1
|
Meng EX, Verne GN, Zhou Q. Macrophages and Gut Barrier Function: Guardians of Gastrointestinal Health in Post-Inflammatory and Post-Infection Responses. Int J Mol Sci 2024; 25:9422. [PMID: 39273369 PMCID: PMC11395020 DOI: 10.3390/ijms25179422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The gut barrier is essential for protection against pathogens and maintaining homeostasis. Macrophages are key players in the immune system, are indispensable for intestinal health, and contribute to immune defense and repair mechanisms. Understanding the multifaceted roles of macrophages can provide critical insights into maintaining and restoring gastrointestinal (GI) health. This review explores the essential role of macrophages in maintaining the gut barrier function and their contribution to post-inflammatory and post-infectious responses in the gut. Macrophages significantly contribute to gut barrier integrity through epithelial repair, immune modulation, and interactions with gut microbiota. They demonstrate active plasticity by switching phenotypes to resolve inflammation, facilitate tissue repair, and regulate microbial populations following an infection or inflammation. In addition, tissue-resident (M2) and infiltration (M1) macrophages convert to each other in gut problems such as IBS and IBD via major signaling pathways mediated by NF-κB, JAK/STAT, PI3K/AKT, MAPK, Toll-like receptors, and specific microRNAs such as miR-155, miR-29, miR-146a, and miR-199, which may be good targets for new therapeutic approaches. Future research should focus on elucidating the detailed molecular mechanisms and developing personalized therapeutic approaches to fully harness the potential of macrophages to maintain and restore intestinal permeability and gut health.
Collapse
Affiliation(s)
| | - George Nicholas Verne
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Qiqi Zhou
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Musa I, Wang ZZ, Yang N, Li XM. Formononetin inhibits IgE by huPlasma/PBMCs and mast cells/basophil activation via JAK/STAT/PI3-Akt pathways. Front Immunol 2024; 15:1427563. [PMID: 39221239 PMCID: PMC11363073 DOI: 10.3389/fimmu.2024.1427563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Rationale Food allergy is a prevalent disease in the U.S., affecting nearly 30 million people. The primary management strategy for this condition is food avoidance, as limited treatment options are available. The elevation of pathologic IgE and over-reactive mast cells/basophils is a central factor in food allergy anaphylaxis. This study aims to comprehensively evaluate the potential therapeutic mechanisms of a small molecule compound called formononetin in regulating IgE and mast cell activation. Methods In this study, we determined the inhibitory effect of formononetin on the production of human IgE from peripheral blood mononuclear cells of food-allergic patients using ELISA. We also measured formononetin's effect on preventing mast cell degranulation in RBL-2H3 and KU812 cells using beta-hexosaminidase assay. To identify potential targets of formononetin in IgE-mediated diseases, mast cell disorders, and food allergies, we utilized computational modeling to analyze mechanistic targets of formononetin from various databases, including SEA, Swiss Target Prediction, PubChem, Gene Cards, and Mala Cards. We generated a KEGG pathway, Gene Ontology, and Compound Target Pathway Disease Network using these targets. Finally, we used qRT-PCR to measure the gene expression of selected targets in KU812 and U266 cell lines. Results Formononetin significantly decreased IgE production in IgE-producing human myeloma cells and PBMCs from food-allergic patients in a dose-dependent manner without cytotoxicity. Formononetin decreased beta-hexosaminidase release in RBL-2H3 cells and KU812 cells. Formononetin regulates 25 targets in food allergy, 51 in IgE diseases, and 19 in mast cell diseases. KEGG pathway and gene ontology analysis of targets showed that formononetin regulated disease pathways, primary immunodeficiency, Epstein-Barr Virus, and pathways in cancer. The biological processes regulated by formononetin include B cell proliferation, differentiation, immune response, and activation processes. Compound target pathway disease network identified NFKB1, NFKBIA, STAT1, STAT3, CCND1, TP53, TYK2, and CASP8 as the top targets regulated at a high degree by formononetin. TP53, STAT3, PTPRC, IL2, and CD19 were identified as the proteins mostly targeted by formononetin. qPCR validated genes of Formononetin molecular targets of IgE regulation in U266 cells and KU812 cells. In U266 cells, formononetin was found to significantly increase the gene expression of NFKBIA, TP53, and BCL-2 while decreasing the gene expression of BTK TYK, CASP8, STAT3, CCND1, STAT1, NFKB1, IL7R. In basophils KU812 cells, formononetin significantly increased the gene expression of NFKBIA, TP53, and BCL-2 while decreasing the gene expression of BTK, TYK, CASP8, STAT3, CCND1, STAT1, NFKB1, IL7R. Conclusion These findings comprehensively present formononetin's mechanisms in regulating IgE production in plasma cells and degranulation in mast cells.
Collapse
Affiliation(s)
- Ibrahim Musa
- Department of Pathology Microbiology & Immunology, New York Medical College, New York, NY, United States
| | - Zhen-Zhen Wang
- Department of Pathology Microbiology & Immunology, New York Medical College, New York, NY, United States
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Nan Yang
- R&D Division, General Nutraceutical Technology LLC, Elmsford, NY, United States
| | - Xiu-Min Li
- Department of Pathology Microbiology & Immunology, New York Medical College, New York, NY, United States
- Department of Otolaryngology, School of Medicine, New York Medical College, New York, NY, United States
| |
Collapse
|
3
|
Kuhlmann-Hogan A, Cordes T, Xu Z, Kuna RS, Traina KA, Robles-Oteíza C, Ayeni D, Kwong EM, Levy S, Globig AM, Nobari MM, Cheng GZ, Leibel SL, Homer RJ, Shaw RJ, Metallo CM, Politi K, Kaech SM. EGFR-driven lung adenocarcinomas coopt alveolar macrophage metabolism and function to support EGFR signaling and growth. Cancer Discov 2024; 14:733526. [PMID: 38241033 PMCID: PMC11258210 DOI: 10.1158/2159-8290.cd-23-0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/15/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.
