1
|
Wang Z, Li Z, Ji R, Wang W, Li J, Xu W, Li X, Yang X, Du H, Liu D. Sesquiterpene lactone from Artemisia argyi inhibited cancer proliferation by inducing apoptosis and ferroptosis via key cell metabolism enzyme NDUFA4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156312. [PMID: 39671784 DOI: 10.1016/j.phymed.2024.156312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Artemisia argyi is a well-known medicinal plant. A. argyi has been widely used in clinical for about 3000 years, owing to its extensive pharmacological activity. Among these, its anti-cancer properties are the most reported activity. However, its pharmacodynamic compounds remain unknown. PURPOSE This study aimed to investigate the potential anti-cancer compounds in A. argyi and reveal its molecular mechanisms and targets. METHODS Firstly, A. argyi were extracted with 70 % ethanol, yielding A. argyi EtOH (AAE) crude extracts. AAE was extracted with Ethyl acetate and Butanol successively to yield A. argyi EtOAc (AAEA) and A. argyi Butanol (AAB) sub-fraction. And, AAE, AAEA, and AAB were prepared to assess their anti-cancer ability in vitro and in vivo. Then, the natural products were isolated from active sub-fraction via activity-oriented separation and identification. Meanwhile, all the compounds were evaluated the anti-cancer effect. The anti-proliferation mechanism of representative compounds was explored, based on programmed cell death. Moreover, 4D-data-independent (DIA) quantitative proteomic studies were performed to reveal the underlying targets and mechanism of representative compounds. Finally, the pharmacodynamic compound and key target interaction were identified by the evaluation of targets function, molecular docking, surface plasmon resonance (SPR) assay, and small interfering RNA. In addition, the toxicity of pharmacodynamic compounds were evaluated by in vitro and zebrafish model in vivo. RESULTS AAEA demonstrated stronger inhibitory effects than AAB on various cancer cell lines in vitro. And, AAEA sub-fraction effectively inhibited the tumor growth in vitro and in vivo. Subsequently, we isolated and identified 47 anti-cancer components from AAEA, especially 23 of which were isolated from A. argyi for the first time. Among them, 8 sesquiterpenes compounds showed strong anti-cancer activity. Moreover, compound 3 (moxartenolide) exhibited stronger induction of apoptosis and ferroptosis. Ultimately, a series of studies based on proteomics revealed that Moxartenolide inhibited cancer cell proliferation through the key enzyme NDUFA4. In addition, toxicological evaluation in vivo and in vitro demonstrated the safety of the candidate drug. CONCLUSION These findings reveal the anti-cancer components of A. argyi based on activity-oriented separation and identification for the first time. Specially, Compound 3 (moxartenolide) inhibited cancer proliferation by inducing apoptosis and ferroptosis via key cell metabolism enzyme NDUFA4. Briefly, it suggests that A. argyi has the potential of anti-cancer drug development.
Collapse
Affiliation(s)
- Ziling Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Zhouyuan Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Rongsheng Ji
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wenjing Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Peoples R China
| | - Jing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Peoples R China
| | - Wenli Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiaoxuan Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Peoples R China.
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Dahui Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
2
|
Zhou Q, Cao T, Li F, Zhang M, Li X, Zhao H, Zhou Y. Mitochondria: a new intervention target for tumor invasion and metastasis. Mol Med 2024; 30:129. [PMID: 39179991 PMCID: PMC11344364 DOI: 10.1186/s10020-024-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Mitochondria, responsible for cellular energy synthesis and signal transduction, intricately regulate diverse metabolic processes, mediating fundamental biological phenomena such as cell growth, aging, and apoptosis. Tumor invasion and metastasis, key characteristics of malignancies, significantly impact patient prognosis. Tumor cells frequently exhibit metabolic abnormalities in mitochondria, including alterations in metabolic dynamics and changes in the expression of relevant metabolic genes and associated signal transduction pathways. Recent investigations unveil further insights into mitochondrial metabolic abnormalities, revealing their active involvement in tumor cell proliferation, resistance to chemotherapy, and a crucial role in tumor cell invasion and metastasis. This paper comprehensively outlines the latest research advancements in mitochondrial structure and metabolic function. Emphasis is placed on summarizing the role of mitochondrial metabolic abnormalities in tumor invasion and metastasis, including alterations in the mitochondrial genome (mutations), activation of mitochondrial-to-nuclear signaling, and dynamics within the mitochondria, all intricately linked to the processes of tumor invasion and metastasis. In conclusion, the paper discusses unresolved scientific questions in this field, aiming to provide a theoretical foundation and novel perspectives for developing innovative strategies targeting tumor invasion and metastasis based on mitochondrial biology.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Tingping Cao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Fujun Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ming Zhang
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Guizhou, 563000, China.
| |
Collapse
|
3
|
Wang X, Sun J, Feng G, Tian X, Zhao Y, Gao Z, Sun W. Proteomic characterization of head and neck paraganglioma and its molecular classification. Front Mol Neurosci 2024; 17:1391568. [PMID: 39234408 PMCID: PMC11371750 DOI: 10.3389/fnmol.2024.1391568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Background Head and neck paragangliomas (HNPGLs) are rare neuroendocrine tumors that pose significant challenges in both diagnosis and treatment. The pathogenic mechanism remains unclear, and there is no proteomic analysis-based molecular classification. Therefore, gaining a deeper understanding of this disease from the protein level is crucial because proteins play a fundamental role in the occurrence and development of tumors. Methods We collected 44 tumor samples from patients diagnosed with HNPGL. The adrenal paraganglioma tissue (N = 46) was used as the disease control group and the chorda tympani nerves (N = 18) were used as the control group. High-pH reversed-phase liquid chromatography and liquid chromatography with tandem mass spectrometry analyses were used to build an integrated protein database of tumor samples. We then obtained two sets of differentially expressed proteins between the tumor group and the control group to identify the unique proteomic signatures of HNPGLs. Ingenuity pathway analysis annotations were used to perform the functional analysis. Subsequently, we developed a clinically relevant molecular classification for HNPGLs that connected the clinical characteristics with meaningful proteins and pathways to explain the varied clinical manifestations. Results We identified 6,640 proteins in the HNPGL group, and 314 differentially expressed proteins unique to HNPGL were discovered via inter-group comparison. We identified two HNPGL subgroups that significantly differed in clinical manifestation and proteomic characteristics. On the basis of the proteomic results, we proposed a pathogenic mechanism underlying HNPGL. Conclusion We conducted a comprehensive analysis of the molecular mechanisms of HNPGL to build, for the first time, a clinically relevant molecular classification. By focusing on differential proteomic analyses between different types of paragangliomas, we were able to obtain a comprehensive description of the proteomic characteristics of HNPGL, which will be valuable for the search for significant biomarkers as a new treatment method for HNPGL.
Collapse
Affiliation(s)
- Xi Wang
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiameng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Feng
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Tian
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Zhao
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiqiang Gao
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Wang J, Ren H, Xu C, Yu B, Cai Y, Wang J, Ni X. Identification of m6A/m5C-related lncRNA signature for prediction of prognosis and immunotherapy efficacy in esophageal squamous cell carcinoma. Sci Rep 2024; 14:8238. [PMID: 38589454 PMCID: PMC11001862 DOI: 10.1038/s41598-024-58743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
N6-methyladenosine (m6A) and 5-methylcytosine (m5C) RNA modifications have garnered significant attention in the field of epigenetic research due to their close association with human cancers. This study we focus on elucidating the expression patterns of m6A/m5C-related long non-coding RNAs (lncRNAs) in esophageal squamous cell carcinoma (ESCC) and assessing their prognostic significance and therapeutic potential. Transcriptomic profiles of ESCC were derived from public resources. m6A/m5C-related lncRNAs were obtained from TCGA using Spearman's correlations analysis. The m6A/m5C-lncRNAs prognostic signature was selected to construct a RiskScore model for survival prediction, and their correlation with the immune microenvironment and immunotherapy response was analyzed. A total of 606 m6A/m5C-lncRNAs were screened, and ESCC cases in the TCGA cohort were stratified into three clusters, which showed significantly distinct in various clinical features and immune landscapes. A RiskScore model comprising ten m6A/m5C-lncRNAs prognostic signature were constructed and displayed good independent prediction ability in validation datasets. Patients in the low-RiskScore group had a better prognosis, a higher abundance of immune cells (CD4 + T cell, CD4 + naive T cell, class-switched memory B cell, and Treg), and enhanced expression of most immune checkpoint genes. Importantly, patients with low-RiskScore were more cline benefit from immune checkpoint inhibitor treatment (P < 0.05). Our findings underscore the potential of RiskScore system comprising ten m6A/m5C-related lncRNAs as effective biomarkers for predicting survival outcomes, characterizing the immune landscape, and assessing response to immunotherapy in ESCC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Huiwen Ren
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Chao Xu
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Bo Yu
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Yiling Cai
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Jian Wang
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China.
| | - Xinye Ni
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
5
|
Zhou Q, Li X, Zhou H, Zhao J, Zhao H, Li L, Zhou Y. Mitochondrial respiratory chain component NDUFA4: a promising therapeutic target for gastrointestinal cancer. Cancer Cell Int 2024; 24:97. [PMID: 38443961 PMCID: PMC10916090 DOI: 10.1186/s12935-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024] Open
Abstract
Gastrointestinal cancer, one of the most common cancers, continues to be a major cause of mortality and morbidity globally. Accumulating evidence has shown that alterations in mitochondrial energy metabolism are involved in developing various clinical diseases. NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4), encoded by the NDUFA4 gene located on human chromosome 7p21.3, is a component of mitochondrial respiratory chain complex IV and integral to mitochondrial energy metabolism. Recent researchers have disclosed that NDUFA4 is implicated in the pathogenesis of various diseases, including gastrointestinal cancer. Aberrant expression of NDUFA4 leads to the alteration in mitochondrial energy metabolism, thereby regulating the growth and metastasis of cancer cells, indicating that it might be a new promising target for cancer intervention. This article comprehensively reviews the structure, regulatory mechanism, and biological function of NDUFA4. Of note, the expression and roles of NDUFA4 in gastrointestinal cancer including colorectal cancer, liver cancer, gastric cancer, and so on were discussed. Finally, the existing problems of NDUFA4-based intervention on gastrointestinal cancer are discussed to provide help to strengthen the understanding of the carcinogenesis of gastrointestinal cancer, as well as the development of new strategies for clinical intervention.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Honglian Zhou
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Juanjuan Zhao
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lijuan Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
6
|
Zhu Q, Tan J, Zhan T, Liu M, Zou Y, Liu W. LINC00115 promotes gastric cancer partly by the miR-212-5p/ATPAF1 axis. AN ACAD BRAS CIENC 2023; 95:e20230480. [PMID: 38088732 DOI: 10.1590/0001-3765202320230480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/09/2023] [Indexed: 12/18/2023] Open
Abstract
LncRNAs are known to be key regulators in the initiation and development of diverse cancers. Whether LINC00115 is involved in the regulation of gastric cancer (GC) progression remains unclear. Here, we aimed to show the function of LINC00115 in GC. RT-qPCR was used to measure gene expression in GC tissues and cells. Colony formation, EdU, TUNEL, and wound healing assays were used to analyze cellular processes in GC. The in vivo GC xenograft model was established. We observed that LINC00115 was highly expressed in GC. Functionally, silencing LINC00115 inhibited GC cell proliferation, and migration but facilitated GC apoptosis. Mechanistically, LINC00115 sponged miR-212-5p, while miR-212-5p targeted ATPAF1 in GC cells. Rescue assays showed ATPAF1 overexpression countervailed the inhibitory role of LINC00115 depletion in GC progression in vitro and in vivo. Overall, LINC00115 promoted GC progression by upregulating ATPAF1 via miR-212-5p.
