1
|
Kinsella RL, Sur Chowdhury C, Smirnov A, Mreyoud Y, Kimmey JM, Esaulova E, McKee SR, Pride A, Kreamalmeyer D, Artyomov MN, Stallings CL. ATG5 suppresses type I IFN-dependent neutrophil effector functions during Mycobacterium tuberculosis infection in mice. Nat Microbiol 2025:10.1038/s41564-025-01988-8. [PMID: 40374743 DOI: 10.1038/s41564-025-01988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/19/2025] [Indexed: 05/18/2025]
Abstract
Inflammation is critical for controlling infections but can cause disease when unchecked. During Mycobacterium tuberculosis (Mtb) infection, neutrophil-dominated inflammation is associated with exacerbated disease. ATG5 expression by neutrophils mediates autophagy-independent control of infection but mechanistic understanding of how this regulates protective neutrophil function is lacking. Using genetic mouse models along with in vivo and in vitro infection systems, we report herein that ATG5 is required in neutrophils to suppress type I interferon-induced PAD4-mediated histone citrullination and neutrophil extracellular trap (NET) release. In addition, ATG5 suppresses type I interferon-induced CXCL2 secretion and neutrophil swarming during Mtb infection. Elevated type I IFN signalling and NET release contribute to the early susceptibility of Atg5fl/fl-LysM-Cre mice during infection. These findings identify ATG5 as a master regulator of how type I interferon influences neutrophil responses during infection, revealing a potential target for host-directed therapies.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA.
- Department of Medicine, Division of Infectious Diseases and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| | - Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Jacqueline M Kimmey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron Pride
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
2
|
Xiang J, Cui M. Neutrophil Extracellular Traps and neutrophilic asthma. Respir Med 2025:108150. [PMID: 40368066 DOI: 10.1016/j.rmed.2025.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/18/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
There are more than 260 million asthma patients worldwide. How to provide targeted long-term standardized treatment and management still confuses clinical workers and patients. Neutrophilic asthma is a special type of asthma which is difficult to diagnose clinically and often associated with severe asthma and glucocorticoid resistance. Neutrophil Extracellular Traps (NETs) play an important role in the pathogenesis of this type of asthma particularly in children. This article explores the mechanism of NETs production, their association with neutrophilic asthma, biomarkers, and possible treatment options. A more detailed discussion is also provided on the diagnosis and treatment of children with neutrophilic asthma. Educational Aims The readers will gain an improved understanding of.
Collapse
Affiliation(s)
- Jiayi Xiang
- Department of Pediatrics, Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Muyan Cui
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
3
|
Liu Y, Wang T, Dong YA, Zhang J. Exploring the interplay between oxidative stress and autophagy in asthma: Pathophysiology and therapeutic potential. Allergol Immunopathol (Madr) 2025; 53:167-180. [PMID: 40342125 DOI: 10.15586/aei.v53i3.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/11/2025] [Indexed: 05/11/2025]
Abstract
Asthma is a chronic respiratory disease, characterized by airway inflammation, hyperresponsiveness, and remodeling. Oxidative stress and autophagy play pivotal roles in asthma pathogenesis. Excessive production of reactive oxygen species (ROS) worsens airway damage and inflammation, and impaired antioxidant defenses in patients with asthma further increase ROS production, leading to tissue damage. Environmental factors, such as allergens and air pollution, and inflammatory cells, such as macrophages and eosinophils, contribute to elevated ROS levels, thereby intensifying the disease. Autophagy, a key mechanism for eliminating damaged organelles and maintaining cellular homeostasis, plays a dual role in asthma. While autophagy activation mitigates oxidative stress, dysregulated or excessive autophagy worsens airway remodeling and inflammation. This review examines the interplay between oxidative stress and autophagy in asthma and discusses emerging therapeutic approaches targeting autophagy to improve disease outcomes.
Collapse
Affiliation(s)
- Ying Liu
- School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, 230012, China
| | - Tongtong Wang
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei City, Anhui Province, 230012, China
| | - Yu-Ang Dong
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei City, Anhui Province, 230012, China
| | - Jun Zhang
- School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, 230012, China;
| |
Collapse
|
4
|
Liu J, Tao P, Su B, Zheng L, Lin Y, Zou X, Yang H, Wu W, Zhang T, Li H. Interleukin-33 modulates NET formation via an autophagy-dependent manner to promote neutrophilic inflammation in cigarette smoke-exposure asthma. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137257. [PMID: 39842125 DOI: 10.1016/j.jhazmat.2025.137257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Cigarette smoke (CS) contributes to IL---33 release and neutrophil inflammation in asthma. Neutrophil extracellular traps (NETs) are essential for neutrophil function. However, the effect of IL--33 on neutrophils in cigarette smoke--exposure asthma remains unclear. We found that CS exposure led to lower lung function and a neutrophil--related phenotype in asthma, characterized by elevated neutrophil and Th17 cell counts. Granulocytic airway inflammation was ablated by sST2, which blocked excessive IL--33 release. Transcriptome analysis of mouse lungs revealed that IL--33 enhanced NET formation in HDM/CS-treated mice, which was further confirmed in our experimental asthma model and in asthma patients. NETs were associated with poor lung function and airway inflammation and directly facilitated monocyte--derived dendritic cell activation, further inducing Th2/Th17 polarization. Furthermore, we demonstrated a feedforward loop between NETs and neutrophil autophagy, both of which are dependent on reactive oxygen species (ROS) production and the mTOR-Hif-1α signaling pathway. Notably, IL--33 knockout suppressed autophagy and NETs, whereas the autophagy agonist rapamycin reversed the inhibition of NETs by sST2 in a mTOR--dependent manner. Our findings revealed that the IL--33/ST2 signaling pathway interacts with the neutrophil -autophagy--mTOR-Hif-1α-NET pathway, ultimately aggravating Th2/Th17-related inflammation. These insights could lead to potential therapeutic targets for mitigating exacerbations in asthmatic patients who are exposed to CS.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Peizhi Tao
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Beiting Su
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Li Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Yusen Lin
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China.
| | - Hongtao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China.
| |
Collapse
|
5
|
Huang X, Yan H, Xu Z, Yang B, Luo P, He Q. The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Commun Signal 2025; 23:151. [PMID: 40140912 PMCID: PMC11948861 DOI: 10.1186/s12964-025-02135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway for recycling intracellular materials and removing damaged organelles, and it is usually considered a prosurvival process in response to stress stimuli. However, increasing evidence suggests that autophagy can also drive cell death in a context-dependent manner. The bulk degradation of cell contents and the accumulation of autophagosomes are recognized as the mechanisms of cell death induced by autophagy alone. However, autophagy can also drive other forms of regulated cell death (RCD) whose mechanisms are not related to excessive autophagic vacuolization. Notably, few reviews address studies on the transformation from autophagy to RCD, and the underlying molecular mechanisms are still vague. AIM OF REVIEW This review aims to summarize the existing studies on autophagy-mediated RCD, to elucidate the mechanism by which autophagy initiates RCD, and to comprehensively understand the role of autophagy in determining cell fate. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the prodeath effect of autophagy, which is distinct from the generally perceived cytoprotective role, and its mechanisms are mainly associated with the selective degradation of proteins or organelles essential for cell survival and the direct involvement of the autophagy machinery in cell death. Additionally, this review highlights the need for better manipulation of autophagy activation or inhibition in different pathological contexts, depending on clinical purpose.
Collapse
Affiliation(s)
- Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Wang F, Liu Z, Li WX, Wang XM, Yang J, Zhao ZH, Jie ZJ. Nitric oxide synthase inhibitors reduce the formation of neutrophil extracellular traps and alleviate airway inflammation in the mice model of asthma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03831-7. [PMID: 39878819 DOI: 10.1007/s00210-025-03831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Asthma, a widespread chronic inflammatory disease can contribute to different degrees of lung function damage. The objective of this study is to explore the potential effects of nitric oxide synthase (NOS) inhibitors in asthma using mice model induced by ovalbumin (OVA). BALB/c mice were treated with OVA to establish an asthma model. Mice were intranasally challenged with different NOS inhibitors and analyzed the impact of NOS inhibitors on the lung tissues and bronchoalveolar lavage fluid (BALF). Histopathological analysis was performed by Periodic Acid-Schiff (PAS) staining. Airway reactivity was assessed using methacholine challenge testing. The concentrations of nitric oxide (NO), Neutrophil extracellular traps (NETs), and cytokines were determined by enzyme-linked immunosorbent assay (ELISA) assay. NOS inhibitors effectively improved airway inflammation and reduced airway hyperresponsiveness. In addition, NOS inhibitors decreased the concentrations of NO, NETs, and inflammation in the airway and BALF. The decreased NO production and reduced NET formation in the lung indicate that NOS inhibitors inhibit the process of NET release to alleviate asthma.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pediatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Zhen Liu
- Department of Pediatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Wen-Xuan Li
- Department of Pediatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Xiao-Ming Wang
- Department of Pediatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Ju Yang
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Zhu-Hui Zhao
- Department of Pediatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Zhi-Jun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Li J, Zhao H, Yang J, Wang M, Cao Z, Wang Y, Gu Z. The role and mechanism of extracellular traps in chronic rhinosinusitis. Biomed Pharmacother 2024; 181:117655. [PMID: 39486368 DOI: 10.1016/j.biopha.2024.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is a common inflammatory disease of the nose that affects millions of individuals worldwide. Recent research has introduced the concept of an immunologic endotype based on the pathological characteristics of CRS and the types of inflammatory cell infiltration. This endotype concept is conducive to understanding CRS pathology and guiding further targeted therapy. Eosinophils and neutrophils infiltrate different proportions in different CRS endotypes and release extracellular traps (ETs) as a response to the extracellular immune response. The mechanisms of formation and biological roles of ETs are complex. ETs can trap extracellular microorganisms and limit the range of inflammation to some extent; however, excessive and long-term ETs may be related to disease severity. This review summarises and explores the mechanism of ETs and the advances in CRS research and proposes new insights into the interaction between ETs and programmed cell death (including autophagy, pyroptosis, and necroptosis) in CRS, providing new ideas for the targeted therapy of CRS.
Collapse
Affiliation(s)
- Jiani Li
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Yunxiu Wang
- Department of Clinical Trial Ward, Clinical Trial and Conversion Center, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
8
|
Xue GZ, Ma HZ, Wuren TN. The role of neutrophils in chronic cough. Hum Cell 2024; 37:1316-1324. [PMID: 38913146 DOI: 10.1007/s13577-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
Chronic cough is a common disorder lasting more than 8 weeks and affecting all age groups. The evidence supporting the role of neutrophils in chronic cough pathology is based on many patients with chronic cough developing airway neutrophilia. How neutrophils influence the development of chronic cough is unknown. However, they are likely involved in multiple aspects of cough etiology, including promoting airway inflammation, airway remodeling, hyper-responsiveness, local neurogenic inflammation, and other possible mechanisms. Neutrophilic airway inflammation is also associated with refractory cough, poor control of underlying diseases (e.g., asthma), and insensitivity to cough suppressant therapy. The potential for targeting neutrophils in chronic cough needs exploration, including developing new drugs targeting one or more neutrophil-mediated pathways or altering the neutrophil phenotype to alleviate chronic cough. How the airway microbiome differs, plays a role, and interacts with neutrophils in different cough etiologies is poorly understood. Future studies should focus on understanding the relationship between the airway microbiome and neutrophils.