Collapse
Affiliation(s)
- Alexandra Kuhlmann-Hogan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | - Thekla Cordes
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
- Department of Bioinformatics and Biochemistry, Braunshweig Integrated Centre of Systems Biology (BRICS), Technishe Universität Braunschweig, Germany
- Research Group Cellular Metabolism in Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ziyan Xu
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Ramya S. Kuna
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Kacie A. Traina
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | | | - Deborah Ayeni
- Departments of Pathology and Internal Medicine, (Section of Medical Oncology), Yale School of Medicine, New Haven, CT
| | - Elizabeth M. Kwong
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Stellar Levy
- Departments of Pathology and Internal Medicine, (Section of Medical Oncology), Yale School of Medicine, New Haven, CT
| | - Anna-Maria Globig
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | - Matthew M. Nobari
- Division of Pulmonary and Critical Sleep Medicine, University of California San Diego Department of Medicine, La Jolla, CA
| | - George Z. Cheng
- Division of Pulmonary and Critical Sleep Medicine, University of California San Diego Department of Medicine, La Jolla, CA
| | - Sandra L. Leibel
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Robert J. Homer
- Departments of Pathology and Internal Medicine (Section of Pulmonary, Critical Care and Sleep Medicine), Yale University School of Medicine, New Haven, CT
| | - Reuben J. Shaw
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Christian M. Metallo
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Katerina Politi
- Departments of Pathology and Internal Medicine, (Section of Medical Oncology), Yale School of Medicine, New Haven, CT
- Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | - Susan M. Kaech
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| |
Collapse
|
4
|
Şenol H, Çağman Z, Gençoğlu Katmerlikaya T, Sinan Tokalı F. New Anthranilic Acid Hydrazones as Fenamate Isosteres: Synthesis, Characterization, Molecular Docking, Dynamics & in Silico ADME, in Vitro Anti-Inflammatory and Anticancer Activity Studies. Chem Biodivers 2023; 20:e202300773. [PMID: 37384873 DOI: 10.1002/cbdv.202300773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
In this study, twenty new anthranilic acid hydrazones 6-9 (a-e) were synthesized and their structures were characterized by Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1 H-NMR - 13 C-NMR), and High-resolution Mass Spectroscopy (HR-MS). The inhibitory effects of the compounds against COX-II were evaluated. IC50 values of the compounds were found in the range of >200-0.32 μM and compounds 6e, 8d, 8e, 9b, 9c, and 9e were determined to be the most effective inhibitors. Cytotoxic effects of the most potent compounds were investigated against human hepatoblastoma (Hep-G2) and human healthy embryonic kidney (Hek-293) cell lines. Doxorubicin (IC50 : 8.68±0.16 μM for Hep-G2, 55.29±0.56 μM for Hek-293) was used as standard. 8e is the most active compound, with low IC50 against Hep-G2 (4.80±0.04 μM), high against Hek-293 (159.30±3.12), and high selectivity (33.15). Finally, molecular docking and dynamics studies were performed to understand ligand-protein interactions between the most potent compounds and COX II, Epidermal Growth Factor Receptor (EGFR), and Transforming Growth Factor beta II (TGF-βII). The docking scores were calculated in the range of -10.609--6.705 kcal/mol for COX-II, -8.652--7.743 kcal/mol for EGFR, and -10.708--8.596 kcal/mol for TGF-βII.
Collapse
Affiliation(s)
- Halil Şenol
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Fatih, 34093, Istanbul, Türkiye
| | - Zeynep Çağman
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Biochemistry, Fatih, 34093, Istanbul, Türkiye
| | - Tuğba Gençoğlu Katmerlikaya
- Bezmialem Vakif University, Institute of Health Sciences, Department of Biotechnology, 34093, İstanbul, Türkiye
| | - Feyzi Sinan Tokalı
- Kafkas University, Kars Vocational School, Department of Material and Material Processing Technologies, 36100, Kars, Türkiye
| |
Collapse
|
5
|
Du L, Tang L, Xiao L, Tang K, Zeng Z, Liang Y, Guo Y. Increased expression of CSF1 in patients with eosinophilic asthma. Immun Inflamm Dis 2023; 11:e847. [PMID: 37249291 PMCID: PMC10170305 DOI: 10.1002/iid3.847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The link between colony-stimulating factor 1 (CSF1) and asthma was reported recently. However, the role and mechanism of CSF1 in asthma remain poorly understood. In this study, we aimed to explore the expression and its potential mechanism of CSF1 in asthma. METHODS CSF1 expression in the airway samples from asthmatics and healthy controls were examined, then the correlations between CSF1 and eosinophilic indicators were analyzed. Subsequently, bronchial epithelial cells (BEAS-2B) with CSF1 overexpression and knockdown were constructed to investigate the potential molecular mechanism of CSF1. Finally, the effect of CSF1R inhibitor on STAT1 was investigated. RESULTS The expression of CSF1 was significantly increased in patients with asthma compared to healthy controls, especially in patients with severe and eosinophilic asthma. Upregulated CSF1 positively correlated with airway-increased eosinophil inflammation. In vitro, cytokines interleukin 13 (IL-13) and IL-33 can stimulate the upregulation of CSF1 expression. CSF1 overexpression enhanced p-CSF1R/CSF1R and p-STAT1/STAT1 expression, while knockdown CSF1 using anti-CSF1 siRNAs decreased p-CSF1R/CSF1R and p-STAT1/STAT1 expression. Furthermore, the inhibitor of CSF1R significantly decreased p-STAT1/STAT1 expression. CONCLUSIONS Sputum CSF1 may be involved in asthmatic airway eosinophil inflammation by interacting with CSF1R and further activating the STAT1 signaling. Interfering this potential pathway could serve as an anti-inflammatory therapy for asthma.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Department of Respiratory and Critical Care MedicineThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Lu Tang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Lisha Xiao
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Kun Tang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Zhimin Zeng
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yuxia Liang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yubiao Guo
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
6
|
Kuhlmann-Hogan A, Cordes T, Xu Z, Traina KA, Robles-Oteíza C, Ayeni D, Kwong EM, Levy SR, Nobari M, Cheng GZ, Shaw R, Leibel SL, Metallo CM, Politi K, Kaech SM. EGFR + lung adenocarcinomas coopt alveolar macrophage metabolism and function to support EGFR signaling and growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536974. [PMID: 37131637 PMCID: PMC10153136 DOI: 10.1101/2023.04.15.536974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The limited efficacy of currently approved immunotherapies in EGFR-mutant lung adenocarcinoma (LUAD) underscores the need to better understand mechanisms governing local immunosuppression. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophages (TA-AM) to proliferate and support tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases T cell effector functions. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how such cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.