Collapse
Affiliation(s)
- Qingxi Zhu
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| | - Jie Tan
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| | - Ting Zhan
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| | - Meng Liu
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| | - Yanli Zou
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| | - Weijie Liu
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| |
Collapse
|
7
|
Wang Z, Tao E, Chen Y, Wang Q, Liu M, Wei L, Xu S, Chen W, Zhong C. NDUFA4 promotes the progression of head and neck paraganglioma by inhibiting ferroptosis. Biochem Cell Biol 2023; 101:523-530. [PMID: 37602474 DOI: 10.1139/bcb-2023-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
NDUFA4 is a component of respiratory chain-oxidative phosphorylation pathway. NDUFA4 is highly expressed in tumor tissues, but little is known about the function of NDUFA4 in head and neck paraganglioma (HNPGL). We examined NDUFA4 expression in tissues from 10 HNPGL patients and 6 controls using qRT-PCR and Western blotting. NDUFA4 knockdown PGL-626 cells were established by using lentivirus infection and puromycin screening. Cell viability, ATP production, lipid reactive oxygen species, and mitochondrial membrane potential assays were performed to investigate the ferroptotic effects in NDUFA4 deficiency HNPGL cancer cells. Xenograft mouse model was created to detect the synergetic antitumor action between NDUFA4 deficiency and Metformin. NDUFA4 was upregulated in tumor tissues of HNPGL patients. NDUFA4 knockdown impaired the assembly of mitochondrial respiratory chain complexes and decreased the production of ATP and reduced cancer cell viability. Mechanistically, NDUFA4 knockdown increased cell ferroptosis, which further promoted Metformin-induced ferroptosis in PGL-626 cells. Therefore, NDUFA4 deficiency enhanced Metformin-mediated inhibition of the HNPGL progression in mice. In conclusion, NDUFA4 promotes the progression of HNPGL, and NDUFA4 knockdown enhances Metformin-mediated inhibition of the HNPGL progression in a mouse model.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Erxing Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yiming Chen
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Qi Wang
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Liang Wei
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Siyi Xu
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Wei Chen
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| |
Collapse
|
8
|
Guan X, Zhao B, Guan X, Dong J, Ying J. A benzochalcone derivative synchronously induces apoptosis and ferroptosis in pancreatic cancer cells. PeerJ 2023; 11:e16291. [PMID: 37927794 PMCID: PMC10625348 DOI: 10.7717/peerj.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Background Pancreatic cancer is a highly aggressive and lethal disease with limited treatment options. In this study, we investigated the potential therapeutic effects of compound KL-6 on pancreatic cancer cells. Methods The study involved assessing the inhibitory effects of KL-6 on cell proliferation, clonogenic potential, cell cycle progression, apoptosis, migration, and invasion. Additionally, we examined the action mechanism of KL-6 by RNA-seq and bioinformatic analysis and validated by qRT-PCR and western blot in pancreatic cancer cells. Results Our results demonstrated that KL-6 effectively inhibited the growth of pancreatic cancer cells in a dose-dependent manner. It induced G2/M phase cell cycle arrest and apoptosis, disrupting the cell cycle progression and promoting cell death. KL-6 also exhibited inhibitory effects on cell migration and invasion, suggesting its potential to suppress the metastatic properties of pancreatic cancer cells. Furthermore, KL-6 modulated the expression of genes involved in various cancer-related pathways including apoptosis and ferroptosis. Conclusion These findings collectively support the potential of KL-6 as a promising therapeutic option for pancreatic cancer treatment. Further research is needed to fully understand the underlying mechanisms and evaluate the clinical efficacy of KL-6 in pancreatic cancer patients.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bing Zhao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaodan Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinyun Dong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jieer Ying
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Wang X, Sun L, Yang B, Li W, Zhang C, Yang X, Sun Y, Shen X, Gao Y, Ju B, Gao Y, Liu D, Song J, Jia X, Su Y, Jiao A, Liu H, Zhang L, Lan He, Lei L, Chen W, Zhang B. Zfp335 establishes eTreg lineage and neonatal immune tolerance by targeting Hadha-mediated fatty acid oxidation. J Clin Invest 2023; 133:e166628. [PMID: 37843279 PMCID: PMC10575732 DOI: 10.1172/jci166628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/15/2023] [Indexed: 10/17/2023] Open
Abstract
Regulatory T cells (Tregs) are instrumental in maintaining immune tolerance and preventing destructive autoimmunity, but how heterogeneous Treg populations are established remains largely unknown. Here, we show that Zfp335 deletion in Tregs failed to differentiate into effector Tregs (eTregs) and lose Treg-suppressive function and that KO mice exhibited early-onset lethal autoimmune inflammation with unrestricted activation of conventional T cells. Single-cell RNA-Seq analyses revealed that Zfp335-deficient Tregs lacked a eTreg population and showed dramatic accumulation of a dysfunctional Treg subset. Mechanistically, Zfp335-deficient Tregs displayed reduced oxidative phosphorylation and dysfunctional mitochondrial activity. Further studies revealed that Zfp335 controlled eTreg differentiation by regulating fatty acid oxidation (FAO) through direct targeting of the FAO enzyme Hadha. Importantly, we demonstrate a positive correlation between ZNF335 and HADHA expression in human eTregs. Our findings reveal that Zfp335 controls FAO-driven eTreg differentiation to establish immune tolerance.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Biao Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Wenhua Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune-Related Diseases, Xi’an, Shannxi, China
| | - Yae Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaonan Shen
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yang Gao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Bomiao Ju
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yafeng Gao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Dan Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Jiapeng Song
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Xiaoxuan Jia
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Lan He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune-Related Diseases, Xi’an, Shannxi, China
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Fu F, Chen C, Du K, Li LS, Li R, Lei TY, Deng Q, Wang D, Yu QX, Yang X, Han J, Pan M, Zhen L, Zhang LN, Li J, Li FT, Zhang YL, Jing XY, Li FC, Li DZ, Liao C. Ndufa4 Regulates the Proliferation and Apoptosis of Neurons via miR-145a-5p/Homer1/Ccnd2. Mol Neurobiol 2023; 60:2986-3003. [PMID: 36763283 PMCID: PMC10122635 DOI: 10.1007/s12035-023-03239-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/09/2023] [Indexed: 02/11/2023]
Abstract
The Dandy-Walker malformation (DWM) is characterized by neuron dysregulation in embryonic development; however, the regulatory mechanisms associated with it are unclear. This study aimed to investigate the role of NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4) in regulating downstream signaling cascades and neuronal proliferation and apoptosis. Ndufa4 overexpression promoted the proliferation of neurons and inhibited their apoptosis in vitro, which underwent reverse regulation by the Ndufa4 short hairpin RNAs. Ndufa4-knockout (KO) mice showed abnormal histological alterations in the brain tissue, in addition to impaired spatial learning capacity and exploratory activity. Ndufa4 depletion altered the microRNA expressional profiles of the cerebellum: Ndufa4 inhibited miR-145a-5p expression both in the cerebellum and neurons. miR-145a-5p inhibited the proliferation of neurons and promoted their apoptosis. Ndufa4 promoted and miR-145a-5p inhibited the expression of human homer protein homolog 1 and cyclin D2 in neurons. Thus, Ndufa4 promotes the proliferation of neurons and inhibits their apoptosis by inhibiting miR-145a-5p, which directly targets and inhibits the untranslated regions of Homer1 and Ccnd2 expression.
Collapse
Affiliation(s)
- Fang Fu
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Chen Chen
- Department of Respirator, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Kun Du
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Lu-Shan Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Ru Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Ting-Ying Lei
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Qiong Deng
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Dan Wang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Qiu-Xia Yu
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Jin Han
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Min Pan
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Li Zhen
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Li-Na Zhang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Jian Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Fa-Tao Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Yong-Ling Zhang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Xiang-Yi Jing
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Fu-Cheng Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Dong-Zhi Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Can Liao
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
11
|
Jia D, Li B, Wang JK, Wang P, Li CY, Lu LX, Tian WY, Yu XH, Zhang JC, Zheng Y. Expression and Correlation of MIF and ERK1/2 in Liver Cirrhosis and Hepatocellular Carcinoma Induced by Hepatitis B. Pharmgenomics Pers Med 2023; 16:381-388. [PMID: 37124953 PMCID: PMC10145491 DOI: 10.2147/pgpm.s398976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Objective To detect expression and phosphorylation level of macrophage migration inhibitor (MIF) and extracellular-regulated kinases 1 and 2 (ERK1/2) in hepatitis B-induced liver cirrhosis (HBILC) and hepatocellular carcinoma (HCC) with a background of HBILC and analyze the correlation of MIF and ERK1/2 with HBILC and HCC. Methods Twenty cases of normal liver tissues were collected as a control group, and 48 specimens of HBILC tissues and 48 specimens of HCC tissues were collected as the experimental group, which were assigned as the HBILC group and HCC group, respectively. All tissue specimens were processed into tissue chips. The expressions of MIF, ERK1/2, and their phosphorylated proteins were detected via immunohistochemistry, and MIF and ERK1/2 nucleic acid expressions were detected by in situ hybridization. The results were statistically analyzed using the chi-square test. Results Proteins and nucleic acids of MIF and ERK1/2 presented low expression in the control group and high expression in the HBILC group and HCC group. MIF expression in the three groups was 25.0%, 75.0%, and 79.17%, respectively, while that of the nucleic acids was 25.0%, 70.83%, and 68.75%, respectively. Expression of ERK1/2 in the three groups was 40.0%, 60.42%, and 81.25%, respectively, and that of nucleic acids was 40.0%, 79.17%, and 77.08%. Expression of pERK1/2 was low in the control and HBILC group and high in the HCC group. Expression of pERK1/2 in the three groups was 20%, 45.83%, and 75%, respectively. Expression of pERK1/2 in the HCC group was significantly different from that in the HBILC and control group (P<0.05), but the difference between the HBILC group and control group was not statistically significant (P>0.05). Conclusion Occurrence and development of HBILC and HCC are not only related to the high expression of MIF but also closely related to the activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Dong Jia
- Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Bin Li
- Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Jun-Ke Wang
- Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Pan Wang
- Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Chu-Yi Li
- Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Li-Xia Lu
- Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Wen-Yan Tian
- Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Xiao-Hui Yu
- Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
- Correspondence: Xiao-Hui Yu; Jiu-Cong Zhang, Department of Gastroenterology, The 940 Hospital of Joint Logistic Support Force of People’s Liberation Army, No. 333 of Binhenan Road, Qilihe District, Lanzhou, 730050, People’s Republic of China, Tel +86 13919914665; +86 13919919690, Email ;
| | - Jiu-Cong Zhang
- Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Ying Zheng
- Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| |
Collapse
|
12
|
Zhao J, Wang X, Zhu H, Wei S, Zhang H, Ma L, He P. Integrative Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unveils Novel Prognostic Biomarkers in Multiple Myeloma. Biomolecules 2022; 12:biom12121855. [PMID: 36551283 PMCID: PMC9776050 DOI: 10.3390/biom12121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Molecular heterogeneity has great significance in the disease biology of multiple myeloma (MM). Thus, the analysis combined single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data were performed to investigate the clonal evolution characteristics and to find novel prognostic targets in MM. The scRNA-seq data were analyzed by the Seurat pipeline and Monocle 2 to identify MM cell branches with different differentiation states. Marker genes in each branch were uploaded to the STRING database to construct the Protein-Protein Interaction (PPI) network, followed by the detection of hub genes by Cytoscape software. Using bulk RNA-seq data, Kaplan-Meier (K-M) survival analysis was then carried out to determine prognostic biomarkers in MM. A total of 342 marker genes in two branches with different differentiation states were identified, and the top 20 marker genes with the highest scores in the network calculated by the MCC algorithm were selected as hub genes in MM. Furthermore, K-M survival analysis revealed that higher NDUFB8, COX6C, NDUFA6, USMG5, and COX5B expression correlated closely with a worse prognosis in MM patients. Moreover, ssGSEA and Pearson analyses showed that their expression had a significant negative correlation with the proportion of Tcm (central memory cell) immune cells. Our findings identified NDUFB8, COX6C, NDUFA6, USMG5, and COX5B as novel prognostic biomarkers in MM, and also revealed the significance of genetic heterogeneity during cell differentiation in MM prognosis.