Collapse
Affiliation(s)
- Guan-Zhen Xue
- School of Medicine, Qinghai University, Research Center for High Altitude Medicine, No.16 Kunlun Road, Xining, Qinghai Province, China
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Hai-Zhen Ma
- Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Ta-Na Wuren
- School of Medicine, Qinghai University, Research Center for High Altitude Medicine, No.16 Kunlun Road, Xining, Qinghai Province, China.
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining, Qinghai Province, China.
| |
Collapse
|
9
|
Quoc QL, Kim Y, Park G, Cao TBT, Choi Y, Park YH, Park HS. Downregulation of otulin induces inflammasome activation in neutrophilic asthma. J Allergy Clin Immunol 2024; 154:557-570. [PMID: 38599290 DOI: 10.1016/j.jaci.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Neutrophilic asthma (NA) is a severe asthma phenotype associated with steroid resistance and IL-1β overproduction; however, the exact mechanism remains unclear. Moreover, the dysfunction of TNF-α signaling pathway, a regulator of IL-1β production, was associated with the deficiency of ovarian tumor protease deubiquitinase with linear linkage specificity (otulin) in autoimmune patients. OBJECTIVE We hypothesized that otulin downregulation in macrophages (Mφ) could trigger Mφ activation via the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome signaling pathway. METHODS We assessed the expressions of otulin in blood monocyte subsets from NA patients and in alveolar Mφ from NA mice. Additionally, we evaluated the functional consequences of otulin deficiency in bone marrow-derived Mφ. The effects of inhibiting receptor-interacting protein kinase (RIPK)-1 and RIPK-3 on neutrophils and group 3 innate lymphoid cells (ILC3s) were assessed in vitro and in vivo. RESULTS When comparing nonclassical monocytes, a significant downregulation of otulin in the intracellular components was observed in NA patients compared to healthy controls (P = .005). Moreover, isolated alveolar Mφ from the NA mice exhibited lower otulin expression compared to those from control mice. After otulin knockdown in bone marrow-derived Mφ, we observed spontaneous IL-1β production depending on NLRP3 inflammasome. Moreover, the infiltrated neutrophils and ILC3s were significantly decreased by combined treatment of RIPK-1 and RIPK-3 inhibitors through blocking IL-1β release in NA. CONCLUSIONS IL-1β overproduction caused by a deficiency of otulin, an upstream triggering factor, could be a promising diagnostic and therapeutic target for NA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - YeJi Kim
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea; Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - Gunwoo Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Yong Hwan Park
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea; Department of Microbiology, Ajou University School of Medicine, Suwon, Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
10
|
Cao TBT, Luu Quoc Q, Jang JH, Yang EM, Ryu MS, Choi Y, Park HS. Serum Galectin-10: A biomarker for persistent airflow limitation in adult asthmatics. World Allergy Organ J 2024; 17:100955. [PMID: 39252790 PMCID: PMC11382115 DOI: 10.1016/j.waojou.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024] Open
Abstract
Background Inhaled corticosteroids (ICS) are primary anti-inflammatory medications to control eosinophilic airway inflammation, and prevent asthma exacerbation. However, persistent airflow limitation (PAL) presents in some asthmatics even on ICS treatment, leading to lung function decline. Thus, we evaluated clinical associations of serum galectin-10 (Gal10) and galectin-3 (Gal3) levels in adult asthmatics who had maintained anti-asthma medication. Methods Sixty-seven asthmatics and 78 healthy controls (HCs) were recruited. Serum Gal10 and Gal3 levels were measured by enzyme-linked immunosorbent assay, and their clinical relevance with inflammatory and lung function parameters was evaluated. Spirometry was performed to assess PAL and small airway dysfunction (SAD). Airway epithelial cells were cocultured with eosinophils/neutrophils, and were exposed to house dust mites to assess the production of Gal10 and Gal3. Results Serum Gal10 (not Gal3) levels were significantly higher in asthmatics than in HCs (P < 0.001), in asthmatics with PAL than in those without PAL (P = 0.005), and in those with SAD than in those without SAD (P = 0.004). The Gal10-high group had significantly higher levels of peripheral CD66+ neutrophil counts, serum periostin and Gal3, and lower values of FEV1% and MMEF% than the Gal10-low group (P < 0.050 for all). The production of Gal10 and Gal3 was increased in eosinophilic airway model, while Gal10 (not Gal3) levels were increased in neutrophilic airway model as well as house dust mite stimulation. Conclusion Our findings suggest that serum Gal10 level may be a potential biomarker for PAL in adult asthmatics.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | - Quang Luu Quoc
- Department of Oral & Maxillofacial Surgery, Loma Linda University, School of Dentistry, CA, USA
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | - Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| |
Collapse
|
11
|
Li Y, Yang T, Jiang B. Neutrophil and neutrophil extracellular trap involvement in neutrophilic asthma: A review. Medicine (Baltimore) 2024; 103:e39342. [PMID: 39183388 PMCID: PMC11346896 DOI: 10.1097/md.0000000000039342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a highly prevalent chronic inflammatory disease characterized by variable airflow obstruction and airway hyperresponsiveness. Neutrophilic asthma (NA) is classified as "type 2 low" asthma, defined as 65% or more neutrophils in the total cell count. There is no clear consensus on the pathogenesis of NA, and the accumulation of neutrophils and release of neutrophil extracellular traps (NETs) may be responsible for its development. A NET is a large extracellular meshwork comprising cell membrane and granule proteins. It is a powerful antimicrobial defence system that traps, neutralizes, and kills bacteria, fungi, viruses, and parasites and prevents the spread of microorganisms. However, dysregulation of NETs may lead to chronic airway inflammation, is associated with worsening of asthma, and has been the subject of major research advances in chronic lung diseases in recent years. NA is insensitive to steroids, and there is a need to find effective biomarkers as targets for the treatment of NA to replace steroids. This review analyses the mechanisms of action between asthmatic neutrophil recruitment and NET formation and their impact on NA development. It also discusses their possible therapeutic significance in NA, summarizing the advances made in NA agents and providing strategies for the treatment of NA, provide a theoretical basis for the development of new therapeutic drugs, thereby improving the level of diagnosis and treatment, and promoting the research progress in the field of asthma.
Collapse
Affiliation(s)
- Yuemu Li
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Tianyi Yang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Baihua Jiang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| |
Collapse
|
12
|
Gu W, Huang C, Chen G, Kong W, Zhao L, Jie H, Zhen G. The role of extracellular traps released by neutrophils, eosinophils, and macrophages in asthma. Respir Res 2024; 25:290. [PMID: 39080638 PMCID: PMC11290210 DOI: 10.1186/s12931-024-02923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Extracellular traps (ETs) are a specialized form of innate immune defense in which leukocytes release ETs composed of chromatin and active proteins to eliminate pathogenic microorganisms. In addition to the anti-infection effect of ETs, researchers have also discovered their involvement in the pathogenesis of inflammatory disease, tumors, autoimmune disease, and allergic disease. Asthma is a chronic airway inflammatory disease involving multiple immune cells. The increased level of ETs in asthma patients suggests that ETs play an important role in the pathogenesis of asthma. Here we review the research work on the formation mechanism, roles, and therapeutic strategies of ETs released by neutrophils, eosinophils, and macrophages in asthma.
Collapse
Affiliation(s)
- Wei Gu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Chunli Huang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Weiqiang Kong
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Lu Zhao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Huiru Jie
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
| |
Collapse
|
13
|
Quoc QL, Cao TBT, Seo S, An BS, Hwang DY, Choi Y, Park HS. Association Between Cytokeratin 19-Specific IgG and Neutrophil Activation in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:353-371. [PMID: 39155736 PMCID: PMC11331195 DOI: 10.4168/aair.2024.16.4.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE Patients with non-eosinophilic asthma (NEA) are less responsive to anti-inflammatory drugs and suffer from frequent asthma exacerbations. The pathogenic mechanism of NEA is not fully understood; however, the roles of monocytes and autoimmune mechanisms targeting airway epithelial cell (AEC) antigens have been proposed. METHODS The effects of monocyte extracellular traps (MoETs) on cytokeratin 19 (CK19) production in AECs, as well as the impact of CK19-specific immunoglobulin (Ig) G on neutrophil and monocyte activation, were investigated both in vivo and in vitro. Sixty asthmatic patients and 15 healthy controls (HCs) were enrolled, and the levels of serum immune complexes containing CK19-specific IgG and neutrophil extracellular trap (NET)-specific IgG were measured using enzyme-linked immunoassay. RESULTS MoETs induced CK19 and CK19-specific IgG production. Furthermore, the levels of serum CK19-specific IgG were significantly higher in the NEA group than in the eosinophilic asthma group. Among patients with NEA, asthmatics with high levels of CK19-specific IgG had higher levels of myeloperoxidase and NET-specific IgG than those with low levels of CK19-specific IgG (P = 0.020 and P = 0.017; respectively). Moreover, the immune complexes from asthmatics with high CK19-specific IgG enhanced NET formation and reactive oxygen species production (neutrophil activation), which were suppressed by N-acetylcysteine and anti-CD16 antibody treatment. CONCLUSIONS These findings suggest that circulating CK19 and CK19-specific IgG may contribute to NET formation, leading to airway inflammation and steroid resistance in NEA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Oral & Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
14
|
Chen J, Wang T, Li X, Gao L, Wang K, Cheng M, Zeng Z, Chen L, Shen Y, Wen F. DNA of neutrophil extracellular traps promote NF-κB-dependent autoimmunity via cGAS/TLR9 in chronic obstructive pulmonary disease. Signal Transduct Target Ther 2024; 9:163. [PMID: 38880789 PMCID: PMC11180664 DOI: 10.1038/s41392-024-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by persistent airway inflammation even after cigarette smoking cessation. Neutrophil extracellular traps (NETs) have been implicated in COPD severity and acute airway inflammation induced by short-term cigarette smoke (CS). However, whether and how NETs contribute to sustained airway inflammation in COPD remain unclear. This study aimed to elucidate the immunoregulatory mechanism of NETs in COPD, employing human neutrophils, airway epithelial cells (AECs), dendritic cells (DCs), and a long-term CS-induced COPD mouse model, alongside cyclic guanosine monophosphate-adenosine monophosphate synthase and toll-like receptor 9 knockout mice (cGAS--/-, TLR9-/-); Additionally, bronchoalveolar lavage fluid (BALF) of COPD patients was examined. Neutrophils from COPD patients released greater cigarette smoke extract (CSE)-induced NETs (CSE-NETs) due to mitochondrial respiratory chain dysfunction. These CSE-NETs, containing oxidatively-damaged DNA (NETs-DNA), promoted AECs proliferation, nuclear factor kappa B (NF-κB) activation, NF-κB-dependent cytokines and type-I interferons production, and DC maturation, which were ameliorated/reversed by silencing/inhibition of cGAS/TLR9. In the COPD mouse model, blocking NETs-DNA-sensing via cGAS-/- and TLR9-/- mice, inhibiting NETosis using mitoTEMPO, and degrading NETs-DNA with DNase-I, respectively, reduced NETs infiltrations, airway inflammation, NF-κB activation and NF-κB-dependent cytokines, but not type-I interferons due to IFN-α/β receptor degradation. Elevated NETs components (myeloperoxidase and neutrophil elastase activity) in BALF of COPD smokers correlated with disease severity and NF-κB-dependent cytokine levels, but not type-I interferon levels. In conclusion, NETs-DNA promotes NF-κB-dependent autoimmunity via cGAS/TLR9 in long-term CS exposure-induced COPD. Therefore, targeting NETs-DNA and cGAS/TLR9 emerges as a potential strategy to alleviate persistent airway inflammation in COPD.
