1
|
Carriço-Sá B, Teixeira CSS, Villa C, Mendes E, Ferreira IMPLVO, Mafra I, Costa J. Protein extraction from edible insects: Implications for IgE-binding capacity. Food Chem 2025; 468:142453. [PMID: 39693886 DOI: 10.1016/j.foodchem.2024.142453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Edible insects are attracting increasing interest as sustainable alternative protein sources. Despite being considered a safe food for most population, their consumption can pose health risks for allergic patients. This work focused on isolating proteins from the four-European Union approved insects (Tenebrio molitor, Alphitobius diaperinus, Acheta domesticus, and Locusta migratoria) and evaluating their potential immunoglobulin E (IgE)-reactivity with crustacean-allergic patients' sera. For this purpose, 16 protein extraction protocols were applied to the four insect species. A simple/fast extraction protocol (3.5 h) using 100 mM Tris-HCl + 4 % SDS (pH 7.6) buffer in a single incubation step (60 °C/2 h) proved to be the most efficient in isolating IgE-reactive proteins of the four species. Most of the proteins extracted with the proposed protocol showed IgE-reactivity with sera from crustacean-allergic patients. Their IgE-binding capacity was attributed mainly to conformational epitopes, with protein denaturation enhancing epitope accessibility and/or exposing linear epitopes.
Collapse
Affiliation(s)
- Bruno Carriço-Sá
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla S S Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eulália Mendes
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel M P L V O Ferreira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Lv L, Wei F, Liu L, Song F, Hou X, Yang Q. Study on the Allergenicity of Tropomyosin from Different Aquatic Products Based on Conformational and Linear Epitopes Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4936-4946. [PMID: 39948035 DOI: 10.1021/acs.jafc.4c11853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Tropomyosin (TM) is a major allergen in aquatic products. The aim of this study was to analyze the allergenicity of TM from different aquatic products based on conformational and linear epitopes. Structural and allergenicity analyses of TM were conducted using intrinsic fluorescence, UV absorption spectra, circular dichroism, and animal experiments. Epitope mapping was performed through bioinformatics software and a one-bead, one-compound (OBOC) peptide library screening approach. The results showed that the structures of TMs from different aquatic products are similar. Cross-reactivity was observed among TMs from different aquatic products, with fish-TM showing lower cross-reactivity compared with other TMs. Additionally, 13, 14, 11, 13, and 12 linear epitopes, along with 2, 2, 1, 2, and 3 conformational epitopes, were identified for shrimp-TM, crab-TM, fish-TM, oyster-TM, and clam-TM, respectively. Overall, these findings provide a basis for elucidating the epitope localization and allergenicity relationship of TMs from different aquatic products.
Collapse
Affiliation(s)
- Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangling Wei
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lu Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Futeng Song
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiudan Hou
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Qu X, Ma Z, Wu X, Lv L. Recent Advances of Processing and Detection Techniques on Crustacean Allergens: A Review. Foods 2025; 14:285. [PMID: 39856951 PMCID: PMC11764718 DOI: 10.3390/foods14020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Crustaceans are delicious and highly nutritional food. However, crustaceans are one of the main food allergens, causing severe public health issues. Thus, it is important to increase the knowledge on crustacean allergens and protect the health of sensitized individuals. This review systematically summarizes the basic information on major crustacean allergens' characteristics, structures, and function. It also summarizes the latest evaluation and detection methods of crustacean allergens. In addition, various processing techniques to alleviate crustacean's allergenicity are discussed and compared. A host of multiplex approaches as innovative research is attractive to decrease crustacean allergenicity. In addition, the strategies to address the risk of crustacean allergens are also reviewed and discussed in detail. This review provides updates and new findings on crustacean allergens, which helps better understand crustacean allergy and provide novel strategies for its prevention and management.