Collapse
|
7
|
Bhat S, Rotti H, Prasad K, Kabekkodu SP, Saadi AV, Shenoy SP, Joshi KS, Nesari TM, Shengule SA, Dedge AP, Gadgil MS, Dhumal VR, Salvi S, Satyamoorthy K. Genome-wide DNA methylation profiling after Ayurveda intervention to bronchial asthmatics identifies differential methylation in several transcription factors with immune process related function. J Ayurveda Integr Med 2023; 14:100692. [PMID: 37018893 PMCID: PMC10122039 DOI: 10.1016/j.jaim.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/13/2022] [Accepted: 02/01/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The Indian traditional medicinal system, Ayurveda, describes several lifestyle practices, processes and medicines as an intervention to treat asthma. Rasayana therapy is one of them and although these treatment modules show improvement in bronchial asthma, their mechanism of action, particularly the effect on DNA methylation, is largely understudied. OBJECTIVES Our study aimed at identifying the contribution of DNA methylation changes in modulating bronchial asthma phenotype upon Ayurveda intervention. MATERIALS AND METHODS In this study, genome-wide methylation profiling in peripheral blood DNA of healthy controls and bronchial asthmatics before (BT) and after (AT) Ayurveda treatment was performed using array-based profiling of reference-independent methylation status (aPRIMES) coupled to microarray technique. RESULTS We identified 4820 treatment-associated DNA methylation signatures (TADS) and 11,643 asthma-associated DNA methylation signatures (AADS), differentially methylated [FDR (≤0.1) adjusted p-values] in AT and HC groups respectively, compared to BT group. Neurotrophin TRK receptor signaling pathway was significantly enriched for differentially methylated genes in bronchial asthmatics, compared to AT and HC subjects. Additionally, we identified over 100 differentially methylated immune-related genes located in the promoter/5'-UTR regions of TADS and AADS. Various immediate-early response and immune regulatory genes with functions such as transcription factor activity (FOXD1, FOXD2, GATA6, HOXA3, HOXA5, MZF1, NFATC1, NKX2-2, NKX2-3, RUNX1, KLF11), G-protein coupled receptor activity (CXCR4, PTGER4), G-protein coupled receptor binding (UCN), DNA binding (JARID2, EBF2, SOX9), SNARE binding (CAPN10), transmembrane signaling receptor activity (GP1BB), integrin binding (ITGA6), calcium ion binding (PCDHGA12), actin binding (TRPM7, PANX1, TPM1), receptor tyrosine kinase binding (PIK3R2), receptor activity (GDNF), histone methyltransferase activity (MLL5), and catalytic activity (TSTA3) were found to show consistent methylation status between AT and HC group in microarray data. CONCLUSIONS Our study reports the DNA methylation-regulated genes in bronchial asthmatics showing improvement in symptoms after Ayurveda intervention. DNA methylation regulation in the identified genes and pathways represents the Ayurveda intervention responsive genes and may be further explored as diagnostic, prognostic, and therapeutic biomarkers for bronchial asthma in peripheral blood.
Collapse
Affiliation(s)
- Smitha Bhat
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Harish Rotti
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abdul Vahab Saadi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sushma P Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kalpana S Joshi
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Tanuja M Nesari
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Sushant A Shengule
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Amrish P Dedge
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Maithili S Gadgil
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Vikram R Dhumal
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Sundeep Salvi
- Department of Pulmonary Medicine, Chest Research Foundation, Pune, Maharashtra, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
8
|
Liu Y, Li P, Jiang T, Li Y, Wang Y, Cheng Z. Epidermal growth factor receptor in asthma: A promising therapeutic target? Respir Med 2023; 207:107117. [PMID: 36626942 DOI: 10.1016/j.rmed.2023.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Activation of the epidermal growth factor receptor (EGFR) pathway is involved in the pathogenesis of asthma. Although decades of intensive research have focused on the role of EGFR in asthma, the specific mechanisms and pathways of EGFR signaling remain unclear. Various reports have indicated that inhibition of EGFR improves the pathological features in asthma models. However, extending these experimental findings to clinical applications is difficult. Several measures can be adopted to promote clinical application of EGFR inhibitors. This review focuses on the role of EGFR in the pathogenesis of asthma and the development of a potentially novel therapeutic target for asthma.
Collapse
Affiliation(s)
- Ye Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tianci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Shi JW, Lai ZZ, Yang HL, Zhou WJ, Zhao XY, Xie F, Liu SP, Chen WD, Zhang T, Ye JF, Zhou XY, Li MQ. An IGF1-expressing endometrial stromal cell population is associated with human decidualization. BMC Biol 2022; 20:276. [PMID: 36482461 PMCID: PMC9733393 DOI: 10.1186/s12915-022-01483-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Decidualization refers to the process of transformation of endometrial stromal fibroblast cells into specialized decidual stromal cells that provide a nutritive and immunoprivileged matrix essential for blastocyst implantation and placental development. Deficiencies in decidualization are associated with a variety of pregnancy disorders, including female infertility, recurrent implantation failure (RIF), and miscarriages. Despite the increasing number of genes reportedly associated with endometrial receptivity and decidualization, the cellular and molecular mechanisms triggering and underlying decidualization remain largely unknown. Here, we analyze single-cell transcriptional profiles of endometrial cells during the window of implantation and decidual cells of early pregnancy, to gains insights on the process of decidualization. RESULTS We observed a unique IGF1+ stromal cell that may initiate decidualization by single-cell RNA sequencing. We found the IL1B+ stromal cells promote gland degeneration and decidua hemostasis. We defined a subset of NK cells for accelerating decidualization and extravillous trophoblast (EVT) invasion by AREG-IGF1 and AREG-CSF1 regulatory axe. Further analysis indicates that EVT promote decidualization possibly by multiply pathways. Additionally, a systematic repository of cell-cell communication for decidualization was developed. An aberrant ratio conversion of IGF1+ stromal cells to IGF1R+ stromal cells is observed in unexplained RIF patients. CONCLUSIONS Overall, a unique subpopulation of IGF1+ stromal cell is involved in initiating decidualization. Our observations provide deeper insights into the molecular and cellular characterizations of decidualization, and a platform for further development of evaluation of decidualization degree and treatment for decidualization disorder-related diseases.
Collapse
Affiliation(s)
- Jia-Wei Shi
- grid.8547.e0000 0001 0125 2443NHC Key Lab of Reproduction Regulation, Hospital of Obstetrics and Gynecology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200080 China ,grid.8547.e0000 0001 0125 2443Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080 China
| | - Zhen-Zhen Lai
- grid.8547.e0000 0001 0125 2443Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080 China
| | - Hui-Li Yang
- grid.8547.e0000 0001 0125 2443NHC Key Lab of Reproduction Regulation, Hospital of Obstetrics and Gynecology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200080 China
| | - Wen-Jie Zhou
- grid.16821.3c0000 0004 0368 8293Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Ya Zhao
- grid.452587.9Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200030 China
| | - Feng Xie
- grid.8547.e0000 0001 0125 2443Center for Diagnosis and Treatment of Cervical and Uterine Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011 China
| | - Song-Ping Liu
- grid.508387.10000 0005 0231 8677Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai, 201508 China
| | - Wei-Dong Chen
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai, 201112 China
| | - Tao Zhang
- grid.10784.3a0000 0004 1937 0482Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Jiang-Feng Ye
- grid.418812.60000 0004 0620 9243Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138632 Singapore
| | - Xiang-Yu Zhou
- grid.8547.e0000 0001 0125 2443NHC Key Lab of Reproduction Regulation, Hospital of Obstetrics and Gynecology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200080 China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Ming-Qing Li
- grid.8547.e0000 0001 0125 2443NHC Key Lab of Reproduction Regulation, Hospital of Obstetrics and Gynecology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200080 China ,grid.8547.e0000 0001 0125 2443Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080 China ,grid.508387.10000 0005 0231 8677Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai, 201508 China
| |
Collapse
|
10
|
Unterman A, Sumida TS, Nouri N, Yan X, Zhao AY, Gasque V, Schupp JC, Asashima H, Liu Y, Cosme C, Deng W, Chen M, Raredon MSB, Hoehn KB, Wang G, Wang Z, DeIuliis G, Ravindra NG, Li N, Castaldi C, Wong P, Fournier J, Bermejo S, Sharma L, Casanovas-Massana A, Vogels CBF, Wyllie AL, Grubaugh ND, Melillo A, Meng H, Stein Y, Minasyan M, Mohanty S, Ruff WE, Cohen I, Raddassi K, Niklason LE, Ko AI, Montgomery RR, Farhadian SF, Iwasaki A, Shaw AC, van Dijk D, Zhao H, Kleinstein SH, Hafler DA, Kaminski N, Dela Cruz CS. Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nat Commun 2022; 13:440. [PMID: 35064122 PMCID: PMC8782894 DOI: 10.1038/s41467-021-27716-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Adaptive Immunity/genetics
- Adaptive Immunity/immunology
- Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- COVID-19/genetics
- COVID-19/immunology
- Cells, Cultured
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Humans
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Male
- RNA-Seq/methods
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- Single-Cell Analysis/methods
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Avraham Unterman
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
- Pulmonary Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.