Collapse
Affiliation(s)
- Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoou Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lijuan Gao
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mengxin Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zijian Zeng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
15
|
Quiroga J, Cortes B, Sarmiento J, Morán G, Henríquez C. Characterization of extracellular trap production and release by equine neutrophils in response to different stimuli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105151. [PMID: 38423491 DOI: 10.1016/j.dci.2024.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
This study explores Neutrophil Extracellular Trap (NET) formation in equine neutrophils, which is crucial for eliminating infections and is implicated in various equine inflammatory diseases. We investigated the molecular pathways involved in NET release by equine neutrophils in response to stimuli. We use PMA, A23187, LPS, PAF, OZ, and cytokines, observing NET release in response to PMA, PAF, and A23187. In contrast, LPS, OZ, and the cytokines tested did not induce DNA release or did not consistently induce citrullination of histone 4. Peptidyl-arginine deiminase inhibition completely halted NET release, while NADPH oxidase and mitochondrial reactive oxygen species only played a role in PMA-induced NETs. Neutrophil elastase inhibition modestly affected PAF-induced NET liberation but not in PMA or A23187-induced NET, while myeloperoxidase did not contribute to NET release. We expect to provide a foundation for future investigations into the role of NETs in equine health and disease and the search for potential therapeutic targets.
Collapse
Affiliation(s)
- John Quiroga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Bayron Cortes
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Chile
| | - Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| |
Collapse
|
16
|
Wang Y, Huang X, Luo G, Xu Y, Deng X, Lin Y, Wang Z, Zhou S, Wang S, Chen H, Tao T, He L, Yang L, Yang L, Chen Y, Jin Z, He C, Han Z, Zhang X. The aging lung: microenvironment, mechanisms, and diseases. Front Immunol 2024; 15:1383503. [PMID: 38756780 PMCID: PMC11096524 DOI: 10.3389/fimmu.2024.1383503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
With the development of global social economy and the deepening of the aging population, diseases related to aging have received increasing attention. The pathogenesis of many respiratory diseases remains unclear, and lung aging is an independent risk factor for respiratory diseases. The aging mechanism of the lung may be involved in the occurrence and development of respiratory diseases. Aging-induced immune, oxidative stress, inflammation, and telomere changes can directly induce and promote the occurrence and development of lung aging. Meanwhile, the occurrence of lung aging also further aggravates the immune stress and inflammatory response of respiratory diseases; the two mutually affect each other and promote the development of respiratory diseases. Explaining the mechanism and treatment direction of these respiratory diseases from the perspective of lung aging will be a new idea and research field. This review summarizes the changes in pulmonary microenvironment, metabolic mechanisms, and the progression of respiratory diseases associated with aging.
Collapse
Affiliation(s)
- Yanmei Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunying Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiqian Deng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Tao
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Lei He
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Luchuan Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Li Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Chengshi He
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Zhang
- Department of Emergency Medicine Center, Sichuan Province People’s Hospital University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Png LH, Kalish L, Campbell RG, Seresirikachorn K, Albrecht T, Raji N, Choy C, Rimmer J, Earls P, Sacks R, Harvey RJ. Predictors of persistent disease in biologic treated type 2 diffuse/eosinophilic chronic rhinosinusitis undergoing surgery. Int Forum Allergy Rhinol 2024; 14:909-918. [PMID: 37805956 DOI: 10.1002/alr.23282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Biologic therapy targeting type 2 chronic rhinosinusitis with nasal polyps (CRSwNP) has greatly improved disease control but nonresponders exist in a proportion of patients in phase 3 trials and clinical practice. This study explores the serum and histologic changes in biologic treated CRSwNP that predict disease control. METHODS A cross-sectional study was performed of patients with CRSwNP on biologics for their asthma, who underwent endoscopic sinus surgery while on biologic therapy. At the 6-month postoperative assessment, patients with poorly controlled CRSwNP while on biologic therapy were compared to patients who were controlled. Blood and mucosal samples taken at the time of surgery 6 months prior were assessed to predict disease control. RESULTS A total of 37 patients were included (age 47.8 ± 12.4 years, 43.2% female). Those with poorly controlled disease had reduced tissue eosinophils (% >100 cells/high-powered field: 8.3% vs. 50.0%, p < 0.001) and increased serum neutrophils (5.2 ± 2.7 vs. 3.7 ± 1.1 × 109 cells/L, p = 0.02). Logistic regression analysis demonstrated that reduced tissue eosinophil was predictive for poorly controlled disease (OR = 0.21, 95% CI [0.05, 0.83], p = 0.03). Receiver-operating characteristic analysis showed that need for rescue systemic corticosteroid was predicted at a serum neutrophil cut-off level of 5.75 × 109 cells/L (sensitivity = 80.0%, specificity = 96.9%, AUC = 0.938, p = 0.002). CONCLUSION Low tissue eosinophils and increased serum neutrophils while on biologics predict for poor response in the biological treatment of with CRSwNP. A serum neutrophil level of ≥5.75 × 109 cells/L predicts for poor response to current biologic therapy.
Collapse
Affiliation(s)
- Lu Hui Png
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
- Department of Otorhinolaryngology - Head and Neck Surgery, Singapore General Hospital, Singapore, Singapore
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Larry Kalish
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
- Department of Otolaryngology, Head and Neck Surgery, Concord General Hospital, University of Sydney, Sydney, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Raewyn G Campbell
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
- Department of Otolaryngology, Head and Neck Surgery, Royal Prince Alfred Hospital, Sydney, Australia
| | - Kachorn Seresirikachorn
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
- Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Endoscopic Nasal and Sinus Surgery Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Doctor of Philosophy Program in Medical Sciences (International Program), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tobias Albrecht
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Nelufer Raji
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| | - Christine Choy
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| | - Janet Rimmer
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
- Woolcock Institute, University of Sydney, Sydney, Australia
- Faculty of Medicine, Notre Dame University, Sydney, Australia
| | - Peter Earls
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
- Department of Anatomical Pathology, St Vincent's Hospital, Darlinghurst, Australia
| | - Raymond Sacks
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
- Department of Otolaryngology, Head and Neck Surgery, Concord General Hospital, University of Sydney, Sydney, Australia
| | - Richard J Harvey
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
18
|
Cao TBT, Quoc QL, Jang JH, Park HS. Immune Cell-Mediated Autoimmune Responses in Severe Asthma. Yonsei Med J 2024; 65:194-201. [PMID: 38515356 PMCID: PMC10973555 DOI: 10.3349/ymj.2023.0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/23/2024] Open
Abstract
Severe asthma (SA) has heterogeneous inflammatory phenotypes characterized by persistent airway inflammation (eosinophilic and/or neutrophilic inflammation) and remodeling. Various immune cells (eosinophils, neutrophils, and macrophages) become more activated and release inflammatory mediators and extracellular traps, damaging the protective barrier of airway epithelial cells and further activating other immune and structural cells. These cells play a role in autoimmune responses in asthmatic airways, where the adaptive immune system generates autoantibodies, inducing immunoglobulin G-dependent airway inflammation. Recent studies have suggested that adult asthmatics had high titers of autoantibodies associated with asthma severity, although pathogenic factors or diagnostic criteria are not well-defined. This challenge is further compounded by asthmatics with the autoimmune responses showing therapy insensitivity or failure to current pharmacological and biological treatment. This review updates emerging mechanisms of autoimmune responses in asthmatic airways and provides insights into their roles, proposing potential biomarkers and therapeutic targets for SA.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
19
|
Vicovan AG, Petrescu DC, Cretu A, Ghiciuc CM, Constantinescu D, Iftimi E, Strugariu G, Ancuta CM, Caratașu CC, Solcan C, Stafie CS. Targeting Common Inflammatory Mediators in Experimental Severe Asthma and Acute Lung Injury. Pharmaceuticals (Basel) 2024; 17:338. [PMID: 38543124 PMCID: PMC10974991 DOI: 10.3390/ph17030338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 01/11/2025] Open
Abstract
Neutrophils, known to be mobilized and activated in high amounts through Il-17 stimulation, are a key factor for clinical manifestation and imbalance of redox systems favoring a dominant oxidative state in both severe asthma and acute lung injury (f). The aim of this study was to evaluate in mice, the effect of Secukinumab (SECU) in a model of ovalbumin-induced asthma exacerbated with LPS administration to induce ALI, compared to dexamethasone (DEXA), already known for its benefit in both asthma and ALI. Results on cytokine levels for specific Th1, Th2 and Th17 revealed an interplay of immune responses. For Th1 effector cytokines in BALF, DEXA treatment increased TNF-α levels, but TNF-α was not modified by SECU; DEXA and SECU significantly decreased IFN-γ and IL-6 levels. For typical Th2 cytokines, DEXA significantly increased Il-4, Il-5 and Il-13 levels, while SECU significantly inhibited Il-5 levels. Both SECU and DEXA significantly decreased Il-17 levels. Cytokine level changes in lung tissue homogenate were partly similar to BALF cytokines. Conclusion: in addition to DEXA, SECU possesses the ability to modulate inflammatory cytokine release and to decrease Th17 responses in ALI overlapped on exacerbated asthma in mice.
Collapse
Affiliation(s)
- Andrei Gheorghe Vicovan
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (A.G.V.); (D.C.P.); (A.C.)
| | - Diana Cezarina Petrescu
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (A.G.V.); (D.C.P.); (A.C.)
| | - Aurelia Cretu
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (A.G.V.); (D.C.P.); (A.C.)
| | - Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (A.G.V.); (D.C.P.); (A.C.)