Collapse
|
13
|
Zhang Y, Ge M, Chen Y, Yang Y, Chen W, Wu D, Cai H, Chen X, Wu X. NDUFA4 promotes cell proliferation by enhancing oxidative phosphorylation in pancreatic adenocarcinoma. J Bioenerg Biomembr 2022; 54:283-291. [DOI: 10.1007/s10863-022-09949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
|
14
|
m6A RNA methylation-mediated NDUFA4 promotes cell proliferation and metabolism in gastric cancer. Cell Death Dis 2022; 13:715. [PMID: 35977935 PMCID: PMC9385701 DOI: 10.1038/s41419-022-05132-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Gastric cancer (GC) is a malignancy with poor prognosis. NDUFA4 is reported to correlate with the progression of GC. However, its underlying mechanism in GC is unknown. Our study was to reveal the pathogenic mechanism of NDUFA4 in GC. NDUFA4 expression was explored in single-cell and bulk RNA-seq data as well as GC tissue microarray. Mitochondrial respiration and glycolysis were estimated by oxygen consumption rate and extracellular acidification rate, respectively. The interaction between NDUFA4 and METTL3 was validated by RNA immunoprecipitation. Flow cytometry was used to estimate cell cycle, apoptosis and mitochondrial activities. NDUFA4 was highly expressed in GC and its high expression indicated a poor prognosis. The knockdown of NDUFA4 could reduce cell proliferation and inhibit tumor growth. Meanwhile, NDUFA4 could promote glycolytic and oxidative metabolism in GC cells, whereas the inhibition of glycolysis suppressed the proliferation and tumor growth of GC. Besides, NDUFA4 inhibited ROS level and promoted MMP level in GC cells, whereas the inhibition of mitochondrial fission could reverse NDUFA4-induced glycolytic and oxidative metabolism and tumor growth of GC. Additionally, METTL3 could increase the m6A level of NDUFA4 mRNA via the m6A reader IGF2BP1 to promote NDUFA4 expression in GC cells. Our study revealed that NDUFA4 was increased by m6A methylation and could promote GC development via enhancing cell glycolysis and mitochondrial fission. NDUFA4 was a potential target for GC treatment.
Collapse
|
15
|
Novel role of COX6c in the regulation of oxidative phosphorylation and diseases. Cell Death Dis 2022; 8:336. [PMID: 35879322 PMCID: PMC9314418 DOI: 10.1038/s41420-022-01130-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase subunit VIc (COX6c) is one of the most important subunits of the terminal enzyme of the respiratory chain in mitochondria. Numerous studies have demonstrated that COX6c plays a critical role in the regulation of oxidative phosphorylation (OXPHOS) and energy production. The release of COX6c from the mitochondria may be a hallmark of the intrinsic apoptosis pathway. Moreover, The changes in COX6c expression are widespread in a variety of diseases and can be chosen as a potential biomarker for diagnosis and treatment. In light of its exclusive effects, we present the elaborate roles that COX6c plays in various diseases. In this review, we first introduced basic knowledge regarding COX6c and its functions in the OXPHOS and apoptosis pathways. Subsequently, we described the regulation of COX6c expression and activity in both positive and negative ways. Furthermore, we summarized the elaborate roles that COX6c plays in various diseases, including cardiovascular disease, kidney disease, brain injury, skeletal muscle injury, and tumors. This review highlights recent advances and provides a comprehensive summary of COX6c in the regulation of OXPHOS in multiple diseases and may be helpful for drug design and the prediction, diagnosis, treatment, and prognosis of diseases.
Collapse
|
16
|
Chen H, Xie Z, Li Q, Qu G, Tan N, Zhang Y. Risk coefficient model of necroptosis-related lncRNA in predicting the prognosis of patients with lung adenocarcinoma. Sci Rep 2022; 12:11005. [PMID: 35768485 PMCID: PMC9243036 DOI: 10.1038/s41598-022-15189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Model algorithms were used in constructing the risk coefficient model of necroptosis-related long non-coding RNA in identifying novel potential biomarkers in the prediction of the sensitivity to chemotherapeutic agents and prognosis of patients with lung adenocarcinoma (LUAD). Clinic and transcriptomic data of LUAD were obtained from The Cancer Genome Atlas. Differently expressed necroptosis-related long non-coding RNAs got identified by performing both the univariate and co-expression Cox regression analyses. Subsequently, the least absolute shrinkage and selection operator technique was adopted in constructing the nrlncRNA model. We made a comparison of the areas under the curve, did the count of the values of Akaike information criterion of 1-year, 2-year, as well as 3-year receiver operating characteristic curves, after which the cut-off value was determined for the construction of an optimal model to be used in identifying high risk and low risk patients. Genes, tumor-infiltrating immune cells, clinical correlation analysis, and chemotherapeutic agents data of both the high-risk and low-risk subgroups were also performed. We identified 26 DEnrlncRNA pairs, which were involved in the Cox regression model constructed. The curve areas under survival periods of 1 year, 2 years, and 3 years of patients with LUAD were 0.834, 0.790, and 0.821, respectively. The cut-off value set was 2.031, which was used in the identification of either the high-risk or low-risk patients. Poor outcomes were observed in patients belonging to the high-risk group. The risk score was the independent predictor of the LUAD outcome (p < 0.001). The expression levels of immune checkpoint and infiltration of specific immune cells were anticipated by the gene risk model. The high-risk group was found to be highly sensitive to docetaxel, erlotinib, cisplatin, and paclitaxel. The model established through nrlncRNA pairs irrespective of the levels of expression could give a prediction on the LUAD patients’ prognosis and assist in identifying the patients who might gain more benefit from chemotherapeutic agents.
Collapse
Affiliation(s)
- HuiWei Chen
- Department of Emergency, Zhuzhou Central Hospital, Zhuzhou, 412007, Hunan, China
| | - Zhimin Xie
- Department of Stomatology, Zhuzhou Central Hospital, Zhuzhou, 412007, Hunan, China
| | - QingZhu Li
- Department of Stomatology, Zhuzhou Central Hospital, Zhuzhou, 412007, Hunan, China
| | - GenYi Qu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, 412007, Hunan, China.
| | - NianXi Tan
- Department of Cardiothoracic Vascular Surgery, Zhuzhou Central Hospital, Zhuzhou, 412007, Hunan, China.
