1
|
Chen ZJ, Wang XK, Han CY, He YF, Liang TY, Mo ST, Zhu GZ, Yang CK, Ye XP, Lv ZL, Pang SF, Chen XD, Wang P, Peng T. Diagnostic value of alpha-fetoprotein and prothrombin induced by vitamin K absence-II in serum, bile, and feces in hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:105311. [DOI: 10.4251/wjgo.v17.i5.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common pathological type of liver cancer and was the third leading cause of cancer-related deaths worldwide in 2020.
AIM To evaluate the diagnostic potential of key tumor markers in serum, bile, and fecal samples for detecting HCC.
METHODS Blood, bile, and fecal samples were collected from patients (n = 265) with HCC and cholecystitis from Guangxi Medical University’s First Affiliated Hospital. Immunohistochemistry was performed on 69 HCC samples, and 16S ribosomal RNA sequencing was conducted on 166 fecal samples. Tumor marker cut-off values in bile and feces were determined using the Youden index, while serum biomarkers followed hospital standards. Diagnostic performance was evaluated using receiver operating characteristic analysis.
RESULTS The areas under the curve (AUCs) for distinguishing HCC were 0.898, 0.904, and 0.859 for serum alpha-fetoprotein (AFP), prothrombin induced by vitamin K absence-II (PIVKA-II), and bile AFP, respectively. Serum AFP had the highest diagnostic value (80%) for early-stage HCC. Combination analysis found that bile AFP and serum PIVKA-II achieved the highest AUC of 0.965 (P < 0.001), suggesting that bile AFP may serve as a valuable complementary biomarker, particularly in cases where serum AFP is not significantly elevated. Additionally, bile AFP was positively correlated with Actinomyces, which plays a significant role in promoting tumorigenesis; and was negatively correlated with Faecalibacterium, which was associated with robust anticancer immune responses (P < 0.05). These findings suggest the potential role of gut microbiota in modulating AFP levels and HCC progression.
CONCLUSION Bile AFP improved the sensitivity of HCC detection, with the combination of bile AFP and PIVKA-II demonstrating the highest AUC for HCC diagnosis. AFP is associated with poorer clinical outcomes.
Collapse
Affiliation(s)
- Zi-Jun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiang-Kun Wang
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chuang-Ye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Fei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Tian-Yi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shu-Tian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xin-Ping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-Li Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shi-Fu Pang
- AIage Life Science Corporation Ltd., Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Dong Chen
- AIage Life Science Corporation Ltd., Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Peng Wang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Rukavina Mikusic NL, Prince PD, Choi MR, Chuffa LGA, Simão VA, Castro C, Manucha W, Quesada I. Microbiota, mitochondria, and epigenetics in health and disease: converging pathways to solve the puzzle. Pflugers Arch 2025; 477:635-655. [PMID: 40111427 DOI: 10.1007/s00424-025-03072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Dysbiosis, which refers to an imbalance in the composition of the gut microbiome, has been associated with a range of metabolic disorders, including type 2 diabetes, obesity, and metabolic syndrome. Although the exact mechanisms connecting gut dysbiosis to these conditions are not fully understood, various lines of evidence strongly suggest a substantial role for the interaction between the gut microbiome, mitochondria, and epigenetics. Current studies suggest that the gut microbiome has the potential to affect mitochondrial function and biogenesis through the production of metabolites. A well-balanced microbiota plays a pivotal role in supporting normal mitochondrial and cellular functions by providing metabolites that are essential for mitochondrial bioenergetics and signaling pathways. Conversely, in the context of illnesses, an unbalanced microbiota can impact mitochondrial function, leading to increased aerobic glycolysis, reduced oxidative phosphorylation and fatty acid oxidation, alterations in mitochondrial membrane permeability, and heightened resistance to cellular apoptosis. Mitochondrial activity can also influence the composition and function of the gut microbiota. Because of the intricate interplay between nuclear and mitochondrial communication, the nuclear epigenome can regulate mitochondrial function, and conversely, mitochondria can produce metabolic signals that initiate epigenetic changes within the nucleus. Given the epigenetic modifications triggered by metabolic signals from mitochondria in response to stress or damage, targeting an imbalanced microbiota through interventions could offer a promising strategy to alleviate the epigenetic alterations arising from disrupted mitochondrial signaling.
Collapse
Affiliation(s)
- Natalia Lucia Rukavina Mikusic
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET) CONICET, Universidad de Buenos Aires, 1122, Buenos Aires, Argentina
- Departamento de Ciencias Biológicas, Cátedra de Anatomía E Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113, Buenos Aires, Argentina
| | - Paula Denise Prince
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET) CONICET, Universidad de Buenos Aires, 1122, Buenos Aires, Argentina
- Departamento de Ciencias Químicas, Cátedra de Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113, Buenos Aires, Argentina
| | - Marcelo Roberto Choi
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET) CONICET, Universidad de Buenos Aires, 1122, Buenos Aires, Argentina.
- Departamento de Ciencias Biológicas, Cátedra de Anatomía E Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113, Buenos Aires, Argentina.
| | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, P.O. Box 18618-689, Botucatu, São Paulo, Zip Code 510, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, P.O. Box 18618-689, Botucatu, São Paulo, Zip Code 510, Brazil
| | - Claudia Castro
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU) CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU) CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina.
- Laboratorio de Farmacología Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Isabel Quesada
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU) CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
3
|
Lin X, Xia L, Zhou Y, Xie J, Tuo Q, Lin L, Liao D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. Int J Mol Sci 2025; 26:4240. [PMID: 40362481 PMCID: PMC12072030 DOI: 10.3390/ijms26094240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Bile acids and their corresponding intestinal epithelial receptors, the farnesoid X receptor (FXR), the G protein-coupled bile acid receptor (TGR5), play crucial roles in the physiological and pathological processes of intestinal epithelial cells. These acids and receptors are involved in the regulation of intestinal absorption, signal transduction, cellular proliferation and repair, cellular senescence, energy metabolism, and the modulation of gut microbiota. A comprehensive literature search was conducted using PubMed, employing keywords such as bile acid, bile acid receptor, FXR (nr1h4), TGR5 (gpbar1), intestinal epithelial cells, proliferation, differentiation, senescence, energy metabolism, gut microbiota, inflammatory bowel disease (IBD), colorectal cancer (CRC), and irritable bowel syndrome (IBS), with a focus on publications available in English. This review examines the diverse effects of bile acid signaling and bile receptor pathways on the proliferation, differentiation, senescence, and energy metabolism of intestinal epithelial cells. Additionally, it explores the interactions between bile acids, their receptors, and the microbiota, as well as the implications of these interactions for host health, particularly in relation to prevalent intestinal diseases. Finally, the review highlights the importance of developing highly specific ligands for FXR and TGR5 receptors in the context of metabolic and intestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.L.); (L.X.); (Y.Z.); (J.X.); (Q.T.); (L.L.)
| |
Collapse
|
4
|
Li F, Wen X, Xue P, Xu H, Wu P, Xu Z, Wang X, Pi G. Prevotella copri-mediated caffeine metabolism involves ferroptosis of osteoblasts in osteoarthritis. Microbiol Spectr 2025:e0157524. [PMID: 40272163 DOI: 10.1128/spectrum.01575-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/18/2024] [Indexed: 04/25/2025] Open
Abstract
There is a positive causality between coffee consumption and osteoarthritis (OA); however, whether gut microbiota is involved needs to be discussed. Here, we observed that in caffeine consumers, fecal Prevotella copri abundance was positively correlated with subchondral bone mass, serum caffeine concentration was negatively correlated with bone mass, and fecal P. copri was negatively correlated with serum caffeine. In the OA model, caffeine intake aggravated articular cartilage destruction, bone mass loss, and intestinal barrier damage; on the contrary, paraxanthine intake reversed the above lesions. Importantly, after the intestinal P. copri supplement, caffeine-induced lesions in OA mice were effectively alleviated. Mechanically, P. copri has the potential to metabolize caffeine into paraxanthine, and this effect could alleviate the ferroptosis of osteoblast in the OA model. This study screened out that P. copri, an endogenous bacteria, has the ability to metabolize caffeine and revealed its effects on OA progression.IMPORTANCEThere is positive causality between coffee consumption and osteoarthritis (OA). Caffeine exposure is responsible for the reduction of bone mass and restrained osteoblast function. Prevotella copri abundance is exhausted in gut and positively correlated with subchondral bone mass in coffee consumption patients with OA. Supplement of intestinal P. copri alleviates caffeine-induced subchondral bone loss. P. copri has the potential to metabolize caffeine into paraxanthine, and this effect alleviates ferroptosis of osteoblast. Our study illustrated that intestinal P. copri possibly serves as a novel promising treatment for coffee consumers with OA.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pu Xue
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiping Xu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panyang Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiming Xu
- Department of Orthopedics, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Xianwei Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guofu Pi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Gundamaraju R, Goh BH, Singla RK. Editorial: Innovative multidisciplinary insights into the gut-liver axis and cancer. Front Oncol 2025; 15:1588708. [PMID: 40330822 PMCID: PMC12052902 DOI: 10.3389/fonc.2025.1588708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Affiliation(s)
- Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
- Department of Pharmaceutical Engineering, B V Raju Institute of Technology, Medak, Telangana, India
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, Sunway Medical & Life Sciences, Sunway University, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Kim K, Lee M, Shin Y, Lee Y, Kim TJ. Optimizing Cancer Treatment Through Gut Microbiome Modulation. Cancers (Basel) 2025; 17:1252. [PMID: 40227841 PMCID: PMC11988035 DOI: 10.3390/cancers17071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome plays a pivotal role in modulating cancer therapies, including immunotherapy and chemotherapy. Emerging evidence demonstrates its influence on treatment efficacy, immune response, and resistance mechanisms. Specific microbial taxa enhance immune checkpoint inhibitor efficacy, while dysbiosis can contribute to adverse outcomes. Chemotherapy effectiveness is also influenced by microbiome composition, with engineered probiotics and prebiotics offering promising strategies to enhance drug delivery and reduce toxicity. Moreover, microbial metabolites, such as short-chain fatty acids, and engineered microbial systems have shown potential to improve therapeutic responses. These findings underscore the importance of personalized microbiome-based approaches in optimizing cancer treatments.