- “Saint Mary” Emergency Children Hospital, 700887 Iasi, Romania
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.C.); (E.I.)
| | - Elena Iftimi
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.C.); (E.I.)
| | - Georgiana Strugariu
- 2nd Rheumatology Department, Clinical Rehabilitation Hospital, 700664 Iasi, Romania; (G.S.); (C.M.A.)
| | - Codrina Mihaela Ancuta
- 2nd Rheumatology Department, Clinical Rehabilitation Hospital, 700664 Iasi, Romania; (G.S.); (C.M.A.)
- Rheumatology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Cezar-Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania;
| | - Carmen Solcan
- Department IX—Discipline of Histology, Embryology and Molecular Biology, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity—Family Medicine Discipline, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
20
|
Pan T, Lee JW. A crucial role of neutrophil extracellular traps in pulmonary infectious diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:34-41. [PMID: 39170960 PMCID: PMC11332830 DOI: 10.1016/j.pccm.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 08/23/2024]
Abstract
Neutrophil extracellular traps (NETs), extrusions of intracellular DNA with attached granular material that exert an antibacterial effect through entangling, isolating, and immobilizing microorganisms, have been extensively studied in recent decades. The primary role of NETs is to entrap and facilitate the killing of bacteria, fungi, viruses, and parasites, preventing bacterial and fungal dissemination. NET formation has been described in many pulmonary diseases, including both infectious and non-infectious. NETs are considered a double-edged sword. As innate immune cells, neutrophils release NETs to kill pathogens and remove cellular debris. However, the deleterious effects of excessive NET release in lung disease are particularly important because NETs and by-products of NETosis can directly induce epithelial and endothelial cell death while simultaneously inducing inflammatory cytokine secretion and immune-mediated thrombosis. Thus, NET formation must be tightly regulated to preserve the anti-microbial capability of NETs while minimizing damage to the host. In this review, we summarized the recent updates on the mechanism of NETs formation and pathophysiology associated with excessive NETs, aiming to provide insights for research and treatment of pulmonary infectious diseases.
Collapse
Affiliation(s)
- Ting Pan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jae Woo Lee
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA 90230, USA
| |
Collapse
|
21
|
Yan Q, Zhang X, Xie Y, Yang J, Liu C, Zhang M, Zheng W, Lin X, Huang HT, Liu X, Jiang Y, Zhan SF, Huang X. Bronchial epithelial transcriptomics and experimental validation reveal asthma severity-related neutrophilc signatures and potential treatments. Commun Biol 2024; 7:181. [PMID: 38351296 PMCID: PMC10864370 DOI: 10.1038/s42003-024-05837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Airway epithelial transcriptome analysis of asthma patients with different severity was used to disentangle the immune infiltration mechanisms affecting asthma exacerbation, which may be advantageous to asthma treatment. Here we introduce various bioinformatics methods and develop two models: an OVA/CFA-induced neutrophil asthma mouse model and an LPS-induced human bronchial epithelial cell damage model. Our objective is to investigate the molecular mechanisms, potential targets, and therapeutic strategies associated with asthma severity. Multiple bioinformatics methods identify meaningful differences in the degree of neutrophil infiltration in asthma patients with different severity. Then, PTPRC, TLR2, MMP9, FCGR3B, TYROBP, CXCR1, S100A12, FPR1, CCR1 and CXCR2 are identified as the hub genes. Furthermore, the mRNA expression of 10 hub genes is determined in vivo and in vitro models. Reperixin is identified as a pivotal drug targeting CXCR1, CXCR2 and MMP9. We further test the potential efficiency of Reperixin in 16HBE cells, and conclude that Reperixin can attenuate LPS-induced cellular damage and inhibit the expression of them. In this study, we successfully identify and validate several neutrophilic signatures and targets associated with asthma severity. Notably, Reperixin displays the ability to target CXCR1, CXCR2, and MMP9, suggesting its potential therapeutic value for managing deteriorating asthma.
Collapse
Affiliation(s)
- Qian Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xinxin Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Yi Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Yang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Chengxin Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaofen Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Wenjiang Zheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueying Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China.
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiufang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
22
|
Quoc QL, Cao TBT, Jang JH, Shin YS, Choi Y, Park HS. ST2-Mediated Neutrophilic Airway Inflammation: A Therapeutic Target for Patients With Uncontrolled Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:22-41. [PMID: 38262389 PMCID: PMC10823144 DOI: 10.4168/aair.2024.16.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Suppression of tumorigenicity 2 (ST2) has been proposed as the receptor contributing to neutrophilic inflammation in patients with type 2-low asthma. However, the exact role of ST2 in neutrophil activation remains poorly understood. METHODS A total of 105 asthmatic patients (classified into 3 groups according to control status: the controlled asthma [CA], partly-controlled asthma [PA], and uncontrolled asthma [UA] groups), and 104 healthy controls were enrolled to compare serum levels of soluble ST2 (sST2) and interleukin (IL)-33. Moreover, the functions of ST2 in neutrophils and macrophages (Mϕ) were evaluated ex vivo and in vivo. RESULTS Serum sST2 levels were significantly higher in the UA group than in the CA or PA groups (P < 0.05 for all) with a negative correlation between serum sST2 and forced expiratory volume in 1 second % (r = -0.203, P = 0.038). Significantly higher expression of ST2 receptors on peripheral neutrophils was noted in the UA group than in the PA or CA groups. IL-33 exerted its effects on the production of reactive oxygen species, the formation of extracellular traps from neutrophils, and Mϕ polarization/activation. In neutrophilic asthmatic mice, treatment with anti-ST2 antibody significantly suppressed proinflammatory cytokines (tumor necrosis factor-alpha and IL-17A) as well as the numbers of immune cells (neutrophils, Mϕ, and group 3 innate lymphoid cells) in the lungs. CONCLUSIONS These results suggest that IL-33 induces the activation of neutrophils and Mϕ via ST2 receptors, leading to neutrophilic airway inflammation and poor control status of asthma. ST2 could be a therapeutic target for neutrophilic airway inflammation in patients with UA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang, Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
23
|
Quoc QL, Cao TBT, Moon JY, Jang JH, Shin YS, Choi Y, Ryu MS, Park HS. Contribution of monocyte and macrophage extracellular traps to neutrophilic airway inflammation in severe asthma. Allergol Int 2024; 73:81-93. [PMID: 37365039 DOI: 10.1016/j.alit.2023.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Increased blood/sputum neutrophil counts are related to poor clinical outcomes of severe asthma (SA), where we hypothesized that classical monocytes (CMs)/CM-derived macrophages (Mφ) are involved. We aimed to elucidate the mechanisms of how CMs/Mφ induce the activation of neutrophils/innate lymphoid cells (ILCs) in SA. METHODS Serum levels of monocyte chemoattractant protein-1 (MCP-1) and soluble suppression of tumorigenicity 2 (sST2) were measured from 39 patients with SA and 98 those with nonsevere asthma (NSA). CMs/Mφ were isolated from patients with SA (n = 19) and those with NSA (n = 18) and treated with LPS/interferon-gamma. Monocyte/M1Mφ extracellular traps (MoETs/M1ETs) were evaluated by western blotting, immunofluorescence, and PicoGreen assay. The effects of MoETs/M1ETs on neutrophils, airway epithelial cells (AECs), ILC1, and ILC3 were assessed in vitro and in vivo. RESULTS The SA group had significantly higher CM counts with increased migration as well as higher levels of serum MCP-1/sST2 than the NSA group. Moreover, the SA group had significantly greater production of MoETs/M1ETs (from CMs/M1Mφ) than the NSA group. The levels of MoETs/M1ETs were positively correlated with blood neutrophils and serum levels of MCP-1/sST2, but negatively correlated with FEV1%. In vitro/in vivo studies demonstrated that MoETs/M1ETs could activate AECs, neutrophils, ILC1, and ILC3 by increased migration as well as proinflammatory cytokine production. CONCLUSIONS CM/Mφ-derived MoETs/M1ETs could contribute to asthma severity by enhancing neutrophilic airway inflammation in SA, where modulating CMs/Mφ may be a potential therapeutic option.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Ji-Young Moon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
24
|
Mao R, Jiang Z, Min Z, Wang G, Xie M, Gao P, Zhu L, Li H, Chen Z. Peripheral neutrophils and oxidative stress-associated molecules for predicting the severity of asthma: a cross-sectional study based on multidimensional assessment. Front Med (Lausanne) 2023; 10:1240253. [PMID: 38131042 PMCID: PMC10733438 DOI: 10.3389/fmed.2023.1240253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives This study aims to explore the relationship between the severity of asthma and neutrophils and related oxidative stress-associated molecules in peripheral blood and induced sputum. Methods A total of 67 subjects were included in this study, namely, 25 patients with severe asthma and 42 patients with non-severe asthma. Clinical data, induced sputum and peripheral blood were collected. Lung function and molecules related to oxidative stress in induced sputum and peripheral blood of asthma patients were detected. The relationship between neutrophils and asthma severity was analyzed. HDAC2 mRNA and protein expression levels and HDAC2 activity were also analyzed. Multivariate logistic regression was performed to select statistically significant variables. Results The absolute value of neutrophils and percentage of neutrophils were higher in the severe asthma patients. These two values were used to predict the severity of asthma by ROC analysis, with the best cutoff values being 4.55 × 109/L (sensitivity 83.3%, specificity 64.0%) and 55.15% (sensitivity 54.8%, specificity 88.0%). The ROS concentration of neutrophils in the induced sputum samples and the 8-iso-PGF2α concentration in the peripheral blood samples were higher in the severe asthma group (P = 0.012; P = 0.044), whereas there was reduced HDAC2 protein activity in PBMCs (P < 0.001). A logistic equation and a nomogram were created to give a precise prediction of disease severity. Conclusion Oxidative stress is increased in severe asthma patients. Peripheral blood neutrophils and 8-iso-PGF2α can be used as biomarkers to predict the severity of asthma. A prediction model was created for evaluating asthma severity.