| | - Tomokazu S Sumida
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA.
| | - Nima Nouri
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Center for Medical Informatics, Yale School of Medicine, New Haven, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Amy Y Zhao
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Victor Gasque
- Department of Computer Science, Yale University, New Haven, CT, USA
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Hiromitsu Asashima
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Yunqing Liu
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Carlos Cosme
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Wenxuan Deng
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Ming Chen
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Micha Sam Brickman Raredon
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Guilin Wang
- Yale Center for Genome Analysis/Keck Biotechnology Resource Laboratory, Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Neal G Ravindra
- Department of Computer Science, Yale University, New Haven, CT, USA
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ningshan Li
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Patrick Wong
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - John Fournier
- School of Medicine, Yale University, New Haven, CT, USA
| | - Santos Bermejo
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anthony Melillo
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Yan Stein
- Pulmonary Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Maksym Minasyan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - William E Ruff
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Inessa Cohen
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Khadir Raddassi
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Laura E Niklason
- Departments of Anesthesiology & Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Shelli F Farhadian
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - David van Dijk
- Department of Computer Science, Yale University, New Haven, CT, USA
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Inter-Departmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Steven H Kleinstein
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Inter-Departmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- West Haven Veterans Affair Medical Center, West Haven, CT, USA
| |
Collapse
|
11
|
Effects of Formyl Peptide Receptor Agonists Ac9-12 and WKYMV in In Vivo and In Vitro Acute Inflammatory Experimental Models. Cells 2022; 11:cells11020228. [PMID: 35053343 PMCID: PMC8773544 DOI: 10.3390/cells11020228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022] Open
Abstract
Formyl peptide receptors (Fprs) are a G-protein-coupled receptor family mainly expressed on leukocytes. The activation of Fpr1 and Fpr2 triggers a cascade of signaling events, leading to leukocyte migration, cytokine release, and increased phagocytosis. In this study, we evaluate the effects of the Fpr1 and Fpr2 agonists Ac9-12 and WKYMV, respectively, in carrageenan-induced acute peritonitis and LPS-stimulated macrophages. Peritonitis was induced in male C57BL/6 mice through the intraperitoneal injection of 1 mL of 3% carrageenan solution or saline (control). Pre-treatments with Ac9-12 and WKYMV reduced leukocyte influx to the peritoneal cavity, particularly neutrophils and monocytes, and the release of IL-1β. The addition of the Fpr2 antagonist WRW4 reversed only the anti-inflammatory actions of WKYMV. In vitro, the administration of Boc2 and WRW4 reversed the effects of Ac9-12 and WKYMV, respectively, in the production of IL-6 by LPS-stimulated macrophages. These biological effects of peptides were differently regulated by ERK and p38 signaling pathways. Lipidomic analysis evidenced that Ac9-12 and WKYMV altered the intracellular lipid profile of LPS-stimulated macrophages, revealing an increased concentration of several glycerophospholipids, suggesting regulation of inflammatory pathways triggered by LPS. Overall, our data indicate the therapeutic potential of Ac9-12 and WKYMV via Fpr1 or Fpr2-activation in the inflammatory response and macrophage activation.
Collapse
|
12
|
Airway Epithelial Dysfunction in Asthma: Relevant to Epidermal Growth Factor Receptors and Airway Epithelial Cells. J Clin Med 2020; 9:jcm9113698. [PMID: 33217964 PMCID: PMC7698733 DOI: 10.3390/jcm9113698] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Airway epithelium plays an important role as the first barrier from external pathogens, including bacteria, viruses, chemical substances, and allergic components. Airway epithelial cells also have pivotal roles as immunological coordinators of defense mechanisms to transfer signals to immunologic cells to eliminate external pathogens from airways. Impaired airway epithelium allows the pathogens to remain in the airway epithelium, which induces aberrant immunological reactions. Dysregulated functions of asthmatic airway epithelium have been reported in terms of impaired wound repair, fragile tight junctions, and excessive proliferation, leading to airway remodeling, which contributes to aberrant airway responses caused by external pathogens. To maintain airway epithelium integrity, a family of epidermal growth factor receptors (EGFR) have pivotal roles in mechanisms of cell growth, proliferation, and differentiation. There are extensive studies focusing on the relation between EGFR and asthma pathophysiology, which describe airway remodeling, airway hypermucus secretion, as well as immunological responses of airway inflammation. Furthermore, the second EGFR family member, erythroblastosis oncogene B2 (ErbB2), has been recognized to be involved with impaired wound recovery and epithelial differentiation in asthmatic airway epithelium. In this review, the roles of the EGFR family in asthmatic airway epithelium are focused on to elucidate the pathogenesis of airway epithelial dysfunction in asthma.
Collapse
|
13
|
Lee K, Han MR, Yeon JW, Kim B, Kim TH. Whole Transcriptome Analysis of Myeloid Dendritic Cells Reveals Distinct Genetic Regulation in Patients with Allergies. Int J Mol Sci 2020; 21:ijms21228640. [PMID: 33207814 PMCID: PMC7697962 DOI: 10.3390/ijms21228640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) play critical roles in atopic diseases, orchestrating both innate and adaptive immune systems. Nevertheless, limited information is available regarding the mechanism through which DCs induce hyperresponsiveness in patients with allergies. This study aims to reveal novel genetic alterations and future therapeutic target molecules in the DCs from patients with allergies using whole transcriptome sequencing. Transcriptome sequencing of human BDCA-3+/CD11c+ DCs sorted from peripheral blood monocytes obtained from six patients with allergies and four healthy controls was conducted. Gene expression profile data were analyzed, and an ingenuity pathway analysis was performed. A total of 1638 differentially expressed genes were identified at p-values < 0.05, with 11 genes showing a log2-fold change ≥1.5. The top gene network was associated with cell death/survival and organismal injury/abnormality. In validation experiments, amphiregulin (AREG) showed consistent results with transcriptome sequencing data, with increased mRNA expression in THP-1-derived DCs after Der p 1 stimulation and higher protein expression in myeloid DCs obtained from patients with allergies. This study suggests an alteration in the expression of DCs in patients with allergies, proposing related altered functions and intracellular mechanisms. Notably, AREG might play a crucial role in DCs by inducing the Th2 immune response.