Collapse
Affiliation(s)
- Kyuri Kim
- College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 03760, Republic of Korea;
| | - Mingyu Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoojin Shin
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoonji Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
7
|
Wang L, Zhao H, Wu F, Chen J, Xu H, Gong W, Wen S, Yang M, Xia J, Chen Y, Chen D. Bile-Liver phenotype: Exploring the microbiota landscape in bile and intratumor of cholangiocarcinoma. Comput Struct Biotechnol J 2025; 27:1173-1186. [PMID: 40206347 PMCID: PMC11981758 DOI: 10.1016/j.csbj.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) arises within the peritumoral bile microenvironment, yet microbial translocation from bile to intracholangiocarcinoma (IntraCCA) tissues remains poorly understood. Previous studies on bile microbiota alterations from biliary benign disease (BBD) to CCA have yielded inconsistent results, highlighting the need for cross-study analysis. We presented a comprehensive analysis of five cohorts (N = 266), including our newly established 16S rRNA gene profiling (n = 42), to elucidate these microbiota transitions. The concordance of bacteria between CCA bile and intraCCA tissue, represented by Enterococcus and Staphylococcus, suggested microbiota migration from bile to intratumoral tissues. A computational random forest machine learning model effectively distinguished intraCCA tissue from CCA bile, identifying Rhodococcus and Ralstonia as diagnostically significant. The model also excelled in differentiating CCA bile from BBD bile, achieving an AUC value of 0.931 in external validation. Using unsupervised hierarchical clustering, we established Biletypes based on microbial signatures in our cohort. A combination of 17 genera effectively stratified patients into Biletype A and Biletype B. Biletype B robustly discerned CCA from BBD, with Sub-Biletype B1 correlating with advanced TNM stage and poorer prognosis. Among the 17 genera, bacterial Cluster 1, composed of Sphingomonas, Staphylococcus, Massilia, Paenibacillus, Porphyrobacter, Lawsonella, and Aerococcus, was enriched in Biletype B1 and predicted CCA with an AUC of 0.96. Staphylococcus emerged as a promising single-genus predictor for CCA diagnosis and staging. In conclusion, this study delineates a potential microbiota transition pathway from the gut through CCA bile to intra-CCA tissue, proposing Biletypes and Staphylococcus as biomarkers for CCA prognosis.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
- Department of Hepatopancreatobiliary Surgery, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Hui Zhao
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Fan Wu
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Jiale Chen
- Department of Hospital Infection Management,Wujin Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Changzhou 213161, China
| | - Hanjie Xu
- Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| | - Wanwan Gong
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Sijia Wen
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Mengmeng Yang
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Yu Chen
- Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| | - Daozhen Chen
- Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
- Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| |
Collapse
|
8
|
Hu J, Sun J, Zhong Q, Chen S, Yin W, Wei X, Li L, Li K, Ali M, Sun W, Rajput SA, Abdullah M, Si H, Wu Y. Edgeworthia gardneri (Wall.) Meisn Mitigates CCL4-induced liver injury in mice by modulating gut microbiota, boosting antioxidant defense, and reducing inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118042. [PMID: 40086032 DOI: 10.1016/j.ecoenv.2025.118042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Herbal medicine has become an area of growing global scientific interest. The prime objective of this study was to investigate the protective role of Edgeworthia gardneri (Wall.) Meisn (EGM polysaccharide) against carbon tetrachloride (CCl4)-induced liver injury in mice. Forty-five ICR mice were randomly divided into three groups (n = 15): IC, IM, and IT. The IT group received EGM polysaccharide solution (50 mg/kg) daily, while the IC and IM groups were administered an equivalent volume of normal saline. The IT and IM groups were intraperitoneally injected with a mixture of CCl4 and olive oil at 1:1 (v/v) (2 mL/kg) every 3 days. Our results showed that EGM polysaccharide significantly (p < 0.05) reduced pathological hepatic alterations and an increased liver index caused by CCl4. Moreover, EGM polysaccharide therapy significantly (p < 0.001) increased levels of antioxidant enzymes, such as glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and reduced malondialdehyde (MDA) content in a dose-dependent manner. Notably, EGM polysaccharide alleviated the inflammatory cascades as evidenced by decreased serum levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor- α (TNF-α) under CCl4 administration. Furthermore, 16 s rRNA gene sequencing results exhibited that EGM polysaccharide increased the abundance of probiotics bacteria, such as Unclassified_Lachnospiraceae, and decreased the abundance of pathogenic bacterial texas like Brevundimonas and Candidatus_Nitrocosmicu. Conclusively, EGM polysaccharide protects against CCl4-induced oxidative stress and inflammation in the liver and alleviates hepatic injury through beneficial gut microbiota modulations. The current study suggests that EGM polysaccharide is an effective agent in counteracting CCl4-induced hepatic damage.
Collapse
Affiliation(s)
- Jiashu Hu
- College of Veterinary Medicine, Yunan Agricultural University, Kunming 650201, PR China; School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266000, PR China
| | - Jitao Sun
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Qiu Zhong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Shouhai Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xi Wei
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, PR China
| | - Linzhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, PR China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjing Sun
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hongbin Si
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Yi Wu
- College of Veterinary Medicine, Yunan Agricultural University, Kunming 650201, PR China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
9
|
He R, Qi P, Shu L, Ding Y, Zeng P, Wen G, Xiong Y, Deng H. Dysbiosis and extraintestinal cancers. J Exp Clin Cancer Res 2025; 44:44. [PMID: 39915884 PMCID: PMC11804008 DOI: 10.1186/s13046-025-03313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
The gut microbiota plays a crucial role in safeguarding host health and driving the progression of intestinal diseases. Despite recent advances in the remarkable correlation between dysbiosis and extraintestinal cancers, the underlying mechanisms are yet to be fully elucidated. Pathogenic microbiota, along with their metabolites, can undermine the integrity of the gut barrier through inflammatory or metabolic pathways, leading to increased permeability and the translocation of pathogens. The dissemination of pathogens through the circulation may contribute to the establishment of an immune-suppressive environment that promotes carcinogenesis in extraintestinal organs either directly or indirectly. The oncogenic cascade always engages in the disruption of hormonal regulation and inflammatory responses, the induction of genomic instability and mutations, and the dysregulation of adult stem cell proliferation. This review aims to comprehensively summarize the existing evidence that points to the potential role of dysbiosis in the malignant transformation of extraintestinal organs such as the liver, breast, lung, and pancreas. Additionally, we delve into the limitations inherent in current methodologies, particularly the challenges associated with differentiating low loads gut-derived microbiome within tumors from potential sample contamination or symbiotic microorganisms. Although still controversial, an understanding of the contribution of translocated intestinal microbiota and their metabolites to the pathological continuum from chronic inflammation to tumors could offer a novel foundation for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Ruishan He
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Pingqian Qi
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Linzhen Shu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Yidan Ding
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Peng Zeng
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Guosheng Wen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Ying Xiong
- Department of General Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Huan Deng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China.
- Tumor Immunology Institute, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
10
|
Han EJ, Ahn JS, Choi YJ, Kim DH, Choi JS, Chung HJ. Exploring the gut microbiome: A potential biomarker for cancer diagnosis, prognosis, and therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189251. [PMID: 39719176 DOI: 10.1016/j.bbcan.2024.189251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
The gut microbiome, a complex community of trillions of microorganisms in the intestines, is crucial in maintaining human health. Recent advancements in microbiome research have unveiled a compelling link between the gut microbiome and cancer development and progression. Alterations in the composition and function of the gut microbiome, known as dysbiosis, have been implicated in various types of cancer, including, esophageal, liver, colon, pancreatic, and gastrointestinal. However, the specific gut microbial strains associated with the development or progression of cancers in various tissues remain largely unclear. Here, we summarize current research findings on the gut microbiome of multiple cancers. This review aims to identify key gut microbial targets that closely influence cancer development based on current research findings. To accurately evaluate the effectiveness of the gut microbiome as a clinical tool for cancer, further research is needed to explore its potential as a biomarker and therapeutic strategy.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Da-Hye Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea; College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea.
| |
Collapse
|
11
|
Yi C, Huang S, Zhang W, Guo L, Xia T, Huang F, Yan Y, Li H, Yu B. Synergistic interactions between gut microbiota and short chain fatty acids: Pioneering therapeutic frontiers in chronic disease management. Microb Pathog 2025; 199:107231. [PMID: 39681288 DOI: 10.1016/j.micpath.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Microorganisms in the gut play a pivotal role in human health, influencing various pathophysiological processes. Certain microorganisms are particularly essential for maintaining intestinal homeostasis, reducing inflammation, supporting nervous system function, and regulating metabolic processes. Short-chain fatty acids (SCFAs) are a subset of fatty acids produced by the gut microbiota (GM) during the fermentation of indigestible polysaccharides. The interaction between GM and SCFAs is inherently bidirectional: the GM not only shapes SCFAs composition and metabolism but SCFAs also modulate microbiota's diversity, stability, growth, proliferation, and metabolism. Recent research has shown that GM and SCFAs communicate through various pathways, mainly involving mechanisms related to inflammation and immune responses, intestinal barrier function, the gut-brain axis, and metabolic regulation. An imbalance in GM and SCFA homeostasis can lead to the development of several chronic diseases, including inflammatory bowel disease, colorectal cancer, systemic lupus erythematosus, Alzheimer's disease, and type 2 diabetes mellitus. This review explores the synergistic interactions between GM and SCFAs, and how these interactions directly or indirectly influence the onset and progression of various diseases through the regulation of the mechanisms mentioned above.