| | - YuLong Zhang
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, 412007, Hunan, China
| |
Collapse
|
17
|
Ni P, Wang G, Wang Y, Liu K, Chen W, Xiao J, Fan H, Ma X, Li Z, Shen K, Xu Z, Yang L. Correlation of MIF-AS1 polymorphisms with the risk and prognosis of gastric cancer. Pathol Res Pract 2022; 233:153850. [DOI: 10.1016/j.prp.2022.153850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
|
18
|
Liu Y, Ding W, Yu W, Zhang Y, Ao X, Wang J. Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer. Mol Ther Oncolytics 2021; 23:458-476. [PMID: 34901389 PMCID: PMC8637188 DOI: 10.1016/j.omto.2021.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignant tumor types and the third leading cause of cancer-related death worldwide. Its morbidity and mortality are very high due to a lack of understanding about its pathogenesis and the slow development of novel therapeutic strategies. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with a length of more than 200 nt. They play crucial roles in a wide spectrum of physiological and pathological processes by regulating the expression of genes involved in proliferation, differentiation, apoptosis, cell cycle, invasion, metastasis, DNA damage, and carcinogenesis. The aberrant expression of lncRNAs has been found in various cancer types. A growing amount of evidence demonstrates that lncRNAs are involved in many aspects of GC pathogenesis, including its occurrence, metastasis, and recurrence, indicating their potential role as novel biomarkers in the diagnosis, prognosis, and therapeutic targets of GC. This review systematically summarizes the biogenesis, biological properties, and functions of lncRNAs and highlights their critical role and clinical significance in GC. This information may contribute to the development of better diagnostics and treatments for GC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jianxun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
19
|
Banik K, Khatoon E, Hegde M, Thakur KK, Puppala ER, Naidu VGM, Kunnumakkara AB. A novel bioavailable curcumin-galactomannan complex modulates the genes responsible for the development of chronic diseases in mice: A RNA sequence analysis. Life Sci 2021; 287:120074. [PMID: 34687757 DOI: 10.1016/j.lfs.2021.120074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic diseases or non-communicable diseases are a major burden worldwide due to the lack of highly efficacious treatment modalities and the serious side effects associated with the available therapies. PURPOSE/STUDY DESIGN A novel self-emulsifying formulation of curcumin with fenugreek galactomannan hydrogel scaffold as a water-dispersible non-covalent curcumin-galactomannan molecular complex (curcumagalactomannosides, CGM) has shown better bioavailability than curcumin and can be used for the prevention and treatment of chronic diseases. However, the exact potential of this formulation has not been studied, which would pave the way for its use for the prevention and treatment of multiple chronic diseases. METHODS The whole transcriptome analysis (RNAseq) was used to identify differentially expressed genes (DEGs) in the liver tissues of mice treated with LPS to investigate the potential of CGM on the prevention and treatment of chronic diseases. Expression analysis using DESeq2 package, GO, and pathway analysis of the differentially expressed transcripts was performed using UniProtKB and KEGG-KAAS server. RESULTS The results showed that 559 genes differentially expressed between the liver tissue of control mice and CGM treated mice (100 mg/kg b.wt. for 14 days), with adjusted p-value below 0.05, of which 318 genes were significantly upregulated and 241 were downregulated. Further analysis showed that 33 genes which were upregulated (log2FC > 8) in the disease conditions were significantly downregulated, and 32 genes which were downregulated (log2FC < -8) in the disease conditions were significantly upregulated after the treatment with CGM. CONCLUSION Overall, our study showed CGM has high potential in the prevention and treatment of multiple chronic diseases.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
20
|
Xiao K, Ma S, Xu L, Ding N, Zhang H, Xie L, Xu L, Jiao Y, Zhang H, Jiang Y. Interaction between PSMD10 and GRP78 accelerates endoplasmic reticulum stress-mediated hepatic apoptosis induced by homocysteine. Gut Pathog 2021; 13:63. [PMID: 34666830 PMCID: PMC8527788 DOI: 10.1186/s13099-021-00455-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background The liver plays an important role in production and metabolism of homocysteine (Hcy), which has been reported to be involved in liver injury. In our previous work, we confirm that Hcy can induce liver injury by activating endoplasmic reticulum (ER) stress. However, the underlying mechanisms remain largely unknown. Results In present study, we established the Hcy-induced liver injury model by feeding cbs+/− mice with high methionine diet, and found that a considerable mass of disordered arrangement of hepatocytes and enlarged space between hepatocytes were frequently occurred in the liver of cbs+/− mice, accompanied with elevated expression levels of apoptosis-related proteins. In addition, Hcy could activate ER stress both in cbs+/− mice and hepatocytes. Mechanistically, Hcy promoted the expression levels of proteasome 26S subunit non-ATPase 10 (PSMD10) in hepatocytes; and the expression of ER stress indicators and apoptosis-associated proteins were significantly suppressed when PSMD10 was silenced in hepatocytes under Hcy treatment. Moreover, bioinformatics analysis and luciferase reporter assay demonstrated that PSMD10 was a target gene of miR-212-5p. Consistently, miR-212-5p overexpression could inhibit ER stress-mediated apoptosis of hepatocytes under Hcy treatment. With the help of co-immunoprecipitation assay, we identified that the interaction between PSMD10 and GRP78 accelerated ER stress-mediated hepatic apoptosis induced by Hcy. Conclusions Our findings indicate that miR-212-5p directly targets PSMD10 and subsequently activates ER stress to promote Hcy-induced apoptosis of hepatocytes. We propose that endogenous PSMD10 physically interacts with GRP78 to regulate ER stress. Our study may provide the therapeutic target for the liver injury induced by Hcy. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00455-z.
Collapse
Affiliation(s)
- Kun Xiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, 750004, Ningxia, People's Republic of China.,Luoyang Central Blood Bank, Luoyang, 471000, Henan, People's Republic of China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, 750004, Ningxia, People's Republic of China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Long Xu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, 750004, Ningxia, People's Republic of China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, 750004, Ningxia, People's Republic of China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, 750004, Ningxia, People's Republic of China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, 750004, Ningxia, People's Republic of China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Lingbo Xu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, 750004, Ningxia, People's Republic of China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Yun Jiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, People's Republic of China. .,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, 750004, Ningxia, People's Republic of China. .,Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China.
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, People's Republic of China. .,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, 750004, Ningxia, People's Republic of China. .,Luoyang Central Blood Bank, Luoyang, 471000, Henan, People's Republic of China. .,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Sheng Li Street, Yinchuan, 750004, Ningxia Hui, People's Republic of China.
| |
Collapse
|
21
|
Yan SM, Sherman RM, Taylor DJ, Nair DR, Bortvin AN, Schatz MC, McCoy RC. Local adaptation and archaic introgression shape global diversity at human structural variant loci. eLife 2021; 10:e67615. [PMID: 34528508 PMCID: PMC8492059 DOI: 10.7554/elife.67615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Large genomic insertions and deletions are a potent source of functional variation, but are challenging to resolve with short-read sequencing, limiting knowledge of the role of such structural variants (SVs) in human evolution. Here, we used a graph-based method to genotype long-read-discovered SVs in short-read data from diverse human genomes. We then applied an admixture-aware method to identify 220 SVs exhibiting extreme patterns of frequency differentiation - a signature of local adaptation. The top two variants traced to the immunoglobulin heavy chain locus, tagging a haplotype that swept to near fixation in certain southeast Asian populations, but is rare in other global populations. Further investigation revealed evidence that the haplotype traces to gene flow from Neanderthals, corroborating the role of immune-related genes as prominent targets of adaptive introgression. Our study demonstrates how recent technical advances can help resolve signatures of key evolutionary events that remained obscured within technically challenging regions of the genome.
Collapse
Affiliation(s)
- Stephanie M Yan
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Rachel M Sherman
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Divya R Nair
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Andrew N Bortvin
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Michael C Schatz
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| |
Collapse
|
22
|
Wang Z, Chen H, Xue L, He W, Shu W, Wu H, Wang Z. High throughput proteomic and metabolic profiling identified target correction of metabolic abnormalities as a novel therapeutic approach in head and neck paraganglioma. Transl Oncol 2021; 14:101146. [PMID: 34118692 PMCID: PMC8193622 DOI: 10.1016/j.tranon.2021.101146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023] Open
Abstract
Head and neck paragangliomas (HNPGLs) are rare neoplasms that represent difficult treatment paradigms in neurotology. Germline mutations in genes encoding succinate dehydrogenase (SDH) are the cause of nearly all familial HNPGLs. However, the molecular mechanisms underlying tumorigenesis remain unclear. Mutational analysis identified 6 out of 14 HNPGLs harboring clinicopathologic SDH gene mutations. The SDHB gene was most frequently mutated in these patients, and western blot showed loss of SDHB protein in tumors with SDHB mutations. The paraganglioma cell line (PGL-626) was established from a sample that harbored a missense SDHB mutation (c.649C > T). Spectrometric analysis using tandem mass tags identified 151 proteins significantly differentially expressed in HNPGLs compared with normal nerves. Bioinformatics analyses confirmed the high level of enrichment of oxidative phosphorylation and metabolism pathways in HNPGLs. The mitochondrial complex subunits NDUFA2, NDUFA10, and NDUFA4, showed the most significantly increased expression and were localized predominantly in the cytoplasm of PGL-626 cells. The mitochondrial complex I inhibitor metformin exerted dose-dependent inhibitory effects on PGL-626 cells via cooperative down-regulation of NDUFA2, 4, and 10, with a significant decrease in the levels of reactive oxygen species and mitochondrial membrane potential. Further metabolomic analysis of PGL-626 cells showed that metabolites involved in central carbon metabolism in cancer and sphingolipid signaling pathways, pantothenate and CoA biosynthesis, and tryptophan and carbon metabolism were significantly altered after metformin treatment. Thus, this study provides insights into the molecular mechanisms underlying HNPGL tumorigenesis and identifies target correction of metabolic abnormalities as a novel therapeutic approach for this disease.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, No. 639, Zhi-Zao-Ju Road, Shanghai 200011, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hongsai Chen
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, No. 639, Zhi-Zao-Ju Road, Shanghai 200011, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lu Xue
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, No. 639, Zhi-Zao-Ju Road, Shanghai 200011, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Weiwei He
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, No. 639, Zhi-Zao-Ju Road, Shanghai 200011, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenying Shu
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, No. 639, Zhi-Zao-Ju Road, Shanghai 200011, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, No. 639, Zhi-Zao-Ju Road, Shanghai 200011, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Zhaoyan Wang
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, No. 639, Zhi-Zao-Ju Road, Shanghai 200011, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
23
|
Chen Q, Wang Y, Li F, Cheng X, Xiao Y, Chen S, Xiao B, Tao Z. (S,R)3-(4-Hydroxyphenyl)-4,5-Dihydro-5-Isoxazole Acetic Acid Methyl Ester Inhibits Epithelial-to-Mesenchymal Transition through TGF-β/Smad4 Axis in Nasopharyngeal Carcinoma. Anticancer Agents Med Chem 2021; 22:1080-1090. [PMID: 34229595 DOI: 10.2174/1871520621666210706101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF), originally reported as an inflammation regulating molecule, is elevated in various cancer cells, which may promote carcinogenesis. Meanwhile, ISO-1 is a potent small molecular inhibitor of MIF, which has not been investigated in nasopharyngeal carcinoma (NPC); hence the impact of ISO-1 on NPC cells remains to be illustrated. OBJECTIVE This study intended to explore the biological function of ISO-1 in NPC cells in vitro and prove a possibility of ISO-1 being a novel agent in NPC treatments. METHODS Gene expression of MIF in Head and Neck squamous cell carcinoma were obtained from The Cancer Genome Atlas (TCGA) database. Nasal pharyngeal tissues were collected from adult patients undergoing nasopharyngeal biopsy for MIF level detection. Proliferation of NPC cell lines 5-8B and 6-10B was studied using Cell Counting Kit-8 (CCK-8) assay and plate-colony-formation assay, apoptosis was determined by flow cytometry and TUNEL staining, migration and invasion capacities were measured by wound-healing assay and transwell assay, all to explore the function of ISO-1 in NPC cells in vitro. Epithelial-to-mesenchymal transition (EMT) level of NPC cells was determined by Western blot analysis and immunofluorescence assay. RESULTS Transcript level of MIF was significantly higher in head and neck squamous cell carcinoma. Protein MIF was overexpressed in human NPC tissues compared to non-cancerous ones, and its expression could be compromised by ISO-1 in vitro. 100μM ISO-1 significantly hindered NPC cells migration and invasion capacities in vitro but acted relatively poorly on proliferation and apoptosis. Immunofluorescence assay and Western blotting implied a down-regulated EMT level through TGF-β/Smad4 axis in ISO-1 treated NPC cells compared to the vehicle. CONCLUSION This study indicated that MIF antagonist ISO-1 holds impact on NPC progression by influencing the migration and invasion of NPC cells ISO-1 inhibits the EMT process of NPC cells through TGF-β/Smad4 axis, supporting that prudent application of ISO-1 may be a potential adjuvant treatment for NPC.
