breast cancer tissue samples displayed high expression of OPG, PGE2 and fatty acid synthase (FASN). FASN is a multifunctional enzyme involved in lipid biosynthesis. Immunofluorescence staining revealed the co-existence of COX-2 and FASN in the lipid bodies of breast cancer cells. We reasoned that there might be crosstalk between OPG, FASN, and COX-2 that sustains the inflammatory pathways in breast cancer. Interestingly, knocking down OPG by CRISPR/Cas9 gene editing in breast cancer cells decreased FASN expression at the protein level. Here, we identified cis-acting elements involved in the transcriptional regulation of COX-2 and FASN by recombinant human OPG (rhOPG). Treatment with FASN inhibitor C75 and COX-2 inhibitor celecoxib individually decreased the number of lipid bodies/cell, downregulated phosphorylation of ERK, GSK3β, and induced apoptosis by caspase-3/7 and caspase-9 activation. But a more efficient and effective decrease in lipid bodies/cell and survival kinase signaling was observed upon combining the drug treatments for the aggressive cancer cells. Collectively, the novel biological crosstalk between OPG, FASN, and COX-2 advocates for combinatorial drug treatment to block these players of carcinogenesis as a promising therapeutic target to treat highly invasive breast cancer.
Collapse
Affiliation(s)
- Sudeshna Goswami
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| |
Collapse
|
32
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Clinicopathological and prognostic value of CD24 expression in breast cancer: a meta-analysis. Int J Biol Markers 2017; 32:e182-e189. [PMID: 28315505 DOI: 10.5301/jbm.5000254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND A number of studies have been conducted to explore the relationship between CD24 expression and the prognosis of breast cancer; however, the results remain inconsistent. Therefore, we performed this meta-analysis to clarify the impact of CD24 expression on clinicopathological features and prognosis of breast cancer. METHODS A comprehensive literature search for relevant studies was performed, and statistical analysis was conducted using Stata software. RESULTS Twenty studies, including 5,179 cases, were included in this meta-analysis. The pooled analysis indicated that CD24 expression was associated with lymph node invasion (odds ratio [OR] = 0.68, for negative vs. positive, 95% confidence interval [95% CI], 0.53-0.87, p = 0.002) and TNM stage (OR = 0.63, for I + II vs. III + IV, 95% CI, 0.49-0.81, p<0.001). The prognosis analysis also suggested CD24 overexpression indicated a poorer 5-year overall survival (OS) rate (relative risk ratio [RR] = 0.93, 95% CI, 0.86-0.99, p = 0.03) and 5-year disease-free survival (DFS) rate (RR = 0.90, 95% CI, 0.83-0.98, p = 0.02). However, CD24 expression had no correlation with tumor size, tumor grade, distance metastasis, estrogen receptor (ER) status, progesterone receptor (PR) status, or HER2 status. CONCLUSIONS Our results suggest that higher CD24 expression is significantly associated with lower OS rate, lower DFS rate and some clinicopathological factors such as lymph node invasion and TNM stage. This meta-analysis suggested that CD24 is an efficient prognostic factor in breast cancer.
Collapse
|
34
|
Liang G, Li S, Du W, Ke Q, Cai J, Yang J. Hypoxia regulates CD44 expression via hypoxia-inducible factor-1α in human gastric cancer cells. Oncol Lett 2016; 13:967-972. [PMID: 28356986 DOI: 10.3892/ol.2016.5473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/03/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia induces proliferation and invasion in cancer cells via hypoxia-inducible factor (HIF)-1α. The cell adhesion molecule cluster of differentiation (CD) 44 has been associated with increased cell invasion and metastasis. Whether hypoxia regulates the expression of CD44 in gastric cancer cells remains to be established. In the current study, the effects of hypoxia on HIF-1α and CD44 expression levels in human gastric cell lines SGC-7901 and BGC-823 were evaluated. The cells were cultured in 1% O2 for 1 week and then treated with 20 nM rapamycin for 72 h. Cell viability was evaluated using the Cell Counting kit-8 assay, and cell invasion was detected by the Transwell invasion assay. The protein and messenger (m) RNA expression levels of HIF-1α and CD44 were detected using western blotting and reverse transcription-quantitative polymerase chain reaction, respectively. The results revealed that cell viability and invasion increased under hypoxic conditions, but decreased following rapamycin treatment in SGC-7901 and BGC-823 cells. Hypoxia also increased the protein and mRNA expression levels of HIF-1α and CD44 in these two cell lines. However, this hypoxia-induced increase in HIF-1α and CD44 protein and mRNA expression levels was inhibited by rapamycin. These findings suggest that hypoxia induced the proliferation and invasion of SGC-7901 and BGC-823 cells. Furthermore, CD44 expression levels were potentially associated with HIF-1α expression levels. Therefore, in gastric cancer cells, hypoxia may regulate CD44 expression via HIF-1α in order to promote cell proliferation and invasion.