Collapse
Affiliation(s)
- Ruolin Mao
- Department of Respiratory and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhilong Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Min
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Lei Zhu
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Huayin Li
- Department of Respiratory and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Zhang S, Wang Z. An Emerging Role of Extracellular Traps in Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2023; 23:675-688. [PMID: 37934391 PMCID: PMC10739460 DOI: 10.1007/s11882-023-01082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis (CRS) is a complicated, heterogeneous disease likely caused by inflammatory and infectious factors. There is clear evidence that innate immune cells, including neutrophils and eosinophils, play a significant role in CRS. Multiple immune cells, including neutrophils and eosinophils, have been shown to release chromatin and granular proteins into the extracellular space in response to triggering extracellular traps (ETs). The formation of ETs remains controversial due to their critical function during pathogen clearance while being associated with harmful inflammatory illnesses. This article summarizes recent research on neutrophil extracellular traps (NETs) and eosinophil extracellular traps (EETs) and their possible significance in the pathophysiology of CRS. RECENT FINDINGS A novel type of programmed cell death called ETosis, which releases ETs, has been proposed by recent study. Significantly more NETs are presented in nasal polyps, and its granule proteins LL-37 induce NETs production in CRS with nasal polyps (CRSwNP) patients. Similar to NETs, developed in the tissue of nasal polyps, primarily in subepithelial regions with epithelial barrier defects, and are associated with linked to elevated tissue levels of IL-5 and S. aureus colonization. This article provides a comprehensive overview of NETs and EETs, as well as an in-depth understanding of the functions of these ETs in CRS.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Cai J, Tao H, Liu H, Hu Y, Han S, Pu W, Li L, Li G, Li C, Zhang J. Intrinsically bioactive and biomimetic nanoparticle-derived therapies alleviate asthma by regulating multiple pathological cells. Bioact Mater 2023; 28:12-26. [PMID: 37214258 PMCID: PMC10193170 DOI: 10.1016/j.bioactmat.2023.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Asthma is a serious global public health concern. Airway neutrophilic inflammation is closely related to severe asthma, for which effective and safe therapies remain to be developed. Here we report nanotherapies capable of simultaneously regulating multiple target cells relevant to the pathogenesis of neutrophilic asthma. A nanotherapy LaCD NP based on a cyclic oligosaccharide-derived bioactive material was engineered. LaCD NP effectively accumulated in the injured lungs of asthmatic mice and mainly distributed in neutrophils, macrophages, and airway epithelial cells after intravenous or inhalation delivery, thereby ameliorating asthmatic symptoms and attenuating pulmonary neutrophilic inflammation as well as reducing airway hyperresponsiveness, remodeling, and mucus production. Surface engineering via neutrophil cell membrane further enhanced targeting and therapeutic effects of LaCD NP. Mechanistically, LaCD NP can inhibit the recruitment and activation of neutrophils, especially reducing the neutrophil extracellular traps formation and NLRP3 inflammasome activation in neutrophils. Also, LaCD NP can suppress macrophage-mediated pro-inflammatory responses and prevent airway epithelial cell death and smooth muscle cell proliferation, by mitigating neutrophilic inflammation and its direct effects on relevant cells. Importantly, LaCD NP showed good safety performance. Consequently, LaCD-derived multi-bioactive nanotherapies are promising for effective treatment of neutrophilic asthma and other neutrophil-associated diseases.
Collapse
Affiliation(s)
- Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Hui Tao
- Department of Pharmacology, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Huan Liu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yi Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Lanlan Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Gang Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| |
Collapse
|
27
|
Shen K, Zhang M, Zhao R, Li Y, Li C, Hou X, Sun B, Liu B, Xiang M, Lin J. Eosinophil extracellular traps in asthma: implications for pathogenesis and therapy. Respir Res 2023; 24:231. [PMID: 37752512 PMCID: PMC10523707 DOI: 10.1186/s12931-023-02504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023] Open
Abstract
Asthma is a common, chronic inflammatory disease of the airways that affects millions of people worldwide and is associated with significant healthcare costs. Eosinophils, a type of immune cell, play a critical role in the development and progression of asthma. Eosinophil extracellular traps (EETs) are reticular structures composed of DNA, histones, and granulins that eosinophils form and release into the extracellular space as part of the innate immune response. EETs have a protective effect by limiting the migration of pathogens and antimicrobial activity to a controlled range. However, chronic inflammation can lead to the overproduction of EETs, which can trigger and exacerbate allergic asthma. In this review, we examine the role of EETs in asthma.
Collapse
Affiliation(s)
- Kunlu Shen
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengyuan Zhang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiheng Zhao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yun Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Chunxiao Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xin Hou
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Bingqing Sun
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Xiang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiangtao Lin
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China.
- Peking University Health Science Center, Beijing, China.
| |
Collapse
|
28
|
Li X, Xiao S, Filipczak N, Yalamarty SSK, Shang H, Zhang J, Zheng Q. Role and Therapeutic Targeting Strategies of Neutrophil Extracellular Traps in Inflammation. Int J Nanomedicine 2023; 18:5265-5287. [PMID: 37746050 PMCID: PMC10516212 DOI: 10.2147/ijn.s418259] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
29
|
Liu L, Zhou L, Wang LL, Zheng PD, Zhang FQ, Mao ZY, Zhang HJ, Liu HG. Programmed Cell Death in Asthma: Apoptosis, Autophagy, Pyroptosis, Ferroptosis, and Necroptosis. J Inflamm Res 2023; 16:2727-2754. [PMID: 37415620 PMCID: PMC10321329 DOI: 10.2147/jir.s417801] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Bronchial asthma is a complex heterogeneous airway disease, which has emerged as a global health issue. A comprehensive understanding of the different molecular mechanisms of bronchial asthma may be an efficient means to improve its clinical efficacy in the future. Increasing research evidence indicates that some types of programmed cell death (PCD), including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, contributed to asthma pathogenesis, and may become new targets for future asthma treatment. This review briefly discusses the molecular mechanism and signaling pathway of these forms of PCD focuses on summarizing their roles in the pathogenesis and treatment strategies of asthma and offers some efficient means to improve clinical efficacy of therapeutics for asthma in the near future.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Ling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Peng-Dou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Feng-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen-Yu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
30
|
Zhou Y, Huang X, Yu H, Shi H, Chen M, Song J, Tang W, Teng F, Li C, Yi L, Zhu X, Wang N, Wei Y, Wuniqiemu T, Dong J. TMT-based quantitative proteomics revealed protective efficacy of Icariside II against airway inflammation and remodeling via inhibiting LAMP2, CTSD and CTSS expression in OVA-induced chronic asthma mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154941. [PMID: 37451150 DOI: 10.1016/j.phymed.2023.154941] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airflow limitation, airway inflammation and remodeling. Icariside II (IS), derived from herbal medicine Herba Epimedii, exerts an anti-inflammatory property. However, underlying mechanisms with specifically targeted molecular expression by IS in asthma have not been fully understood, and whether IS could inhibit remodeling and EMT still remains unclear. PURPOSE The study aimed to clarify therapeutic efficacy of IS for attenuating airway inflammation and remodeling in asthma, and illustrate IS-regulated specific pathway and target proteins through TMT-based quantitative proteomics. STUDY DESIGN AND METHODS Murine model of chronic asthma was constructed with ovalbumin (OVA) sensitization and then challenge for 8 weeks. Pulmonary function, leukocyte count in bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory and fibrotic cytokines, and markers of epithelial-mesenchymal transition (EMT) were evaluated. TMT-based quantitative proteomics were performed on lung tissues to explore IS-regulated proteins. RESULTS IS contributed to alleviative airway hyperresponsiveness (AHR) evidenced by declined RL and increased Cdyn. After IS treatment, we observed a remarked down-regulation of leukocyte count, inflammatory cytokines in BALF, and peribronchial inflammation infiltration. Goblet cell hyperplasia, mucus secretion and peribronchial collagen deposition were attenuated, with the level of TGF-β and MMP-9 in BALF declined. Furthermore, IS induced a rise of Occludin and E-cadherin and a decline of N-cadherin and α-SMA in lung tissues. These results proved the protective property of IS against airway inflammation, remodeling and EMT. To further investigate underlying mechanisms of IS in asthma treatment, TMT-based quantitative proteomics were performed and 102 overlapped DEPs regulated by IS were identified. KEGG enrichment exhibited these DEPs were enriched in lysosome, phagosome and autophagy, in which LAMP2, CTSD and CTSS were common DEPs. WB, q-PCR and IHC results proofed expressional alteration of these proteins. Besides, IS could decrease Beclin-1 and LC3B expression with increasing p62 expression thus inhibiting autophagy. CONCLUSIONS The study demonstrated IS could ameliorate AHR, airway inflammation, remodeling and EMT in OVA-induced chronic asthma mice. Our research was the first to reveal that inhibition of LAMP2, CTSD and CTSS expression in autophagy contributed to the therapeutic efficacy of IS to asthma.
Collapse
Affiliation(s)
- Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hanlin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingrong Song
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Congcong Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Na Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Tsai CH, Lai ACY, Lin YC, Chi PY, Chen YC, Yang YH, Chen CH, Shen SY, Hwang TL, Su MW, Hsu IL, Huang YC, Maitland-van der Zee AH, McGeachie MJ, Tantisira KG, Chang YJ, Lee YL. Neutrophil extracellular trap production and CCL4L2 expression influence corticosteroid response in asthma. Sci Transl Med 2023; 15:eadf3843. [PMID: 37285400 DOI: 10.1126/scitranslmed.adf3843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023]
Abstract
The association between neutrophil extracellular traps (NETs) and response to inhaled corticosteroids (ICS) in asthma is unclear. To better understand this relationship, we analyzed the blood transcriptomes from children with controlled and uncontrolled asthma in the Taiwanese Consortium of Childhood Asthma Study using weighted gene coexpression network analysis and pathway enrichment methods. We identified 298 uncontrolled asthma-specific differentially expressed genes and one gene module associated with neutrophil-mediated immunity, highlighting a potential role for neutrophils in uncontrolled asthma. We also found that NET abundance was associated with nonresponse to ICS in patients. In a neutrophilic airway inflammation murine model, steroid treatment could not suppress neutrophilic inflammation and airway hyperreactivity. However, NET disruption with deoxyribonuclease I (DNase I) efficiently inhibited airway hyperreactivity and inflammation. Using neutrophil-specific transcriptomic profiles, we found that CCL4L2 was associated with ICS nonresponse in asthma, which was validated in human and murine lung tissue. CCL4L2 expression was also negatively correlated with pulmonary function change after ICS treatment. In summary, steroids fail to suppress neutrophilic airway inflammation, highlighting the potential need to use alternative therapies such as leukotriene receptor antagonists or DNase I that target the neutrophil-associated phenotype. Furthermore, these results highlight CCL4L2 as a potential therapeutic target for individuals with asthma refractory to ICS.