Collapse
Affiliation(s)
- Kijeong Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (K.L.); (J.W.Y.); (B.K.)
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea;
| | - Ji Woo Yeon
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (K.L.); (J.W.Y.); (B.K.)
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (K.L.); (J.W.Y.); (B.K.)
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (K.L.); (J.W.Y.); (B.K.)
- Correspondence: ; Tel.: +82-02-920-5486
| |
Collapse
|
14
|
Hachim MY, Elemam NM, Ramakrishnan RK, Salameh L, Olivenstein R, Hachim IY, Venkatachalam T, Mahboub B, Al Heialy S, Halwani R, Hamid Q, Hamoudi R. Blood and Salivary Amphiregulin Levels as Biomarkers for Asthma. Front Med (Lausanne) 2020; 7:561866. [PMID: 33195308 PMCID: PMC7659399 DOI: 10.3389/fmed.2020.561866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Background: Amphiregulin (AREG) expression in asthmatic airways and sputum was shown to increase and correlate with asthma. However, no studies were carried out to evaluate the AREG level in blood and saliva of asthmatic patients. Objective: To measure circulating AREG mRNA and protein concentrations in blood, saliva, and bronchial biopsies samples from asthmatic patients. Methods: Plasma and Saliva AREG protein concentrations were measured using ELISA while PBMCs, and Saliva mRNA expression was measured by RT qPCR in non-severe, and severe asthmatic patients compared to healthy controls. Primary asthmatic bronchial epithelial cells and fibroblasts were assessed for AREG mRNA expression and released soluble AREG in their conditioned media. Tissue expression of AREG was evaluated using immunohistochemistry of bronchial biopsies from asthmatic patients and healthy controls. Publicly available transcriptomic databases were explored for the global transcriptomic profile of bronchial epithelium, and PBMCs were explored for AREG expression in asthmatic vs. healthy controls. Results: Asthmatic patients had higher AREG protein levels in blood and saliva compared to control subjects. Higher mRNA expression in saliva and primary bronchial epithelial cells plus higher AREG immunoreactivity in bronchial biopsies were also observed. Both blood and saliva AREG levels showed positive correlations with allergic rhinitis status, atopy status, eczema status, plasma periostin, neutrophilia, Montelukast sodium use, ACT score, FEV1, and FEV1/FVC. In silico analysis showed that severe asthmatic bronchial epithelium with high AREG gene expression is associated with higher neutrophils infiltration. Conclusion: AREG levels measured in a minimally invasive blood sample and a non-invasive saliva sample are higher in non-allergic severe asthma. CLINICAL IMPLICATIONS This is the first report to show the higher level of AREG levels in blood and saliva of non-allergic severe asthma.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K. Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | | | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, UCL, London, United Kingdom
| |
Collapse
|
15
|
El-Hashim AZ, Khajah MA, Orabi KY, Balakrishnan S, Sary HG, Abdelali AA. Onion Bulb Extract Downregulates EGFR/ERK1/2/AKT Signaling Pathway and Synergizes With Steroids to Inhibit Allergic Inflammation. Front Pharmacol 2020; 11:551683. [PMID: 33123005 PMCID: PMC7567342 DOI: 10.3389/fphar.2020.551683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
The treatment of allergic diseases, such as asthma, with both conventional and novel therapies presents a challenge both in terms of optimal effect and cost. On the other hand, traditional therapies utilizing natural products such as onion have been in use for centuries with demonstrated efficacy and safety but without much knowledge of their mechanims of action. In this study, we investigated if the anti-inflammatory effects of onion bulb extract (OBE) are mediated via the modulation of the EGFR/ERK1/2/AKT signaling pathway, and whether OBE can synergise with steroids to produce greater anti-inflammatory actions. Treatment with OBE inhibited the house dust mite (HDM)-induced increased phosphorylation of EGFR, ERK1/2 and AKT which resulted in the inhibition of HDM-induced increase in airway cellular influx, perivascular and peribronchial inflammation, goblet cell hyper/metaplasia, and also inhibited ex vivo eosinophil chemotaxis. Moreover, treatment with a combination of a low dose OBE and low dose dexamethasone resulted in a significant inhibition of the HDM-induced cellular influx, perivascular and peribronchial inflammation, goblet cell hyper/metaplasia, and increased the pERK1/2 levels, whereas neither treatment, when given alone, had any discernible effects. This study therefore shows that inhibition of the EGFR/ERK1/2/AKT-dependent signaling pathway is one of the key mechanisms by which OBE can mediate its anti-inflammatory effects in diseases such as asthma. Importantly, this study also demonstrates that combining OBE with steroids results in significantly enhanced anti-inflammatory effects. This action may have important potential implications for future asthma therapy.
Collapse
Affiliation(s)
- Ahmed Z El-Hashim
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Maitham A Khajah
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Khaled Y Orabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Sowmya Balakrishnan
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Hanan G Sary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Ala A Abdelali
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
16
|
Interleukin-17A and Keratinocytes in Psoriasis. Int J Mol Sci 2020; 21:ijms21041275. [PMID: 32070069 PMCID: PMC7072868 DOI: 10.3390/ijms21041275] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
The excellent clinical efficacy of anti-interleukin 17A (IL-17A) biologics on psoriasis indicates a crucial pathogenic role of IL-17A in this autoinflammatory skin disease. IL-17A accelerates the proliferation of epidermal keratinocytes. Keratinocytes produce a myriad of antimicrobial peptides and chemokines, such as CXCL1, CXCL2, CXCL8, and CCL20. Antimicrobial peptides enhance skin inflammation. IL-17A is capable of upregulating the production of these chemokines and antimicrobial peptides in keratinocytes. CXCL1, CXCL2, and CXCL8 recruit neutrophils and CCL20 chemoattracts IL-17A-producing CCR6+ immune cells, which further contributes to forming an IL-17A-rich milieu. This feed-forward pathogenic process results in characteristic histopathological features, such as epidermal hyperproliferation, intraepidermal neutrophilic microabscess, and dermal CCR6+ cell infiltration. In this review, we focus on IL-17A and keratinocyte interaction regarding psoriasis pathogenesis.