Collapse
Affiliation(s)
- Qibing Chen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fen Li
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Cheng
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiming Chen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bokui Xiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, China
| |
Collapse
|
24
|
Melendez-Zajgla J, Maldonado V. The Role of lncRNAs in the Stem Phenotype of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2021; 22:6374. [PMID: 34203589 PMCID: PMC8232220 DOI: 10.3390/ijms22126374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest tumors. This neoplasia is characterized by an important cellular and phenotypic heterogeneity. In particular, it has been shown that at least two subtypes can be found: basal-like, which presents stem-like properties, and classical. Cancer stem cells have been isolated and characterized from these tumors, showing their dependance on general and tissue-specific stem transcription factors and signaling pathways. Nevertheless, little is known about their tissue microenvironment and cell non-autonomous regulators, such as long-non-coding RNAs. (lncRNAs). In this review, we summarize the current knowledge about the positive and negative effects of lncRNAs in the stemness phenotype of pancreatic ductal adenocarcinoma cancer (PDAC).
Collapse
Affiliation(s)
- Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genomica, Periferico Sur 4809, Tlalpan, Mexico City 14610, Mexico;
| | - Vilma Maldonado
- Epigenomics Laboratory, Instituto Nacional de Medicina Genomica, Periferico Sur 4809, Tlalpan, Mexico City 14610, Mexico
| |
Collapse
|
25
|
Ren X, Li A, Ying E, Fang J, Li M, Yu J. Upregulation of ubiquitin-conjugating enzyme E2T (UBE2T) predicts poor prognosis and promotes hepatocellular carcinoma progression. Bioengineered 2021; 12:1530-1542. [PMID: 33934686 PMCID: PMC8806210 DOI: 10.1080/21655979.2021.1918507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reportedly, ubiquitin-conjugating enzyme E2T (UBE2T) is closely related to the progression of several malignancies. This work is aimed to probe the role of UBE2T in the progression of hepatocellular carcinoma (HCC) patients. The microarray analysis was executed to screen the differentially expressed genes (DEGs) in HCC tissues. The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis (GEPIA2) databases, PCR and immunohistochemistry were utilized to validate the dysregulation of UBE2T in HCC. Kaplan-Meier analysis was employed to determine the relationship between UBE2T expression and the prognosis of HCC patients. PCR was carried out to detect UBE2T protein expression in HCC cell lines. Cell Counting Kit-8 (CCK-8) assay and 5-bromo-2ʹ-deoxyuridine (BrdU) experiments were conducted to examine the proliferation of HCC cells. Scratch healing and Transwell experiments were conducted to examine the migration of HCC cells. Bioinformatics analysis and dual-luciferase reporter gene experiments predicted and validated the targeting relationship with miR-212-5p and UBE2T. We found that UBE2T expression was remarkably up-modulated in HCC tissues and cell lines, and its high expression was linked to a worse prognosis in HCC patients. UBE2T overexpression enhanced HCC cell proliferation and migration. Additionally, UBE2T was verified as a downstream target of miR-212-5p. In conclusion, UBE2T overexpression is markedly linked to unfavorable prognosis in HCC patients. UBE2T, regulated by miR-212-5p, significantly enhances the malignant phenotypes of HCC cells, which can be used as a target for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Xiaoyue Ren
- Department of Radiotherapy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Alex Li
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Edward Ying
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jhin Fang
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Mingzhu Li
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiao Yu
- Department of Radiotherapy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
26
|
Li C, Zhang J, Zhou Y, Li B. Long non-coding RNA CASC9 promotes the progression and development of gastric cancer via regulating miR-370/EGFR axis. Dig Liver Dis 2021; 53:509-516. [PMID: 33478874 DOI: 10.1016/j.dld.2020.12.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
lncRNA cancer susceptibility 9 (CASC9) is a pivotal modulator in various cancers, such as colorectal cancer, breast cancer and esophageal cancer. However, its exact role in gastric cancer (GC) has not been systematically studied. Here, using a combination of molecular and cell biology approaches, we found that CASC9 also acts as a factor promoting the progression of GC. First, mRNA and protein expression levels were quantified by real-time quantitative reverse transcription PCR (qRT-PCR) and western blot, respectively. Second, CCK-8 assay, colony formation assay and cell cycle analysis were performed to compare the cell growth abilities when CASC9 was knocked down. Third, the proliferative cells were determined by labeling Edu and the regulatory effect of CASC9 on miR-370 was detected by RNA-protein pull-down and luciferase reporter assays. Finally, in vivo mice model was established to verify the role of CASC9 in promoting GC progression. Our results showed that CASC9 was up-regulated significantly in both GC tissues and cell lines. Conversely, CASC9 knockdown inhibited GC growth in vitro. Further analysis indicated that CASC9 directly targeted miR-370 and negatively regulated miR-370 expression in GC. Besides, EGFR (epidermal growth factor receptor) was identified as a direct target gene of miR-370. Taken together our results support a model in which CASC9 promotes GC progression through miR-370/EGFR/ERK/AKT pathway. Finally, in vivo CASC9 knockdown resulted in impaired GC growth. In sum, this study firstly demonstrates that lncRNA CASC9 acts as an oncogene through altering EGFR expression level via negatively regulating miR-370 expression.
Collapse
Affiliation(s)
- Chunsheng Li
- Department of Gastrointestinal Colorectal and Anal surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Jiayu Zhang
- Department of Gastrointestinal Colorectal and Anal surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Yangyang Zhou
- Department of Neurology, The First Hospital of Jilin University, Jilin 130021, China
| | - Bo Li
- Department of Gastrointestinal Colorectal and Anal surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China.
| |
Collapse
|
27
|
Progress in understanding the role of lncRNA in programmed cell death. Cell Death Dis 2021; 7:30. [PMID: 33558499 PMCID: PMC7870930 DOI: 10.1038/s41420-021-00407-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 01/09/2021] [Indexed: 01/30/2023]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides but not translated into proteins. LncRNAs regulate gene expressions at multiple levels, such as chromatin, transcription, and post-transcription. Further, lncRNAs participate in various biological processes such as cell differentiation, cell cycle regulation, and maintenance of stem cell pluripotency. We have previously reported that lncRNAs are closely related to programmed cell death (PCD), which includes apoptosis, autophagy, necroptosis, and ferroptosis. Overexpression of lncRNA can suppress the extrinsic apoptosis pathway by downregulating of membrane receptors and protect tumor cells by inhibiting the expression of necroptosis-related proteins. Some lncRNAs can also act as competitive endogenous RNA to prevent oxidation, thereby inhibiting ferroptosis, while some are known to activate autophagy. The relationship between lncRNA and PCD has promising implications in clinical research, and reports have highlighted this relationship in various cancers such as non-small cell lung cancer and gastric cancer. This review systematically summarizes the advances in the understanding of the molecular mechanisms through which lncRNAs impact PCD.
Collapse
|
28
|
Guo Y, Yang PT, Wang ZW, Xu K, Kou WH, Luo H. Identification of Three Autophagy-Related Long Non-Coding RNAs as a Novel Head and Neck Squamous Cell Carcinoma Prognostic Signature. Front Oncol 2021; 10:603864. [PMID: 33575215 PMCID: PMC7871905 DOI: 10.3389/fonc.2020.603864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis. Considerable evidence indicates that autophagy and non-coding RNA play essential roles in the biological processes involved in cancers, but associations between autophagy-related long non-coding RNAs (lncRNAs) and HNSCC remain unclear. In the present study, HNSCC RNA sequences and autophagy-related gene data were extracted from The Cancer Genome Atlas database and the Human Autophagy Database. A total of 1,153 autophagy-related lncRNAs were selected via calculating Pearson’s correlation coefficient. Three prognosis-related autophagy lncRNAs were identified via univariate Cox regression, least absolute shrinkage and selection operator analysis, and multivariate Cox regression analysis. We also constructed a prognostic model based on these autophagy-related lncRNAs and evaluated its ability to accurately and independently predict the prognosis of HNSCC patients. The area under the curve (AUC) was 0.864 (3-year) and 0.836 (5-year), and our model can independently predict the prognosis of HNSCC. The prognostic value of the three autophagy lncRNAs was confirmed via analysis of samples from five databases. To further identify the functions of the three lncRNAs, a co-expression network was constructed and pathway analysis was performed. In that analysis the lncRNAs were correlated with 189 related genes and 20 autophagy-related genes, and these lncRNAs mainly involved homologous recombination, the Fanconi anemia pathway, the autophagy-related pathway, and immune-related pathways. In addition, we validated the expression levels of three lncRNAs and autophagy markers (ATG12, BECN1, and MAP1LC3B) based on TIMER, Oncomine, and HPA database analysis. Our results indicated that TTTY15 was increased in HPV positive and HPV negative HNSCC patients, and three autophagy markers were up-regulated in all HNSCCC patients. Lastly, association between three lncRNAs and autophagy markers was performed, and our results showed that TTTY15 and MIF-AS1 were associated with autophagy markers. Collectively, these results suggested that three autophagy-related lncRNAs have prognostic value in HNSCC patients.
Collapse
Affiliation(s)
- Ya Guo
- Department of Radiation Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peng Tao Yang
- Department of Radiation Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhong Wei Wang
- Department of Radiation Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kun Xu
- Department of Radiation Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Hua Kou
- Department of Radiation Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Heng Luo
- Department of Radiation Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
29
|
Tian BX, Sun W, Wang SH, Liu PJ, Wang YC. Differential expression and clinical significance of COX6C in human diseases. Am J Transl Res 2021; 13:1-10. [PMID: 33527004 PMCID: PMC7847502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Mitochondria, independent double-membrane organelles, are intracellular power plants that feed most eukaryotic cells with the ATP produced via the oxidative phosphorylation (OXPHOS). Consistently, cytochrome c oxidase (COX) catalyzes the electron transfer chain's final step. Electrons are transferred from reduced cytochrome c to molecular oxygen and play an indispensable role in oxidative phosphorylation of cells. Cytochrome c oxidase subunit 6c (COX6C) is encoded by the nuclear genome in the ribosome after translation and is transported to mitochondria via different pathways, and eventually forms the COX complex. In recent years, many studies have shown the abnormal level of COX6C in familial hypercholesterolemia, chronic kidney disease, diabetes, breast cancer, prostate cancer, uterine leiomyoma, follicular thyroid cancer, melanoma tissues, and other conditions. Its underlying mechanism may be related to the cellular oxidative phosphorylation pathway in tissue injury disease. Here reviews the varied function of COX6C in non-tumor and tumor diseases.
