1
|
Han J, Zhang M, Ge J, Ji Z, Zhao J, Hu Y, Li C, Xue Y, Li X, Zhao H, Cui Z, Tian M, Zheng X, Wang D, Wang J, Wei M, Radak Z, Nakabeppu Y, Boldogh I, Ba X. OGG1S326C variant frequent in human populations facilitates inflammatory responses due to its extended interaction with DNA substrate. Proc Natl Acad Sci U S A 2025; 122:e2426102122. [PMID: 40343995 PMCID: PMC12088383 DOI: 10.1073/pnas.2426102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 05/11/2025] Open
Abstract
8-oxoguanine (8-oxoGua) is one of the most frequent forms of oxidative DNA base lesions, repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) via base excision repair (BER) pathway to maintain genome fidelity. The human allelic variant hOGG1S326C, prevalent in Caucasians and Asians, has been regarded as a susceptibility factor for various diseases, yet its pathogenic mechanism remains elusive. In this study, we demonstrate that Ogg1S326C/S326C mice exhibit increased and sustained airway inflammation compared with wild-type (WT) Ogg1S326/S326 mice. Mechanistically, in response to inflammatory stimulation, OGG1S326C undergoes reactive oxygen species-induced dimerization, which impairs its base excision function, but prolongs its association with promoter-embedded substrate(s), leading to an increase in NF-κB' DNA occupancy, subsequently the excessive expression of proinflammatory cytokines and chemokines, and the exacerbated lung inflammation. In contrast, Serine at position 326 in WT -OGG1 is constitutively phosphorylated by CDK4. To fulfill the requirement for its function in transcriptional regulation, the phosphorylated OGG1 needs to undergo dephosphorylation to rescue DNA binding ability. In this scenario, OGG1S326C lacks this phosphorylation site, disrupting this regulatory cycle. Notably, administration of a small molecule inhibitor of OGG1 prevents OGG1S326C from binding to DNA and significantly decreases gene expression and inflammatory responses. Our findings elucidate a molecular basis for the increased disease susceptibility of individuals carrying the hOGG1S326C variant and propose the therapeutic potential of OGG1 inhibitors in mitigating inflammation-driven pathologies.
Collapse
Affiliation(s)
- Jinling Han
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Meichen Zhang
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Jiakun Ge
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Zhihua Ji
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Jianyi Zhao
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun130061, China
| | - Yinchao Hu
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Chunshuang Li
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Yaoyao Xue
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Xining Li
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Haiwang Zhao
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Zixu Cui
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Miaomiao Tian
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Xu Zheng
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Dapeng Wang
- Lung Transplant Center, Department of Respiratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu214023, China
| | - Jing Wang
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun130061, China
| | - Min Wei
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| | - Zsolt Radak
- Research Center for Molecular Exercise Science, Institute of Sport Science, University of Physical Education, BudapestH-1123, Hungary
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka812-8582, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Xueqing Ba
- Division of Human Health, Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun130024, China
- Division of Cell Biology, School of Life Sciences, Northeast Normal University, Changchun130024, China
| |
Collapse
|
2
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
3
|
Li C, Xue Y, Yinwang E, Ye Z. The Recruitment and Immune Suppression Mechanisms of Myeloid-Derived Suppressor Cells and Their Impact on Bone Metastatic Cancer. Cancer Rep (Hoboken) 2025; 8:e70044. [PMID: 39947253 PMCID: PMC11825175 DOI: 10.1002/cnr2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND MDSCs are immature neutrophils and monocytes with immunosuppressive potentials, involving mononuclear MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs). RECENT FINDINGS They are significant components of the tumor microenvironment (TME). Besides, recent studies also verified that MDSCs also facilitated the progression of bone metastasis by regulating the network of cytokines and the function of immune cells. CONCLUSION It is necessary to summarize the mechanisms of MDSC recruitment and immunosuppression, and their impact on bone metastasis.
Collapse
Affiliation(s)
- Chengyuan Li
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yucheng Xue
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Eloy Yinwang
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhaoming Ye
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
4
|
Wang J, Li C, Han J, Xue Y, Zheng X, Wang R, Radak Z, Nakabeppu Y, Boldogh I, Ba X. Reassessing the roles of oxidative DNA base lesion 8-oxoGua and repair enzyme OGG1 in tumorigenesis. J Biomed Sci 2025; 32:1. [PMID: 39741341 DOI: 10.1186/s12929-024-01093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/08/2024] [Indexed: 01/02/2025] Open
Abstract
ROS cause multiple forms of DNA damage, and among them, 8-oxoguanine (8-oxoGua), an oxidized product of guanine, is one of the most abundant. If left unrepaired, 8-oxoGua may pair with A instead of C, leading to a mutation of G: C to T: A during DNA replication. 8-Oxoguanine DNA glycosylase 1 (OGG1) is a tailored repair enzyme that recognizes 8-oxoGua in DNA duplex and initiates the base excision repair (BER) pathway to remove the lesion and ensure the fidelity of the genome. The accumulation of genomic 8-oxoGua and the dysfunction of OGG1 is readily linked to mutagenesis, and subsequently aging-related diseases and tumorigenesis; however, the direct experimental evidence has long been lacking. Recently, a series of studies have shown that guanine oxidation in the genome has a conservative bias, with the tendency to occur in the regulatory regions, thus, 8-oxoGua is not only a lesion to be repaired, but also an epigenetic modification. In this regard, OGG1 is a specific reader of this base modification. Substrate recognition and/or excision by OGG1 can cause DNA conformation changes, affect chromatin modifications, thereby modulating the transcription of genes involved in a variety of cellular processes, including inflammation, cell proliferation, differentiation, and apoptosis. Thus, in addition to the potential mutagenicity, 8-oxoGua may contribute to tumor development and progression through the altered gene expression stemming from its epigenetic effects.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Chunshuang Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Jinling Han
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yaoyao Xue
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Ruoxi Wang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, 1123, Hungary
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
5
|
Yamazaki E, Fujimura T, Takahashi-Watanabe M, Tada S, Kitayama C, Amagai R, Kambayashi Y, Watanabe M, Maekawa M, Mano N, Asano Y. Decreased interleukin 4 serum levels correlate with plasminogen activator inhibitor-1 inhibitor TM5614 efficacy in patients with malignant melanoma refractory to anti-programmed cell death protein-1 antibodies: post hoc study of the TM5614-MM trial. Br J Dermatol 2024; 192:167-169. [PMID: 39215562 DOI: 10.1093/bjd/ljae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/04/2024]
Abstract
We previously reported that a combination of the PAI-1 inhibitor TM5614 and nivolumab resulted in a 25.9% response rate in patients with anti-PD-1 antibody failure. We therefore comprehensively evaluated the serum levels of chemokines and cytokines in patients enrolled in the protocol per set cohort of the TM5614-MM clinical trial (jRCT2021210029). Our present study revealed significant reductions in IL-4, IL-16 and CXCL2 in the response group treated with TM5614. Our findings suggest that the induction of an antitumour response in our previous clinical trial was due to the activation of tumour-associated macrophages through the blockade of M2 polarization and the reduction of monocytic myeloid-derived suppressor cells in the tumour-bearing host.
Collapse
Affiliation(s)
- Emi Yamazaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Satsuki Tada
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chisako Kitayama
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Amagai
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masamitsu Maekawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Pan W, Jia Z, Du J, Chang K, Liu Y, Liu W, Zhao X, Tan W. NLRP3 Inflammasome Upregulates PD-L1 in Ovarian Cancer and Contributes to an Immunosuppressive Microenvironment. Immunotargets Ther 2024; 13:775-788. [PMID: 39703562 PMCID: PMC11656484 DOI: 10.2147/itt.s495564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction The NLRP3 inflammasome has been implicated in the initiation of inflammation and tumorigenesis; however, its role in epithelial ovarian cancer (EOC) remains unclear. Methods This study employed high-throughput sequencing data, ELISA, clone formation assay, Western blot, and flow cytometric analysis to investigate the specific role of the NLRP3 inflammasome in EOC. Results NLRP3 was highly expressed in human EOC tissues and correlated with an unfavorable prognosis. Activation of the NLRP3 inflammasome by LPS and ATP promoted EOC cell proliferation and increased IL-1 and PD-L1 levels. MCC950, a NLRP3 inflammasome blocker, reduced IL-1 and PD-L1 levels and diminished tumor-immune suppressive cells, such as myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and PD-1+ CD4+ T cells, in a murine model of ovarian cancer. This intervention also suppressed tumor growth. Conclusion Our investigation revealed the pro-tumorigenic role of the NLRP3 inflammasome and its regulation of PD-L1 expression in EOC. Blockade of the NLRP3 inflammasome led to reduced PD-L1 expression, fewer immunosuppressive cells, and suppressed tumor growth. These findings suggest that targeting the NLRP3 inflammasome-PD-L1 axis could be a novel treatment approach for ovarian cancer.