Collapse
Affiliation(s)
- Ching-Hui Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | - Yu-Cheng Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yun-Chi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chien-Han Chen
- Department of Pediatrics, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 243, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Sheng-Yeh Shen
- Department of Chest Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - I-Ling Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Department of Pediatric Respiratory Medicine, Emma's Children Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, Netherlands
| | - Michael J McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kelan G Tantisira
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA 92123, USA
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Yungling L Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- College of Public Health, China Medical University, Taichung 404, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
32
|
Striz I, Golebski K, Strizova Z, Loukides S, Bakakos P, Hanania N, Jesenak M, Diamant Z. New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clin Sci (Lond) 2023; 137:727-753. [PMID: 37199256 PMCID: PMC10195992 DOI: 10.1042/cs20190281] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) or without (CRSsNP) are chronic respiratory diseases. These two disorders often co-exist based on common anatomical, immunological, histopathological, and pathophysiological basis. Usually, asthma with comorbid CRSwNP is driven by type 2 (T2) inflammation which predisposes to more severe, often intractable, disease. In the past two decades, innovative technologies and detection techniques in combination with newly introduced targeted therapies helped shape our understanding of the immunological pathways underlying inflammatory airway diseases and to further identify several distinct clinical and inflammatory subsets to enhance the development of more effective personalized treatments. Presently, a number of targeted biologics has shown clinical efficacy in patients with refractory T2 airway inflammation, including anti-IgE (omalizumab), anti-IL-5 (mepolizumab, reslizumab)/anti-IL5R (benralizumab), anti-IL-4R-α (anti-IL-4/IL-13, dupilumab), and anti-TSLP (tezepelumab). In non-type-2 endotypes, no targeted biologics have consistently shown clinical efficacy so far. Presently, multiple therapeutical targets are being explored including cytokines, membrane molecules and intracellular signalling pathways to further expand current treatment options for severe asthma with and without comorbid CRSwNP. In this review, we discuss existing biologics, those under development and share some views on new horizons.
Collapse
Affiliation(s)
- Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Subdivision of Allergology and Clinical Immunology, Institute for Postgraduate Education in Medicine, Prague, Czech Republic
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Zuzana Strizova
- Institute of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stelios Loukides
- Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Bakakos
- First Respiratory Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Clinical Immunology and Allergology, University Hospital in Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Belgium
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
De Volder J, Bontinck A, De Grove K, Dirven I, Haelterman V, Joos G, Brusselle G, Maes T. Trajectory of neutrophilic responses in a mouse model of pollutant-aggravated allergic asthma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121722. [PMID: 37105460 DOI: 10.1016/j.envpol.2023.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Experimental studies suggest that neutrophils could contribute to allergic asthma pathogenesis, that is mainly driven by type 2 immunity. Inhalation of diesel exhaust particles (DEP) is implicated in both exacerbation and development of asthma. Since exposure to DEP is associated with a neutrophilic component, we aimed to investigate how exposure to the combination of allergens and DEP modulates neutrophilic responses. Human bronchial epithelial cells (HBEC) were exposed to house dust mite (HDM), DEP or HDM + DEP in vitro to determine the expression of neutrophil-recruiting chemokines. Female (C57BL/6 J) mice were intranasally instilled with saline, DEP, HDM or combined HDM + DEP for 3 weeks (subacute) or 6 weeks (chronic). The neutrophilic responses were determined in lung tissue and bronchoalveolar lavage fluid (BALF). Simultaneous exposure to HDM + DEP resulted in increased CXCL1 and CXCL8 mRNA expression by HBEC in vitro. In mice, subacute exposure to HDM + DEP induced a strong mixed eosinophilic/neutrophilic inflammation in BALF and lung and was associated with higher expression of neutrophil-attracting chemokines and NET formation compared to the sole exposures. After chronic HDM + DEP exposure, a similar neutrophilic response was observed, however the NET formation was less pronounced. Interestingly, the increase of BALF eosinophils was also significantly attenuated after chronic HDM + DEP exposure compared to the subacute exposure. Subacute and chronic HDM + DEP exposure induced goblet cell hyperplasia and airway hyperresponsiveness. Our data suggest a role for neutrophils and NETs in pollutant-aggravated eosinophilic allergic asthma. Moreover, subacute exposure to HDM + DEP induces a mixed eosinophilic/neutrophilic response whereas upon chronic HDM + DEP exposure there is a shift in inflammatory response with a more prominent neutrophilic component.
Collapse
Affiliation(s)
- Joyceline De Volder
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Annelies Bontinck
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Katrien De Grove
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Iris Dirven
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Valerie Haelterman
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Guy Joos
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Guy Brusselle
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Tania Maes
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium.
| |
Collapse
|
34
|
Neutrophil Extracellular Traps in Airway Diseases: Pathological Roles and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24055034. [PMID: 36902466 PMCID: PMC10003347 DOI: 10.3390/ijms24055034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Neutrophils are important effector cells of the innate immune response that fight pathogens by phagocytosis and degranulation. Neutrophil extracellular traps (NETs) are released into the extracellular space to defend against invading pathogens. Although NETs play a defensive role against pathogens, excessive NETs can contribute to the pathogenesis of airway diseases. NETs are known to be directly cytotoxic to the lung epithelium and endothelium, highly involved in acute lung injury, and implicated in disease severity and exacerbation. This review describes the role of NET formation in airway diseases, including chronic rhinosinusitis, and suggests that targeting NETs could be a therapeutic strategy for airway diseases.
Collapse
|
35
|
Quoc QL, Cao TBT, Kim SH, Choi Y, Ryu MS, Choi Y, Park HS, Shin YS. Endocrine-disrupting chemical exposure augments neutrophilic inflammation in severe asthma through the autophagy pathway. Food Chem Toxicol 2023; 175:113699. [PMID: 36871881 DOI: 10.1016/j.fct.2023.113699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Corticosteroid resistance, progressive lung function decline, and frequent asthma exacerbations are the hallmarks of neutrophilic asthma (NA). However, the potential contributors and their mechanisms of NA aggravation have not yet been fully clarified. This study was conducted to assess the precise mechanism and inflammatory effects of endocrine-disrupting chemicals using mono-n-butyl phthalate (MnBP) on an NA model. BALB/c mice from normal control and LPS/OVA-induced NA groups were treated with or without MnBP. The effects of MnBP on the airway epithelial cells (AECs), macrophages (Mφ), and neutrophils were investigated in vitro and in vivo. NA mice exposed to MnBP had significantly increased airway hyperresponsiveness, total and neutrophil cell counts in the bronchoalveolar lavage fluid, and the percentage of M1Mφ in the lung tissues compared to those non-exposed to MnBP. In in vitro study, MnBP induced the human neutrophil activation to release neutrophil DNA extracellular traps, Mφ polarizing toward M1Mφ, and AEC damage. Treatment with hydroxychloroquine (an autophagy inhibitor) reduced the effects of MnBP in vivo and in vitro. The results of our study suggest that MnBP exposure may increase the risk of neutrophilic inflammation in severe asthma and autophagy pathway-targeted therapeutics can help control MnBP-induced harmful effects in asthma.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Seo-Hee Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Yeji Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
36
|
Peng X, Li Y, Zhao W, Yang S, Huang J, Chen Y, Wang Y, Gong Z, Chen X, Yu C, Cai S, Zhao H. Blockade of neutrophil extracellular traps ameliorates toluene diisocyanate-induced steroid-resistant asthma. Int Immunopharmacol 2023; 117:109719. [PMID: 36827917 DOI: 10.1016/j.intimp.2023.109719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/27/2022] [Accepted: 01/08/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND AND PURPOSE Toluene diisocyanate (TDI)-induced asthma is characterized by mixed inflammation dominated by neutrophils, and is refractory to steroid treatment. Neutrophil extracellular traps (NETs) play an important role in severe asthma, but their role in TDI-induced asthma models is unclear. This study focused on the role and mechanism of NETs in steroid-resistant TDI-induced asthma. METHODS Induced sputum was collected from 85 asthmatic patients and 25 healthy controls to detect eDNA. A murine TDI-induced asthma model was prepared, and asthmatic mice were given dexamethasone or DNase I. In vitro, the human bronchial epithelial cell line HBE was stimulated with NETs or TDI-human serum albumin (TDI-HSA). RESULTS Asthma patients had higher sputum eDNA compared to healthy subjects. In asthma patients, eDNA was positively correlated with sputum neutrophils, and negatively correlated with FEV1%predicted. Airway inflammation, airway reactivity, Th2 cytokine levels in lymph supernatant, and levels of NETs were significantly increased in the TDI-induced asthmatic mice. These increases were suppressed by DNase I, but not by dexamethasone. Inhibition of NETs improved interleukin (IL)-8 and MKP1 mRNA expression, and reduced phosphorylation of GR-S226 induced by TDI. Inhibition of NETs improved airway epithelial barrier disruption, as well as p38 and ERK signaling pathways in TDI-induced asthmatic mice. In vitro, NETs promoted the expression of IL-8 mRNA in HBE cells, and reduced the expression of MKP1. IL-8 elevation induced by NETs was suppressed by a p38 inhibitor or ERK inhibitor, but not by dexamethasone. Pretreatment with RAGE inhibitor reduced NETs induced p38/ERK phosphorylation and IL-8 levels in HBE cells. CONCLUSION Our data suggest that targeting NETs might effectively improved TDI-induced airway inflammation and airway epithelial barrier function. This may potentially be a treatment for patients with steroid-resistance asthma.
Collapse
Affiliation(s)
- Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| | - Yuemao Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shuluan Yang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Junwen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ying Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yanhong Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Zhaoqian Gong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
37
|
Simvastatin Reduces NETosis to Attenuate Severe Asthma by Inhibiting PAD4 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1493684. [PMID: 36778209 PMCID: PMC9911252 DOI: 10.1155/2023/1493684] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023]
Abstract
Objective Patients with severe asthma respond poorly to corticosteroids, and their care accounts for more than 60% of the total costs attributed to asthma. Neutrophils form neutrophil extracellular traps (NETs), which play a crucial role in severe asthma. Statins have shown anti-inflammatory effects by reducing NETosis. In this study, we investigate if simvastatin can attenuate severe asthma by reducing NETosis and the underlying mechanism. Methods Mice were concomitantly sensitized with ovalbumin (OVA), house dust mite (HDM), and lipopolysaccharide (LPS) during sensitization to establish a mouse model of severe asthma with neutrophil predominant inflammation (OVA+LPS mice) and treated with or without simvastatin. In inflammatory response, proportions of Th2, Th17, and Treg cells in lung tissue were detected by flow cytometry, and the levels of cytokines, dsDNA, and MPO-DNA in bronchoalveolar lavage fluid (BALF) were analyzed by ELISA. Citrullinated histone H3 (CitH3) and peptidyl arginine deiminase 4 (PAD4) in lung tissue were determined by Western blot and immunofluorescence imaging. PAD4 mRNA was determined by quantitative PCR (qPCR). HL-60 cells were differentiated into neutrophil-like cells by 1.25% DMSO. The neutrophil-like cells were treated with or without LPS, and simvastatin was then stimulated with PMA. CitH3 and PAD4 expressions were determined. Results Sensitization with OVA, HDM, and LPS resulted in neutrophilic inflammation and the formation of NETs in the lungs. Simvastatin treatment reduced the inflammation score, cytokine levels, total cells, and neutrophil counts in the BALF and reduced proportions of Th2 and Th17 but increased Treg cells in lungs of OVA+LPS mice. Simvastatin-treated OVA+LPS mice show reduced NET formation in BALF and lung tissue compared to control mice. Adoptive transfer of neutrophils was sufficient to restore NETosis and neutrophilic inflammation in simvastatin-treated OVA+LPS mice. Simvastatin reduced PAD4 mRNA and protein expression in lung tissues and neutrophils isolated from lungs of OVA+LPS mice and consequent NET formation. In vitro, simvastatin reduced LPS-induced PAD4 upregulation and NETosis in HL-60-differentiated neutrophil-like cells. Furthermore, PAD4-overexpressed lentiviral transduction was sufficient to restore PAD4 protein expression and NETosis in simvastatin-treated HL-60-differentiated neutrophil-like cells. Conclusions Simvastatin reduces Th17-mediated neutrophilic inflammation and airway hyperreactivity by reducing PAD4 expression and inhibiting NETosis in a mouse model of severe asthma. Severe asthmatic patients with high levels of circulating NETs or sputum NETs may show improved responses to statin treatment.