Collapse
Affiliation(s)
- Bi-Xia Tian
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi Province, P. R. China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi Province, P. R. China
| | - Wei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi Province, P. R. China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi Province, P. R. China
| | - Shu-Hong Wang
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi Province, P. R. China
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi Province, P. R. China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi Province, P. R. China
| | - Yao-Chun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi Province, P. R. China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi Province, P. R. China
| |
Collapse
|
30
|
Yuan T, Cai ML, Sheng YM, Ding X, Shen TT, Li WR, Huang H, Liang B, Zhang XJ, Zhu QX. Differentially expressed proteins identified by TMT proteomics analysis in children with verrucous epidermal naevi. J Eur Acad Dermatol Venereol 2021; 35:1393-1406. [PMID: 33428294 DOI: 10.1111/jdv.17112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Verrucous epidermal naevi (VEN) are benign skin tumours, considered keratinocytic epidermal naevi, that appear at birth or early childhood. VEN may display a range of appearances, depending on patient age. Although the number of studies regarding VEN is increasing, the exact mechanism of VEN is still unknown. OBJECTIVES The aim of this study was to analyse the changes in the expression of protein factors in lesions of VEN children by TMT labelling-based quantitative proteomics. METHODS A total of 8 children with VEN (5 for experiment and 3 for validation) and 8 healthy children (5 for experiment and 3 for validation) presented to the Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Boao Super Hospital, between January 2019 and November 2019. The lesions and lesion-adjacent tissues from children with VEN and naevus-adjacent normal skin tissues from children with pigmented naevi were defined as the VEN group, VENC group and C group, respectively. We performed a proteomics analysis to screen for differentially expressed proteins in the lesions of these individuals. We further performed Western blotting to validate the relative expression levels of nine targeted proteins in the validation group. RESULTS According to the proteomics results, a total of 4970 proteins were identified, and 4770 proteins were quantified. Among these proteins, 586 proteins were up- or downregulated at least 1.3-fold with a P-value < 0.05 (upregulated: 399, downregulated: 187) in lesions between the VEN group and the C group. These proteins played important roles in multiple biological functions, such as cornification, epidermal cell differentiation and neutrophil activation, and formed a complicated protein-protein interaction network. Of the 586 up- or downregulated proteins, nine were selected for further validation. According to Western blotting analysis results, the relative expression levels of Involucrin, NDUFA4, Loricrin, Keratin type II cytoskeletal 6A (Cytokeratin 6A), BRAF, Filaggrin, S100A7 and Desmocollin-3 were significantly upregulated in VEN children and may be associated with skin barrier dysfunction, epidermal cell overgrowth and differentiation, inflammation and immune and oxidative phosphorylation, which are involved in the pathogenesis of VEN. CONCLUSIONS According to TMT-based proteomics and Western blotting results, we identified eight noteworthy proteins, Involucrin, NDUFA4, Loricrin, Keratin type II cytoskeletal 6A, BRAF, Filaggrin, S100A7 and Desmocollin-3, that were upregulated in the lesions of VEN children and may be associated with the pathogenesis of VEN. Our findings provide new starting points for identifying precise pathogenic mechanisms or therapeutic targets for VEN.
Collapse
Affiliation(s)
- T Yuan
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - M-L Cai
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - Y-M Sheng
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - X Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - T-T Shen
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - W-R Li
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - H Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - B Liang
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| | - X-J Zhang
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China.,Department of Dermatology and Venereology, Boao Super Hospital, Qionghai, Hainan, China
| | - Q-X Zhu
- Department of Dermatology and Venereology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui, China
| |
Collapse
|
31
|
Xing L, Ren J, Guo X, Qiao S, Tian T. Decitabine shows anti-acute myeloid leukemia potential via regulating the miR-212-5p/CCNT2 axis. Open Life Sci 2020; 15:1013-1023. [PMID: 33817287 PMCID: PMC7874548 DOI: 10.1515/biol-2020-0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022] Open
Abstract
Previous research has revealed the involvement of microRNA-212-5p (miR-212-5p) and cyclin T2 (CCNT2) in acute myeloid leukemia (AML). However, whether the miR-212-5p/CCNT2 axis is required for the function of decitabine in AML has not been well elucidated. Quantitative reverse transcription-polymerase chain reaction was used to examine enrichment of miR-212-5p. The relationship between CCNT2 and miR-212-5p was verified by the luciferase reporter assay. Cell apoptosis was evaluated by flow cytometry and western blot. CCK-8 assay was performed to determine cell viability. Decitabine significantly repressed cell viability, while promoted cell apoptosis. Meanwhile, the expression levels of cyclinD1, CDK4, and Bcl-2 were suppressed in cells with decitabine exposure, but Bax and caspase-3 expression levels were upregulated. Besides, miR-212-5p upregulation had the similar function with decitabine in AML cell proliferation and apoptosis. Subsequently, restoration of CCNT2 attenuated miR-212-5p overexpression-induced effects in Kasumi-1 and SKNO-1 cells. In addition, miR-212-5p depletion reversed decitabine-induced CCNT2 downregulation. The miR-212-5p/CCNT2 axis had an implication in the anti-leukemic effect of decitabine in AML.
Collapse
Affiliation(s)
- Lina Xing
- Department of Hematology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| | - Jinhai Ren
- Department of Hematology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| | - Xiaonan Guo
- Department of Hematology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| | - Shukai Qiao
- Department of Hematology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| | - Tian Tian
- Department of Hematology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| |
Collapse
|
32
|
Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T. Non-coding RNAs in gastric cancer. Cancer Lett 2020; 493:55-70. [PMID: 32712234 DOI: 10.1016/j.canlet.2020.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that play crucial regulatory roles in many fundamental biological processes. The dysregulation of ncRNAs is significantly associated with the progression of human cancers, including gastric cancer. In this review, we have summarized the oncogenic or tumor-suppressive roles and the regulatory mechanisms of lncRNAs, miRNAs, circRNAs and piRNAs, and have discussed their potential as biomarkers or therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongxia Chang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Jin
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Feng Yang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiaoyi Yan
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
33
|
Xu Z, Ran J, Gong K, Hou Y, Li J, Guo Y. LncRNA SUMO1P3 regulates the invasion, migration and cell cycle of gastric cancer cells through Wnt/β-catenin signaling pathway. J Recept Signal Transduct Res 2020; 41:574-581. [PMID: 33179980 DOI: 10.1080/10799893.2020.1836494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhong Xu
- Department of Gastroenterology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jing Ran
- Department of Gynaecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Kai Gong
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yihan Hou
- Department of ICU, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ji Li
- Department of Gastroenterology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yijuan Guo
- Department of Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
34
|
Rajabi A, Riahi A, Shirabadi-Arani H, Moaddab Y, Haghi M, Safaralizadeh R. Overexpression of HOXA-AS2 LncRNA in Patients with Gastric Cancer and Its Association with Helicobacter pylori Infection. J Gastrointest Cancer 2020; 53:72-77. [PMID: 33174119 DOI: 10.1007/s12029-020-00549-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE LncRNAs are regulatory factors that play a prominent role in the carcinogenesis processes and cancer cell ability to invade and metastasize. Hence, lncRNAs are considered as the potential diagnostic and therapeutic biomarkers in diverse malignancies. The present study was designed to assess the difference of HOXA-AS2 gene expression levels in cancerous tissues as compared to marginal noncancerous tissues of gastric cancer patients. METHODS Fifty pairs of cancerous and marginal noncancerous tissue of gastric cancer patients were collected in the present study. Then, RNA extraction and cDNA synthesis were performed for all specimens. The qRT-PCR was carried out to examine the difference of HOXA-AS2 gene expression. Furthermore, the association between HOXA-AS2 expression and the clinicopathological features as well as the function of HOXA-AS2 biomarkers was evaluated. RESULTS The HOXA-AS2 expression was significantly elevated in cancerous tissues as compared to marginal noncancerous tissues in gastric cancer patients (p < 0.0001). Analysis of gene expression data revealed that there was a significant association between an increased HOXA-AS2 gene expression and clinicopathological features such as tumor size ˃ 5 cm (p = 0.009), lymph node metastasis (p = 0.028), and H. pylori infection (p = 0.011). The results of ROC analysis indicated that HOXA-AS2 with AUC, sensitivity, and specificity of 0.816, 92%, and 70%, respectively, can act as a potential biomarker (CI 95% = 0.7297-0.9023). CONCLUSION With regard to the overexpression of HOXA-AS2 in gastric cancer tissues, the mentioned gene may serve as an oncogenic lncRNA in gastric cancer patients. Moreover, HOXA-AS2 can act as a potential biomarker in molecular targeted therapies to recognize and treat gastric cancer patients.
Collapse
Affiliation(s)
- Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Atousa Riahi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hanie Shirabadi-Arani
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Yaghoub Moaddab
- Liver and Gastroenterology Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
35
|
Li YL, Chen CH, Chen JY, Lai YS, Wang SC, Jiang SS, Hung WC. Single-cell analysis reveals immune modulation and metabolic switch in tumor-draining lymph nodes. Oncoimmunology 2020; 9:1830513. [PMID: 33117603 PMCID: PMC7575008 DOI: 10.1080/2162402x.2020.1830513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lymph-node metastasis is a prognosis factor for poor clinical outcome of breast cancer patients. Currently, how breast cancer cells establish pre-metastatic niche in the tumor-draining lymph nodes (TDLNs) is still unclear. To address this question, we isolated heterogeneous cells including immune and stromal cells from naive lymph nodes (LNs) of the FVB/NJ mice and TDLNs of the MMTV-PyMT mice. Single-cell RNA sequencing was performed to investigate the transcriptome of the cells and various bioinformatics analyses were used to identify the altered pathways. Our results revealed several significant changes between naïve LNs and TDLNs. First, according to immunologic signature and pathway analysis, CD4+ and CD8 + T cells showed upregulated angiogenesis pathway genes and higher regulatory T (Treg)-associated genes while they demonstrated downregulation of interferon response and inflammatory response gene signatures, concurrently suggesting an immunosuppressive microenvironment in the TDLNs. Second, profiling of B cells showed down-regulation of marginal zone B lymphocytes in the TDLNs, which was validated by flow cytometric analysis. Third, we found the enhancement of oxidative phosphorylation pathway in the fibroblastic reticular cells (FRCs) of the MMTV-PyMT mice and the elevation of related genes including Prdx3, Ndufa4 and Uqcrb, suggesting massive ATP consumption and TCA cycle metabolism in the FRCs. Collectively, our results reveal the reprogramming of TDLNs during breast cancer progression at single-cell level in a spontaneous breast cancer model and suggest the changes in immune modulation and metabolic switch are key alterations in the preparation of pre-metastatic niche by breast cancer cells.