Collapse
Affiliation(s)
- Wenjing Pan
- Department of Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaoyang Jia
- Department of Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Jingtong Du
- Department of Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Kexin Chang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yiming Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Wei Liu
- Department of Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Xibo Zhao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Wenhua Tan
- Department of Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
7
|
Zhu M, Wang S, Qu K, Lu F, Kou M, Yao Y, Zhu T, Yu Y, Wang L, Yan C. The trogocytosis of neutrophils on initial transplanted tumor in mice. iScience 2024; 27:109661. [PMID: 38650980 PMCID: PMC11033691 DOI: 10.1016/j.isci.2024.109661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
The role of neutrophils in tumor initiation stage is rarely reported because of the lack of suitable models. We found that neutrophils recruited in early tumor nodules induced by subcutaneous inoculation of B16 melanoma cells were able to attack tumor cells by trogocytosis. The anti-tumor immunotherapy like peritoneal injection with TLR9 agonist CpG oligodeoxynucleotide combined with transforming growth factor β2 inhibitor TIO3 could increase the trogocytic neutrophils in the nodules, as well as CD8+ T cells, natural killer (NK) cells, and their interferon-γ production. Local use of Cxcl2 small interfering RNA significantly reduced the number of neutrophils and trogocytic neutrophils in tumor nodules, as well as CD8+ T and NK cells, and also enlarged the nodules. These results suggest that neutrophils recruited early to the inoculation site of tumor cells are conducive to the establishment of anti-tumor immune microenvironment. Our findings provide a useful model system for studying the effect of neutrophils on tumors and anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Mengru Zhu
- Department of Neonatology and Institute of Pediatrics, Children’s Medical Center, First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, People’s Republic of China
| | - Shengnan Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, People’s Republic of China
| | - Kuo Qu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, People’s Republic of China
| | - Feiyu Lu
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, People’s Republic of China
- Department of Pediatric Endocrinology, Children’s Medical Center, First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, People’s Republic of China
| | - Mengyuan Kou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, People’s Republic of China
| | - Yunpeng Yao
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, People’s Republic of China
| | - Tong Zhu
- Department of Neonatology and Institute of Pediatrics, Children’s Medical Center, First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, People’s Republic of China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, People’s Republic of China
| | - Liying Wang
- Department of Neonatology and Institute of Pediatrics, Children’s Medical Center, First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, People’s Republic of China
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, People’s Republic of China
| | - Chaoying Yan
- Department of Neonatology and Institute of Pediatrics, Children’s Medical Center, First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, People’s Republic of China
| |
Collapse
|
8
|
Muralidhar A, Hernandez R, Morris ZS, Comas Rojas H, Bio Idrissou M, Weichert JP, McNeel DG. Myeloid-derived suppressor cells attenuate the antitumor efficacy of radiopharmaceutical therapy using 90Y-NM600 in combination with androgen deprivation therapy in murine prostate tumors. J Immunother Cancer 2024; 12:e008760. [PMID: 38663936 PMCID: PMC11043705 DOI: 10.1136/jitc-2023-008760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
RATIONALE Androgen deprivation therapy (ADT) is pivotal in treating recurrent prostate cancer and is often combined with external beam radiation therapy (EBRT) for localized disease. However, for metastatic castration-resistant prostate cancer, EBRT is typically only used in the palliative setting, because of the inability to radiate all sites of disease. Systemic radiation treatments that preferentially irradiate cancer cells, known as radiopharmaceutical therapy or targeted radionuclide therapy (TRT), have demonstrable benefits for treating metastatic prostate cancer. Here, we explored the use of a novel TRT, 90Y-NM600, specifically in combination with ADT, in murine prostate tumor models. METHODS 6-week-old male FVB mice were implanted subcutaneously with Myc-CaP tumor cells and given a single intravenous injection of 90Y-NM600, in combination with ADT (degarelix). The combination and sequence of administration were evaluated for effect on tumor growth and infiltrating immune populations were analyzed by flow cytometry. Sera were assessed to determine treatment effects on cytokine profiles. RESULTS ADT delivered prior to TRT (ADT→TRT) resulted in significantly greater antitumor response and overall survival than if delivered after TRT (TRT→ADT). Studies conducted in immunodeficient NRG mice failed to show a difference in treatment sequence, suggesting an immunological mechanism. Myeloid-derived suppressor cells (MDSCs) significantly accumulated in tumors following TRT→ADT treatment and retained immune suppressive function. However, CD4+ and CD8+ T cells with an activated and memory phenotype were more prevalent in the ADT→TRT group. Depletion of Gr1+MDSCs led to greater antitumor response following either treatment sequence. Chemotaxis assays suggested that tumor cells secreted chemokines that recruited MDSCs, notably CXCL1 and CXCL2. The use of a selective CXCR2 antagonist, reparixin, further improved antitumor responses and overall survival when used in tumor-bearing mice treated with TRT→ADT. CONCLUSION The combination of ADT and TRT improved antitumor responses in murine models of prostate cancer, however, this was dependent on the order of administration. This was found to be associated with one treatment sequence leading to an increase in infiltrating MDSCs. Combining treatment with a CXCR2 antagonist improved the antitumor effect of this combination, suggesting a possible approach for treating advanced human prostate cancer.
Collapse
Affiliation(s)
| | | | - Zachary S Morris
- Human Oncology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hansel Comas Rojas
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Malick Bio Idrissou
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P Weichert
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Douglas G McNeel
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Li C, Liu Y, Deng M, Li J, Li S, Li X, Zuo Y, Shen C, Wang Y. Comparison of the therapeutic effects of mesenchymal stem cells derived from human dental pulp (DP), adipose tissue (AD), placental amniotic membrane (PM), and umbilical cord (UC) on postmenopausal osteoporosis. Front Pharmacol 2024; 15:1349199. [PMID: 38601464 PMCID: PMC11004311 DOI: 10.3389/fphar.2024.1349199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Background: Osteoporosis is a systemic bone disease characterized by bone loss and microstructural degeneration. Recent preclinical and clinical trials have further demonstrated that the transplantation of mesenchymal stem cells (MSCs) derived from human adipose tissue (AD), dental pulp (DP), placental amniotic membrane (AM), and umbilical cord (UC) tissues can serve as an effective form of cell therapy for osteoporosis. However, MSC-mediated osteoimmunology and the ability of these cells to regulate osteoclast-osteoblast differentiation varies markedly among different types of MSCs. Methods: In this study, we investigated whether transplanted allogeneic MSCs derived from AD, DP, AM, and UC tissues were able to prevent osteoporosis in an ovariectomy (OVX)-induced mouse model of osteoporosis. The homing and immunomodulatory ability of these cells as well as their effects on osteoblastogenesis and the maintenance of bone formation were compared for four types of MSCs to determine the ideal source of MSCs for the cell therapy-based treatment of OVX-induced osteoporosis. The bone formation and bone resorption ability of these four types of MSCs were analyzed using micro-computed tomography analyses and histological staining. In addition, cytokine array-based analyses of serological markers and bioluminescence imaging assays were employed to evaluate cell survival and homing efficiency. Immune regulation was determined by flow cytometer assay to reflect the mechanisms of osteoporosis treatment. Conclusion: These analyses demonstrated that MSCs isolated from different tissues have the capacity to treat osteoporosis when transplanted in vivo. Importantly, DP-MSCs infusion was able to maintain trabecular bone mass more efficiently with corresponding improvements in trabecular bone volume, mineral density, number, and separation. Among the tested MSC types, DP-MSCs were also found to exhibit greater immunoregulatory capabilities, regulating the Th17/Treg and M1/M2 ratios. These data thus suggest that DP-MSCs may represent an effective tool for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Chuncai Li
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Hospital of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yincong Liu
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxing Deng
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Li
- Sichuan Provincial Cells Tissue Bank, Chengdu, China
| | - Shengqi Li
- Sichuan Provincial Cells Tissue Bank, Chengdu, China
| | - Xiaoyu Li
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Hospital of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chongyang Shen
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yichao Wang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Duan J, Zhao Q, He Z, Tang S, Duan J, Xing W. Current understanding of macrophages in intracranial aneurysm: relevant etiological manifestations, signaling modulation and therapeutic strategies. Front Immunol 2024; 14:1320098. [PMID: 38259443 PMCID: PMC10800944 DOI: 10.3389/fimmu.2023.1320098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Macrophages activation and inflammatory response play crucial roles in intracranial aneurysm (IA) formation and progression. The outcome of ruptured IA is considerably poor, and the mechanisms that trigger IA progression and rupture remain to be clarified, thereby developing effective therapy to prevent subarachnoid hemorrhage (SAH) become difficult. Recently, climbing evidences have been expanding our understanding of the macrophages relevant IA pathogenesis, such as immune cells population, inflammatory activation, intra-/inter-cellular signaling transductions and drug administration responses. Crosstalk between macrophages disorder, inflammation and cellular signaling transduction aggravates the devastating consequences of IA. Illustrating the pros and cons mechanisms of macrophages in IA progression are expected to achieve more efficient treatment interventions. In this review, we summarized the current advanced knowledge of macrophages activation, infiltration, polarization and inflammatory responses in IA occurrence and development, as well as the most relevant NF-κB, signal transducer and activator of transcription 1 (STAT1) and Toll-Like Receptor 4 (TLR4) regulatory signaling modulation. The understanding of macrophages regulatory mechanisms is important for IA patients' clinical outcomes. Gaining insight into the macrophages regulation potentially contributes to more precise IA interventions and will also greatly facilitate the development of novel medical therapy.
Collapse
Affiliation(s)
- Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Qijie Zhao
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zeyuan He
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Shuang Tang
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Jia Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
11
|
Davis MA, Cho E, Teplensky MH. Harnessing biomaterial architecture to drive anticancer innate immunity. J Mater Chem B 2023; 11:10982-11005. [PMID: 37955201 DOI: 10.1039/d3tb01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immunomodulation is a powerful therapeutic approach that harnesses the body's own immune system and reprograms it to treat diseases, such as cancer. Innate immunity is key in mobilizing the rest of the immune system to respond to disease and is thus an attractive target for immunomodulation. Biomaterials have widely been employed as vehicles to deliver immunomodulatory therapeutic cargo to immune cells and raise robust antitumor immunity. However, it is key to consider the design of biomaterial chemical and physical structure, as it has direct impacts on innate immune activation and antigen presentation to stimulate downstream adaptive immunity. Herein, we highlight the widespread importance of structure-driven biomaterial design for the delivery of immunomodulatory cargo to innate immune cells. The incorporation of precise structural elements can be harnessed to improve delivery kinetics, uptake, and the targeting of biomaterials into innate immune cells, and enhance immune activation against cancer through temporal and spatial processing of cargo to overcome the immunosuppressive tumor microenvironment. Structural design of immunomodulatory biomaterials will profoundly improve the efficacy of current cancer immunotherapies by maximizing the impact of the innate immune system and thus has far-reaching translational potential against other diseases.
Collapse
Affiliation(s)
- Meredith A Davis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Ezra Cho
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Michelle H Teplensky
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
12
|
Gao TM, Xiao KQ, Xiang XX, Jin SJ, Qian JJ, Zhang C, Zhou BH, Tang H, Bai DS, Jiang GQ. The decreased risk of hepatocellular carcinoma in hepatitis B virus-related cirrhotic portal hypertension patients after laparoscopic splenectomy and azygoportal disconnection. Surg Endosc 2023; 37:8522-8531. [PMID: 37775601 DOI: 10.1007/s00464-023-10454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Posthepatitic cirrhosis is one of the leading risk factors for hepatocellular carcinoma (HCC) worldwide, among which hepatitis B cirrhosis is the dominant one. This study explored whether laparoscopic splenectomy and azygoportal disconnection (LSD) can reduce the risk of HCC among patients with hepatitis B virus (HBV)-related cirrhotic portal hypertension (CPH). METHODS A total of 383 patients with HBV-related CPH diagnosed as gastroesophageal variceal bleeding and secondary hypersplenism were identified in our hepatobiliary pancreatic center between April 2012 and April 2022, and conducted an 11-year retrospective follow-up. We used inverse probability of treatment weighting (IPTW) to correct for potential confounders, weighted Kaplan-Meier curves, and logistic regression to estimate survival and risk differences. RESULTS Patients were divided into two groups based on treatment method: LSD (n = 230) and endoscopic therapy (ET; n = 153) groups. Whether it was processed through IPTW or not, LSD group showed a higher survival benefit than ET group according to Kaplan-Meier analysis (P < 0.001). The incidence density of HCC was higher in the ET group compared to LSD group at the end of follow-up [32.1/1000 vs 8.0/1000 person-years; Rate ratio: 3.998, 95% confidence intervals (CI) 1.928-8.293]. Additionally, in logistic regression analyses weighted by IPTW, LSD was an independent protective predictor of HCC incidence compared to ET (odds ratio 0.516, 95% CI 0.343-0.776; P = 0.002). CONCLUSION Considering the ability of LSD to improve postoperative survival and prevent HCC in HBV-related CPH patients with gastroesophageal variceal bleeding and secondary hypersplenism, it is worth promoting in the context of the shortage of liver donors.