Collapse
Affiliation(s)
- Gai Liang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Shuang Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Wei Du
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qinghua Ke
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jiyuan Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
35
|
Agarwal N, Dancik GM, Goodspeed A, Costello JC, Owens C, Duex JE, Theodorescu D. GON4L Drives Cancer Growth through a YY1-Androgen Receptor-CD24 Axis. Cancer Res 2016; 76:5175-85. [PMID: 27312530 DOI: 10.1158/0008-5472.can-16-1099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/02/2016] [Indexed: 11/16/2022]
Abstract
In principle, the inhibition of candidate gain-of-function genes defined through genomic analyses of large patient cohorts offers an attractive therapeutic strategy. In this study, we focused on changes in expression of CD24, a well-validated clinical biomarker of poor prognosis and a driver of tumor growth and metastasis, as a benchmark to assess functional relevance. Through this approach, we identified GON4L as a regulator of CD24 from screening a pooled shRNA library of 176 candidate gain-of-function genes. GON4L depletion reduced CD24 expression in human bladder cancer cells and blocked cell proliferation in vitro and tumor xenograft growth in vivo Mechanistically, GON4L interacted with transcription factor YY1, promoting its association with the androgen receptor to drive CD24 expression and cell growth. In clinical bladder cancer specimens, expression of GON4L, YY1, and CD24 was elevated compared with normal bladder urothelium. This pathway is biologically relevant in other cancer types as well, where CD24 and the androgen receptor are clinically prognostic, given that silencing of GON4L and YY1 suppressed CD24 expression and growth of human lung, prostate, and breast cancer cells. Overall, our results define GON4L as a novel driver of cancer growth, offering new biomarker and therapeutic opportunities. Cancer Res; 76(17); 5175-85. ©2016 AACR.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Department of Pharmacology, University of Colorado, Denver, Colorado. Department of Surgery (Urology), University of Colorado, Denver, Colorado
| | - Garrett M Dancik
- Department of Mathematics and Computer Science, Eastern Connecticut State University, Willimantic, Connecticut
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado, Denver, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado, Denver, Colorado. University of Colorado Comprehensive Cancer Center, Denver, Colorado
| | - Charles Owens
- Department of Pharmacology, University of Colorado, Denver, Colorado. Department of Surgery (Urology), University of Colorado, Denver, Colorado
| | - Jason E Duex
- Department of Pharmacology, University of Colorado, Denver, Colorado. Department of Surgery (Urology), University of Colorado, Denver, Colorado
| | - Dan Theodorescu
- Department of Pharmacology, University of Colorado, Denver, Colorado. Department of Surgery (Urology), University of Colorado, Denver, Colorado. University of Colorado Comprehensive Cancer Center, Denver, Colorado.
| |
Collapse
|
36
|
Dong W, Qin G, Shen R. Rab11-FIP2 promotes the metastasis of gastric cancer cells. Int J Cancer 2016; 138:1680-8. [PMID: 26502090 DOI: 10.1002/ijc.29899] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/04/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Rab11-FIP2 can interact with MYO5B and plays an important role in regulating plasma membrane recycling. Our previous study has shown that MYO5B is epigenetically silenced and associated with c-Met signaling in human gastric cancer. However, little is known of the function of Rab11-FIP2 in gastric cancer. In this study, we investigated Rab11-FIP2 expression by immunohistochemistry in 86 patients with gastric cancer. We found that the expression level of Rab11-FIP2 was significantly increased in gastric cancer tissues and high expression of Rab11-FIP2 was closely correlated with nodal metastasis in gastric cancer patients. Rab11-FIP2 overexpression promoted epithelial-mesenchymal transition (EMT) in a manner associated with gastric cancer metastasis in vitro and in vivo. We also found that hypoxia could enhance the expression of Rab11-FIP2 through HIF-1α. Inactivation of Rab11-FIP2 dramatically decreased hypoxia-induced migration of gastric cancer cells. Suppression of the internalization of EGFR, at least in part, plays an important role in EMT induced by overexpression of Rab11-FIP2 in gastric cancer cells. Finally, we demonstrated that Rab11-FIP2 could regulate actin cytoskeleton dynamics. In conclusion, our findings reveal a novel mechanism underlying the role of Rab11-FIP2 in gastric cancer dissemination, suggesting that Rab11-FIP2 may be a promising candidate target for gastric cancer treatment.