Collapse
|
17
|
The EGFR-ERK/JNK-CCL20 Pathway in Scratched Keratinocytes May Underpin Koebnerization in Psoriasis Patients. Int J Mol Sci 2020; 21:ijms21020434. [PMID: 31936670 PMCID: PMC7013594 DOI: 10.3390/ijms21020434] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Epidermal keratinocytes represent a rich source of C-C motif chemokine 20 (CCL20) and recruit CCR6+ interleukin (IL)-17A–producing T cells that are known to be pathogenic for psoriasis. A previous study revealed that scratch injury on keratinocytes upregulates CCL20 production, which is implicated in the Koebner phenomenon characteristically seen in psoriasis patients. However, the molecular mechanisms leading to scratch-induced CCL20 production remain elusive. In this study, we demonstrate that scratch injury upregulates the phosphorylation of epidermal growth factor receptor (EGFR) and that the specific EGFR inhibitor PD153035 attenuates scratch-induced CCL20 upregulation in an extracellular signal-related kinase (ERK)-dependent, and to a lesser extent, a c-Jun N-terminal kinase (JNK)-dependent but p38 mitogen-activated protein kinase (MAPK)–independent manner. Immunoreactive CCL20 was visualized in the keratinocytes that lined the scratched wound. IL-17A also induced the phosphorylation of EGFR and further augmented scratch-induced CCL20 upregulation. The EGFR-ERK/JNK-CCL20 pathway in scratched keratinocytes may explain why Koebnerization is frequently seen in psoriasis patients.
Collapse
|
18
|
Yamamoto Y, Iyoda M, Tachibana S, Matsumoto K, Wada Y, Suzuki T, Iseri K, Saito T, Fukuda-Hihara K, Shibata T. Erlotinib attenuates the progression of chronic kidney disease in rats with remnant kidney. Nephrol Dial Transplant 2019; 33:598-606. [PMID: 28992288 DOI: 10.1093/ndt/gfx264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
Background Increasing evidence indicates that epidermal growth factor receptor (EGFR) has a pathogenic role in renal fibrosis. Currently no effective treatment can completely halt the progression of chronic kidney disease (CKD). This study was undertaken to investigate the renoprotective effects of erlotinib, a tyrosine kinase inhibitor that can block EGFR activity in the progression of CKD and the mechanisms involved. Methods Sprague Dawley rats with 5/6 nephrectomy were administered either erlotinib or vehicle from 2 weeks after surgery and for a period of 8 weeks. Blood pressure, proteinuria and serum creatinine were measured periodically. Renal morphological investigations were performed at sacrifice. In vitro, we used normal human mesangial cells (NHMCs) and human proximal tubular cells to investigate the inhibitory effects of erlotinib on renal fibrosis-associated signaling pathways by western blotting. Results Erlotinib treatment significantly blunted the progression of CKD as evidenced by reduced levels of serum creatinine, proteinuria and renal cortical profibrogenic genes and scores of glomerulosclerosis and tubulointerstitial damage. Tubulointerstitial macrophage infiltration and multiple pro-inflammatory cytokine gene expression levels were also attenuated by erlotinib treatment. In vitro, heparin-binding epidermal growth factor-like growth factor-induced Akt and extracellular-regulated kinase (ERK) 1/2 activation in normal human mesangial cells and human proximal tubular cells was inhibited by pretreatment with erlotinib. Conclusions EGFR blocking by erlotinib protected against renal fibrosis in 5/6 nephrectomized rats via inhibition of Akt and ERK 1/2 signaling pathways, which are associated with renal fibrosis. Erlotinib also has anti-inflammatory properties, which may contribute to its renoprotective effects. Erlotinib represents a potential novel therapeutic strategy for the treatment of CKD.
Collapse
Affiliation(s)
- Yasutaka Yamamoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shohei Tachibana
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Iseri
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomohiro Saito
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kei Fukuda-Hihara
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Dogan M, Sahin M, Yenisey C. Increased TSLP, IL-33, IL-25, IL-19, IL 21 and amphiregulin (AREG) levels in chronic rhinosinusitis with nasal polyp. Eur Arch Otorhinolaryngol 2019; 276:1685-1691. [PMID: 30888496 DOI: 10.1007/s00405-019-05379-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory disease. The surrogate indicating biomarkers in patients with CRSwNP need further evaluation. The aim of this study was to investigate the association of thymic stromal lymphopoietin (TSLP) and amphiregulin (AREG) cytokines in patients with CRSwNP. METHODS Sinonasal tissue samples were collected from 33 patients with CRSwNP and 29 controls. Levels of AREG, IL-19, IL-21, IL-25, IL-33 and TSLP in nasal polyp and control sinonasal tissues were determined following the enzyme-linked immunosorbent assay method. RESULTS We found that AREG, IL-19, IL-21, IL-25, IL-33 and TSLP levels were significantly higher in the CRSwNP group compared to the control group (p < 0.000; p < 0.000; p < 0.000; p < 0.000; p < 0.003; p < 0.021, respectively). CONCLUSIONS Our findings indicated that AREG, IL-19, IL-21, IL-25, IL-33 and TSLP were significantly increased in tissue samples of CRSwNP patients and may be considered as molecular indicators and targets for therapeutic developments for patients with CRSwNP.
Collapse
Affiliation(s)
- Murat Dogan
- Department of Otolaryngology, Faculty of Medicine, Adnan Menderes University Medical School, 09100, Aydın, Turkey
| | - Mustafa Sahin
- Department of Otolaryngology, Faculty of Medicine, Adnan Menderes University Medical School, 09100, Aydın, Turkey.
| | - Cigdem Yenisey
- Department of Biochemistry, Adnan Menderes University Medical School, Aydın, Turkey
| |
Collapse
|
20
|
Pezzulo AA, Tudas RA, Stewart CG, Buonfiglio LGV, Lindsay BD, Taft PJ, Gansemer ND, Zabner J. HSP90 inhibitor geldanamycin reverts IL-13- and IL-17-induced airway goblet cell metaplasia. J Clin Invest 2019; 129:744-758. [PMID: 30640172 PMCID: PMC6355221 DOI: 10.1172/jci123524] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Goblet cell metaplasia, a disabling hallmark of chronic lung disease, lacks curative treatments at present. To identify novel therapeutic targets for goblet cell metaplasia, we studied the transcriptional response profile of IL-13-exposed primary human airway epithelia in vitro and asthmatic airway epithelia in vivo. A perturbation-response profile connectivity approach identified geldanamycin, an inhibitor of heat shock protein 90 (HSP90) as a candidate therapeutic target. Our experiments confirmed that geldanamycin and other HSP90 inhibitors prevented IL-13-induced goblet cell metaplasia in vitro and in vivo. Geldanamycin also reverted established goblet cell metaplasia. Geldanamycin did not induce goblet cell death, nor did it solely block mucin synthesis or IL-13 receptor-proximal signaling. Geldanamycin affected the transcriptome of airway cells when exposed to IL-13, but not when exposed to vehicle. We hypothesized that the mechanism of action probably involves TGF-β, ERBB, or EHF, which would predict that geldanamycin would also revert IL-17-induced goblet cell metaplasia, a prediction confirmed by our experiments. Our findings suggest that persistent airway goblet cell metaplasia requires HSP90 activity and that HSP90 inhibitors will revert goblet cell metaplasia, despite active upstream inflammatory signaling. Moreover, HSP90 inhibitors may be a therapeutic option for airway diseases with goblet cell metaplasia of unknown mechanism.