Collapse
Affiliation(s)
- Tian-Ming Gao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Kun-Qing Xiao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Xiao-Xing Xiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
- Department of Digestive Diseases, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Sheng-Jie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Jian-Jun Qian
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Bao-Huan Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Hua Tang
- The Administration Office, Yangzhou Blood Center, Yangzhou, 225001, China
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China.
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China.
| |
Collapse
|
13
|
Zarodniuk M, Steele A, Lu X, Li J, Datta M. CNS tumor stroma transcriptomics identify perivascular fibroblasts as predictors of immunotherapy resistance in glioblastoma patients. NPJ Genom Med 2023; 8:35. [PMID: 37884531 PMCID: PMC10603041 DOI: 10.1038/s41525-023-00381-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Excessive deposition of extracellular matrix (ECM) is a hallmark of solid tumors; however, it remains poorly understood which cellular and molecular components contribute to the formation of ECM stroma in central nervous system (CNS) tumors. Here, we undertake a pan-CNS analysis of retrospective gene expression datasets to characterize inter- and intra-tumoral heterogeneity of ECM remodeling signatures in both adult and pediatric CNS disease. We find that CNS lesions - glioblastoma in particular - can be divided into two ECM-based subtypes (ECMhi and ECMlo) that are influenced by the presence of perivascular stromal cells resembling cancer-associated fibroblasts (CAFs). Ligand-receptor network analysis predicts that perivascular fibroblasts activate signaling pathways responsible for recruitment of tumor-associated macrophages and promotion of cancer stemness. Our analysis reveals that perivascular fibroblasts are correlated with unfavorable response to immune checkpoint blockade in glioblastoma and poor patient survival across a subset of CNS tumors. We provide insights into new stroma-driven mechanisms underlying immune evasion and immunotherapy resistance in CNS tumors like glioblastoma, and discuss how targeting these perivascular fibroblasts may prove an effective approach to improving treatment response and patient survival in a variety of CNS tumors.
Collapse
Affiliation(s)
- Maksym Zarodniuk
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Alexander Steele
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
14
|
Korbecki J, Bosiacki M, Chlubek D, Baranowska-Bosiacka I. Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes. Int J Mol Sci 2023; 24:13287. [PMID: 37686093 PMCID: PMC10487711 DOI: 10.3390/ijms241713287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Human CXCR2 has seven ligands, i.e., CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8/IL-8-chemokines with nearly identical properties. However, no available study has compared the contribution of all CXCR2 ligands to cancer progression. That is why, in this study, we conducted a bioinformatic analysis using the GEPIA, UALCAN, and TIMER2.0 databases to investigate the role of CXCR2 ligands in 31 different types of cancer, including glioblastoma, melanoma, and colon, esophageal, gastric, kidney, liver, lung, ovarian, pancreatic, and prostate cancer. We focused on the differences in the regulation of expression (using the Tfsitescan and miRDB databases) and analyzed mutation types in CXCR2 ligand genes in cancers (using the cBioPortal). The data showed that the effect of CXCR2 ligands on prognosis depends on the type of cancer. CXCR2 ligands were associated with EMT, angiogenesis, recruiting neutrophils to the tumor microenvironment, and the count of M1 macrophages. The regulation of the expression of each CXCR2 ligand was different and, thus, each analyzed chemokine may have a different function in cancer processes. Our findings suggest that each type of cancer has a unique pattern of CXCR2 ligand involvement in cancer progression, with each ligand having a unique regulation of expression.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska Str. 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
15
|
Zarodniuk M, Steele A, Lu X, Li J, Datta M. Pan-cancer transcriptomic analysis of CNS tumor stroma identifies a population of perivascular fibroblasts that predict poor immunotherapy response in glioblastoma patients. RESEARCH SQUARE 2023:rs.3.rs-2931886. [PMID: 37292803 PMCID: PMC10246264 DOI: 10.21203/rs.3.rs-2931886/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Excessive deposition of extracellular matrix (ECM) is a hallmark of solid tumors; however, it remains poorly understood which cellular and molecular components contribute to the formation of ECM stroma in central nervous system (CNS) tumors. Here, we undertook a pan-CNS analysis of retrospective gene expression datasets to characterize inter- and intra-tumoral heterogeneity of ECM remodeling signatures in both adult and pediatric CNS disease. We found that CNS lesions - glioblastoma in particular - can be divided into two ECM-based subtypes (ECMhi and ECMlo) that are influenced by the presence of perivascular cells resembling cancer-associated fibroblasts (CAFs). We show that perivascular fibroblasts activate chemoattractant signaling pathways to recruit tumor-associated macrophages, and promote an immune-evasive, stem-like cancer cell phenotype. Our analysis reveals that perivascular fibroblasts are correlated with unfavorable response to immune checkpoint blockade in glioblastoma and poor patient survival across a subset of CNS tumors. We provide insights into novel stroma-driven mechanisms underlying immune evasion and immunotherapy resistance in CNS tumors like glioblastoma, and discuss how targeting these perivascular fibroblasts may prove an effective approach to improving treatment response and patient survival in a variety of CNS tumors.
Collapse
Affiliation(s)
- Maksym Zarodniuk
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
| | | | - Xin Lu
- Department of Biological Sciences, University of Notre Dame
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
| |
Collapse
|
16
|
Li Z, Gao Y, Cao Y, He F, Jiang R, Liu H, Cai H, Zan T. Extracellular RNA in melanoma: Advances, challenges, and opportunities. Front Cell Dev Biol 2023; 11:1141543. [PMID: 37215082 PMCID: PMC10192583 DOI: 10.3389/fcell.2023.1141543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Melanoma, a malignant mass lesion that originates in melanocytes and has a high rate of malignancy, metastasis, and mortality, is defined by these characteristics. Malignant melanoma is a kind of highly malignant tumor that produces melanin and has a high mortality rate. Its incidence accounts for 1%-3% of all malignant tumors and shows an obvious upward trend. The discovery of biomolecules for the diagnosis and treatment of malignant melanoma has important application value. So far, the exact molecular mechanism of melanoma development relevant signal pathway still remains unclear. According to previous studies, extracellular RNAs (exRNAs) have been implicated in tumorigenesis and spread of melanoma. They can influence the proliferation, invasion and metastasis of melanoma by controlling the expression of target genes and can also influence tumor progression by participating in signal transduction mechanisms. Therefore, understanding the relationship between exRNA and malignant melanoma and targeting therapy is of positive significance for its prevention and treatment. In this review, we did an analysis of extracellular vesicles of melanoma which focused on the role of exRNAs (lncRNAs, miRNAs, and mRNAs) and identifies several potential therapeutic targets. In addition, we discuss the typical signaling pathways involved in exRNAs, advances in exRNA detection and how they affect the tumor immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Gao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Cao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifan He
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Runyi Jiang
- Department of Orthopaedic Oncology, Spinal Tumor Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Gao TM, Zhou J, Xiang XX, Jin SJ, Qian JJ, Zhang C, Zhou BH, Tang H, Bai DS, Jiang GQ. plenectomy and azygoportal disconnection decreases the risk of hepatocellular carcinoma for cirrhosis patients with portal hypertension bleeding: a 10-year retrospective follow-up study based on the inverse probability of treatment weighting method. J Gastroenterol 2023; 58:503-512. [PMID: 36943530 DOI: 10.1007/s00535-023-01982-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Liver cirrhosis is the highest risk factor for hepatocellular carcinoma (HCC) worldwide. However, etiological therapy is the only option in cirrhosis patients to decrease the HCC risk. The aim of this study was to explore whether laparoscopic splenectomy and azygoportal disconnection (LSD) decreases the risk of HCC for patients with cirrhotic portal hypertension (CPH). METHODS Between April 2012 and April 2021, we identified 595 CPH patients in our hepatobiliary pancreatic center who were diagnosed with gastroesophageal variceal bleeding and secondary hypersplenism, and performed a 10-year retrospective follow-up. Inverse probability of treatment weighting (IPTW) was used to adjust for potential confounders, weighted Kaplan-Meier curves and logistic regression to estimate survival and risk differences. RESULTS According to the method of therapy, patients were divided into LSD (n = 345) and endoscopic therapy (ET; n = 250) groups. Kaplan-Meier analysis revealed that patients who underwent LSD had higher survival benefit with those who underwent ET (P < 0.001). At the end of the follow-up, ET group was associated with a higher HCC incidence density compared with LSD group (28.1/1000 vs 9.6/1000 person-years; Rate ratio [RR] 2.922, 95% confidence intervals [CI] 1.599-5.338). In addition, logistic regression analyses weighted by IPTW revealed that, compared with ET, LSD was an independent protective predictor of HCC incidence (odds ratio [OR] 0.440, 95% CI 0.316-0.612; P < 0.001). CONCLUSIONS Considering the better postoperative survival and the ability to prevent HCC in CPH patients with gastroesophageal variceal bleeding and secondary hypersplenism, LSD is worth popularization in situations where liver donors are scarce.
Collapse
Affiliation(s)
- Tian-Ming Gao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
- Department of Hepatobiliary Surgery, The First Clinical College, Dalian Medical University, 9 West Section of South Port Arthur Rd, Dalian, 116027, Liaoning, China
| | - Xiao-Xing Xiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
- Department of Digestive Diseases, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Sheng-Jie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Jian-Jun Qian
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Bao-Huan Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China
| | - Hua Tang
- The Administration Office, Yangzhou Blood Center, Yangzhou, 225001, China
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China.