Collapse
Affiliation(s)
- Chunmei Yi
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shanshan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenlan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tong Xia
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fayin Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
12
|
Anwer EKE, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, Abdelnaser A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025; 13:100. [PMID: 39857684 PMCID: PMC11762448 DOI: 10.3390/biomedicines13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The gut microbiota, a dynamic ecosystem of trillions of microorganisms, produces secondary metabolites that profoundly influence host health. Recent research has highlighted the significant role of these metabolites, particularly short-chain fatty acids, indoles, and bile acids, in modulating immune responses, impacting epigenetic mechanisms, and contributing to disease processes. In gastrointestinal (GI) cancers such as colorectal, liver, and gastric cancer, microbial metabolites can drive tumorigenesis by promoting inflammation, DNA damage, and immune evasion. Conversely, these same metabolites hold therapeutic promise, potentially enhancing responses to chemotherapy and immunotherapy and even directly suppressing tumor growth. In addition, gut microbial metabolites play crucial roles in infectious disease susceptibility and resilience, mediating immune pathways that impact pathogen resistance. By consolidating recent insights into the gut microbiota's role in shaping disease and health, this review underscores the therapeutic potential of targeting microbiome-derived metabolites for treating GI cancers and infectious diseases and calls for further research into microbiome-based interventions.
Collapse
Affiliation(s)
- Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Muhammad Ajagbe
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Moustafa Sherif
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Abobaker S. Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Shuaib Mahmoud
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Ali ElBanbi
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| |
Collapse
|
13
|
Pasupalak JK, Rajput P, Gupta GL. Gut microbiota and Alzheimer's disease: Exploring natural product intervention and the Gut-Brain axis for therapeutic strategies. Eur J Pharmacol 2024; 984:177022. [PMID: 39362390 DOI: 10.1016/j.ejphar.2024.177022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Numerous studies conducted over the last ten years have shown a strong correlation between the gut microbiota and the onset and progression of Alzheimer's disease (AD). However, the exact underlying mechanism is still unknown. An ongoing communication mechanism linking the gut and the brain is highlighted by the term "microbiota-gut-brain axis," which was originally coined the "gut-brain axis." Key metabolic, endocrine, neurological, and immunological mechanisms are involved in the microbiota‒gut‒brain axis and are essential for preserving brain homeostasis. Thus, the main emphasis of this review is how the gut microbiota contributes to the development of AD and how various natural products intervene in this disease. The first part of the review provides an outline of various pathways and relationships between the brain and gut microbiota, and the second part provides various mechanisms involved in the gut microbiota and AD. Finally, this review provides knowledge about natural products and their effectiveness in treating gut microbiota-induced AD. AD may be treated in the future by altering the gut microbiota with a customized diet, probiotics/prebiotics, plant products, and natural products. This entails altering the microbiological partners and products (such as amyloid protein) that these partners generate.
Collapse
Affiliation(s)
- Jajati K Pasupalak
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Prabha Rajput
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
14
|
Zheng J, Li C, Li S, Zheng X. Decabromodiphenyl ethane (DBDPE) inhibited the growth and feeding by disrupting the gut and digestive gland homeostasis in octopus Amphioctopus fangsiao (Mollusca: Cephalopoda). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177364. [PMID: 39491558 DOI: 10.1016/j.scitotenv.2024.177364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
A novel brominated flame retardant decabromodiphenyl ethane (DBDPE) poses a potential threat to animals, but its effects on cephalopods remain unknown. In this study, Amphioctopus fangsiao, a common octopus in China, was exposed to DBDPE (0, 1, 50, 100, 300 μg/L) for 28 days. Chemical analysis revealed that the digestive gland bore a greater burden of DBDPE compared with other tissues. In addition, accumulated DBDPE could curb the growth and feeding performance of A. fangsiao. The potential effects on the "gut-digestive gland axis" were also elucidated. Specifically, DBDPE in the gut shifted the microorganisms toward a Bacteroidetes-dominated composition, and impaired the intestinal epithelial barrier, thereby triggering oxidative stress and inflammation. Excessive DBDPE also threatens the digestive gland function, including histological damage, immune reaction, oxidative stress, glucolipid metabolism dysfunction, and neurotoxicity. Metabolome plasticity enabled A. fangsiao to develop a DBDPE stress-adaptive metabolic profile via alteration of glucolipid metabolism, immunity, oxidative stress, and signaling molecules. Taken together, we identified a new detoxification mechanism linking the microbiota-gut-digestive gland axis with the growth and food intake of A. fangsiao, which is the first time it has been demonstrated in mollusks. These findings provided important clues for a further mechanism study and risk assessment of DBDPE.
Collapse
Affiliation(s)
- Jian Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China
| | - Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Shuwen Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
15
|
Yin T, Zhang X, Xiong Y, Li B, Guo D, Sha Z, Lin X, Wu H. Exploring gut microbial metabolites as key players in inhibition of cancer progression: Mechanisms and therapeutic implications. Microbiol Res 2024; 288:127871. [PMID: 39137590 DOI: 10.1016/j.micres.2024.127871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H2S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.
Collapse
Affiliation(s)
- Tianxiang Yin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiang Zhang
- Medical School, Yan'an University, Yan'an 716000, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
16
|
Wakamori C, De Velasco MA, Sakai K, Kura Y, Matsushita M, Fujimoto S, Hatano K, Nonomura N, Fujita K, Nishio K, Uemura H. A cross-species analysis of fecal microbiomes in humans and mice reveals similarities and dissimilarities associated with prostate cancer risk. Prostate 2024; 84:1375-1386. [PMID: 39113216 DOI: 10.1002/pros.24776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Prostate cancer is a complex disease that develops over time and is influenced by several lifestyle factors that also impact gut microbes. Gut dysbiosis is intricately linked to prostate carcinogenesis, but the precise mechanisms remain poorly understood. Mice are crucial for studying the relationships between gut microbes and prostate cancer, but discovering similarities between humans and mice may aid in elucidating new mechanisms. METHODS We used 16s rRNA sequencing data from stool samples of tumor-bearing prostate-specific conditional Pten-knockout mice, disease-free wildtype mice, and a human cohort suspected of having prostate cancer to conduct taxonomic and metagenomic profiling. Features were associated with prostate cancer status and low risk (a negative biopsy of Gleason grade <2) or high risk (Gleason grade ≥2) in humans. RESULTS In both humans and mice, community composition differed between individuals with and without prostate cancer. Odoribacter spp. and Desulfovibrio spp. were taxa associated with prostate cancer in mice and humans. Metabolic pathways associated with cofactor and vitamin synthesis were common in mouse and human prostate cancer, including bacterial synthesis of folate (vitamin B9), ubiquinone (CoQ10), phylloquinone (vitamin K1), menaquinone (vitamin K2), and tocopherol (vitamin E). CONCLUSIONS Our study provides valuable data that can help bridge the gap between human and mouse microbiomes. Our findings provide evidence to support the notion that certain bacterial-derived metabolites may promote prostate cancer, as well as a preclinical model that can be used to characterize biological mechanisms and develop preventive interventions.
Collapse
Affiliation(s)
- Chisato Wakamori
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Department of Medicine, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Marco A De Velasco
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yurie Kura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Saizo Fujimoto
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
17
|
He Y, Wang S, Lu H, Zhang Q, Chen X, Yang Y, Feng J, Chen Y. Imbalance of intestinal flora activates inflammatory response contributing to acute lung injury. J Thorac Dis 2024; 16:6835-6848. [PMID: 39552844 PMCID: PMC11565338 DOI: 10.21037/jtd-24-633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 11/19/2024]
Abstract
Background Seawater drowning is a leading cause of accidental injury and death, and the resulting acute lung injury (ALI) is a serious clinical syndrome for which there are no effective treatments. This study aims to investigate the potential mechanism of seawater drowning-induced ALI. Methods Seawater drowning mouse models were constructed to assess lung injury. The hematoxylin & eosin (H&E) staining and fluorescent terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were used to observe the pathology of lung tissues and apoptosis, respectively. 16S rRNA and RNA-seq were performed to identify the structure of the intestinal microbes and the gene expression profiles of the lung tissue of the mice, respectively. The expression of cytokines was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), and the activities of superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by assay kits. Results The results showed that seawater drowning aggravated lung injury and accelerated cell apoptosis in mice. Seawater exposure significantly altered the structure of mouse intestinal microbes, especially increasing the abundance of Firmicutes and decreasing that of Bacteroidota. Transcriptional upregulation of inflammatory responses in ALI mice was observed in the lung transcriptome, and differentially expressed genes were mainly enriched in inflammation-related pathways such as cytokine-cytokine receptor interaction, viral protein interaction with cytokine and cytokine receptor, and chemokine signaling pathway, which were further confirmed by microbe-gene association analysis. Furthermore, inflammatory factors were up-regulated, oxidative stress molecule MDA was elevated, and SOD was decreased in the lung tissues of mice, suggesting that the imbalance of intestinal flora activated inflammatory and oxidative stress responses. Conclusions This study reveals the mechanism that intestinal microflora aggravates ALI by modulating inflammatory signaling pathways, depicting the landscape of the microbial-gene-lung axis and providing new insights into the use of gut flora as a therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Ying He
- Department of Pediatrics of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958 Hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Shunhong Wang
- Department of Anesthesiology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958 Hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Huina Lu
- Department of Pediatrics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qiongqiong Zhang
- Department of Pediatrics of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958 Hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Xia Chen
- Department of Pediatrics of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958 Hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Yan Yang
- Department of Pediatrics of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958 Hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Jing Feng
- Department of Pediatrics of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958 Hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Yubo Chen
- Department of Pediatrics of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958 Hospital of Chinese People’s Liberation Army), Chongqing, China
| |
Collapse
|
18
|
Zhang M, Mo J, Huang W, Bao Y, Luo X, Yuan L. The ovarian cancer-associated microbiome contributes to the tumor's inflammatory microenvironment. Front Cell Infect Microbiol 2024; 14:1440742. [PMID: 39497925 PMCID: PMC11532186 DOI: 10.3389/fcimb.2024.1440742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
A growing body of research has established a correlation between tumors and persistent chronic inflammatory infiltration. As a primary instigator of inflammation, the majority of microbiomes naturally residing within our bodies engage in a mutually beneficial symbiotic relationship. Nevertheless, alterations in the microbiome's composition or breaches in the normal barrier function can disrupt the internal environment's homeostasis, potentially leading to the development and progression of various diseases, including tumors. The investigation of tumor-related microbiomes has contributed to a deeper understanding of their role in tumorigenesis. This review offers a comprehensive overview of the microbiome alterations and the associated inflammatory changes in ovarian cancer. It may aid in advancing research to elucidate the mechanisms underlying the ovarian cancer-associated microbiome, providing potential theoretical support for the future development of microbiome-targeted antitumor therapies and early screening through convenient methods.