Collapse
Affiliation(s)
- Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Rosarie A. Tudas
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Carley G. Stewart
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | | | - Brian D. Lindsay
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
| | - Peter J. Taft
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
21
|
Parisi JDS, Corrêa MP, Gil CD. Lack of Endogenous Annexin A1 Increases Mast Cell Activation and Exacerbates Experimental Atopic Dermatitis. Cells 2019; 8:51. [PMID: 30650525 PMCID: PMC6356645 DOI: 10.3390/cells8010051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 01/19/2023] Open
Abstract
Annexin A1 (AnxA1) is a protein with potent anti-inflammatory actions and an interesting target that has been poorly explored in skin inflammation. This work evaluated the lack of endogenous AnxA1 in the progression of ovalbumin (OVA)-induced atopic dermatitis (AD)-like skin lesions. OVA/Alum-immunized C57BL/6 male wild-type (WT) and AnxA1 null (AnxA1-/-) mice were challenged with drops containing OVA on days 11, 14⁻18 and 21⁻24. The AnxA1-/- AD group exhibited skin with intense erythema, erosion and dryness associated with increased skin thickness compared to the AD WT group. The lack of endogenous AnxA1 also increased IgE relative to WT animals, demonstrating exacerbation of the allergic response. Histological analysis revealed intense eosinophilia and mast-cell activation in AD animals, especially in AnxA1-/-. Both AD groups increased skin interleukin (IL)-13 levels, while IL-17A was upregulated in AnxA1-/- lymph nodes and mast cells. High levels of phosphorylated ERK were detected in keratinocytes from AD groups. However, phospho-ERK levels were higher in the AnxA1-/- when compared to the respective control groups. Our results suggest AnxA1 as an important therapeutic target for inflammatory skin diseases.
Collapse
Affiliation(s)
- Jéssica Dos Santos Parisi
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04023-900, Brazil.
| | - Mab Pereira Corrêa
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil.
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04023-900, Brazil.
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil.
| |
Collapse
|
22
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Homma T, Kato A, Sakashita M, Takabayashi T, Norton JE, Suh LA, Carter RG, Harris KE, Peters AT, Grammer LC, Min JY, Shintani-Smith S, Tan BK, Welch K, Conley DB, Kern RC, Schleimer RP. Potential Involvement of the Epidermal Growth Factor Receptor Ligand Epiregulin and Matrix Metalloproteinase-1 in Pathogenesis of Chronic Rhinosinusitis. Am J Respir Cell Mol Biol 2017; 57:334-345. [PMID: 28398769 DOI: 10.1165/rcmb.2016-0325oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous chronic inflammatory disease of the nose and paranasal sinuses that presents without or with nasal polyps (CRSwNP). Notable features of CRSwNP are the frequent presence of type 2 allergic inflammation and high prevalence of Staphylococcus aureus (SA) colonization. As inflammation persists, sinus tissue undergoes epithelial damage and repair along with polyp growth, despite active medical management. Because one feature of damaged tissue is enhancement of growth factor signaling, we evaluated the presence of epidermal growth factor receptor (EGFR) ligands and matrix metalloproteinases (MMPs) in CRS. The objectives of this study were to analyze the expression of EGFR ligands and MMPs in patients with CRS and to investigate the possible role of SA on epithelial activation. Sinonasal tissues were collected during surgery from control subjects and patients with CRS. Tissues were processed as described previously for analysis of mRNA (RT-PCR) and proteins (ELISA) for the majority of EGFR ligands within the tissue extracts. CRS tissue was used for evaluation of the distribution of epiregulin (EREG), an EGFR ligand, and MMP-1 by immunohistochemistry. In parallel studies, expression of these genes and proteins was analyzed in cultured primary airway epithelial cells. Elevated expression of EREG and MMP-1 mRNA and protein was observed in uncinate and polyp tissue from patients with CRSwNP. Immunohistochemistry study of clinical samples revealed that airway epithelial cells expressed both of these proteins. Cultured primary human airway epithelial cells expressed MMP-1, and MMP-1 was further induced by stimulation with EREG or heat-killed SA (HKSA). The induction of MMP-1 by HKSA was blocked by an antibody against EREG, suggesting that endogenous EREG induces MMP-1 after stimulation with HKSA. EREG and MMP-1 were found to be elevated in nasal polyp and uncinate tissues in patients with CRSwNP. Elevated expression of EREG and MMP-1 may be related to polyp formation in CRS, and colonization of SA might further enhance this process.
Collapse
Affiliation(s)
- Tetsuya Homma
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,2 Division of Allergology and Respiratory Medicine, Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Atsushi Kato
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Masafumi Sakashita
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,3 Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan; and
| | - Tetsuji Takabayashi
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,3 Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan; and
| | - James E Norton
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lydia A Suh
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Roderick G Carter
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen E Harris
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anju T Peters
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Leslie C Grammer
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jin-Young Min
- 4 Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stephanie Shintani-Smith
- 4 Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bruce K Tan
- 4 Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kevin Welch
- 4 Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David B Conley
- 4 Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert C Kern
- 4 Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert P Schleimer
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
24
|
Corrêa MP, Andrade FEC, Gimenes AD, Gil CD. Anti-inflammatory effect of galectin-1 in a murine model of atopic dermatitis. J Mol Med (Berl) 2017; 95:1005-1015. [PMID: 28664215 DOI: 10.1007/s00109-017-1566-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/12/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
Abstract
UNLABELLED Atopic dermatitis (AD) is caused by both dysregulated immune responses and an impaired skin barrier. Although beta-galactoside-binding protein galectin-1 (Gal-1) has immunomodulatory effects in several inflammatory disorders, therapeutic strategies based on its anti-inflammatory properties have not been explored in AD. Thus, we evaluate pharmacological treatment with Gal-1 in the progression of an ovalbumin (OVA)-induced AD-like skin lesions. The skin of OVA-immunized male BALB/c mice was challenged with drops containing OVA on days 11, 14-18 and 21-24. Additionally, in the last week, a subset of animals was treated intraperitoneally with recombinant Gal-1 (rGal-1) or dexamethasone (Dex). Treatment with rGal-1 decreased the clinical signs of dermatitis in BALB/c mice and diminished local eotaxin and IFN-γ levels. The treatment also suppressed the infiltration of eosinophils and mast cells, which was verified by reduced expression of mouse mast cell protease 6 (mMCP6) and eosinophil peroxidase (EPX). These localized effects are associated with extracellular signal-regulated kinase (ERK) activation and downregulation of endogenous Gal-1. The inhibition of disease progression induced by rGal-1 was also correlated with reduced plasma IL-17 levels. Our results demonstrate that rGal-1 is an effective treatment for allergic skin inflammation in AD and may impact the development of novel strategies for skin inflammatory diseases. KEY MESSAGES Pharmacological treatment with rGal-1 reduces clinical signs of atopic dermatitis. Systemic treatment with rGal-1 inhibits eosinophil and mast cell influx in the skin of AD animals. rGal-1 reduced local eotaxin levels and systemic IL-17 levels. The inhibition of disease progression induced by rGal-1 was correlated with upregulation of phosphorylated ERK.