Collapse
Affiliation(s)
- Wenjie Dong
- Department of Internal Medicine-Oncology, the First Affiliated Hospital, Zhengzhou University, China
| | - Guohui Qin
- Department of Internal Medicine-Oncology, the First Affiliated Hospital, Zhengzhou University, China
| | - Ruizhe Shen
- Department of Gastroenterology, Rui-Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Gastric cancer stem cells: evidence, potential markers, and clinical implications. J Gastroenterol 2016; 51:313-26. [PMID: 26428661 DOI: 10.1007/s00535-015-1125-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/13/2015] [Indexed: 02/04/2023]
Abstract
Gastric cancer is a significant global health problem. It is the fifth most common cancer and third leading cause of cancer-related death worldwide (Torre et al. in CA Cancer J Clin 65(2):87-108, 2015). Despite advances in treatment, overall prognosis remains poor, due to tumour relapse and metastasis. There is an urgent need for novel therapeutic approaches to improve clinical outcomes in gastric cancer. The cancer stem cell (CSC) model has been proposed to explain the high rate of relapse and subsequent resistance of cancer to current systemic treatments (Vermeulen et al. in Lancet Oncol 13(2):e83-e89, 2012). CSCs have been identified in many solid malignancies, including gastric cancer, and have significant clinical implications, as targeting the CSC population may be essential in preventing the recurrence and spread of a tumour (Dewi et al. in J Gastroenterol 46(10):1145-1157, 2011). This review seeks to summarise the current evidence for CSC in gastric cancer, with an emphasis on candidate CSC markers, clinical implications, and potential therapeutic approaches.
Collapse
|
38
|
PEI ZHEN, ZHU GUANGCHAO, HUO XIAOLEI, GAO LU, LIAO SHAN, HE JUNYU, LONG YUEHUA, YI HONG, XIAO SONGSHU, YI WEI, CHEN PAN, LI XIAOLING, LI GUIYUAN, ZHOU YANHONG. CD24 promotes the proliferation and inhibits the apoptosis of cervical cancer cells in vitro. Oncol Rep 2015; 35:1593-601. [DOI: 10.3892/or.2015.4521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/22/2015] [Indexed: 11/05/2022] Open
|
39
|
Goswami S, Sharma-Walia N. Osteoprotegerin secreted by inflammatory and invasive breast cancer cells induces aneuploidy, cell proliferation and angiogenesis. BMC Cancer 2015; 15:935. [PMID: 26608463 PMCID: PMC4660791 DOI: 10.1186/s12885-015-1837-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Background Osteoprotegerin (OPG) is a glycoprotein that has multifaceted role and is associated with several cancer malignancies like that of bladder carcinoma, gastric carcinoma, prostate cancer, multiple myeloma and breast cancer. Also OPG has been associated with several organ pathologies. The widespread expression of OPG suggests that OPG may have multiple biological activities that are yet to be explored. Methods The anchorage-independent sphere cultures of the adherent cells were instrumental in our study as it provided a deeper insight into the complexity of a 3D tumor. Cytokine profiling was performed for OPG’s detection in the microenvironment. ELISA and western blotting were performed to quantify the OPG secretion and measure the protein levels respectively. OPG expression was detected in human breast cancer tissue samples by IHC. To decipher OPG’s role in tumor aggressiveness both recombinant human OPG as well as OPG rich and depleted breast cancer cell conditioned media were tested. Western blotting and MTT assay were performed to detect changes in signaling pathways and proliferation that were induced in presence of OPG. Onset of aneuploidy, in presence of OPG, was measured by cell cycle analysis and western blotting. Finally, human Breast Cancer qBiomarker Copy Number PCR Array was used to detect how OPG remarkably induced gene copy numbers for oncogenic pathway regulators. Results SUM149PT and SUM1315M02 cells secrete high levels of the cytokine OPG compared to primary human mammary epithelial cells (HMEC). High expression of OPG was also detected in human breast cancer tissue samples compared to the uninvolved tissue from the same patient. OPG induced proliferation of control HMEC spheres and triggered the onset of aneuploidy in HMEC sphere cultures. OPG induced the expression of aneuploidy related kinases Aurora-A Kinase (IAK-1), Bub1 and BubR1 probably through the receptor activator of nuclear factor kappa-B ligand (RANKL) and syndecan-1 receptors via the Erk, AKT and GSK3(3 signaling pathway. Gene copy numbers for oncogenic pathway regulators such AKT1, Aurora-A Kinase (AURKA or IAK-1), epidermal growth factor receptor (EGFR) and MYC with a reduction in the copy numbers of cyclin dependent kinase inhibitor 2A (CDKN2A), PTEN and DNA topoisomerase 2 alpha (TOP2A) were induced in presence of OPG. Conclusions These results highlight the role of OPG in reprogramming normal mammary epithelial cells to a tumorigenic state and suggest promising avenues for treating inflammatory breast cancer as well as highly invasive breast cancer with new therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1837-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sudeshna Goswami