Collapse
Affiliation(s)
- Min Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiahang Mo
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wu Huang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiting Bao
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xukai Luo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lei Yuan
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Kumar AR, Nair B, Kamath AJ, Nath LR, Calina D, Sharifi-Rad J. Impact of gut microbiota on metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma: pathways, diagnostic opportunities and therapeutic advances. Eur J Med Res 2024; 29:485. [PMID: 39367507 PMCID: PMC11453073 DOI: 10.1186/s40001-024-02072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) and progression to hepatocellular carcinoma (HCC) exhibits distinct molecular and immune characteristics. These traits are influenced by multiple factors, including the gut microbiome, which interacts with the liver through the "gut-liver axis". This bidirectional relationship between the gut and its microbiota and the liver plays a key role in driving various liver diseases, with microbial metabolites and immune responses being central to these processes. Our review consolidates the latest research on how gut microbiota contributes to MASH development and its progression to HCC, emphasizing new diagnostic and therapeutic possibilities. We performed a comprehensive literature review across PubMed/MedLine, Scopus, and Web of Science from January 2000 to August 2024, focusing on both preclinical and clinical studies that investigate the gut microbiota's roles in MASH and HCC. This includes research on pathogenesis, as well as diagnostic and therapeutic advancements related to the gut microbiota. This evidence emphasizes the critical role of the gut microbiome in the pathogenesis of MASH and HCC, highlighting the need for further clinical studies and trials. This is to refine diagnostic techniques and develop targeted therapies that exploit the microbiome's capabilities, aiming to enhance patient care in liver diseases.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health. Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
20
|
Yi H, Xu H. Novel biomarkers for hepatocellular carcinoma detection and treatment. Hepatobiliary Surg Nutr 2024; 13:901-904. [PMID: 39507726 PMCID: PMC11534769 DOI: 10.21037/hbsn-24-517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024]
Affiliation(s)
- Hongyuan Yi
- Department of Hepatic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haifeng Xu
- Department of Hepatic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Wu X, Liu P, Wang Q, Sun L, Wang Y. A prognostic model established using bile acid genes to predict the immunity and survival of patients with gastrointestinal cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:4594-4609. [PMID: 38606991 DOI: 10.1002/tox.24287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The metabolism of abnormal bile acids (BAs) is implicated in the initiation and development of gastrointestinal (GI) cancer. However, there was a lack of research on the molecular mechanisms of BAs metabolism in GI. METHODS Genes involved in BAs metabolism were excavated from public databases of The Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) database, and Molecular Signatures Database (MSigDB). ConsensusClusterPlus was used to classify molecular subtypes for GI. To develop a RiskScore model for predicting GI prognosis, univariate Cox analysis was performed on the genes in protein-protein interaction (PPI) network, followed by using Lasso regression and stepwise regression to refine the model and to determine the key prognostic genes. Tumor immune microenvironment in GI patients from different risk groups was assessed using the ESTIMATE algorithm and enrichment analysis. Reverse transcription-quantitative real-time PCR (RT-qPCR), Transwell assay, and wound healing assay were carried out to validate the expression and functions of the model genes. RESULTS This study defined three molecular subtypes (C1, C2, and C3). Specifically, C1 had the best prognosis, while C3 had the worst prognosis with high immune checkpoint gene expression levels and TIDE scores. We selected nine key genes (AXIN2, ATOH1, CHST13, PNMA2, GYG2, MAGEA3, SNCG, HEYL, and RASSF10) that significantly affected the prognosis of GI and used them to develop a RiskScore model accordingly. Combining the verification results from a nomogram, the prediction of the model was proven to be accurate. The high RiskScore group was significantly enriched in tumor and immune-related pathways. Compared with normal gastric mucosal epithelial cells, the mRNA levels of the nine genes were differential in the gastric cancer cells. Inhibition of PNMA2 suppressed migration and invasion of the cancer cells. CONCLUSION We distinguished three GI molecular subtypes with different prognosis based on the genes related to BAs metabolism and developed a RiskScore model, contributing to the diagnosis and treatment of patients with GI.
Collapse
Affiliation(s)
- Xin Wu
- Department of General Surgical Medicine, The First Medicine Center of PLA General Hospital, Beijing, China
| | - Peifa Liu
- Pathology Department, The First Medicine Center of PLA General Hospital, Beijing, China
| | - Qing Wang
- Department of General Surgical Medicine, The First Medicine Center of PLA General Hospital, Beijing, China
| | - Linde Sun
- Department of General Surgical Medicine, The First Medicine Center of PLA General Hospital, Beijing, China
| | - Yu Wang
- Department of General Surgical Medicine, The First Medicine Center of PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Lv J, Lang G, Wang Q, Zhao W, Shi D, Zhou Z, Shen Y, Xia H, Han S, Li L. Lactobacillus helveticus attenuates alcoholic liver injury via regulation of gut microecology in mice. Microb Biotechnol 2024; 17:e70016. [PMID: 39431804 PMCID: PMC11492535 DOI: 10.1111/1751-7915.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/04/2024] [Indexed: 10/22/2024] Open
Abstract
Previous reports have demonstrated that alcohol consumption significantly reduces the abundance of Lactobacillus in the gut. In this study, we selected five species of the genus Lactobacillus, commonly found in fermented foods, and acknowledged them as safe, edible, and effective in preventing or treating certain diseases, to evaluate their effects on alcoholic liver disease (ALD). By comparing the liver damage indices in each group, we found that the type strain of Lactobacillus helveticus (LH, ATCC 15009) had the most marked alleviating effect on ALD-induced liver injury. Furthermore, experiments combining microbiomics and metabolomics were conducted to explore the mechanisms underlying the hepatoprotective effects of LH. Finally, we discovered that LH mitigated ethanol-induced liver steatosis and inflammation in ALD mice by altering the structure and function of the gut microbiome, increasing intestinal levels of short-chain fatty acids (SCFAs), and enhancing gut barrier integrity. These findings suggest a potential strategy for the clinical management of patients with ALD.
Collapse
Affiliation(s)
- Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - Guanjing Lang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wenlong Zhao
- Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Ziyuan Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - Yangfan Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
23
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
24
|
Zhou Z, Zhou Y, Zhang Z, Zhao M, Hu C, Yang L, Zhou X, Zhang X, Liu L, Shen T. Progress on the effects and underlying mechanisms of evodiamine in digestive system diseases, and its toxicity: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155851. [PMID: 39018943 DOI: 10.1016/j.phymed.2024.155851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Evodiamine (EVO) is one of the primary components of Evodia rutaecarpa and has been found to have a positive therapeutic effect on various digestive system diseases. However, no systematic review has been conducted on the research progress and mechanisms of EVO in relation to digestive system diseases, and its toxicity. PURPOSE This study aimed to provide a reference for future research in this field. STUDY DESIGN A systematic review and meta-analysis of the research progress, mechanisms, and toxicity of EVO in the treatment of digestive system diseases. METHODS Five electronic databases were utilized to search for relevant experiments. We conducted a comprehensive review and meta-analysis of the pertinent literature following the guidelines of Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). RESULTS EVO's animal experiments in digestive system diseases primarily focus on colorectal cancer, gastric ulcers, liver cancer, liver fibrosis, ulcerative colitis, colitis-associated cancer, and functional gastrointestinal disorders. EVO also has positive effects on pancreatic cancer, radiation enteritis, gastric cancer, tongue squamous cancer, hepatitis B, oral cancer, and esophageal cancer in vivo. EVO's in cellular experiments primarily focus on SGC7901, HT29, HCT-116, and HepG2 cells. EVO also exhibits positive effects on SW480, LoVo, BGC-823, AGS, COLO-205, MKN45, SMMC-7721, Bel-7402, QGY7-701, PANC-1, SW1990, BxPC-3, HSC4, MC3, HONE1, and CNE1 cells in vitro. The potential common pathways include TGF-β, PI3K-AKT, Wnt, ErbB, mTOR, MAPK, HIF-1, NOD-like receptor, NF-κB, VEGF, JAK-STAT, AMPK, Toll-like receptor, EGFR, Ras, TNF, AGE-RAGE, Relaxin, FoxO, IL-17, Hippo, and cAMP. The mechanisms of EVO on ulcerative colitis, gastric cancer, and HCT116 cells are still controversial in vivo. EVO may have a bidirectional regulatory effect on functional gastrointestinal disorders through calcium signaling. The mechanisms of EVO on HCT116, HT29, SW480, AGS, COLO-205, and SW1990 cells are still controversial in vitro. The question of whether EVO has obvious toxicity is controversial. CONCLUSION In both cellular and animal experiments, EVO has demonstrated positive impacts on digestive system diseases. Nevertheless, additional in vivo and in vitro research is required to confirm the beneficial effects and mechanisms of EVO on digestive system diseases, as well as its potential toxicity.