Collapse
Affiliation(s)
- Mab Pereira Corrêa
- Post-Graduation in Biosciences, UNESP - São Paulo State University, São José do Rio Preto, 15054-000, Brazil
| | - Frans Eberth Costa Andrade
- Department of Morphology and Genetics, UNIFESP - Federal University of São Paulo, São Paulo, 04023-900, Brazil
| | - Alexandre Dantas Gimenes
- Department of Morphology and Genetics, UNIFESP - Federal University of São Paulo, São Paulo, 04023-900, Brazil
| | - Cristiane Damas Gil
- Post-Graduation in Biosciences, UNESP - São Paulo State University, São José do Rio Preto, 15054-000, Brazil.
- Department of Morphology and Genetics, UNIFESP - Federal University of São Paulo, São Paulo, 04023-900, Brazil.
| |
Collapse
|
25
|
Deckers J, De Bosscher K, Lambrecht BN, Hammad H. Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. Immunol Rev 2017; 278:131-144. [DOI: 10.1111/imr.12542] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie Deckers
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Karolien De Bosscher
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Pulmonary Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Hamida Hammad
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
| |
Collapse
|
26
|
Berker M, Frank LJ, Geßner AL, Grassl N, Holtermann AV, Höppner S, Kraef C, Leclaire MD, Maier P, Messerer DAC, Möhrmann L, Nieke JP, Schoch D, Soll D, Woopen CMP. Allergies - A T cells perspective in the era beyond the T H1/T H2 paradigm. Clin Immunol 2016; 174:73-83. [PMID: 27847316 DOI: 10.1016/j.clim.2016.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Abstract
Allergic diseases have emerged as a major health care burden, especially in the western hemisphere. They are defined by overshooting reactions of an aberrant immune system to harmless exogenous stimuli. The TH1/TH2 paradigm assumes that a dominance of TH2 cell activation and an inadequate TH1 cell response are responsible for the development of allergies. However, the characterization of additional T helper cell subpopulations such as TH9, TH17, TH22, THGM-CSF and their interplay with regulatory T cells suggest further layers of complexity. This review summarizes state-of-the-art knowledge on T cell diversity and their induction, while revisiting the TH1/TH2 paradigm. With respect to these numerous contributors, it offers a new perspective on the pathogenesis of asthma, allergic rhinitis (AR) and atopic dermatitis (AD) incorporating recent discoveries in the field of T cell plasticity.
Collapse
Affiliation(s)
- Moritz Berker
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Larissa Johanna Frank
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Anja Lidwina Geßner
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Niklas Grassl
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Anne Verena Holtermann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Stefanie Höppner
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Christian Kraef
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany.
| | - Martin Dominik Leclaire
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Pia Maier
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | | | - Lino Möhrmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Jan Philipp Nieke
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Diana Schoch
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Dominik Soll
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | | |
Collapse
|
27
|
Koga Y, Hisada T, Ishizuka T, Utsugi M, Ono A, Yatomi M, Kamide Y, Aoki-Saito H, Tsurumaki H, Dobashi K, Yamada M. CREB regulates TNF-α-induced GM-CSF secretion via p38 MAPK in human lung fibroblasts. Allergol Int 2016; 65:406-413. [PMID: 27118435 DOI: 10.1016/j.alit.2016.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that mediates eosinophilic differentiation, migration and survival, causing respiratory tract inflammation. GM-CSF is also known to be secreted from respiratory tract structural cells. However, the mechanisms of GM-CSF secretion have not been well established. METHODS Human fetal lung fibroblasts and human primary asthmatic lung fibroblasts were used for the study of tumor necrosis factor alpha (TNF-α)-induced GM-CSF secretion. GM-CSF secretion and mRNA expression were measured by enzyme-linked immunosorbent assay and quantitative real-time reverse transcription polymerase chain reaction, respectively. Knockdown of cAMP response element-binding protein (CREB) in fibroblasts was carried out by using specific small interfering RNAs of CREB. RESULTS Among respiratory tract structural cells, pulmonary fibroblasts exhibited increased GM-CSF secretion and mRNA expression after stimulation with TNF-α in a concentration-dependent manner. Moreover, a p38 mitogen-activated protein kinase (MAPK) inhibitor controlled TNF-α-induced GM-CSF secretion, and roflumilast and rolipram, inhibitors of phosphodiesterase-4, suppressed TNF-α-induced GM-CSF secretion. Consistent with this, forskolin also completely blocked GM-CSF secretion, and similar results were observed in response to cAMP treatment, suggesting that cAMP signaling suppressed TNF-α-induced GM-CSF secretion in human lung fibroblasts. Furthermore, CREB was phosphorylated through p38 MAPK but not cAMP signaling after TNF-α stimulation, and GM-CSF secretion was inhibited by CREB knockdown. Finally, these effects were also demonstrated in human primary lung fibroblasts in a patient with asthma. CONCLUSIONS CREB signaled independent of cAMP signaling and was phosphorylated by p38 MAPK following TNF-α stimulation, playing a critical role in GM-CSF secretion in human lung fibroblasts.
Collapse
Affiliation(s)
- Yasuhiko Koga
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan.
| | - Takeshi Hisada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mitsuyoshi Utsugi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan; Department of Respiratory Medicine, Kiryu Kosei General Hospital, Gunma, Japan
| | - Akihiro Ono
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masakiyo Yatomi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yosuke Kamide
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan; Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Kanagawa, Japan
| | - Haruka Aoki-Saito
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroaki Tsurumaki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kunio Dobashi
- Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
28
|
Siddesha JM, Nakada EM, Mihavics BR, Hoffman SM, Rattu GK, Chamberlain N, Cahoon JM, Lahue KG, Daphtary N, Aliyeva M, Chapman DG, Desai DH, Poynter ME, Anathy V. Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1243-59. [PMID: 27154200 DOI: 10.1152/ajplung.00396.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/27/2016] [Indexed: 12/14/2022] Open
Abstract
Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases.
Collapse
Affiliation(s)
- Jalahalli M Siddesha
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Emily M Nakada
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Bethany R Mihavics
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Sidra M Hoffman
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | | | - Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Jonathon M Cahoon
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Karolyn G Lahue
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Nirav Daphtary
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Minara Aliyeva
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - David G Chapman
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont; Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, Australia; and
| | - Dhimant H Desai
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, Pensylvania
| | - Matthew E Poynter
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont;
| |
Collapse
|