Collapse
|
38
|
Menegati LM, de Oliveira EE, Oliveira BDC, Macedo GC, de Castro E Silva FM. Asthma, obesity, and microbiota: A complex immunological interaction. Immunol Lett 2023; 255:10-20. [PMID: 36646290 DOI: 10.1016/j.imlet.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Obesity and allergic asthma are inflammatory chronic diseases mediated by distinct immunological features, obesity presents a Th1/Th17 profile, asthma is commonly associated with Th2 response. However, when combined, they result in more severe asthma symptoms, greater frequency of exacerbation episodes, and lower therapy responsiveness. These features lead to decreased life quality, associated with higher morbidity/mortality rates. In addition, obesity prompts specific asthma phenotypes, which can be dependent on atopic status, age, and gender. In adults, obesity is associated with neutrophilic/Th17 profile, while in children, the outcome is diverse, in some cases children with obesity present aggravation of atopy, and Th2 inflammation, and in others an association with a Th1 profile, with reduced IgE levels and eosinophilia. These alterations occur due to a complex group of factors among which the microbiome has been recently explored. Particularly, evidence shows its important role in susceptibility or resistance to asthma development, via gut-lung-axis, and demonstrates its relevance to the immune pathogenesis of the syndrome. Few studies address the relevance of the lung microbiome in shaping the immune response, locally. However, specific bacteria, like Moraxella catarrhalis, Haemophilus influenza, and Streptococcus pneumoniae, correlate with important features of the obese-asthmatic phenotype. Although maternal obesity is known to increase asthma risk in offspring, the impact on lung colonization is unknown. This review details the main key immune mechanisms involved in obesity-aggravated asthma, featuring the effect of maternal obesity in the establishment of gut and lung microbiota of the offspring, acting as potential childhood asthma inducer.
Collapse
Affiliation(s)
- Laura Machado Menegati
- Faculdade de Medicina, Programa de Pós-Graduação em Saúde, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Erick Esteves de Oliveira
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | | | - Gilson Costa Macedo
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | - Flávia Márcia de Castro E Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas - RJ, Universidade do Estado do Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Salinas C, Barriga K, Albornoz A, Alarcon P, Quiroga J, Uberti B, Sarmiento J, Henriquez C, Ehrenfeld P, Burgos RA, Moran G. Tamoxifen triggers the in vitro release of neutrophil extracellular traps in healthy horses. Front Vet Sci 2023; 9:1025249. [PMID: 36686170 PMCID: PMC9853556 DOI: 10.3389/fvets.2022.1025249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Neutrophils display an array of biological functions including the formation of neutrophil extracellular traps (NETs), web-like structures specialized in trapping, neutralizing, killing and preventing microbial dissemination within the host. However, NETs contribute to a number of inflammatory pathologies, including severe equine asthma. Tamoxifen (TX) is a selective estrogen receptor modulator which belongs to the triphenylethyllenes group of molecules, and which is used as a treatment in all stages of estrogen-positive human breast cancer. Our previous results suggest that tamoxifen can modulate neutrophil functionality and promote resolution of inflammation; this would partly explain the clinical beneficial effect of this drug in horses with airway inflammation. Enhanced NETs production has been reported with tamoxifen use in humans, but minimal data exists regarding the drug's effect on NETs in horses. The aim of this study is to assess the in vitro effect of TX on NETs formation from peripheral blood of healthy horses. Five clinically healthy mixed-breed adult horses were enrolled in the study. For this, cellular free DNA quantification, immunofluorescence for the visualization of NETs, assessment of different types of NETs, and detection of mitochondrial superoxide. TX induced NETs formation at a concentration of 10 uM. Our results show that only two types of NETs were induced by TX: 95% spread NETs (sprNETs) and 5% aggregated NETs (aggNETs). Furthermore, induction of these NETs could be influenced by mitochondrial ROS. Future research should involve an In vivo study of horses with severe asthma and TX treatment, to evaluate BALF neutrophil NET formation. In conclusion, this in vitro study suggests that the resolution of inflammation by TX in horses with airway inflammation is due to inhibition of other neutrophilic functions but not to NET formation.
Collapse
Affiliation(s)
- Constanza Salinas
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Kassandra Barriga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Albornoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcon
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - John Quiroga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamín Uberti
- Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Henriquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A. Burgos
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriel Moran
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile,*Correspondence: Gabriel Moran ✉
| |
Collapse
|
40
|
Dong H, Yang W, Li W, Zhu S, Zhu L, Gao P, Hao Y. New insights into autophagy in inflammatory subtypes of asthma. Front Immunol 2023; 14:1156086. [PMID: 37090692 PMCID: PMC10117973 DOI: 10.3389/fimmu.2023.1156086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Asthma is a heterogeneous airway disease characterized by airway inflammation and hyperresponsiveness. Autophagy is a self-degrading process that helps maintain cellular homeostasis. Dysregulation of autophagy is involved in the pathogenesis of many diseases. In the context of asthma, autophagy has been shown to be associated with inflammation, airway remodeling, and responsiveness to drug therapy. In-depth characterization of the role of autophagy in asthma can enhance the understanding of the pathogenesis, and provide a theoretical basis for the development of new biomarkers and targeted therapy for asthma. In this article, we focus on the relationship of autophagy and asthma, and discuss its implications for asthma pathogenesis and treatment.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Zhu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Peng Gao, ; Yuqiu Hao,
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Peng Gao, ; Yuqiu Hao,
| |
Collapse
|
41
|
Wang L, Yuan X, Li Z, Zhi F. The Role of Macrophage Autophagy in Asthma: A Novel Therapeutic Strategy. Mediators Inflamm 2023; 2023:7529685. [PMID: 37181813 PMCID: PMC10175021 DOI: 10.1155/2023/7529685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Asthma is a chronic respiratory disease frequently associated with airway inflammation and remodeling. The development of asthma involves various inflammatory phenotypes that impact therapeutic effects, and macrophages are master innate immune cells in the airway that exert diverse functions including phagocytosis, antigen presentation, and pathogen clearance, playing an important role in the pathogeneses of asthma. Recent studies have indicated that autophagy of macrophages affects polarization of phenotype and regulation of inflammation, which implies that regulating autophagy of macrophages may be a potential strategy for the treatment of asthma. Thus, this review summarizes the signaling pathways and effects of macrophage autophagy in asthma, which will provide a tactic for the development of novel targets for the treatment of this disease.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Zhuying Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Fumin Zhi
- Department of Medical, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
42
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
43
|
Chooklin S, Chuklin S, Barylyak R. NEUTROPHIL EXTRACELLULAR TRAPS AS A THERAPEUTIC TARGET IN SYSTEMIC COMPLICATIONS OF ACUTE PANCREATITIS. FIZIOLOHICHNYĬ ZHURNAL 2022; 68:80-89. [DOI: 10.15407/fz68.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The review focuses on the role of neutrophilic extracellular traps (NETs) in systemic complications of acute pancreatitis. NETs can activate trypsin, cause inflammation and pancreatic tissue damage, and clog the excretory ducts. The main fatal complications of acute pancreatitis, such as acute lung injury, kidney, myocardial and CNS damage, intestinal dysfunction, hemocoagulation disorders are associated with NETs. Focusing on the formation and degradation of NETs may be a way to develop strategies for treating organ damage in severe acute pancreatitis. Current data on the use of NET-targeted therapy in experimental severe acute pancreatitis, which is aimed at blocking the NETs formation and disassembly of the DNA scaffold, inhibition of proteins toxicity in NETs, are considered.
Collapse
|
44
|
Wang Y, Wan R, Peng W, Zhao X, Bai W, Hu C. Quercetin alleviates ferroptosis accompanied by reducing M1 macrophage polarization during neutrophilic airway inflammation. Eur J Pharmacol 2022; 938:175407. [PMID: 36417973 DOI: 10.1016/j.ejphar.2022.175407] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Ferroptosis is a kind of regulated cell death, supporting the pathological process of lung inflammation, including asthma. Quercetin (QCT), a kind of natural dietary flavonoid, exerts anti-inflammatory and anti-ferroptosis effects in various diseases. However, the role of QCT in ferroptosis-associated airway inflammation of neutrophilic asthma remains to be described. Our study aimed to investigate the therapeutic effects of QCT on neutrophilic airway inflammation of asthma. Ferrostatin-1 (Fer-1), as a kind of ferroptosis inhibitor, was used to demonstrate whether neutrophilic airway inflammation of asthma relied on ferroptosis. In our study, the alleviation effect of QCT on neutrophilic airway inflammation was similar to Fer-1. Moreover, the significantly decreased levels of ferroptosis anti-oxidant protein (GPX4 and SLC7A11), increased malondialdehyde (MDA) levels, upregulated levels of 4-hydroxynonenal (4-HNE) expression by immunohistochemistry, and distorted mitochondria morphological changes in the lung tissues suggested lung ferroptosis in neutrophilic airway inflammation, which could be reversed by QCT treatment. In vitro experiments showed that QCT reduced LPS-induced ferroptosis through upregulating cell viability and levels of ferroptosis anti-oxidant protein (SLC7A11 and GPX4), reducing inflammatory cytokines, and decreasing the levels of MDA. Furthermore, ferroptosis was accompanied by enhancing M1 phenotype in neutrophilic airway inflammation, and QCT suppressed ferroptosis by inhibiting the pro-inflammatory M1 profile in vitro and in vivo, just as Fer-1 did. In conclusion, our study found that QCT ameliorated ferroptosis-associated neutrophilic airway inflammation accompanied by inhibiting M1 macrophage polarization. QCT may be a promising ferroptosis inhibitor for neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Rongjun Wan
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Wang Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xincheng Zhao
- Xiangya School of Medicine, Central South University, Hunan, 410008, PR China
| | - Wenxuan Bai
- Xiangya School of Medicine, Central South University, Hunan, 410008, PR China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
45
|
Wang J, Ghonim MA, Ibba SV, Luu HH, Aydin Y, Greer PA, Boulares AH. Promotion of a synthetic degradation of activated STAT6 by PARP-1 inhibition: roles of poly(ADP-ribosyl)ation, calpains and autophagy. J Transl Med 2022; 20:521. [PMID: 36348405 PMCID: PMC9644602 DOI: 10.1186/s12967-022-03715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background We reported that PARP-1 regulates genes whose products are crucial for asthma, in part, by controlling STAT6 integrity speculatively through a calpain-dependent mechanism. We wished to decipher the PARP-1/STAT6 relationship in the context of intracellular trafficking and promoter occupancy of the transcription factor on target genes, its integrity in the presence of calpains, and its connection to autophagy. Methods This study was conducted using primary splenocytes or fibroblasts derived from wild-type or PARP-1−/− mice and Jurkat T cells to mimic Th2 inflammation. Results We show that the role for PARP-1 in expression of IL-4-induced genes (e.g. gata-3) in splenocytes did not involve effects on STAT6 phosphorylation or its subcellular trafficking, rather, it influenced its occupancy of gata-3 proximal and distal promoters in the early stages of IL-4 stimulation. At later stages, PARP-1 was crucial for STAT6 integrity as its inhibition, pharmacologically or by gene knockout, compromised the fate of the transcription factor. Calpain-1 appeared to preferentially degrade JAK-phosphorylated-STAT6, which was blocked by calpastatin-mediated inhibition or by genetic knockout in mouse fibroblasts. The STAT6/PARP-1 relationship entailed physical interaction and modification by poly(ADP-ribosyl)ation independently of double-strand-DNA breaks. Poly(ADP-ribosyl)ation protected phosphorylated-STAT6 against calpain-1-mediated degradation. Additionally, our results show that STAT6 is a bonafide substrate for chaperone-mediated autophagy in a selective and calpain-dependent manner in the human Jurkat cell-line. The effects were partially blocked by IL-4 treatment and PARP-1 inhibition. Conclusions The results demonstrate that poly(ADP-ribosyl)ation plays a critical role in protecting activated STAT6 during Th2 inflammation, which may be synthetically targeted for degradation by inhibiting PARP-1.