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, 225001, China.
| |
Collapse
|
18
|
Genduso S, Freytag V, Schetler D, Kirchner L, Schiecke A, Maar H, Wicklein D, Gebauer F, Bröker K, Stürken C, Milde-Langosch K, Oliveira-Ferrer L, Ricklefs FL, Ewald F, Wolters-Eisfeld G, Riecken K, Unrau L, Krause L, Bohnenberger H, Offermann A, Perner S, Sebens S, Lamszus K, Diehl L, Linder S, Jücker M, Schumacher U, Lange T. Tumor cell integrin β4 and tumor stroma E-/P-selectin cooperatively regulate tumor growth in vivo. J Hematol Oncol 2023; 16:23. [PMID: 36932441 PMCID: PMC10022201 DOI: 10.1186/s13045-023-01413-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/13/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The immunological composition of the tumor microenvironment has a decisive influence on the biological course of cancer and is therefore of profound clinical relevance. In this study, we analyzed the cooperative effects of integrin β4 (ITGB4) on tumor cells and E-/P-selectin on endothelial cells within the tumor stroma for regulating tumor growth by shaping the local and systemic immune environment. METHODS We used several preclinical mouse models for different solid human cancer types (xenograft and syngeneic) to explore the role of ITGB4 (shRNA-mediated knockdown in tumor cells) and E-/P-selectins (knockout in mice) for tumor growth; effects on apoptosis, proliferation and intratumoral signaling pathways were determined by histological and biochemical methods and 3D in vitro experiments; changes in the intratumoral and systemic immune cell composition were determined by flow cytometry and immunohistochemistry; chemokine levels and their attracting potential were measured by ELISA and 3D invasion assays. RESULTS We observed a very robust synergism between ITGB4 and E-/P-selectin for the regulation of tumor growth, accompanied by an increased recruitment of CD11b+ Gr-1Hi cells with low granularity (i.e., myeloid-derived suppressor cells, MDSCs) specifically into ITGB4-depleted tumors. ITGB4-depleted tumors undergo apoptosis and actively attract MDSCs, well-known to promote tumor growth in several cancers, via increased secretion of different chemokines. MDSC trafficking into tumors crucially depends on E-/P-selectin expression. Analyses of clinical samples confirmed an inverse relationship between ITGB4 expression in tumors and number of tumor-infiltrating leukocytes. CONCLUSIONS These findings suggest a distinct vulnerability of ITGB4Lo tumors for MDSC-directed immunotherapies.
Collapse
Affiliation(s)
- Sandra Genduso
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Vera Freytag
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Daniela Schetler
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lennart Kirchner
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alina Schiecke
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Institute of Anatomy I, Cancer Center Central Germany, Jena University Hospital, Teichgraben 7, 07743, Jena, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Strasse 8, 35037, Marburg, Germany
| | - Florian Gebauer
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| | - Katharina Bröker
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christine Stürken
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Faculty of Medicine, MSH Medical School Hamburg, Medical University, 20251, Hamburg, Germany
| | - Karin Milde-Langosch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Ewald
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Childrens' Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludmilla Unrau
- Institue of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Anne Offermann
- Institute of Pathology, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Sven Perner
- Institute of Pathology, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Diehl
- Institue of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Linder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Medical School Berlin, Leipziger Platz 10, 10117, Berlin, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Institute of Anatomy I, Cancer Center Central Germany, Jena University Hospital, Teichgraben 7, 07743, Jena, Germany.
| |
Collapse
|
19
|
Zhao B, Yin Q, Fei Y, Zhu J, Qiu Y, Fang W, Li Y. Research progress of mechanisms for tight junction damage on blood-brain barrier inflammation. Arch Physiol Biochem 2022; 128:1579-1590. [PMID: 32608276 DOI: 10.1080/13813455.2020.1784952] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation in the central nervous system (CNS) contributes to disease pathologies by disrupting the integrity of the blood-brain barrier (BBB). Tight junctions (TJ) are a key component of the BBB. Following hypoxic-ischaemic or mechanical injury to the brain, inflammatory mediators are released such as cytokines, chemokines, and growth factors. Simultaneously, matrix metalloproteinases (MMPs) are released which can degrade TJ proteins. Subsequently, the function and morphology of the BBB are disrupted, which allows immune cells an opportunity to enter into the brain parenchyma. This review summarises the information on the role of TJ protein families in the BBB and provides a comprehensive summary of the mechanisms whereby inflammation breaks down the BBB by increasing degradation of TJ proteins.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qiyang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jianping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Robilliard LD, Yu J, Anchan A, Finlay G, Angel CE, Graham ES. Comprehensive Assessment of Secreted Immuno-Modulatory Cytokines by Serum-Differentiated and Stem-like Glioblastoma Cells Reveals Distinct Differences between Glioblastoma Phenotypes. Int J Mol Sci 2022; 23:ijms232214164. [PMID: 36430641 PMCID: PMC9692434 DOI: 10.3390/ijms232214164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is refractory to therapy and presents a significant oncological challenge. Promising immunotherapies have not shown the promise observed in other aggressive cancers. The reasons for this include the highly immuno-suppressive tumour microenvironment controlled by the glioblastoma cells and heterogeneous phenotype of the glioblastoma cells. Here, we wanted to better understand which glioblastoma phenotypes produced the regulatory cytokines, particularly those that are implicated in shaping the immune microenvironment. In this study, we employed nanoString analysis of the glioblastoma transcriptome, and proteomic analysis (proteome profiler arrays and cytokine profiling) of secreted cytokines by different glioblastoma phenotypes. These phenotypes were cultured to reflect a spectrum of glioblastoma cells present in tumours, by culturing an enhanced stem-like phenotype of glioblastoma cells or a more differentiated phenotype following culture with serum. Extensive secretome profiling reveals that there is considerable heterogeneity in secretion patterns between serum-derived and glioblastoma stem-like cells, as well as between individuals. Generally, however, the serum-derived phenotypes appear to be the primary producers of cytokines associated with immune cell recruitment into the tumour microenvironment. Therefore, these glioblastoma cells have considerable importance in shaping the immune landscape in glioblastoma and represent a valuable therapeutic target that should not be ignored.
Collapse
Affiliation(s)
- Laverne D. Robilliard
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Jane Yu
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Akshata Anchan
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Graeme Finlay
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E. Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - E Scott Graham
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
- Correspondence:
| |
Collapse
|
21
|
Exploring the R-ISS stage-specific regular networks in the progression of multiple myeloma at single-cell resolution. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1811-1823. [PMID: 35437648 DOI: 10.1007/s11427-021-2097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
The Revised International Staging System (R-ISS) is a simple and powerful prognostic tool for multiple myeloma (MM). However, heterogeneity in R-ISS stage is still poorly characterised, hampering improvement of treatments. We used single-cell RNA-seq to examine novel cellular heterogeneity and regular networks in nine MM patients stratified by R-ISS. Plasma cells were clustered into nine groups (P1-P9) based on gene expression, where P1-P5 were almost enriched in stage III.PDIA6 was significantly upregulated in P3 and LETM1 was enriched in P1, and they were validated to be upregulated in the MM cell line and in 22 other patients' myeloma cells. Furthermore, in progression, PDIA6 was newly found and verified to be activated by UQCRB through oxidative phosphorylation, while LETM1 was activated by STAT1 via the C-type lectin receptor-signalling pathway. Finally, a subcluster of monocytes was exclusively found in stage III specifically expressed chemokines modulated by ATF3. A few ligand-receptor pairs (CCL3/CCL5/CCL3L1-CCR1) were obviously active in monocyte-plasma communications in stage III. Herein, this study identified novel molecules, networks and crosstalk pairs in different R-ISS stages of MM, providing significant insight for its prognosis and treatment.
Collapse
|
22
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
23
|
Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Muciño M, Perez-Medina M, Benito-Lopez JJ, Camarena A, Rumbo-Nava U, Lopez-Gonzalez JS. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:929572. [PMID: 36072935 PMCID: PMC9441602 DOI: 10.3389/fendo.2022.929572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is a dynamic, complex, and redundant network of interactions between tumor, immune, and stromal cells. In this intricate environment, cells communicate through membrane-membrane, ligand-receptor, exosome, soluble factors, and transporter interactions that govern cell fate. These interactions activate the diverse and superfluous signaling pathways involved in tumor promotion and progression and induce subtle changes in the functional activity of infiltrating immune cells. The immune response participates as a selective pressure in tumor development. In the early stages of tumor development, the immune response exerts anti-tumor activity, whereas during the advanced stages, the tumor establishes mechanisms to evade the immune response, eliciting a chronic inflammation process that shows a pro-tumor effect. The deregulated inflammatory state, in addition to acting locally, also triggers systemic inflammation that has repercussions in various organs and tissues that are distant from the tumor site, causing the emergence of various symptoms designated as paraneoplastic syndromes, which compromise the response to treatment, quality of life, and survival of cancer patients. Considering the tumor-host relationship as an integral and dynamic biological system, the chronic inflammation generated by the tumor is a communication mechanism among tissues and organs that is primarily orchestrated through different signals, such as cytokines, chemokines, growth factors, and exosomes, to provide the tumor with energetic components that allow it to continue proliferating. In this review, we aim to provide a succinct overview of the involvement of cancer-related inflammation at the local and systemic level throughout tumor development and the emergence of some paraneoplastic syndromes and their main clinical manifestations. In addition, the involvement of these signals throughout tumor development will be discussed based on the physiological/biological activities of innate and adaptive immune cells. These cellular interactions require a metabolic reprogramming program for the full activation of the various cells; thus, these requirements and the by-products released into the microenvironment will be considered. In addition, the systemic impact of cancer-related proinflammatory cytokines on the liver-as a critical organ that produces the leading inflammatory markers described to date-will be summarized. Finally, the contribution of cancer-related inflammation to the development of two paraneoplastic syndromes, myelopoiesis and cachexia, will be discussed.
Collapse
Affiliation(s)
- Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Jesus J. Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| |
Collapse
|
24
|
Jing Y, Wang F, Zhang K, Chen Z. Comprehensive analysis of prognostic value and immune infiltration of CXC chemokines in pancreatic cancer. BMC Med Genomics 2022; 15:96. [PMID: 35468838 PMCID: PMC9040222 DOI: 10.1186/s12920-022-01246-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The prognosis of pancreatic cancer is poor, with a 5-year survival rate of less than 10%. Studies have shown that chemokines in the tumour microenvironment are often altered, which is associated with immune infiltration and the prognosis and survival of pancreatic cancer patients. METHODS Multiomics and bioinformatics tools were used to clarify CXC chemokine expression and its role in the pancreatic ductal adenocarcinoma (PDAC) immune microenvironment. RESULTS Most CXC chemokines were upregulated in pancreatic cancer and correlated with patient prognosis. CXC chemokines can activate cancer-related signalling pathways and affect immune infiltration. Furthermore, most CXC chemokines were significantly correlated with the abundance of macrophages, neutrophils and dendritic cells. CXCL5 was selected as a hub gene, and a variety of immune checkpoints, including PD-1/PD-L1 and CTLA-4, were identified. CONCLUSION Our study provides novel insights into CXC chemokine expression and its role in the PDAC immune microenvironment. These results can provide more data about prognostic biomarkers and therapeutic targets of PDAC.