Collapse
Affiliation(s)
- Yen-Liang Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, and the Graduate Program of Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Kamada S, Takeiwa T, Ikeda K, Horie-Inoue K, Inoue S. Long Non-coding RNAs Involved in Metabolic Alterations in Breast and Prostate Cancers. Front Oncol 2020; 10:593200. [PMID: 33123488 PMCID: PMC7573247 DOI: 10.3389/fonc.2020.593200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Breast and prostate cancers are the most prevalent cancers in females and males, respectively. These cancers exhibit sex hormone dependence and thus, hormonal therapies are used to treat these cancers. However, acquired resistance to hormone therapies is a major clinical problem. In addition, certain portions of these cancers initially exhibit hormone-independence due to the absence of sex hormone receptors. Therefore, precise and profound understanding of the cancer pathophysiology is required to develop novel clinical strategies against breast and prostate cancers. Metabolic reprogramming is currently recognized as one of the hallmarks of cancer, as exemplified by the alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Dysregulation of metabolic enzymes and their regulators such as kinases, transcription factors, and other signaling molecules contributes to metabolic alteration in cancer. Moreover, accumulating lines of evidence reveal that long non-coding RNAs (lncRNAs) regulate cancer development and progression by modulating metabolism. Understanding the mechanism and function of lncRNAs associated with cancer-specific metabolic alteration will therefore provide new knowledge for cancer diagnosis and treatment. This review provides an overview of recent studies regarding the role of lncRNAs in metabolism in breast and prostate cancers, with a focus on both sex hormone-dependent and -independent pathways.
Collapse
Affiliation(s)
- Shuhei Kamada
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihiko Takeiwa
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
37
|
Zhang ZY, Yu XL, Cai MD, Liu YH, Liu JQ, Zhao SY, Li XX, Li YH. Relationship between bovine oocytes developmental competence and mRNA expression of apoptotic and mitochondrial genes following the change of vitrification temperatures and cryoprotectant concentrations. Cryobiology 2020; 97:110-122. [PMID: 33011172 DOI: 10.1016/j.cryobiol.2020.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/09/2023]
Abstract
The present study analyzed the relationship between bovine oocytes developmental competence and mRNA expression of apoptotic and mitochondrial genes following the change of vitrification temperatures (VTs) and cryoprotectant agent concentrations (CPAs). Cumulus oocyte complexes were randomly divided into five groups: control, vitrified in liquid nitrogen (LN; -196 °C) with 5.6 M CPAs (LN 5.6 M), LN with 6.6 M CPAs (LN 6.6 M), liquid helium (LHe; -269 °C) with 5.6 M CPAs (LHe 5.6 M), and LHe with 6.6 M CPAs (LHe 6.6 M). After vitrification and warming, oocytes of vitrified and control groups were subjected to in vitro maturation (IVM), in vitro fertilization and in vitro culture. The blastocyst rate in LHe 5.6 M group was the highest among the four vitrified groups (13.7% vs. 9.4%, 1.3%, and 8.4%; P < 0.05). The mRNA expression level of 8 apoptotic- and 12 mitochondria-related genes were detected through qRT-PCR after IVM. Lower VT (LHe, -269 °C) positively affected the mRNA expression levels of apoptotic genes (BAD, BID, BTK, TP53, and TP53I3) and mitochondrial genes (COX6B1, DERA, FIS1, NDUFA1, NDUFA4, PRDX2, SLC25A5, TFB1M, and UQCRB), and reduced oxidative stress from freezing. Decreased CPAs (5.6 M) positively affected mRNA expression levels of apoptotic genes (BAD, BCL2A1, BID, and CASP3) in LHe vitrification but negatively affected apoptotic genes (BAD, BAX, BID, BTK, and BCL2A1) in LN vitrification. In conclusion, decreased VTs and CPAs in LHe vitrification may increase the blastocyst rate by changing the mRNA expression levels of these apoptotic and mitochondrial genes for the vitrified oocytes.
Collapse
Affiliation(s)
- Zhi Yang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xue Li Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Meng Dan Cai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yi Heng Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jia Qi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shi Yu Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiao Xia Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ying Hua Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
38
|
Zhang J, Xu L, Wang P, Zheng X, Hu Y, Luo J, Zhang M, Xu M. RNA-seq Used to Explore circRNA Expression and Identify Key circRNAs During the DNA Synthesis Phase of Mice Liver Regeneration. DNA Cell Biol 2020; 39:2059-2076. [PMID: 32960090 DOI: 10.1089/dna.2020.5750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The liver has an excellent capacity for regeneration when faced with external injury and the damage differs from that of other organs in the body. Our aim was to identify the role of circular RNA (circRNA) during the DNA synthesis phase (36 h) of mice liver regeneration. High-throughput RNA sequencing was conducted to explore circRNA and messenger RNA (mRNA) expression in three pairs of mice liver tissue at 0 and 36 h after 2/3 partial hepatectomy. One hundred differentially expressed circRNAs were detected, including 66 upregulated and 34 downregulated circRNAs. We also explored 2483 differentially expressed mRNAs, including 1422 upregulated and 1061 downregulated mRNAs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes indicated that cell cycle regulation, material metabolism, and multiple classical pathways were involved in the DNA synthesis process. A competing endogenous RNA (ceRNA) network containing 5 circRNAs, 28 target genes, and 533 microRNAs (miRNAs) was constructed, and we selected the top 5 miRNAs to map it. Potential key circRNAs were validated with the quantitative real-time PCR technique and their regeneration curves, including consecutive time points, were produced. Finally, a cell counting kit-8 assay on key circRNAs of ceRNA network was performed to further confirm their roles in the DNA synthesis phase of liver regeneration. This study provides a circRNA expression profile for liver regeneration and contributes valuable information for future research.
Collapse
Affiliation(s)
- Jinfu Zhang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Liangliang Xu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Peng Wang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Xiaobo Zheng
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Yitao Hu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Jianchen Luo
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Ming Zhang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Mingqing Xu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| |
Collapse
|
39
|
BC032913 as a Novel Antisense Non-coding RNA is Downregulated in Gastric Cancer. J Gastrointest Cancer 2020; 52:928-931. [DOI: 10.1007/s12029-020-00517-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Li N, Li J, Mi Q, Xie Y, Li P, Wang L, Binang H, Wang Q, Wang Y, Chen Y, Wang Y, Mao H, Du L, Wang C. Long non-coding RNA ADAMTS9-AS1 suppresses colorectal cancer by inhibiting the Wnt/β-catenin signalling pathway and is a potential diagnostic biomarker. J Cell Mol Med 2020; 24:11318-11329. [PMID: 32889785 PMCID: PMC7576284 DOI: 10.1111/jcmm.15713] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) have come out as critical molecular regulators of human tumorigenesis. In this study, we sought to identify and functionally characterize lncRNAs as potential mediators of colorectal cancer progression. We screened and identified a novel lncRNA, ADAMTS9‐AS1, which was significantly decreased in colorectal cancer tissues and was correlated with clinical outcome of patients according to The Cancer Genome Atlas (TCGA) database. In addition, ADAMTS9‐AS1 regulated cell proliferation and migration both in vitro and in vivo. Bioinformatics analysis revealed that overexpression of lncRNA‐ADAMTS9‐AS1 preferentially affected genes that were linked to proliferation and migration. Mechanistically, we found that ADAMTS9‐AS1 obviously suppressed β‐catenin, suggesting that Wnt signalling pathway participates in ADAMTS9‐AS1‐mediated gene transcriptional regulation in the suppression of colorectal tumorigenesis. Finally, we found that exosomal ADAMTS9‐AS1 could serve as a diagnostic biomarker for colorectal cancer with AUC = 0.835 and 95% confidence interval = 0.777‐0.911. Our data demonstrated that ADAMTS9‐AS1 might play important roles in colorectal cancer by suppressing oncogenesis. Targeting ADAMTS9‐AS1 may have potential clinical applications in colorectal cancer prognosis and treatment as an ideal therapeutic target. Finally, exosomal lncRNA‐ADAMTS9‐AS1 is a promising, novel diagnostic biomarker for colorectal cancer.
Collapse
Affiliation(s)
- Ning Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China
| | - Qi Mi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China
| | - Yan Xie
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital, Jinan, China
| | - Helen Binang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Qing Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Department of Clinical Laboratory, Dezhou People's Hospital, Dezhou, China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital, Jinan, China
| | - Yingjie Chen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China.,The Laboratory, Clinical Medical Research Center of Shandong Province, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China.,The Laboratory, Clinical Medical Research Center of Shandong Province, Jinan, China
| |
Collapse
|
41
|
LINC00473 inhibits vascular smooth muscle cell viability to promote aneurysm formation via miR-212-5p/BASP1 axis. Eur J Pharmacol 2020; 873:172935. [PMID: 31954705 DOI: 10.1016/j.ejphar.2020.172935] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/15/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Abdominal aortic aneurysm (AAA), as the most common type of aortic aneurysm, is closely related to the proliferation and apoptosis ability of vascular smooth muscle cells (VSMCs). Long non-coding RNAs (lncRNAs) are emerging regulators in disease development. LncRNA LINC00473 has been shown to affect cell proliferation and apoptosis in various cancers, but its role in AAA is still blank. In this work, in vitro AAA models were successfully established since cell viability was inhibited whereas apoptosis stimulated in VSMCs treated with H2O2. LINC00473 was up-regulated in VSMCs after H2O2 treatment. Overexpression of LINC00473 inhibited VSMC cell proliferation and promoted cell apoptosis and its silence mitigated H2O2-induced injuries to VSMCs. Additionally, we uncovered that LINC00473 sponged miR-212-5p to regulate brain acid soluble protein 1 (BASP1) expression. Finally, rescue assays uncovered that overexpression of miR-212-5p or suppression of BASP1 reversed the effects of LINC00473 up-regulation on cell proliferation and cell apoptosis. And the positive correlation between LINC00473 and BASP1 as well as the negative relation of miR-212-5p to both LINC00473 and BASP1 were confirmed in AAA tissues. All finding illuminated that LINC00473 participated in AAA development by regulating miR-212-5p/BASP1 pathway, suggesting LINC00473 as a promising target for AAA therapy.