Collapse
Affiliation(s)
- Zubing Zhou
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Yan Zhou
- South Sichuan Preschool Education College, Neijiang, China
| | - Zhongyi Zhang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Mei Zhao
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Chao Hu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Lele Yang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Xin Zhou
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Xiaobo Zhang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Liyun Liu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Tao Shen
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
25
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
26
|
Kim R, Sung JH. Recent Advances in Gut- and Gut-Organ-Axis-on-a-Chip Models. Adv Healthc Mater 2024; 13:e2302777. [PMID: 38243887 DOI: 10.1002/adhm.202302777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Indexed: 01/22/2024]
Abstract
The human gut extracts nutrients from the diet while forming the largest barrier against the outer environment. In addition, the gut actively maintains homeostasis through intricate interactions with the gut microbes, the immune system, the enteric nervous system, and other organs. These interactions influence digestive health and, furthermore, play crucial roles in systemic health and disease. Given its primary role in absorbing and metabolizing orally administered drugs, there is significant interest in the development of preclinical in vitro model systems that can accurately emulate the intestine in vivo. A gut-on-a-chip system holds great potential as a testing and screening platform because of its ability to emulate the physiological aspects of in vivo tissues and expandability to incorporate and combine with other organs. This review aims to identify the key physiological features of the human gut that need to be incorporated to build more accurate preclinical models and highlights the recent progress in gut-on-a-chip systems and competing technologies toward building more physiologically relevant preclinical model systems. Furthermore, various efforts to construct multi-organ systems with the gut, called gut-organ-axis-on-a-chip models, are discussed. In vitro gut models with physiological relevance can provide valuable platforms for bridging the gap between preclinical and clinical studies.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
27
|
Zhang KK, Yang JZ, Cheng CH, Wan JY, Chen YC, Zhou HQ, Zheng DK, Lan ZX, You QH, Wang Q, Sun J. Short-chain fatty acids mitigate Methamphetamine-induced hepatic injuries in a Sigma-1 receptor-dependent manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116538. [PMID: 38833980 DOI: 10.1016/j.ecoenv.2024.116538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Methamphetamine (Meth) is a potent psychostimulant with well-established hepatotoxicity. Gut microbiota-derived short-chain fatty acids (SCFAs) have been reported to yield beneficial effects on the liver. In this study, we aim to further reveal the mechanisms of Meth-induced hepatic injuries and investigate the potential protective effects of SCFAs. Herein, mice were intraperitoneally injected with 15 mg/kg Meth to induce hepatic injuries. The composition of fecal microbiota and SCFAs was profiled using 16 S rRNA sequencing and Gas Chromatography/Mass Spectrometry (GC/MS) analysis, respectively. Subsequently, SCFAs supplementation was performed to evaluate the protective effects against hepatic injuries. Additionally, Sigma-1 receptor knockout (S1R-/-) mice and fluvoxamine (Flu), an agonist of S1R, were introduced to investigate the mechanisms underlying the protective effects of SCFAs. Our results showed that Meth activated S1R and induced hepatic autophagy, inflammation, and oxidative stress by stimulating the MAPK/ERK pathway. Meanwhile, Meth disrupted SCFAs product-related microbiota, leading to a reduction in fecal SCFAs (especially Acetic acid and Propanoic acid). Accompanied by the optimization of gut microbiota, SCFAs supplementation normalized S1R expression and ameliorated Meth-induced hepatic injuries by repressing the MAPK/ERK pathway. Effectively, S1R knockout repressed Meth-induced activation of the MAPK/ERK pathway and further ameliorated hepatic injuries. Finally, the overexpression of S1R stimulated the MAPK/ERK pathway and yielded comparable adverse phenotypes to Meth administration. These findings suggest that Meth-induced hepatic injuries relied on the activation of S1R, which could be alleviated by SCFAs supplementation. Our study confirms the crucial role of S1R in Meth-induced hepatic injuries for the first time and provides a potential preemptive therapy.
Collapse
Affiliation(s)
- Kai-Kai Zhang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chang-Hao Cheng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Yuan Wan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu-Chuan Chen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - He-Qi Zhou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - De-Kai Zheng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhi-Xian Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qiu-Hong You
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Jian Sun
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
28
|
Basthi Mohan P, Lochan R, Shetty S. Biomarker in Hepatocellular Carcinoma. Indian J Surg Oncol 2024; 15:261-268. [PMID: 38817995 PMCID: PMC11133295 DOI: 10.1007/s13193-023-01858-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/29/2023] [Indexed: 06/01/2024] Open
Abstract
Liver cancer is one of the most prevalent types of cancer and a major contributor to the socioeconomic burden worldwide. The pathogenesis of hepatocellular carcinoma (HCC) is contributed by various etiological factors like virus infection, excessive alcohol consumption, exposure to toxins, or metabolic disorders. Majority of patients are diagnosed with late-stage HCC, which restricts its management to only palliative care. HCC, if diagnosed early, increases the survival and quality of life. Currently available biomarker (alpha-fetoproteins) have several limitations, that impede the early diagnosis and staging of cancer. This warrants the continous search in pursuit of a novel biomarker. Several research works in diverse areas have contributed to the identification of various novel biomarkers that have shown multifaceted application in early disease diagnosis, which further aid in targeted and effective therapy that can prevent cancer progression. This improves the overall health status of the patient along with significant reduction in caretaker's burden. With the aid of novel technologies, several biomarkers have been investigated and validated in mutliple preliminary research works. Therefore in this review, we have outlined various novel biomarkers that showed promising outcomes in their trials and we have highlighted the developing areas that act as game changers in cancer diagnosis and management.
Collapse
Affiliation(s)
- Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Rajiv Lochan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
- Lead Consultant Surgeon - HPB and Liver transplantation Surgery, Manipal Hospital, Bengaluru, 560017 Karnataka India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| |
Collapse
|
29
|
Kaźmierczak-Siedlecka K, Maciejewska-Markiewicz D, Sykulski M, Gruszczyńska A, Herman-Iżycka J, Wyleżoł M, Katarzyna Petriczko K, Palma J, Jakubczyk K, Janda-Milczarek K, Skonieczna-Żydecka K, Stachowska E. Gut Microbiome-How Does Two-Month Consumption of Fiber-Enriched Rolls Change Microbiome in Patients Suffering from MASLD? Nutrients 2024; 16:1173. [PMID: 38674864 PMCID: PMC11053994 DOI: 10.3390/nu16081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The occurrence of metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global problem which commonly affects patients with co-existing diseases/conditions, such as type 2 diabetes and dyslipidemia. The effective treatment of MASLD is still limited; however, diet plays a significant role in its management. There are multiple beneficial properties of dietary fiber, including its ability to modify the gut microbiome. Therefore, the aim of this study was to determine the effect of the consumption of fiber-enriched rolls on the gut microbiome and microbial metabolites in patients suffering from MASLD. METHODS The participants were recruited according to the inclusion criteria and were required to consume fiber-enriched rolls containing either 6 g or 12 g of fiber. There were three assessment timepoints, when the anthropometric and laboratory parameters were measured, and 16s on nanopore sequencing of the fecal microbiome was conducted. RESULTS Firmicutes and Bacteroidetes were the most abundant phyla in the patients living with MASLD. It was demonstrated that the amount of short-chain fatty acids (SCFAs) changed after the consumption of fiber-enriched rolls; however, this was strongly associated with both the timepoint and the type of SCFAs-acetate and butyrate. Additionally, the high-fiber diet was related to the increase in phyla diversity (p = 0.006571). CONCLUSIONS Overall, the introduction of an appropriate amount of fiber to the diet seems to be promising for patients suffering from MASLD due to its ability to create an improvement in gut microbiome-related aspects.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (D.M.-M.); (K.J.); (K.J.-M.)
| | - Maciej Sykulski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Agata Gruszczyńska
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | | | - Mariusz Wyleżoł
- Department of General, Vascular and Oncological Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Karolina Katarzyna Petriczko
- Translational Medicine Group, Pomeranian Medical University, 70-204 Szczecin, Poland;
- Department of Gastroenterology and Internal Medicine, SPWSZ Hospital, 71-455 Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (D.M.-M.); (K.J.); (K.J.-M.)
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (D.M.-M.); (K.J.); (K.J.-M.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (D.M.-M.); (K.J.); (K.J.-M.)
| |
Collapse
|
30
|
Wang X, Deng K, Zhang P, Chen Q, Magnuson JT, Qiu W, Zhou Y. Microplastic-mediated new mechanism of liver damage: From the perspective of the gut-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170962. [PMID: 38360312 DOI: 10.1016/j.scitotenv.2024.170962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
Microplastics (MPs) are environmental contaminants that are present in all environments and can enter the human body, accumulate in various organs, and cause harm through the ingestion of food, inhalation, and dermal contact. The connection between bowel and liver disease and the interplay between gut, liver, and flora has been conceptualized as the "gut-liver axis". Microplastics can alter the structure of microbial communities in the gut and the liver can also be a target for microplastic invasion. Numerous studies have found that when MPs impair human health, they not only promote dysbiosis of the gut microbiota and disruption of the gut barrier but also cause liver damage. For this reason, the gut-liver axis provides a new perspective in understanding this toxic response. The cross-talk between MPs and the gut-liver axis has attracted the attention of the scientific community, but knowledge about whether MPs cause gut-liver interactions through the gut-liver axis is still very limited, and the effect of MPs on liver injury is not well understood. MPs can directly induce microbiota disorders and gut barrier dysfunction. As a result, harmful bacteria and metabolites in the gut enter the blood through the weak intestinal barrier (portal vein channel along the gut-liver axis) and reach the liver, causing liver damage (inflammatory damage, metabolic disorders, oxidative stress, etc.). This review provides an integrated perspective of the gut-liver axis to help conceptualize the mechanisms by which MP exposure induces gut microbiota dysbiosis and hepatic injury and highlights the connection between MPs and the gut-liver axis. Therefore, from the perspective of the gut-liver axis, targeting intestinal flora is an important way to eliminate microplastic liver damage.
Collapse
Affiliation(s)
- Xiaomei Wang
- Health Science Center, Ningbo University, Ningbo 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Kaili Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Zhang
- Ningbo Hangzhou Bay Hospital, Ningbo 315336, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuping Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China; Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo 315020, China; Institute of Digestive Disease of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
31
|
Yuan X, Tan Y, Bajinka O, Jammeh ML, Dukureh A, Obiegbusi CN, Abdelhalim KA, Mohanad M. The connection between epigenetics and gut microbiota-current perspective. Cell Biochem Funct 2024; 42:e3941. [PMID: 38379252 DOI: 10.1002/cbf.3941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024]
Abstract
Both the epigenetic changes and gut microbiota (GM) have attracted a growing interest in establishing effective diagnostics and potential therapeutic strategies for a number of diseases. These disorders include metabolic, central nervous system-related diseases, autoimmune, and gastrointestinal infections (GI). Despite the number of studies, there is no extensive review that connects the epigenetics modifications and GM as biomarkers that could confer effective diagnostics and confer treatment options. To this end, this review hopes to give detailed information on connecting the modifications in epigenetic and GM. An updated and detailed information on the connection between the epigenetics factors and GM that influence diseases are given. In addition, the review showed some associations between the epigenetics to the maternal GM and offspring health. Finally, the limitations of the concept and prospects into this new emerging discipline were also looked into. Although this review elucidated on the maternal diet and response to offspring health with respect to GM and epigenetic modifications, there still exist various limitations to this newly emerging discipline. In addition to integrating complementary multi-omics data, longitudinal sampling will aid with the identification of functional mechanisms that may serve as therapeutic targets. To this end, this review gave a detailed perspective into harnessing disease diagnostics, prevention and treatment options through epigenetics and GM.