Collapse
Affiliation(s)
- Yanhua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
25
|
Korbecki J, Gąssowska-Dobrowolska M, Wójcik J, Szatkowska I, Barczak K, Chlubek M, Baranowska-Bosiacka I. The Importance of CXCL1 in Physiology and Noncancerous Diseases of Bone, Bone Marrow, Muscle and the Nervous System. Int J Mol Sci 2022; 23:ijms23084205. [PMID: 35457023 PMCID: PMC9024980 DOI: 10.3390/ijms23084205] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
This review describes the role of CXCL1, a chemokine crucial in inflammation as a chemoattractant for neutrophils, in physiology and in selected major non-cancer diseases. Due to the vast amount of available information, we focus on the role CXCL1 plays in the physiology of bones, bone marrow, muscle and the nervous system. For this reason, we describe its effects on hematopoietic stem cells, myoblasts, oligodendrocyte progenitors and osteoclast precursors. We also present the involvement of CXCL1 in diseases of selected tissues and organs including Alzheimer’s disease, epilepsy, herpes simplex virus type 1 (HSV-1) encephalitis, ischemic stroke, major depression, multiple sclerosis, neuromyelitis optica, neuropathic pain, osteoporosis, prion diseases, rheumatoid arthritis, tick-borne encephalitis (TBE), traumatic spinal cord injury and West Nile fever.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Jerzy Wójcik
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
26
|
CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer. Int J Mol Sci 2022; 23:ijms23042168. [PMID: 35216283 PMCID: PMC8878198 DOI: 10.3390/ijms23042168] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Chemokines are a group of about 50 chemotactic cytokines crucial for the migration of immune system cells and tumor cells, as well as for metastasis. One of the 20 chemokine receptors identified to date is CXCR2, a G-protein-coupled receptor (GPCR) whose most known ligands are CXCL8 (IL-8) and CXCL1 (GRO-α). In this article we present a comprehensive review of literature concerning the role of CXCR2 in cancer. We start with regulation of its expression at the transcriptional level and how this regulation involves microRNAs. We show the mechanism of CXCR2 signal transduction, in particular the action of heterotrimeric G proteins, phosphorylation, internalization, intracellular trafficking, sequestration, recycling, and degradation of CXCR2. We discuss in detail the mechanism of the effects of activated CXCR2 on the actin cytoskeleton. Finally, we describe the involvement of CXCR2 in cancer. We focused on the importance of CXCR2 in tumor processes such as proliferation, migration, and invasion of tumor cells as well as the effects of CXCR2 activation on angiogenesis, lymphangiogenesis, and cellular senescence. We also discuss the importance of CXCR2 in cell recruitment to the tumor niche including tumor-associated neutrophils (TAN), tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T (Treg) cells.
Collapse
|
27
|
Do TT, Yeh CC, Wu GW, Hsu CC, Chang HC, Chen HC. TRIM37 Promotes Pancreatic Cancer Progression through Modulation of Cell Growth, Migration, Invasion, and Tumor Immune Microenvironment. Int J Mol Sci 2022; 23:1176. [PMID: 35163097 PMCID: PMC8835669 DOI: 10.3390/ijms23031176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
TRIM37 dysregulation has been observed in several cancer types, implicating its possible role in tumorigenesis. However, the role of TRIM37 in pancreatic cancer progression remains unclear. In the present study, we observed that TRIM37 knockdown resulted in reduced proliferation, clonogenicity, migration, and invasion ability of pancreatic cancer cells. Furthermore, an in vivo study using an orthotopic syngeneic animal model further confirmed that reduced expression of TRIM37 in cancer cells suppressed tumor growth in vivo. Moreover, in mice bearing TRIM37 knockdown pancreatic cancer cells, the proportion of CD11b+F4/80+MHCIIlow immunosuppressive macrophages was significantly reduced in tumor milieu, which might be due to the regulatory role of TRIM37 in cytokine production by pancreatic cancer cells. Collectively, these findings suggest a key role of TRIM37 in promoting pancreatic cancer progression.
Collapse
Affiliation(s)
- Tuyen Thi Do
- International Master’s Program of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Laboratory Hematology, Hanoi Medical University, Hanoi 11520, Vietnam
| | - Chun-Chieh Yeh
- Department of Surgery, School of Medicine, China Medical University, Taichung 404328, Taiwan;
- Organ Transplantation Center, Department of Surgery, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Surgery, Asia University Hospital, Taichung 413505, Taiwan
| | - Guo-Wei Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan; (G.-W.W.); (H.-C.C.)
| | - Chia-Chen Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 404328, Taiwan;
| | - Hung-Chih Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan; (G.-W.W.); (H.-C.C.)
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Hui-Chen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan; (G.-W.W.); (H.-C.C.)
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Research and Development Center for Immunology, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
28
|
Shi H, Qin Y, Tian Y, Wang J, Wang Y, Wang Z, Lv J. Interleukin-1beta triggers the expansion of circulating granulocytic myeloid-derived suppressor cell subset dependent on Erk1/2 activation. Immunobiology 2021; 227:152165. [PMID: 34936966 DOI: 10.1016/j.imbio.2021.152165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022]
Abstract
Chronic inflammation contributes to cancer development and progression. Although interleukin-1beta (IL-1β) has been observed to be associated with an general immune suppression of T cell response and the immunosuppression strongly correlates with accumulation of myeloid-derived suppressor cells (MDSCs), the relationship and mechanism between MDSCs expansion and IL-1β expression remain ambiguous. Here, we showed that the concentration of IL-1β was highly correlated with G-MDSC subset, rather than mo-MDSC subset. Recombinant IL-1β increased the percentage of G-MDSCs in the blood of tumor-bearing mice, and IL-1Ra attenuated the accumulation of G-MDSCs in the tumor-bearing mice. In addition, the IL-1β-overexpressing B16F10 cells induced higher level of G-MDSCs compared with wild-type B16F10 cells. Moreover, we found that the accumulation of G-MDSCs induced by IL-1β was dependent on the activation of extracellular signal-regulated kinases 1 and 2 (Erk1/2). Collectively, these findings show a novel role of IL-1β in G-MDSCs accumulation by activating Erk1/2, which suggests that IL-1β elimination or Erk1/2 signaling blockade could decrease G-MDSCs generation and thereby improve host immunosurveillance.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China.
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yufeng Tian
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jiaan Wang
- Department of Blood Transfusion, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Wang
- Department of Medical Image, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Ziyi Wang
- Department of Anesthesiology, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
29
|
Jiménez-Chávez ÁDJ, Nava-García BK, Bustos-Jaimes I, Moreno-Fierros L. B19-VLPs as an effective delivery system for tumour antigens to induce humoral and cellular immune responses against triple negative breast cancer. Immunol Lett 2021; 239:77-87. [PMID: 34508790 DOI: 10.1016/j.imlet.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 01/16/2023]
Abstract
Cancer immunotherapy is emerging as a viable treatment option for several types of cancer. Active immunotherapy aims for the induction of specific antitumor immune responses; this goal requires strategies capable of increasing the immunogenicity of tumour antigens. Parvovirus B19 virus-like particles (B19-VLPs) formed of VP2 protein had been shown to be an effective multi-neoepitope delivery system capable of inducing specific cellular responses towards coupled antigens and reducing tumour growth and lung metastases in triple negative breast cancer mouse model. These findings encouraged us to further characterise these VP2 B19-VLPs by testing their capacity to simultaneously induce cellular and humoral responses towards other tumour-associated antigens, as this had not yet been evaluated. Here, we designed and evaluated in the 4T1 breast cancer model the prophylactic and therapeutic effect of VP2 B19-VLPs decorated with cellular (P53) and humoral (MUC1) epitopes. Balb/c mice were immunised with chimaeric VLPs, vehicle, or VLPs plus adjuvant. Tumour establishment and growth, lung metastasis, and cellular and humoral immune responses were evaluated. The prophylactic administration of chimaeric VLPs without adjuvant prevented the establishment of the tumour, while by therapeutic administration, chimaeric VLPs induced smaller tumour growth and decreased the number of metastases in the lung compared to wild-type VLPs. chimaeric VLPs induced high antibody titres towards the MUC1 epitope, as well as specific cellular responses towards P53 epitopes in lymph nodes local to the tumour. Our results reinforce and extend the utility of VP2 B19-VLPs as an encouraging tumour antigen delivery system in cancer immunotherapy able to improve tumour immunity in TNBC by inducing cellular and humoral immune responses.
Collapse
Affiliation(s)
- Ángel de Jesús Jiménez-Chávez
- Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Brenda Katherine Nava-García
- Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Ismael Bustos-Jaimes
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Leticia Moreno-Fierros
- Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México.
| |
Collapse
|
30
|
Ghislat G, Cheema AS, Baudoin E, Verthuy C, Ballester PJ, Crozat K, Attaf N, Dong C, Milpied P, Malissen B, Auphan-Anezin N, Manh TPV, Dalod M, Lawrence T. NF-κB-dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci Immunol 2021; 6:6/61/eabg3570. [PMID: 34244313 DOI: 10.1126/sciimmunol.abg3570] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/02/2021] [Indexed: 11/02/2022]
Abstract
Conventional type 1 dendritic cells (cDC1s) are critical for antitumor immunity. They acquire antigens from dying tumor cells and cross-present them to CD8+ T cells, promoting the expansion of tumor-specific cytotoxic T cells. However, the signaling pathways that govern the antitumor functions of cDC1s in immunogenic tumors are poorly understood. Using single-cell transcriptomics to examine the molecular pathways regulating intratumoral cDC1 maturation, we found nuclear factor κB (NF-κB) and interferon (IFN) pathways to be highly enriched in a subset of functionally mature cDC1s. We identified an NF-κB-dependent and IFN-γ-regulated gene network in cDC1s, including cytokines and chemokines specialized in the recruitment and activation of cytotoxic T cells. By mapping the trajectory of intratumoral cDC1 maturation, we demonstrated the dynamic reprogramming of tumor-infiltrating cDC1s by NF-κB and IFN signaling pathways. This maturation process was perturbed by specific inactivation of either NF-κB or IFN regulatory factor 1 (IRF1) in cDC1s, resulting in impaired expression of IFN-γ-responsive genes and consequently a failure to efficiently recruit and activate antitumoral CD8+ T cells. Last, we demonstrate the relevance of these findings to patients with melanoma, showing that activation of the NF-κB/IRF1 axis in association with cDC1s is linked with improved clinical outcome. The NF-κB/IRF1 axis in cDC1s may therefore represent an important focal point for the development of new diagnostic and therapeutic approaches to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Ghita Ghislat
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Ammar S Cheema
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Elodie Baudoin
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Christophe Verthuy
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Pedro J Ballester
- Cancer Research Center of Marseille CRCM, INSERM, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, 13009 Marseille, France
| | - Karine Crozat
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Noudjoud Attaf
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Chuang Dong
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Pierre Milpied
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Bernard Malissen
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Nathalie Auphan-Anezin
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Thien P Vu Manh
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Marc Dalod
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Toby Lawrence
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France. .,Centre for Inflammation Biology and Cancer Immunology, Cancer Research UK King's Health Partners Centre, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, UK.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
31
|
CXCL2/10/12/14 are prognostic biomarkers and correlated with immune infiltration in hepatocellular carcinoma. Biosci Rep 2021; 41:228875. [PMID: 34085699 PMCID: PMC8217985 DOI: 10.1042/bsr20204312] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND C-x-C motif chemokine ligands (CXCLs) are critical regulators of cancer immunity and angiogenesis, which affect disease progression and treatment responses. The character of each CXCL in the prognosis and immune infiltration of hepatocellular carcinoma (HCC) patients is unclear yet. METHODS Differentially expressed CXCLs between HCC and normal control were screened by Oncomine and GEPIA2. Genetic alternations of CXCLs in HCC were analyzed by cBioPortal. Clinicopathological relevance of CXCLs in HCC patients was analyzed using UALCAN. The prognostic value of CXCLs was evaluated using univariate and multivariate analyses. Correlations of CXCLs' expression with immune infiltration, chemokines and their receptors were assessed integrating TIMER, TISIDB, and GEPIA2. The co-expressed genes of CXCLs were discovered, and functional enrichment analysis was performed for them. RESULTS CXCL9/10 was significantly higher expressed while CXCL2/12/14 was lower expressed in HCC than normal tissues, but they didn't show significant clinicopathological relevance in HCC patients. High-expression of CXCL2/10/12/14 indicated favorable outcomes of HCC patients. The expression of CXCL9/10/12/14 was significantly positively correlated with not only the infiltration and biomarkers' expression of various tumor-infiltrating immune cells but also the abundance of chemokines and their receptors. The co-expressed genes of the five CXCLs were extracellular components and regulated immune or inflammatory responses and signaling pathways of chemokine, Toll-like receptor and tumor necrosis factor might be involved. CONCLUSION The present study proposed CXCL2/10/12/14 might predict outcomes of HCC patients and were extensively related with the immune microenvironment in HCC. It would be a prospective therapeutic strategy for HCC to enhance effective immunity surveillance through intervening in these CXCLs.