Collapse
|
42
|
Chen W, Song J, Bian H, Yang X, Xie X, Zhu Q, Qin C, Qi J. The functions and targets of miR-212 as a potential biomarker of cancer diagnosis and therapy. J Cell Mol Med 2020; 24:2392-2401. [PMID: 31930653 PMCID: PMC7028855 DOI: 10.1111/jcmm.14966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer is a major health problem worldwide. An increasing number of researchers are studying the diagnosis, therapy and mechanisms underlying the development and progression of cancer. The study of noncoding RNA has attracted a lot of attention in recent years. It was found that frequent alterations of miRNA expression not only have various functions in cancer but also that miRNAs can act as clinical markers of diagnosis, stage and progression of cancer. MiR-212 is an important example of miRNAs involved in cancer. According to recent studies, miR-212 may serve as an oncogene or tumour suppressor by influencing different targets or pathways during the oncogenesis and the development and metastasis of cancer. Its deregulation may serve as a marker for the diagnosis or prognosis of cancer. In addition, it was recently reported that miR-212 was related to the sensitivity or resistance of cancer cells to chemotherapy or radiotherapy. Here, we summarize the current understanding of miR-212 functions in cancer by describing the relevant signalling pathways and targets. The role of miR-212 as a biomarker and its therapeutic potential in cancer is also described. The aim of this review was to identify new methods for the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Wenjun Chen
- Departments of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Departments of Gastroenterology, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Qingdao, China
| | - Jing Song
- Departments of Gastroenterology, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Qingdao, China
| | - Hongjun Bian
- Departments of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xia Yang
- Departments of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaoyu Xie
- Departments of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qiang Zhu
- Departments of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Chengyong Qin
- Departments of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Jianni Qi
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
43
|
Wu S, Wu E, Wang D, Niu Y, Yue H, Zhang D, Luo J, Chen R. LncRNA HRCEG, regulated by HDAC1, inhibits cells proliferation and epithelial-mesenchymal-transition in gastric cancer. Cancer Genet 2020; 241:25-33. [PMID: 31964588 DOI: 10.1016/j.cancergen.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Recently, a number of long noncoding RNAs (lncRNAs) have been reported to play significant roles in human tumorigenesis. However, only few gastric cancer related lncRNAs have been well characterized. Here, we identified one lncRNA HRCEG, whose expression was decreased in the gastric cancer tissues compared with adjacent normal tissues. Overexpression of HRCEG significantly promoted cell apoptosis and inhibited cell proliferation. Importantly, we demonstrated that HRCEG levels inversely correlated with EMT process and HRCEG was regulated by the histone deacetylase 1 (HDAC1) in gastric cancer. These findings suggest that HRCEG might be regulated by HDAC1 to inhibit gastric cancer progress and metastatic capability via EMT pathway.
Collapse
Affiliation(s)
- Shuheng Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Erzhong Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongpeng Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwei Niu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Yue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongdong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Geneway Decoding Bio-Tech Co. Ltd, Foshan, 528316, China.
| |
Collapse
|
44
|
Li Y, Zhang X, Fu Z, Zhou Q. MicroRNA-212-3p Attenuates Neuropathic Pain via Targeting Sodium Voltage-gated Channel Alpha Subunit 3 (NaV 1.3). Curr Neurovasc Res 2020; 16:465-472. [PMID: 31713483 DOI: 10.2174/1567202616666191111104145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Purpose:
To explore the role and potential mechanism of miR-212-3p in neuropathic
pain regulation.
Methods:
Adult male rats were used to establish chronic constriction injury (CCI) model to mimic
the neuropathic pain. Then, paw withdrawal threshold (PWT) and paw withdrawal thermal latency
(PWL) were determined. The concentrations of interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and
tumor necrosis factor-alpha (TNF-α) were measured with enzyme-linked immune sorbent assay
(ELISA) kit and the expression of miR-212-3p was measured by real time quantitative PCR (RTqPCR).
Besides, miR-212-3p agomir was intrathecally injected into CCI rats and the expression of
key apoptotic proteins was determined by western blot. Furthermore, dual-luciferase reporter assay
was used to determine the binding of miR-212-3p and 3’ untranslated regions (3’UTR) of NaV1.3
and the expression levels of NaV1.3 were measured by western blot and RT-qPCR.
Results:
In the CCI group, the PWT and PWL were significantly decreased and IL-1β, IL-6 and
TNF-α were increased. miR-212-3p was decreased in response to CCI. The intrathecal injection of
miR-212-3p agomir into CCI rats improved the PWT and PWL, decreased the IL-1β, IL-6 and
TNF-α, decreased the expression levels of BCL2 associated X, apoptosis regulator (Bax), cleaved
caspase-3 and increased the expression levels of BCL2 apoptosis regulator (Bcl-2). The results of
dual--luciferase reporter assay showed that miR-212-3p could directly bind with 3’UTR of NaV1.3.
The expression of NaV1.3 was up-regulated in CCI rats who were intrathecally injected with miRctrl,
whereas it decreased in CCI rats intrathecally injected with miR-212-3p agomir.
Conclusion:
The expression of miR-212a-3p attenuates neuropathic pain by targeting NaV1.3.
Collapse
Affiliation(s)
- Yingda Li
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng City, Inner Mongolia Autonomous Region, 024000, China
| | - Xizhe Zhang
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng City, Inner Mongolia Autonomous Region, 024000, China
| | - Zhimei Fu
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, 310012, China
| | - Qi Zhou
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng City, Inner Mongolia Autonomous Region, 024000, China
| |
Collapse
|
45
|
Wang J, Ding Y, Wu Y, Wang X. Identification of the complex regulatory relationships related to gastric cancer from lncRNA‐miRNA‐mRNA network. J Cell Biochem 2019; 121:876-887. [DOI: 10.1002/jcb.29332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jie Wang
- Laboratory of Media Design and Software Technology Jiangnan University Wuxi Jiangsu China
| | - Yanrui Ding
- Laboratory of Media Design and Software Technology Jiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology Jiangnan University Wuxi Jiangsu China
| | - Yanyan Wu
- Laboratory of Media Design and Software Technology Jiangnan University Wuxi Jiangsu China
| | - Xiaxia Wang
- Laboratory of Media Design and Software Technology Jiangnan University Wuxi Jiangsu China
| |
Collapse
|
46
|
Ding J, Wu W, Yang J, Wu M. Long non-coding RNA MIF-AS1 promotes breast cancer cell proliferation, migration and EMT process through regulating miR-1249-3p/HOXB8 axis. Pathol Res Pract 2019; 215:152376. [PMID: 31097355 DOI: 10.1016/j.prp.2019.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/03/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is one of the leading cause of cancer-related death among females worldwide. Mounting evidences indicate that long non-coding RNAs (lncRNAs) were involved in tumor progression by acting as either oncogenes or tumor suppressors in multiple cancers. In this study, we focused on the function and mechanism of lncRNA Migration Inhibitory Factor Antisense RNA 1 (MIF-AS1) in BC. qRT-PCR showed that MIF-AS1 was upregulated in BC tissues and cells. To detect its bio-function, a series of loss-of-function assays were carried out. Thereafter, we found that MIF-AS1 depletion inhibited BC cell proliferation, migration and epithelial-mesenchymal transition (EMT). Recently, increasing studies indicate that lncRNAs can function as competing endogenous RNAs (ceRNAs). Using bioinformatics analysis and luciferase reporter assay, we identified that MIF-AS1 regulated the level of Homeobox B8 (HOXB8) via binding to miR-1249-3p. Taken all together, our findings proved that MIF-AS1 acted as a ceRNA by modulating miR-1249-3p/HOXB8 axis in breast cancer. LncRNA MIF-AS1 might be a new biomarker and therapeutic target for BC patients.
Collapse
Affiliation(s)
- Jinhua Ding
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang Province, 315000, China
| | - Weizhu Wu
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang Province, 315000, China.
| | - Jiahui Yang
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang Province, 315000, China
| | - Minhua Wu
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang Province, 315000, China
| |
Collapse
|
47
|
Li L, Li Y, Huang Y, Ouyang Y, Zhu Y, Wang Y, Guo X, Yuan Y, Gong K. Long non-coding RNA MIF-AS1 promotes gastric cancer cell proliferation and reduces apoptosis to upregulate NDUFA4. Cancer Sci 2018; 109:3714-3725. [PMID: 30238562 PMCID: PMC6272088 DOI: 10.1111/cas.13801] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/02/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022] Open
Abstract
Long non‐coding RNA MIF‐AS1 (lncMIF‐AS1) has been found to be upregulated in the tumor tissues of gastric cancer; however, its importance for the progression of gastric cancer remains unknown. Thus, the present study was designed to determine the role of the lncMIF‐AS1‐based signal transduction pathway in mediating the proliferation and apoptosis of gastric cancer cells. Differentially expressed lncRNAs and mRNAs were screened out using microarray analysis, based on the published data (GSE63288), and validated using quantitative RT‐PCR. Target relationships between lncRNA‐micro RNA (miRNA) and miRNA‐mRNA were predicted by bioinformatics analysis and verified by dual‐luciferase reporter assay. Protein expression of NDUFA4, COX6C and COX5B was detected by western blot. Cell proliferation, cell cycle and apoptosis were determined using colony formation assay and flow cytometry analysis. Oxidative phosphorylation in gastric cancer cells was assessed by levels of oxygen consumption and ATP synthase activity. Expression of lncMIF‐AS1 and NDUFA4 were upregulated in gastric cancer tissues and cells as compared with non‐cancerous gastric tissues and cells (P < .05). MiR‐212‐5p was identified as the most important miRNA linker between lncMIF‐AS1 and NDUFA4, which was negatively regulated by lncMIF‐AS1 and its depletion is the main cause of NDUFA4 overexpression (P < .01). The upregulated expression of NDUFA4 then greatly promoted the proliferation and decreased the apoptosis of gastric cancer cells through activation of the oxidative phosphorylation pathway. Taken together, the present study implies that inhibition of lncMIF‐AS1/miR‐212‐5p/NDUFA4 signal transduction may provide a promising therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Linhai Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuejin Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yingguang Huang
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yiming Ouyang
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Zhu
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongzhi Wang
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaodong Guo
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Yuan
- Department of Emergency Internal Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Kunmei Gong
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
48
|
LncRNA MAFG-AS1 promotes the progression of colorectal cancer by sponging miR-147b and activation of NDUFA4. Biochem Biophys Res Commun 2018; 506:251-258. [PMID: 30348529 DOI: 10.1016/j.bbrc.2018.10.112] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023]
Abstract
Researchers have shown that long noncoding RNAs (lncRNAs) are closely associated with the pathogenesis of colorectal cancer (CRC). In here, we aimed to explore the function of lncRNA MAFG-AS1 in tumorigenesis of CRC. Firstly, we found that the expression of MAFG-AS1 was upregulated in CRC tissues and positively correlated with the advanced tumor stage. A reciprocal repression was found between MAFG-AS1 and miR-147b. The expression of miR-147b was downregulated in CRC tissues and inversely correlated with MAFG-AS1. Both the low-expression of miR-147b expression and the advanced tumor stage were independent factor for poor survival probability. Furthermore, overexpression of MAFG-AS1 promoted cell proliferation, cell cycle progression, and invasion, and inhibited apoptosis, while transduction of miR-147b partially reversed the effect of MAFG-AS1 on cellular processes. Consistently, stable over-expression of MAFG-AS1 contributed to the growth of colon cancer cell xenografts in vivo. NDUFA4 was identified as a direct target of miR-147b and knockdown of NDUFA4 abolished the oncogenic role of miR-147b inhibitor. Besides, MAFG-AS1 contributed to cell glycolysis by sponging miR-147b and activation of NDUFA4, causing an upregulation of PDK1, PFK1 and PKM2. Taken together, our study suggested that MAFG-AS1 functions as a novel oncogenic lncRNA in the development of CRC by regulating miR-147b/NDUFA4.
Collapse
|