Collapse
Affiliation(s)
- Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Ousman Bajinka
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Modou L Jammeh
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Abubakarr Dukureh
- Department of Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chidera N Obiegbusi
- Department of Medical Science, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Khalid A Abdelhalim
- Industrial Research and Development, Izmir Biomedicine and Genome Center, Izmir, Turkiye
| | - Mahmoud Mohanad
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
| |
Collapse
|
32
|
Shi G, Zhu B, Wu Q, Dai J, Sheng N. Prenatal exposure to hexafluoropropylene oxide trimer acid (HFPO-TA) disrupts the maternal gut microbiome and fecal metabolome homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169330. [PMID: 38135079 DOI: 10.1016/j.scitotenv.2023.169330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Initially considered a "safe" substitute for perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been extensively used in the production of fluoropolymers for several years, leading to its environmental ubiquity and subsequent discovery of its significant bio-accumulative properties and toxicological effects. However, the specific impact of HFPO-TA on females, particularly those who are pregnant, remains unclear. In the present study, pregnant mice were exposed to 0.63 mg/kg/day HFPO-TA from gestational day (GD) 2 to GD 18. We then determined the potential effects of exposure on gut microbiota and fecal metabolites at GD 12 (mid-pregnancy) and GD 18 (late pregnancy). Our results revealed that, in addition to liver damage, HFPO-TA exposure during the specified window altered the structure and function of cecal gut microbiota. Notably, these changes showed the opposite trends at GD 12 and GD 18. Specifically, at GD 12, HFPO-TA exposure primarily resulted in the down-regulation of relative abundances within genera from the Bacteroidetes and Proteobacteria phyla, as well as associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. With extended exposure time, the down-regulated genera within Proteobacteria became significantly up-regulated, accompanied by corresponding up-regulation of human disease- and inflammation-associated pathways, suggesting that HFPO-TA exposure can induce intestinal inflammation and elevate the risk of infection during late pregnancy. Pearson correlation analysis revealed that disturbances in the gut microbiota were accompanied by abnormal fecal metabolite. Additionally, alterations in hormones related to the steroid hormone biosynthesis pathway at both sacrifice time indicated that HFPO-TA exposure might change the steroid hormone level of pregnant mice, but need further study. In conclusion, this study provides new insights into the mechanisms underlying HFPO-TA-induced adverse effects and increases awareness of potential persistent health risks to pregnant females.
Collapse
Affiliation(s)
- Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
33
|
Yang Q, Zaongo SD, Zhu L, Yan J, Yang J, Ouyang J. The Potential of Clostridium butyricum to Preserve Gut Health, and to Mitigate Non-AIDS Comorbidities in People Living with HIV. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10227-1. [PMID: 38336953 DOI: 10.1007/s12602-024-10227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
A dramatic reduction in mortality among people living with HIV (PLWH) has been achieved during the modern antiretroviral therapy (ART) era. However, ART does not restore gut barrier function even after long-term viral suppression, allowing microbial products to enter the systemic blood circulation and induce chronic immune activation. In PLWH, a chronic state of systemic inflammation exists and persists, which increases the risk of development of inflammation-associated non-AIDS comorbidities such as metabolic disorders, cardiovascular diseases, and cancer. Clostridium butyricum is a human butyrate-producing symbiont present in the gut microbiome. Convergent evidence has demonstrated favorable effects of C. butyricum for gastrointestinal health, including maintenance of the structural and functional integrity of the gut barrier, inhibition of pathogenic bacteria within the intestine, and reduction of microbial translocation. Moreover, C. butyricum supplementation has been observed to have a positive effect on various inflammation-related diseases such as diabetes, ulcerative colitis, and cancer, which are also recognized as non-AIDS comorbidities associated with epithelial gut damage. There is currently scant published research in the literature, focusing on the influence of C. butyricum in the gut of PLWH. In this hypothesis review, we speculate the use of C. butyricum as a probiotic oral supplementation may well emerge as a potential future synergistic adjunctive strategy in PLWH, in tandem with ART, to restore and consolidate intestinal barrier integrity, repair the leaky gut, prevent microbial translocation from the gut, and reduce both gut and systemic inflammation, with the ultimate objective of decreasing the risk for development of non-AIDS comorbidities in PLWH.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Lijiao Zhu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiangyu Yan
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
34
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
35
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
36
|
Chu C, Huang S, Wang X, Zhao G, Hao W, Zhong Y, Ma Z, Huang C, Peng Y, Wei F. Randomized controlled trial comparing the impacts of Saccharomyces boulardii and Lactobacillus rhamnosus OF44 on intestinal flora in cerebral palsy rats: insights into inflammation biomarkers and depression-like behaviors. Transl Pediatr 2024; 13:72-90. [PMID: 38323178 PMCID: PMC10839280 DOI: 10.21037/tp-23-566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Background Cerebral palsy (CP) is a unique neurological disorder which adversely affects motion. Cytokines and gut microbial composition contribute to CP and other diseases, such as reproductive tract inflammation and bone loss. Importantly, Saccharomyces boulardii (S. boulardii) reduces the degree of inflammation and improves overall health status. As our previous study showed that Lactobacillus rhamnosus (L. rhamnosus) OF44, a selected strain of gut bacteria originally used to treat reproductive tract inflammation and bone loss, has effects similar to that of S. boulardii, we decided to use L. rhamnosus OF44 on CP rats. Validation of the effects of L. rhamnosus OF44 on CP adds to its confirmed effects in treating osteoporosis and reproductive tract microbiota disorders, increasing its potential as a probiotic. The purpose of this was to ascertain whether L. rhamnosus OF44 can alleviate the symptoms of CP. Methods CP rat models were created through left carotid artery ligation. Following this, 100-day old CP rats were exposed to L. rhamnosus OF44, S. boulardii, or normal saline gastric gavage daily for 28 days. Grouping of the rats is determined randomly. Before and after the gavage, behavioral experiments were conducted and the inflammation levels assessed via measurements of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor alpha (TNF-α) inflammatory markers. The efficacy of the outcome is measured by performing statistical analysis like the t-test on the data to see its significance. Additionally, variations inside gut microbiome were evaluated via 16S ribosomal RNA sequencing. Results Before intervention, CP rats failed to exhibit depression-like behavior (P=0.6). L. rhamnosus OF44 treatment significantly reduced the level of IL-6 (P=4.8e-05), S. boulardii treatment significantly reduced the level of TNF-α (P=0.04). In addition, both treatments altered the composition and complexity of the gut microbiome. Conclusions Our results indicated that L. rhamnosus OF44 has potential in alleviating inflammation and altering the gut microbial composition in CP, and that it has the potential to clinically treat CP. There are some limitations of this study. For example, dietary differences and their effects on gastrointestinal dysfunction are not considered in this study, and only two behavioral experiments were used.
Collapse
Affiliation(s)
- Chunuo Chu
- International Department, Shenzhen Middle School, Shenzhen, China
| | - Shang Huang
- Department of Centre Lab, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
- Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Xin Wang
- Department of Centre Lab, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
- School of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Guoqiang Zhao
- Department of Clinical Laboratory, Binzhou People’s Hospital, Binzhou, China
| | - Wenqi Hao
- Department of ENT, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yiyi Zhong
- Department of Nutrition, BGI Nutrition Precision Co., Ltd., Shenzhen, China
| | - Zhihui Ma
- Department of Nutrition, BGI Nutrition Precision Co., Ltd., Shenzhen, China
| | - Congfu Huang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Yuanping Peng
- The Outpatient Department, Longgang District Social Welfare Center, Shenzhen, China
| | - Fengxiang Wei
- Department of Centre Lab, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| |
Collapse
|
37
|
Cui Y, Jing C, Yue Y, Ning M, Chen H, Yuan Y, Yue T. Kefir Ameliorates Alcohol-Induced Liver Injury Through Modulating Gut Microbiota and Fecal Bile Acid Profile in Mice. Mol Nutr Food Res 2024; 68:e2300301. [PMID: 37933689 DOI: 10.1002/mnfr.202300301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Alcoholic liver disease (ALD) is the leading cause of liver-related deaths worldwide. Kefir has been studied for its properties of anti-obesity, rebuilding intestinal homeostasis, and alleviating non-alcoholic fatty liver disease. However, the possible role of kefir in the prevention or treatment of ALD has not been carefully considered. Here, it evaluated the protective effects of kefir supplementation on alcohol-induced liver injury. METHODS AND RESULTS C57BL/6J mice are fed to Lieber-DeCarli liquid diet containing alcohol to build ALD mouse model, followed by oral administration with kefir. Results indicate that kefir treatment improves liver pathological changes, decreases the expression levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and inflammatory markers, and increases antioxidant levels. Kefir supplementation also restores the intestinal barrier and altered microbial composition, indicates as increases of Blautia, Bacteroides, and Parasutterella and decreases in the Firmicutes/Bacteroidetes (F/B) ratio and populations of Psychrobacter, Bacillus, and Monoglobus. Moreover, kefir supplementation decreases the levels of total bile acids (BAs) and primary BAs and increases the secondary/primary BA ratio. Gut microbes play a key role in the conversion of primary to secondary fecal BAs. CONCLUSION Kefir can ameliorate ALD through regulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Chun Jing
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- Xi'an Gaoxin No. 1 High School, Xi'an, 710119, China
| |
Collapse
|
38
|
Liu J, Tian R, Sun C, Guo Y, Dong L, Li Y, Song X. Microbial metabolites are involved in tumorigenesis and development by regulating immune responses. Front Immunol 2023; 14:1290414. [PMID: 38169949 PMCID: PMC10758836 DOI: 10.3389/fimmu.2023.1290414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The human microbiota is symbiotic with the host and can create a variety of metabolites. Under normal conditions, microbial metabolites can regulate host immune function and eliminate abnormal cells in a timely manner. However, when metabolite production is abnormal, the host immune system might be unable to identify and get rid of tumor cells at the early stage of carcinogenesis, which results in tumor development. The mechanisms by which intestinal microbial metabolites, including short-chain fatty acids (SCFAs), microbial tryptophan catabolites (MTCs), polyamines (PAs), hydrogen sulfide, and secondary bile acids, are involved in tumorigenesis and development by regulating immune responses are summarized in this review. SCFAs and MTCs can prevent cancer by altering the expression of enzymes and epigenetic modifications in both immune cells and intestinal epithelial cells. MTCs can also stimulate immune cell receptors to inhibit the growth and metastasis of the host cancer. SCFAs, MTCs, bacterial hydrogen sulfide and secondary bile acids can control mucosal immunity to influence the occurrence and growth of tumors. Additionally, SCFAs, MTCs, PAs and bacterial hydrogen sulfide can also affect the anti-tumor immune response in tumor therapy by regulating the function of immune cells. Microbial metabolites have a good application prospect in the clinical diagnosis and treatment of tumors, and our review provides a good basis for related research.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Caiyu Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
39
|
Zhang Y, Wang X, Li W, Yang Y, Wu Z, Lyu Y, Yue C. Intestinal microbiota: a new perspective on delaying aging? Front Microbiol 2023; 14:1268142. [PMID: 38098677 PMCID: PMC10720643 DOI: 10.3389/fmicb.2023.1268142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The global aging situation is severe, and the medical pressures associated with aging issues should not be underestimated. The need and feasibility of studying aging and intervening in aging have been confirmed. Aging is a complex natural physiological progression, which involves the irreversible deterioration of body cells, tissues, and organs with age, leading to enhanced risk of disease and ultimately death. The intestinal microbiota has a significant role in sustaining host dynamic balance, and the study of bidirectional communication networks such as the brain-gut axis provides important directions for human disease research. Moreover, the intestinal microbiota is intimately linked to aging. This review describes the intestinal microbiota changes in human aging and analyzes the causal controversy between gut microbiota changes and aging, which are believed to be mutually causal, mutually reinforcing, and inextricably linked. Finally, from an anti-aging perspective, this study summarizes how to achieve delayed aging by targeting the intestinal microbiota. Accordingly, the study aims to provide guidance for further research on the intestinal microbiota and aging.