Collapse
|
46
|
Neutrophil Extracellular Traps in Asthma: Friends or Foes? Cells 2022; 11:cells11213521. [PMID: 36359917 PMCID: PMC9654069 DOI: 10.3390/cells11213521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by variable airflow limitation and airway hyperresponsiveness. A plethora of immune and structural cells are involved in asthma pathogenesis. The roles of neutrophils and their mediators in different asthma phenotypes are largely unknown. Neutrophil extracellular traps (NETs) are net-like structures composed of DNA scaffolds, histones and granular proteins released by activated neutrophils. NETs were originally described as a process to entrap and kill a variety of microorganisms. NET formation can be achieved through a cell-death process, termed NETosis, or in association with the release of DNA from viable neutrophils. NETs can also promote the resolution of inflammation by degrading cytokines and chemokines. NETs have been implicated in the pathogenesis of various non-infectious conditions, including autoimmunity, cancer and even allergic disorders. Putative surrogate NET biomarkers (e.g., double-strand DNA (dsDNA), myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (CitH3)) have been found in different sites/fluids of patients with asthma. Targeting NETs has been proposed as a therapeutic strategy in several diseases. However, different NETs and NET components may have alternate, even opposite, consequences on inflammation. Here we review recent findings emphasizing the pathogenic and therapeutic potential of NETs in asthma.
Collapse
|
47
|
Identification of Molecular Markers Related to Immune Infiltration in Patients with Severe Asthma: A Comprehensive Bioinformatics Analysis Based on the Human Bronchial Epithelial Transcriptome. DISEASE MARKERS 2022; 2022:8906064. [DOI: 10.1155/2022/8906064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Background. Severe asthma (SA), a heterogeneous inflammatory disease characterized by immune cell infiltration, is particularly difficult to treat and manage. The airway epithelium is an important tissue in regulating innate and adaptive immunity, and targeting airway epithelial cell may contribute to improving the efficacy of asthma therapy. Methods. Bioinformatics methods were utilized to identify the hub genes and signaling pathways involved in SA. Experiments were performed to determine whether these hub genes and signaling pathways were affected by the differences in immune cell infiltration. Results. The weighted gene coexpression network analysis identified 14 coexpression modules, among which the blue and salmon modules exhibited the strongest associations with SA. The blue module was mainly enriched in actomyosin structure organization and was associated with regulating stem cell pluripotency signaling pathways. The salmon module was mainly involved in cornification, skin development, and glycosphingolipid biosynthesis-lacto and neolacto series. The protein-protein interaction network and module analysis identified 11 hub genes in the key modules. The CIBERSORTx algorithm revealed statistically significant differences in CD8+ T cells (
), T follicular helper cells (
), resting mast cells (
), and neutrophils (
) between patients with SA and mild-moderate asthma patients. Pearson’s correlation analysis identified 11 genes that were significantly associated with a variety of immune cells. We further predicted the utility of some potential drugs and validated our results in external datasets. Conclusion. Our results may help provide a better understanding of the relationship between the airway epithelial transcriptome and clinical data of SA. And this study will help to guide the development of SA-targeted molecular therapy.
Collapse
|
48
|
Xu S, Chen Z, Ge L, Ma C, He Q, Liu W, Zhang L, Zhou L. Identification of potential biomarkers and pathogenesis in neutrophil-predominant severe asthma: A comprehensive bioinformatics analysis. Medicine (Baltimore) 2022; 101:e30661. [PMID: 36197221 PMCID: PMC9509178 DOI: 10.1097/md.0000000000030661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Airway neutrophilia has been associated with asthma severity and asthma exacerbations. This study attempted to identify biomarkers, pathogenesis, and therapeutic molecular targets for severe asthma in neutrophils using bioinformatics analysis. METHODS Fifteen healthy controls and 3 patients with neutrophilic severe asthma were screened from the Gene Expression Omnibus (GEO) database. Based on the analysis of differentially expressed genes (DEGs), functional and pathway enrichment analyses, gene set enrichment analysis, protein-protein interaction network construction, and analysis were performed. Moreover, small-molecule drug candidates have also been identified. RESULTS Three hundred and three upregulated and 59 downregulated genes were identified. Gene ontology function enrichment analyses were primarily related to inflammatory response, immune response, leukocyte migration, neutrophil chemotaxis, mitogen-activated protein kinase cascade, Jun N-terminal kinase cascade, I-kappaB kinase/nuclear factor-κB, and MyD88-dependent toll-like receptor signaling pathway. Pathway enrichment analyses and gene set enrichment analysis were mainly involved in cytokine-cytokine receptor interaction, the TNF signaling pathway, leukocyte transendothelial migration, and the NOD-like receptor signaling pathway. Furthermore, 1 important module and 10 hub genes (CXCL8, TLR2, CXCL1, ICAM1, CXCR4, FPR2, SELL, PTEN, TREM1, and LEP) were identified in the protein-protein interaction network. Moreover, indoprofen, mimosine, STOCK1N-35874, trapidil, iloprost, aminoglutethimide, ajmaline, levobunolol, ethionamide, cefaclor, dimenhydrinate, and bethanechol are potential drugs for the treatment of neutrophil-predominant severe asthma. CONCLUSION This study identified potential biomarkers, pathogenesis, and therapeutic molecular targets for neutrophil-predominant severe asthma.
Collapse
Affiliation(s)
- Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linyang Ge
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenhui Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liuchao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Integrative Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Linfu Zhou, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China (e-mail: )
| |
Collapse
|
49
|
Xu Z, Ye Y, Huang G, Li Y, Guo X, Li L, Wu Y, Xu W, Nian S, Yuan Q. EphA2 recognizes Dermatophagoidespteronyssinus to mediate airway inflammation in asthma. Int Immunopharmacol 2022; 111:109106. [PMID: 35969898 DOI: 10.1016/j.intimp.2022.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Most of the asthma with low Th2 is severe steroid-resistant asthma, the exact pathogenesis of which has not yet been fully elucidated. We found that IL-6 and IL-8 were highly expressed in the sputum supernatant of severe asthma and ephrin type-A receptor 2 (EphA2) was highly expressed on bronchial epithelial cells. So, is there a connection between these two phenomena? To clarify this issue, we stimulated bronchial epithelial cells 16HBE with Dermatophagoides pteronyssinus and its compontents LPS, respectively, and detected the activation of EphA2, activation of downstream pathways and secretion of inflammatory cytokines. A mouse asthma model was established, and the therapeutic effects of inhibiting or blocking EphA2 on mouse asthma were investigated. The results showed that D. pteronyssinus and its component LPS phosphorylated EphA2 on 16HBE, activated downstream signaling pathways STAT3 and p38 MAPK, and promoted the secretion of IL-6 and IL-8. After knockout of EphA2 on 16HBE, the activation of inflammatory pathways was attenuated and the secretion of IL-6 and IL-8 was significantly reduced. Inhibition or blockade of EphA2 on mouse airways resulted in a significant reduction in airway hyperresponsiveness and airway inflammation, and a significant decrease in the expression levels of IL-6, IL-17F, IL-1α, IL-1β and TNF in bronchoalveolar lavage fluid and lung tissue. Our study uncovers a novel role for EphA2 expressed on airway epithelial cells in the pathogenesis of asthma; EphA2 recognizes D. pteronyssinus or its component LPS and promotes the secretion of IL-6 and IL-8 by airway epithelial cell, thereby mediating airway inflammation. Thus, it is possible to provide a new molecular therapy for severe asthma.
Collapse
Affiliation(s)
- Zixi Xu
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Medical Laboratory, Sichuan Science City Hospital, Mianyang, Sichuan, China.
| | - Yingchun Ye
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China.
| | - Yi Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiyuan Guo
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Lin Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Yuchuan Wu
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Wenfeng Xu
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Siji Nian
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Qing Yuan
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
50
|
Dong H, Hao Y, Li W, Yang W, Gao P. IL-36 Cytokines: Their Roles in Asthma and Potential as a Therapeutic. Front Immunol 2022; 13:921275. [PMID: 35903102 PMCID: PMC9314646 DOI: 10.3389/fimmu.2022.921275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-36 cytokines are members of the IL-1 superfamily, which consists of three agonists (IL-36α, IL-36β and IL-36γ) and an IL-36 receptor antagonist (IL-36Ra). IL-36 cytokines are crucial for immune and inflammatory responses. Abnormal levels of IL-36 cytokine expression are involved in the pathogenesis of inflammation, autoimmunity, allergy and cancer. The present study provides a summary of recent reports on IL-36 cytokines that participate in the pathogenesis of inflammatory diseases, and the potential mechanisms underlying their roles in asthma. Abnormal levels of IL-36 cytokines are associated with the pathogenesis of different types of asthma through the regulation of the functions of different types of cells. Considering the important role of IL-36 cytokines in asthma, these may become a potential therapeutic target for asthma treatment. However, existing evidence is insufficient to fully elucidate the specific mechanism underlying the action of IL-36 cytokines during the pathological process of asthma. The possible mechanisms and functions of IL-36 cytokines in different types of asthma require further studies.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Gao,
| |
Collapse
|