Collapse
|
32
|
The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nat Immunol 2021; 22:769-780. [PMID: 34017122 DOI: 10.1038/s41590-021-00931-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/09/2021] [Indexed: 01/20/2023]
Abstract
Progression and persistence of malignancies are influenced by the local tumor microenvironment, and future eradication of currently incurable tumors will, in part, hinge on our understanding of malignant cell biology in the context of their nourishing surroundings. Here, we generated paired single-cell transcriptomic datasets of tumor cells and the bone marrow immune and stromal microenvironment in multiple myeloma. These analyses identified myeloma-specific inflammatory mesenchymal stromal cells, which spatially colocalized with tumor cells and immune cells and transcribed genes involved in tumor survival and immune modulation. Inflammatory stromal cell signatures were driven by stimulation with proinflammatory cytokines, and analyses of immune cell subsets suggested interferon-responsive effector T cell and CD8+ stem cell memory T cell populations as potential sources of stromal cell-activating cytokines. Tracking stromal inflammation in individuals over time revealed that successful antitumor induction therapy is unable to revert bone marrow inflammation, predicting a role for mesenchymal stromal cells in disease persistence.
Collapse
|
33
|
The aryl hydrocarbon receptor suppresses immunity to oral squamous cell carcinoma through immune checkpoint regulation. Proc Natl Acad Sci U S A 2021; 118:2012692118. [PMID: 33941684 PMCID: PMC8126867 DOI: 10.1073/pnas.2012692118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint inhibitors represent some of the most important cancer treatments developed in the last 20 y. However, existing immunotherapy approaches benefit only a minority of patients. Here, we provide evidence that the aryl hydrocarbon receptor (AhR) is a central player in the regulation of multiple immune checkpoints in oral squamous cell carcinoma (OSCC). Orthotopic transplant of mouse OSCC cells from which the AhR has been deleted (MOC1AhR-KO) results, within 1 wk, in the growth of small tumors that are then completely rejected within 2 wk, concomitant with an increase in activated T cells in tumor-draining lymph nodes (tdLNs) and T cell signaling within the tumor. By 2 wk, AhR+ control cells (MOC1Cas9), but not MOC1AhR-KO cells up-regulate exhaustion pathways in the tumor-infiltrating T cells and expression of checkpoint molecules on CD4+ T cells (PD-1, CTLA4, Lag3, and CD39) and macrophages, dendritic cells, and Ly6G+ myeloid cells (PD-L1 and CD39) in tdLNs. Notably, MOC1AhR-KO cell transplant renders mice 100% immune to later challenge with wild-type tumors. Analysis of altered signaling pathways within MOC1AhR-KO cells shows that the AhR controls baseline and IFNγ-induced Ido and PD-L1 expression, the latter of which occurs through direct transcriptional control. These observations 1) confirm the importance of malignant cell AhR in suppression of tumor immunity, 2) demonstrate the involvement of the AhR in IFNγ control of PD-L1 and IDO expression in the cancer context, and 3) suggest that the AhR is a viable target for modulation of multiple immune checkpoints.
Collapse
|
34
|
Li TJ, Li H, Zhang WH, Xu SS, Jiang W, Li S, Gao HL, Han X, Xu HX, Wu CT, Wang WQ, Yu XJ, Liu L. Human splenic TER cells: A relevant prognostic factor acting via the artemin-GFRα3-ERK pathway in pancreatic ductal adenocarcinoma. Int J Cancer 2021; 148:1756-1767. [PMID: 33236361 DOI: 10.1002/ijc.33410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Splenectomy is routinely performed during distal or total pancreatectomy (DP or TP) for pancreatic ductal adenocarcinoma (PDAC), but information about its oncological value is limited. TER cells, nonimmune cells discovered in the spleens of tumour-bearing mice, are elicited by tumours and promote tumour progression, while their role in the clinical outcomes of patients with PDAC remains unclear. In our study, postoperative specimens from 622 patients who underwent DP or TP with splenectomy were analysed by flow cytometry or immunofluorescence, and the relationship between splenic TER cell count and clinical parameters was calculated. We also purified human TER cells for functional experiments and mechanistic studies. We found that TER cell numbers were increased only in the spleens of patients with PDAC but not in PDAC tissue and adjacent pancreatic tissue. High splenic TER cell counts independently predicted poor prognosis (P < .001) and indicated large tumour size, lymph node metastasis, advanced 8th AJCC/mAJCC stage and high CA19-9 classification (all P < .050) in patients with PDAC. Mechanistic analysis showed that TER cells express artemin, which facilitates the proliferation and invasion of PDAC cells by activating GFRα3-ERK signalling. Our study reveals that TER cell count is an indicator of poor prognosis of PDAC, while splenectomy during pancreatic surgery might provide oncological benefits in addition to ensuring the radical resection of PDAC.
Collapse
Affiliation(s)
- Tian-Jiao Li
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hao Li
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wu-Hu Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuai-Shuai Xu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wang Jiang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuo Li
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He-Li Gao
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Han
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chun-Tao Wu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Qin R, Cao L, Ye C, Wang J, Sun Z. A novel prognostic prediction model based on seven immune-related RNAs for predicting overall survival of patients in early cervical squamous cell carcinoma. BMC Med Genomics 2021; 14:49. [PMID: 33588862 PMCID: PMC7885601 DOI: 10.1186/s12920-021-00885-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In this study, we aimed to mine immune-related RNAs expressed in early cervical squamous cell carcinoma to construct prognostic prediction models. METHODS The RNA sequencing data of 309 cervical squamous cell carcinoma (CSCC) cases, including data of individuals with available clinical information, were obtained from The Cancer Genome Atlas (TCGA) database. We included 181 early-stage CSCC tumor samples with clinical survival and prognosis information (training dataset). Then, we downloaded the GSE44001 gene expression profile data from the National Center for Biotechnology Information Gene Expression Omnibus (validation dataset). Gene ontology annotation and the Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to analyze the biological functions of differentially expressed immune-related genes (DEIRGs). We established protein-protein interactions and competing endogenous RNA networks using Cytoscape. Using the Kaplan-Meier method, we evaluated the association between the high- and low-risk groups and the actual survival and prognosis information. Our univariate and multivariate Cox regression analyses screened for independent prognostic factors. RESULTS We identified seven prognosis-related signature genes (RBAKDN, CXCL2, ZAP70, CLEC2D, CD27, KLRB1, VCAM1), the expression of which was markedly associated with overall survival (OS) in CSCC patients. Also, the risk score of the seven-gene signature discripted superior ability to categorize CSCC patients into high-risk and low-risk groups, with a observablydifferent OS in the training and validation datasets. We screened two independent prognostic factors (Pathologic N and prognostic score model status) that correlated significantly by univariate and multivariate Cox regression analyses in the TCGA dataset. To further explore the potential mechanism of immune-related genes, we observed associated essential high-risk genes with a cytokine-cytokine receptor interaction. CONCLUSIONS This study established an immune-related RNA signature, which provided a reliable prognostic tool and may be of great significance for determining immune-related biomarkers in CSCC.
Collapse
Affiliation(s)
- Rui Qin
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033, People's Republic of China
| | - Lu Cao
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033, People's Republic of China
| | - Cong Ye
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033, People's Republic of China
| | - Junrong Wang
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033, People's Republic of China.
| | - Ziqian Sun
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033, People's Republic of China.
| |
Collapse
|
36
|
Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int J Mol Sci 2021; 22:ijms22020843. [PMID: 33467722 PMCID: PMC7830156 DOI: 10.3390/ijms22020843] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
37
|
Guo ZC, Jumatai S, Jing SL, Hu LL, Jia XY, Gong ZC. Bioinformatics and immunohistochemistry analyses of expression levels and clinical significance of CXCL2 and TANs in an oral squamous cell carcinoma tumor microenvironment of Prophyromonas gingivalis infection. Oncol Lett 2021; 21:189. [PMID: 33574928 PMCID: PMC7816391 DOI: 10.3892/ol.2021.12450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023] Open
Abstract
The present study aimed to detect the immunoexpression and clinical significance of Porphyromonas gingivalis (P. gingivalis) in the tumor microenvironment (TME) of oral squamous cell carcinoma (OSCC). The immunoexpression of P. gingivalis in OSCC tissues was detected via immunohistochemistry (IHC) after P. gingivalis was infected into the TME of OSCC. To identify the differentially expressed genes in the carcinogenesis and progression of OSCC with P. gingivalis infection, microarray datasets (GSE87539 and GSE138206) were downloaded from the Gene Expression Omnibus database. The immunoexpression levels of C-X-C motif chemokine ligand 2 (CXCL2) and tumor-associated neutrophils (TANs) were also evaluated via IHC, and the immunoexpression levels of all three clinical variables were analyzed using χ2 or Fisher's exact tests. The survival rates were calculated using the Kaplan-Meier method and the survival curves were compared using log-rank tests. Predominantly strong immunoexpression of P. gingivalis was identified in OSCC samples. CXCL2 was considered to be a differential gene in the two datasets. Immunoexpression of P. gingivalis was positively associated with CXCL2 and TANs expression. Furthermore, P. gingivalis was associated with survival status (P<0.001) and differentiation (P<0.001). CXCL2 was associated with age (P=0.038) and survival status (P=0.003), while TANs were associated with T stage (P=0.015) and clinical stage (P=0.002). These clinical variables were considered to be independent risk factors for the poor prognosis of patients with OSCC. Collectively, the results suggested that the immunoexpression of P. gingivalis may be positively associated with CXCL2 and TANs. In addition, the strong immunoexpression levels of P. gingivalis, CXCL2 and TANs may be associated with a poor prognosis in patients with OSCC.