Collapse
Affiliation(s)
- Yuemeng Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaomei Wang
- Yan’an University of Physical Education, Yan’an University, Yan’an, Shaanxi, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Zhuoxuan Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
40
|
Wu YJ, Wang L, Wang KX, Du JR, Long FY. Modulation of Xiongdanjiuxin pills on the gut-liver axis in high-fat diet rats. Life Sci 2023; 333:122134. [PMID: 37778415 DOI: 10.1016/j.lfs.2023.122134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
AIM Xiongdanjiuxin pill (XP) is a traditional Chinese medicine formula for the prevention and treatment of hyperlipidemia (HLP) and related complications. In this study, the gut-liver axis was used as the breakthrough point to analyze the therapeutic effect and potential mechanism of XP on HLP model rats and related complications. MAIN METHODS We used high-fat diet (HFD) to establish the HLP model of rats and treated them with XP. The 16S rRNA sequencing method was used to explore the effect of XP on the gut microbiota of HFD rats, and the effects of XP on ileum pathology, intestinal barrier and circulatory inflammation in HFD rats were also investigated. We further explored the molecular mechanism of XP treating liver inflammation in rats with HFD by regulating toll-like receptor 4 (TLR4) signaling. KEY FINDINGS We found that XP could regulate the imbalance of gut microbiota in HFD rats, and up-regulate the expression of tight junction protein in intestinal epithelium of HFD rats, thereby improving the intestinal barrier damage and intestinal inflammatory response. In addition, XP could significantly reduce the levels of inflammatory cytokines in HFD rats, and inhibit TLR4 signaling pathway, thereby reducing liver inflammation in HFD rats. SIGNIFICANCE XP can effectively improve the imbalance of gut-liver axis in hyperlipidemic rats and alleviate the inflammatory damage of liver. Its mechanism may be related to regulating the disorder of gut microbiota and inhibiting TLR4 signal pathway, so as to achieve the therapeutic effect on hyperlipidemic fatty liver in rats.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Liu Wang
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Ke-Xin Wang
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China.
| | - Fang-Yi Long
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China; Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
41
|
Wang ZY, Gao PP, Li L, Chen TT, Li N, Qi M, Zhang SN, Xu YP, Wang YH, Zhang SH, Zhang LL, Wei W, Du M, Sun WY. Dextran sulfate sodium-induced gut microbiota dysbiosis aggravates liver injury in mice with S100-induced autoimmune hepatitis. Immunol Lett 2023; 263:70-77. [PMID: 37797724 DOI: 10.1016/j.imlet.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Recently, the incidence of autoimmune hepatitis (AIH) has gradually increased, and the disease can eventually develop into cirrhosis or even hepatoma if left untreated. AIH patients are often characterized by gut microbiota dysbiosis, but whether gut microbiota dysbiosis contributes to the progression of AIH remains unclear. In this study, we investigate the role of gut microbiota dysbiosis in the occurrence and development of AIH in mice with dextran sulfate sodium salt (DSS) induced colitis. C57BL/6J mice were randomly divided into normal group, S100-induced AIH group, and DSS+S100 group (1 % DSS in the drinking water), and the experimental cycle lasted for four weeks. We demonstrate that DSS administration aggravates hepatic inflammation and disruption of the intestinal barrier, and significantly changes the composition of gut microbiota in S100-induced AIH mice, which are mainly characterized by increased abundance of pathogenic bacteria and decreased abundance of beneficial bacteria. These results suggest that DSS administration aggravates liver injury of S100-induced AIH, which may be due to DSS induced gut microbiota dysbiosis, leading to disruption of the intestinal barrier, and then, the microbiota translocate to the liver, aggravating hepatic inflammation.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ling Li
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Nan Li
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Meng Qi
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Sheng-Nan Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ya-Ping Xu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yu-Han Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Min Du
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
42
|
Sun A, Liu H, Sun M, Yang W, Liu J, Lin Y, Shi X, Sun J, Liu L. Emerging nanotherapeutic strategies targeting gut-X axis against diseases. Biomed Pharmacother 2023; 167:115577. [PMID: 37757494 DOI: 10.1016/j.biopha.2023.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota can coordinate with different tissues and organs to maintain human health, which derives the concept of the gut-X axis. Conversely, the dysbiosis of gut microbiota leads to the occurrence and development of various diseases, such as neurological diseases, liver diseases, and even cancers. Therefore, the modulation of gut microbiota offers new opportunities in the field of medicines. Antibiotics, probiotics or other treatments might restore unbalanced gut microbiota, which effects do not match what people have expected. Recently, nanomedicines with the high targeting ability and reduced toxicity make them an appreciative choice for relieving disease through targeting gut-X axis. Considering this paradigm-setting trend, the current review summarizes the advancements in gut microbiota and its related nanomedicines. Specifically, this article introduces the immunological effects of gut microbiota, summarizes the gut-X axis-associated diseases, and highlights the nanotherapeutics-mediated treatment via remolding the gut-X axis. Moreover, this review also discusses the challenges in studies related to nanomedicines targeting the gut microbiota and offers the future perspective, thereby aiming at charting a course toward clinic.
Collapse
Affiliation(s)
- Ao Sun
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hongyu Liu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China; Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China
| | - Weiguang Yang
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiaxin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yi Lin
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China.
| | - Linlin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
43
|
Cui Y, Guo P, Ning M, Yue Y, Yuan Y, Yue T. Kluyveromyces marxianus supplementation ameliorates alcohol-induced liver injury associated with the modulation of gut microbiota in mice. Food Funct 2023; 14:9920-9935. [PMID: 37853829 DOI: 10.1039/d3fo01796f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The aim of this study was to evaluate the intervention effect of the potential probiotic Kluyveromyces marxianus YG-4 isolated from Tibetan kefir grains on alcoholic liver disease (ALD). Eight-week-old male C57BL/6J mice were fed with a Lieber-DeCarli (LDC) diet containing ethanol with a progressively increasing concentration from 1% to 4% (vol/vol) to establish an ALD mouse model. Our results suggested that K. marxianus treatment improved ALD, as demonstrated by the reduction of serum ALT and AST levels and the suppression of TLR4/NF-κB-mediated inflammatory response in the liver. K. marxianus administration significantly elevated antioxidant activities of SOD, CAT and GSH-Px, and reduced the MDA level in mice. K. marxianus supplementation repaired the gut barrier by increasing tight junction proteins and the number of goblet cells in the colon of ALD mice. In addition, treatment with K. marxianus restored alcohol-induced gut dysbiosis. Specifically, K. marxianus administration depleted the abundance of Lactobacillus, Coriobacteriaceae_UCG-002 and Candida, while increased that of Allobaculum, Dubosiella and Epicoccum in mice. Our findings open new possibilities for K. marxianus application in ALD treatment.
Collapse
Affiliation(s)
- Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Yuan Yue
- Xi'an Gaoxin No. 1 High School, Xi'an, 710119, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
44
|
Xinyuan T, Lei Y, Jianping S, Rongwei Z, Ruiwen S, Ye Z, Jing Z, Chunfang T, Hongwei C, Haibin G. Advances in the role of gut microbiota in the regulation of the tumor microenvironment (Review). Oncol Rep 2023; 50:181. [PMID: 37615187 PMCID: PMC10485805 DOI: 10.3892/or.2023.8618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
As a protector of human health, the gut microbiota plays an important role in the development of the immune system during childhood, and the regulation of dietary habits, metabolism and immune system during adulthood. Dysregulated gut flora is not pathogenic, but it can weaken the protective effect of the immune system and cause various diseases. The tumor microenvironment is a physiological environment formed during tumor growth, which provides nutrients and growth factors necessary for tumor growth. As an important factor affecting the tumor microenvironment, the intestinal microflora affects the development of tumors through the mechanisms of gut and microflora metabolites, gene toxins and signaling pathways. The present article aimed to review the components and mechanisms of action, clinical applications, and biological targets of gut microbiota in the regulation of the tumor microenvironment. The present review provides novel insights for the future use of intestinal flora, to regulate the tumor microenvironment, to intervene in the occurrence, development, treatment and prognosis of tumors.