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
40
|
Wan X, Cheng C, Shao Q, Lin Z, Lu S, Chen Y. CD24 promotes HCC progression via triggering Notch-related EMT and modulation of tumor microenvironment. Tumour Biol 2015; 37:6073-84. [PMID: 26608371 DOI: 10.1007/s13277-015-4442-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022] Open
Abstract
CD24 is known as a cell surface molecule in hematopoiesis and also described as a diagnostic marker for tumors. Previous studies suggested the important role of CD24 in hepatocellular carcinoma (HCC) pathogenesis. However, precise functions of CD24 in HCC are still unknown. Here, we found that CD24 is highly expressed in HCC both in mRNA and protein levels. Further, the epithelial-mesenchymal transition (EMT) and Notch1 signaling activations mediated by CD24 were elucidated as potential mechanisms of HCC promotion in Hepa1-6/Hepa1-6-CD24 cell models. Additionally, possible systemic immune reaction was explored through immune cells and Hepa1-6/Hepa1-6-CD24 cell co-culture. We demonstrated that the EMT process of HCC cell was effectively induced by CD24; also, the tumor immune microenvironment was changed by facilitating Notch-related EMT in vivo. These results reveal the underlying link between the HCC processes mediated by CD24. Moreover, as a clear tumor promoter, CD24 is considered a potential new target for HCC treatment.
Collapse
Affiliation(s)
- Xin Wan
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province, People's Republic of China
| | - Ci Cheng
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province, People's Republic of China
| | - Qing Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhe Lin
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province, People's Republic of China
| | - Shuai Lu
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province, People's Republic of China
| | - Yun Chen
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
41
|
Patel P, Brooks C, Seneviratne A, Hess DA, Séguin CA. Investigating microenvironmental regulation of human chordoma cell behaviour. PLoS One 2014; 9:e115909. [PMID: 25541962 PMCID: PMC4277432 DOI: 10.1371/journal.pone.0115909] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022] Open
Abstract
The tumour microenvironment is complex and composed of many different constituents, including matricellular proteins such as connective tissue growth factor (CCN2), and is characterized by gradients in oxygen levels. In various cancers, hypoxia and CCN2 promote stem and progenitor cell properties, and regulate the proliferation, migration and phenotype of cancer cells. Our study was aimed at investigating the effects of hypoxia and CCN2 on chordoma cells, using the human U-CH1 cell line. We demonstrate that under basal conditions, U-CH1 cells express multiple CCN family members including CCN1, CCN2, CCN3 and CCN5. Culture of U-CH1 cells in either hypoxia or in the presence of recombinant CCN2 peptide promoted progenitor cell-like characteristics specific to the notochordal tissue of origin. Specifically, hypoxia induced the most robust increase in progenitor-like characteristics in U-CH1 cells, including increased expression of the notochord-associated markers T, CD24, FOXA1, ACAN and CA12, increased cell growth and tumour-sphere formation, and a decrease in the percentage of vacuolated cells present in the heterogeneous population. Interestingly, the effects of recombinant CCN2 peptide on U-CH1 cells were more pronounced under normoxia than hypoxia, promoting increased expression of CCN1, CCN2, CCN3 and CCN5, the notochord-associated markers SOX5, SOX6, T, CD24, and FOXA1 as well as increased tumour-sphere formation. Overall, this study highlights the importance of multiple factors within the tumour microenvironment and how hypoxia and CCN2 may regulate human chordoma cell behaviour.
Collapse
Affiliation(s)
- Priya Patel
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Courtney Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ayesh Seneviratne
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - David A. Hess
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Cheryle A. Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|