Collapse
Affiliation(s)
- Zhi-Chen Guo
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Sakendeke Jumatai
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Si-Li Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Lu-Lu Hu
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Xin-Yu Jia
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Zhong-Cheng Gong
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China.,Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| |
Collapse
|
38
|
Wang H, Ashton R, Hensel JA, Lee JH, Khattar V, Wang Y, Deshane JS, Ponnazhagan S. RANKL-Targeted Combination Therapy with Osteoprotegerin Variant Devoid of TRAIL Binding Exerts Biphasic Effects on Skeletal Remodeling and Antitumor Immunity. Mol Cancer Ther 2020; 19:2585-2597. [PMID: 33199500 DOI: 10.1158/1535-7163.mct-20-0378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023]
Abstract
Complexities in treating breast cancer with bone metastasis are enhanced by a vicious protumorigenic pathology, involving a shift in skeletal homeostasis toward aggressive osteoclast activity and polarization of immune cells supporting tumor growth and immunosuppression. Recent studies signify the role of receptor activator of NF-κB ligand (RANKL) beyond skeletal pathology in breast cancer, including tumor growth and immunosuppression. By using an osteoprotegerin (OPG) variant, which we developed recently through protein engineering to uncouple TNF-related apoptosis-inducing ligand (TRAIL) binding, this study established the potential of a cell-based OPGY49R therapy for both bone damage and immunosuppression in an immunocompetent mouse model of orthotopic and metastatic breast cancers. In combination with agonistic death receptor (DR5) activation, the OPGY49R therapy significantly increased both bone remolding and long-term antitumor immunity, protecting mice from breast cancer relapse and osteolytic pathology. With limitations, cost, and toxicity issues associated with the use of denosumab, bisphosphonates, and chemotherapy for bone metastatic disease, use of OPGY49R combination could offer a viable alternate therapeutic approach.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Reading Ashton
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan A Hensel
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Vinayak Khattar
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Wang
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessy S Deshane
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
39
|
Korbecki J, Olbromski M, Dzięgiel P. CCL18 in the Progression of Cancer. Int J Mol Sci 2020; 21:ijms21217955. [PMID: 33114763 PMCID: PMC7663205 DOI: 10.3390/ijms21217955] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
A neoplastic tumor consists of cancer cells that interact with each other and non-cancerous cells that support the development of the cancer. One such cell are tumor-associated macrophages (TAMs). These cells secrete many chemokines into the tumor microenvironment, including especially a large amount of CCL18. This chemokine is a marker of the M2 macrophage subset; this is the reason why an increase in the production of CCL18 is associated with the immunosuppressive nature of the tumor microenvironment and an important element of cancer immune evasion. Consequently, elevated levels of CCL18 in the serum and the tumor are connected with a worse prognosis for the patient. This paper shows the importance of CCL18 in neoplastic processes. It includes a description of the signal transduction from PITPNM3 in CCL18-dependent migration, invasion, and epithelial-to-mesenchymal transition (EMT) cancer cells. The importance of CCL18 in angiogenesis has also been described. The paper also describes the effect of CCL18 on the recruitment to the cancer niche and the functioning of cells such as TAMs, regulatory T cells (Treg), cancer-associated fibroblasts (CAFs) and tumor-associated dendritic cells (TADCs). The last part of the paper describes the possibility of using CCL18 as a therapeutic target during anti-cancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Correspondence: ; Tel.: +48-717-841-354
| | - Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, Ignacego Jana Paderewskiego 35 Av., 51-612 Wroclaw, Poland
| |
Collapse
|
40
|
Han X, Luan T, Sun Y, Yan W, Wang D, Zeng X. MicroRNA 449c Mediates the Generation of Monocytic Myeloid-Derived Suppressor Cells by Targeting STAT6. Mol Cells 2020; 43:793-803. [PMID: 32863280 PMCID: PMC7528684 DOI: 10.14348/molcells.2020.2307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumour progression by contributing to angiogenesis, immunosuppression, and immunotherapy resistance. Although recent studies have shown that microRNAs (miRNAs) can promote the expansion of MDSCs in the tumour environment, the mechanisms involved in this process are largely unknown. Here, we report that microRNA 449c (miR-449c) expression was upregulated in myeloid progenitor cells upon activation of C-X-C motif chemokine receptor 2 (CXCR2) under tumour conditions. MiR-449c upregulation increased the generation of monocytic MDSCs (mo-MDSCs). The increased expression of miR-449c could target STAT6 mRNA in myeloid progenitor cells to shift the differentiation balance of myeloid progenitor cells and lead to an enhancement of the mo-MDSCs population in the tumour environment. Thus, our results demonstrate that the miR-449c/STAT6 axis is involved in the expansion of mo-MDSCs from myeloid progenitor cells upon activation of CXCR2, and thus, inhibition of miR-449c/STAT6 signalling may help to attenuate tumour progression.
Collapse
Affiliation(s)
- Xiaoqing Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Tao Luan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yingying Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Wenyi Yan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Dake Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
41
|
Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43:539-575. [PMID: 32488850 PMCID: PMC7363737 DOI: 10.1007/s13402-020-00519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor initiation and subsequent progression are usually long-term processes, spread over time and conditioned by diverse aspects. Many cancers develop on the basis of chronic inflammation; however, despite dozens of years of research, little is known about the factors triggering neoplastic transformation under these conditions. Molecular characterization of both pathogenetic states, i.e., similarities and differences between chronic inflammation and cancer, is also poorly defined. The secretory activity of tumor cells may change the immunophenotype of immune cells and modify the extracellular microenvironment, which allows the bypass of host defense mechanisms and seems to have diagnostic and prognostic value. The phenomenon of immunosuppression is also present during chronic inflammation, and the development of cancer, due to its duration, predisposes patients to the promotion of chronic inflammation. The aim of our work was to discuss the above issues based on the latest scientific insights. A theoretical mechanism of cancer immunosuppression is also proposed. CONCLUSIONS Development of solid tumors may occur both during acute and chronic phases of inflammation. Differences in the regulation of immune responses between precancerous states and the cancers resulting from them emphasize the importance of immunosuppressive factors in oncogenesis. Cancer cells may, through their secretory activity and extracellular transport mechanisms, enhance deterioration of the immune system which, in turn, may have prognostic implications.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Damian J Grybowski
- Orthopedic Surgery, University of Illinois, 900 S. Ashland Avenue (MC944) Room 3356, Molecular Biology Research Building Chicago, Chicago, IL, 60607, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| |
Collapse
|
42
|
Fujimura T, Aiba S. Significance of Immunosuppressive Cells as a Target for Immunotherapies in Melanoma and Non-Melanoma Skin Cancers. Biomolecules 2020; 10:E1087. [PMID: 32707850 PMCID: PMC7464513 DOI: 10.3390/biom10081087] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) have been detected in most skin cancers. TAMs produce various chemokines and angiogenic factors that promote tumor development, along with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated neutrophils. TAMs generated from monocytes develop into functional, fully activated macrophages, and TAMs obtain various immunosuppressive functions to maintain the tumor microenvironment. Since TAMs express PD1 to maintain the immunosuppressive M2 phenotype by PD1/PD-L1 signaling from tumor cells, and the blockade of PD1/PD-L1 signaling by anti-PD1 antibodies (Abs) activate and re-polarize TAMs into immunoreactive M1 phenotypes, TAMs represent a potential target for anti-PD1 Abs. The main population of TAMs comprises CD163+ M2 macrophages, and CD163+ TAMs release soluble (s)CD163 and several proinflammatory chemokines (CXCL5, CXCL10, CCL19, etc.) as a result of TAM activation to induce an immunosuppressive tumor microenvironment together with other immunosuppressive cells. Since direct blockade of PD1/PD-L1 signaling between tumor cells and tumor-infiltrating T cells (both effector T cells and Tregs) is mandatory for inducing an anti-immune response by anti-PD1 Abs, anti-PD1 Abs need to reach the tumor microenvironment to induce anti-immune responses in the tumor-bearing host. Taken together, TAM-related factors could offer a biomarker for anti-PD1 Ab-based immunotherapy. Understanding the crosstalk between TAMs and immunosuppressive cells is important for optimizing PD1 Ab-based immunotherapy.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan;
| | | |
Collapse
|
43
|
Njunge LW, Estania AP, Guo Y, Liu W, Yang L. Tumor progression locus 2 (TPL2) in tumor-promoting Inflammation, Tumorigenesis and Tumor Immunity. Am J Cancer Res 2020; 10:8343-8364. [PMID: 32724474 PMCID: PMC7381748 DOI: 10.7150/thno.45848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Over the years, tumor progression locus 2 (TPL2) has been identified as an essential modulator of immune responses that conveys inflammatory signals to downstream effectors, subsequently modulating the generation and function of inflammatory cells. TPL2 is also differentially expressed and activated in several cancers, where it is associated with increased inflammation, malignant transformation, angiogenesis, metastasis, poor prognosis and therapy resistance. However, the relationship between TPL2-driven inflammation, tumorigenesis and tumor immunity has not been addressed. Here, we reconcile the function of TPL2-driven inflammation to oncogenic functions such as inflammation, proliferation, apoptosis resistance, angiogenesis, metastasis, immunosuppression and immune evasion. We also address the controversies reported on TPL2 function in tumor-promoting inflammation and tumorigenesis, and highlight the potential role of the TPL2 adaptor function in regulating the mechanisms leading to pro-tumorigenic inflammation and tumor progression. We discuss the therapeutic implications and limitations of targeting TPL2 for cancer treatment. The ideas presented here provide some new insight into cancer pathophysiology that might contribute to the development of more integrative and specific anti-inflammatory and anti-cancer therapeutics.
Collapse
|
44
|
Nasrollahzadeh E, Razi S, Keshavarz-Fathi M, Mazzone M, Rezaei N. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunol Immunother 2020; 69:1673-1697. [PMID: 32500231 DOI: 10.1007/s00262-020-02616-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment (TME) not only facilitates cancer progression from the early formation to distant metastasis, but also it differs itself from time to time alongside the tumor evolution. Tumor-associated macrophages (TAMs), whether as pre-existing tissue-resident macrophages or recruited monocytes, are an inseparable part of this microenvironment. As their parents are broadly classified into a dichotomic, simplistic M1 and M2 subtypes, TAMs also exert paradoxical and diverse phenotypes as they are settled in different regions of TME and receive different microenvironmental signals. Briefly, M1 macrophages induce an inflammatory precancerous niche and flame the early oncogenic mutations, whereas their M2 counterparts are reprogrammed to release various growth factors and providing an immunosuppressive state in TME as long as abetting hypoxic cancer cells to set up a new vasculature. Further, they mediate stromal micro-invasion and co-migrate with invasive cancer cells to invade the vascular wall and neural sheath, while another subtype of TAMs prepares suitable niches much earlier than metastatic cells arrive at the target tissues. Accordingly, at the neoplastic transformation, during the benign-to-malignant transition and through the metastatic cascade, macrophages are involved in shaping the primary, micro-invasive and pre-metastatic TMEs. Whether their behavioral plasticity is derived from distinct genotypes or is fueled by microenvironmental cues, it could define these cells as remarkably interesting therapeutic targets.