Collapse
Affiliation(s)
- Tian Xinyuan
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Yu Lei
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Shi Jianping
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Zhao Rongwei
- Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Shi Ruiwen
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Zhang Ye
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Zhao Jing
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Tian Chunfang
- Department of Oncology, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Cui Hongwei
- Department of Scientific Research, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Guan Haibin
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| |
Collapse
|
45
|
Xiang Z, Wu J, Li J, Zheng S, Wei X, Xu X. Gut Microbiota Modulation: A Viable Strategy to Address Medical Needs in Hepatocellular Carcinoma and Liver Transplantation. ENGINEERING 2023; 29:59-72. [DOI: 10.1016/j.eng.2022.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
46
|
Qi Z, Qi X, Xu Y, Sun H, Li D, Liu J, Cong M, Liu T. Alterations in the "Gut-Liver Axis" on Rats with Immunological Hepatic Fibrosis. J Immunol Res 2023; 2023:5577850. [PMID: 37781475 PMCID: PMC10539088 DOI: 10.1155/2023/5577850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
There remains a lack of standard models that have all the characteristics of human diseases. Especially in immunological hepatic fibrosis, the bovine serum albumin (BSA)-induced liver fibrosis models have the same developmental mechanisms as human liver fibrosis models, but have received little attention. We standardized a BSA-induced liver fibrosis model in rats and thoroughly assessed its pathological characteristics. We also used 16S sequencing to assess homeostasis of the intestinal microflora of rats with BSA-induced liver fibrosis and detected various differential metabolites in the serum of these rats using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). We observed stable and unambiguous histological changes in liver tissue morphology and remarkably high concentrations of inflammatory markers in the serum of BSA-induced liver fibrosis rats. In keeping with the fact that BSA induction can cause gut microbiota disorders in rats. UHPLC-MS/MS analysis of rat serum samples in positive-ion mode and negative-ion mode revealed 17 and 25 differential metabolites, respectively. Network analysis revealed that phenylalanine or tyrosine metabolites (e.g., PAGln) were the predominant metabolites in the sera of BSA-induced liver fibrosis rats. Taken together, our results suggest that disorders of amino acid metabolism caused by the gut microbiota may play an important role in the progression of immunological hepatic fibrosis.
Collapse
Affiliation(s)
- Zhaoyao Qi
- School of Public Health, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, China
| | - Xinxin Qi
- School of Public Health, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, China
| | - Yuanhui Xu
- School of Public Health, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, China
| | - Hongguang Sun
- School of Public Health, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, China
| | - Dengfeng Li
- School of Public Health, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, China
| | - Jincun Liu
- School of Public Health, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, China
| | - Meili Cong
- School of Public Health, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, China
| | - Tao Liu
- School of Public Health, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, China
| |
Collapse
|
47
|
Lederer AK, Rasel H, Kohnert E, Kreutz C, Huber R, Badr MT, Dellweg PKE, Bartsch F, Lang H. Gut Microbiota in Diagnosis, Therapy and Prognosis of Cholangiocarcinoma and Gallbladder Carcinoma-A Scoping Review. Microorganisms 2023; 11:2363. [PMID: 37764207 PMCID: PMC10538110 DOI: 10.3390/microorganisms11092363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Cancers of the biliary tract are more common in Asia than in Europe, but are highly lethal due to delayed diagnosis and aggressive tumor biology. Since the biliary tract is in direct contact with the gut via the enterohepatic circulation, this suggests a potential role of gut microbiota, but to date, the role of gut microbiota in biliary tract cancers has not been elucidated. This scoping review compiles recent data on the associations between the gut microbiota and diagnosis, progression and prognosis of biliary tract cancer patients. Systematic review of the literature yielded 154 results, of which 12 studies and one systematic review were eligible for evaluation. The analyses of microbiota diversity indices were inconsistent across the included studies. In-depth analyses revealed differences between gut microbiota of biliary tract cancer patients and healthy controls, but without a clear tendency towards particular species in the studies. Additionally, most of the studies showed methodological flaws, for example non-controlling of factors that affect gut microbiota. At the current stage, there is a lack of evidence to support a general utility of gut microbiota diagnostics in biliary tract cancers. Therefore, no recommendation can be made at this time to include gut microbiota analyses in the management of biliary tract cancer patients.
Collapse
Affiliation(s)
- Ann-Kathrin Lederer
- Department of General, Visceral and Transplant Surgery, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hannah Rasel
- Department of General, Visceral and Transplant Surgery, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mohamed Tarek Badr
- Institute of Medical Microbiology and Hygiene, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Patricia K. E. Dellweg
- Department of General, Visceral and Transplant Surgery, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Fabian Bartsch
- Department of General, Visceral and Transplant Surgery, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
48
|
Qiao C, He M, Wang S, Jiang X, Wang F, Li X, Tan S, Chao Z, Xin W, Gao S, Yuan J, Li Q, Xu Z, Zheng X, Zhao J, Liu G. Multi-omics analysis reveals substantial linkages between the oral-gut microbiomes and inflamm-aging molecules in elderly pigs. Front Microbiol 2023; 14:1250891. [PMID: 37789859 PMCID: PMC10542583 DOI: 10.3389/fmicb.2023.1250891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction The accelerated aging of the global population has emerged as a critical public health concern, with increasing recognition of the influential role played by the microbiome in shaping host well-being. Nonetheless, there remains a dearth of understanding regarding the functional alterations occurring within the microbiota and their intricate interactions with metabolic pathways across various stages of aging. Methods This study employed a comprehensive metagenomic analysis encompassing saliva and stool samples obtained from 45 pigs representing three distinct age groups, alongside serum metabolomics and lipidomics profiling. Results Our findings unveiled discernible modifications in the gut and oral microbiomes, serum metabolome, and lipidome at each age stage. Specifically, we identified 87 microbial species in stool samples and 68 in saliva samples that demonstrated significant age-related changes. Notably, 13 species in stool, including Clostridiales bacterium, Lactobacillus johnsonii, and Oscillibacter spp., exhibited age-dependent alterations, while 15 salivary species, such as Corynebacterium xerosis, Staphylococcus sciuri, and Prevotella intermedia, displayed an increase with senescence, accompanied by a notable enrichment of pathogenic organisms. Concomitant with these gut-oral microbiota changes were functional modifications observed in pathways such as cell growth and death (necroptosis), bacterial infection disease, and aging (longevity regulating pathway) throughout the aging process. Moreover, our metabolomics and lipidomics analyses unveiled the accumulation of inflammatory metabolites or the depletion of beneficial metabolites and lipids as aging progressed. Furthermore, we unraveled a complex interplay linking the oral-gut microbiota with serum metabolites and lipids. Discussion Collectively, our findings illuminate novel insights into the potential contributions of the oral-gut microbiome and systemic circulating metabolites and lipids to host lifespan and healthy aging.
Collapse
Affiliation(s)
- Chuanmin Qiao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Maozhang He
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shumei Wang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinjie Jiang
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Feng Wang
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Xinjian Li
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Shuyi Tan
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Wenshui Xin
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Shuai Gao
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Jingli Yuan
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Qiang Li
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Zichun Xu
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Xinli Zheng
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| | - Jianguo Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guangliang Liu
- Institute of Animal Science and Veterinary Medicine, Academy of Agricultural Sciences, Haikou, China
| |
Collapse
|
49
|
Baima G, Ribaldone DG, Romano F, Aimetti M, Romandini M. The Gum-Gut Axis: Periodontitis and the Risk of Gastrointestinal Cancers. Cancers (Basel) 2023; 15:4594. [PMID: 37760563 PMCID: PMC10526746 DOI: 10.3390/cancers15184594] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Periodontitis has been linked to an increased risk of various chronic non-communicable diseases, including gastrointestinal cancers. Indeed, dysbiosis of the oral microbiome and immune-inflammatory pathways related to periodontitis may impact the pathophysiology of the gastrointestinal tract and its accessory organs through the so-called "gum-gut axis". In addition to the hematogenous spread of periodontal pathogens and inflammatory cytokines, recent research suggests that oral pathobionts may translocate to the gastrointestinal tract through saliva, possibly impacting neoplastic processes in the gastrointestinal, liver, and pancreatic systems. The exact mechanisms by which oral pathogens contribute to the development of digestive tract cancers are not fully understood but may involve dysbiosis of the gut microbiome, chronic inflammation, and immune modulation/evasion, mainly through the interaction with T-helper and monocytic cells. Specifically, keystone periodontal pathogens, including Porphyromonas gingivalis and Fusobacterium nucleatum, are known to interact with the molecular hallmarks of gastrointestinal cancers, inducing genomic mutations, and promote a permissive immune microenvironment by impairing anti-tumor checkpoints. The evidence gathered here suggests a possible role of periodontitis and oral dysbiosis in the carcinogenesis of the enteral tract. The "gum-gut axis" may therefore represent a promising target for the development of strategies for the prevention and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | | | - Federica Romano
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | - Mario Aimetti
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
50
|
Ohtani N, Kamiya T, Kawada N. Recent updates on the role of the gut-liver axis in the pathogenesis of NAFLD/NASH, HCC, and beyond. Hepatol Commun 2023; 7:e0241. [PMID: 37639702 PMCID: PMC10462074 DOI: 10.1097/hc9.0000000000000241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023] Open
Abstract
The gut and the liver are anatomically and physiologically connected, and this connection is called the "gut-liver axis," which exerts various influences on liver physiology and pathology. The gut microbiota has been recognized to trigger innate immunity and modulate the liver immune microenvironment. Gut microbiota influences the physiological processes in the host, such as metabolism, by acting on various signaling receptors and transcription factors through their metabolites and related molecules. The gut microbiota has also been increasingly recognized to modulate the efficacy of immune checkpoint inhibitors. In this review, we discuss recent updates on gut microbiota-associated mechanisms in the pathogenesis of chronic liver diseases such as NAFLD and NASH, as well as liver cancer, in light of the gut-liver axis. We particularly focus on gut microbial metabolites and components that are associated with these liver diseases. We also discuss the role of gut microbiota in modulating the response to immunotherapy in liver diseases.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Tomonori Kamiya
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|