Collapse
Affiliation(s)
- Elaheh Nasrollahzadeh
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, VIB, KU Leuven, Louvain, B3000, Belgium
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
45
|
Muto T, Walker CS, Choi K, Hueneman K, Smith MA, Gul Z, Garcia-Manero G, Ma A, Zheng Y, Starczynowski DT. Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nat Immunol 2020; 21:535-545. [PMID: 32313245 DOI: 10.1038/s41590-020-0663-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Despite evidence of chronic inflammation in myelodysplastic syndrome (MDS) and cell-intrinsic dysregulation of Toll-like receptor (TLR) signaling in MDS hematopoietic stem and progenitor cells (HSPCs), the mechanisms responsible for the competitive advantage of MDS HSPCs in an inflammatory milieu over normal HSPCs remain poorly defined. Here, we found that chronic inflammation was a determinant for the competitive advantage of MDS HSPCs and for disease progression. The cell-intrinsic response of MDS HSPCs, which involves signaling through the noncanonical NF-κB pathway, protected these cells from chronic inflammation as compared to normal HSPCs. In response to inflammation, MDS HSPCs switched from canonical to noncanonical NF-κB signaling, a process that was dependent on TLR-TRAF6-mediated activation of A20. The competitive advantage of TLR-TRAF6-primed HSPCs could be restored by deletion of A20 or inhibition of the noncanonical NF-κB pathway. These findings uncover the mechanistic basis for the clonal dominance of MDS HSPCs and indicate that interfering with noncanonical NF-κB signaling could prevent MDS progression.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Molly A Smith
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zartash Gul
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
46
|
Wen L, Mu W, Lu H, Wang X, Fang J, Jia Y, Li Q, Wang D, Wen S, Guo J, Dai W, Ren X, Cui J, Zeng G, Gao J, Wang Z, Cheng B. Porphyromonas gingivalis Promotes Oral Squamous Cell Carcinoma Progression in an Immune Microenvironment. J Dent Res 2020; 99:666-675. [PMID: 32298192 DOI: 10.1177/0022034520909312] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence has revealed a significant association between microorganisms and oral squamous cell carcinoma (OSCC). Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, is considered an important potential etiologic agent of OSCC, but the underlying immune mechanisms through which P. gingivalis mediates tumor progression of the oral cancer remain poorly understood. Our cohort study showed that the localization of P. gingivalis in tumor tissues was related to poor survival of patients with OSCC. Moreover, P. gingivalis infection increased oral lesion multiplicity and size and promoted tumor progression in a 4-nitroquinoline-1 oxide (4NQO)–induced carcinogenesis mouse model by invading the oral lesions. In addition, CD11b+ myeloid cells and myeloid-derived suppressor cells (MDSCs) showed increased infiltration of oral lesions. Furthermore, in vitro observations showed that MDSCs accumulated when human-derived dysplastic oral keratinocytes (DOKs) were exposed to P. gingivalis, and CXCL2, CCL2, interleukin (IL)–6, and IL-8 may be potential candidate genes that facilitate the recruitment of MDSCs. Taken together, our findings suggest that P. gingivalis promotes tumor progression by generating a cancer-promoting microenvironment, indicating a close relationship among P. gingivalis, tumor progression of the oral cancer, and immune responses.
Collapse
Affiliation(s)
- L. Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - W. Mu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - H. Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - X. Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - J. Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Y. Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Q. Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - D. Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - S. Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - J. Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - W. Dai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - X. Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - J. Cui
- State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - G. Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - J. Gao
- Discipline of Oral Bioscience, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Z. Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - B. Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
47
|
Takeyama Y, Kato M, Tamada S, Azuma Y, Shimizu Y, Iguchi T, Yamasaki T, Gi M, Wanibuchi H, Nakatani T. Myeloid-derived suppressor cells are essential partners for immune checkpoint inhibitors in the treatment of cisplatin-resistant bladder cancer. Cancer Lett 2020; 479:89-99. [PMID: 32200039 DOI: 10.1016/j.canlet.2020.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the key players that contribute to immune evasion. The purpose of the present study was to investigate whether MDSCs could be a novel target for the treatment of cisplatin-resistant bladder cancer. We established cisplatin-resistant bladder cancer cell lines (MB49R, MBT-2R, and T24R) and evaluated chemokine expression and MDSC expansion. We also assessed the antitumor effect by depleting MDSCs with or without a α-PD-L1 antibody using MB49R xenograft models. The chemokine expression of CXCL1, CXCL2, and CCL2 increased in cisplatin-resistant cells compared to those in their parent strains. Monocytic MDSCs (Mo-MDSCs) were observed more frequently compared to polymorphonuclear MDSCs (PMN-MDSCs) in MB49R tumors. The immunosuppressive genes arginase 1 and iNOS were comparably expressed in each MDSC subtype. In vivo, combination therapy targeting both PMN- and Mo-MDSCs using α-Gr1 and α-Ly6C antibodies significantly reduced tumor volume with increased infiltration of CD8 T cells in the tumor. Finally, co-targeting pan-MDSCs and PD-L1 remarkably reduced the tumor growth. These findings suggest that targeting MDSCs might enhance the therapeutic effect of immune checkpoint inhibitors in cisplatin-resistant bladder cancers.
Collapse
Affiliation(s)
- Yuji Takeyama
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Minoru Kato
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Satoshi Tamada
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yukari Azuma
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yasuomi Shimizu
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Taro Iguchi
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Takeshi Yamasaki
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Min Gi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Hideki Wanibuchi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Tatsuya Nakatani
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
48
|
Yang HJ, Xue JM, Li J, Wan LH, Zhu YX. Identification of key genes and pathways of diagnosis and prognosis in cervical cancer by bioinformatics analysis. Mol Genet Genomic Med 2020; 8:e1200. [PMID: 32181600 PMCID: PMC7284022 DOI: 10.1002/mgg3.1200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cervical cancer as one of the most common malignant tumors lead to bad prognosis among women. Some researches already focus on the carcinogenesis and pathogenesis of cervical cancer, but it is still necessary to identify more key genes and pathways. Methods Differentially expressed genes were identified by GEO2R from the gene expression omnibus (GEO) website, then gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyzed by DAVID. Meanwhile, protein–protein interaction network was constructed by STRING, and both key genes and modules were found in visualizing network through Cytoscape. Besides, GEPIA did the differential expression of key genes and survival analysis. Finally, the expression of genes related to prognosis was further explored by UNLCAN, oncomine, and the human protein atlas. Results Totally 57 differentially expressed genes were founded, not only enriched in G1/S transition of mitotic cell cycle, mitotic nuclear division, and cell division but also participated in cytokine–cytokine receptor interaction, toll‐like receptor signaling pathway, and amoebiasis. Additionally, 12 hub genes and 3 key modules were screened in the Cytoscape visualization network. Further survival analysis showed that TYMS (OMIM accession number 188350), MCM2 (OMIM accession number 116945), HELLS (OMIM accession number 603946), TOP2A (OMIM accession number 126430), and CXCL8 (OMIM accession number 146930) were associated with the prognosis of cervical cancer. Conclusion This study aim to better understand the characteristics of some genes and signaling pathways about cervical cancer by bioinformatics, and could provide further research ideas to find new mechanism, more prognostic factors, and potential therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Hua-Ju Yang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Jin-Min Xue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Jie Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Ling-Hong Wan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Yu-Xi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| |
Collapse
|
49
|
Decoding the Role of Interleukin-30 in the Crosstalk Between Cancer and Myeloid Cells. Cells 2020; 9:cells9030615. [PMID: 32143355 PMCID: PMC7140424 DOI: 10.3390/cells9030615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
In the last few years, a new actor hit the scene of the tumor microenvironment, the p28 subunit of interleukin (IL)-27, known as IL-30. Its molecular structure allows it to function as an autonomous cytokine and, alternatively, to pair with other subunits to form heterodimeric complexes and enables it to play different, and not fully elucidated, roles in immunity. However, data from the experimental models and clinical samples, suggest IL-30′s engagement in the relationship between cancer and myeloid cells, which fosters the tumor microenvironment and the cancer stem cell niche, boosting the disease progression. Activated myeloid cells are the primary cellular source and one of the targets of IL-30, which can also be produced by cancer cells, especially, in aggressive tumors, as observed in the breast and prostate. This review briefly reports on the immunobiology of IL-30 and related cytokines, by comparing mouse and human counterparts, and then focuses on the mechanisms whereby IL-30 amplifies intratumoral myeloid cell infiltrate and triggers a vicious cycle that worsens immunosuppression in the tumor microenvironment (TME) and constitutes a real threat for a successful immunotherapeutic strategy.
Collapse
|
50
|
PLAG Exerts Anti-Metastatic Effects by Interfering with Neutrophil Elastase/PAR2/EGFR Signaling in A549 Lung Cancer Orthotopic Model. Cancers (Basel) 2020; 12:cancers12030560. [PMID: 32121107 PMCID: PMC7139301 DOI: 10.3390/cancers12030560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
The effectiveness of chemotherapy and radiotherapy to treat lung cancer is limited because of highly metastatic nature. Novel strategies and drugs to attenuate metastatic activity are urgently required. In this study, red fluorescence proteins (RFP)-labeled A549 human lung cancer cells were orthotopically implantation, where they developed primary tumors. Metastasis in brain and intestines were reduced by up to 80% by treatment with 100 mpk 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) compared with that in control mice. PLAG treatment also reduced the migration of the primary tumors. Interestingly, substantial neutrophil infiltration was observed in the tumors in control mice. The neutrophil contribution to A549 cell metastatic activity was examined in in vitro co-culture system. Metastatic activity could be achieved in the A549 cells through epidermal growth factor receptor (EGFR) transactivation mediated by protease activating receptor 2 (PAR2) receptor. Neutrophil elastase secreted from tumor-infiltrating neutrophils stimulated PAR2 and induced EGFR transactivation. However, this transactivation was inhibited by inducing PAR2 degradation following PLAG treatment and metastatic activity was effectively inhibited. PLAG attenuated cancer metastatic activity via modulated PAR2/EGFR transactivation by accelerating PAR2 degradation. These results suggest PLAG as potential therapeutic agent to combat tumor metastasis via regulating the activation signal pathway of PAR2 by tumor infiltrate-neutrophils.
Collapse
|