Collapse
Affiliation(s)
- Xin Qu
- Qingdao Municipal Center for Disease Control & Prevention, 175 Shandong Road Shibei District, Qingdao 266033, China;
| | - Zekun Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
4
|
Li MS, Xia F, Liu QM, Zheng JF, Li TQ, Liao YN, Chen GX, Luo LZ, Liu YX, Liu GM. Identification and Allergenicity Analysis of Tropomyosin: A Heat-Stable Allergen in Lateolabrax japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:822-834. [PMID: 39693639 DOI: 10.1021/acs.jafc.4c10285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Lateolabrax japonicus, a prevalent aquatic delicacy, is known to elicit allergic reactions in certain individuals. Nevertheless, the investigation into its allergenic components has remained notably inadequate. In the research, an approximately 35 kDa heat-stable protein of L. japonicus raw/steamed extracts was verified as tropomyosin (TM) by LC-MS/MS. Open reading frame of TM (852 bp) was acquired via PCR amplification, encoding 284 amino acids. The IgE-binding frequency of TM expressed in Escherichia coli was 22.5% among 80 fish-sensitized patients. Furthermore, TM had the ability to activate basophils in 7 patients. In the Balb/c mice model, compared with the PBS group, the levels of specific antibodies (IgE, IgG1, and IgG2a), CD19+ B cells, IL-4, and IL-10 were significantly increased in the TM group. However, the opposite was indeed the case for CD4+ TCR-β, CD4+ CD25+ Fox p 3+ cells, and IFN-γ. These findings regarding an allergen assist in conducting component-resolved diagnoses and therapeutic research for fish allergy.
Collapse
Affiliation(s)
- Meng-Si Li
- School of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian 363000, China
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Xia
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, China
| | - Jun-Feng Zheng
- School of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian 363000, China
| | - Tian-Qi Li
- School of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian 363000, China
| | - Yu-Ni Liao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Lian-Zhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Yi-Xiang Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- School of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian 363000, China
- Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| |
Collapse
|
5
|
Teixeira CSS, Carriço-Sá B, Villa C, Mafra I, Costa J. Can Physicochemical Properties Alter the Potency of Aeroallergens? Part 1 - Aeroallergen Protein Families. Curr Allergy Asthma Rep 2024; 24:591-607. [PMID: 39302571 PMCID: PMC11464574 DOI: 10.1007/s11882-024-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF REVIEW Respiratory allergies are non-communicable diseases caused by the hypersensitivity of the immune system to environmental aeroallergens. The culprits are aero-transported proteins eliciting respiratory symptoms in sensitized/allergic individuals. This review intends to provide a holistic overview on the categorization of aeroallergens into protein families (Part 1) and to exploit the impact of physicochemical properties on inhalant protein allergenicity (Part 2). This first part will focus particularly on aeroallergen organization into families and how this classification fits their physicochemical properties. RECENT FINDINGS Aeroallergen classification into protein families facilitates the identification of common physicochemical properties, thus aiding a better comprehension of known allergens, while predicting the behavior of novel ones. The available online databases gathering important features of aeroallergens are currently scarce. Information on distinct aeroallergen classification is still lacking, as data is dispersed and often outdated, hampering an efficient evaluation of new aeroallergens.
Collapse
Affiliation(s)
- Carla S S Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Bruno Carriço-Sá
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Huan F, Gao S, Ni LN, Wu MX, Gu Y, Yun X, Liu M, Lai D, Xiao AF, Liu GM. Development of Hypoallergenic Derivatives of Cra a 1 with B Cell Epitope Deletion and T Cell Epitope Retention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19494-19504. [PMID: 39168117 DOI: 10.1021/acs.jafc.4c04475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Tropomyosin was reported as an important allergen in Crassostrea angulata and designated as Cra a 1. The localization of the T cell epitopes and the reduction of the immunoreactivity of Cra a 1 are still lacking. In this study, four T cell epitopes were identified by using wild-type Cra a 1 (wtCra a 1)-immunized mouse splenocytes cultured with synthetic peptides. The immunoreactivity was maintained after chemical denaturation treatment, indicating that the linear epitope is an immunodominant epitope of wtCra a 1. Furthermore, the hypoallergenic derivative (mCra a 1) was developed by the deletion of linear B cell epitopes and retention of T cell epitopes. mCra a 1 could stimulate CD4+T cell proliferation and upregulate interleukin-10 secretion. Overall, basophil activation by mCra a 1 was low, but its ability to induce T cell proliferation was retained, suggesting that mCra a 1 may serve as a viable candidate for treating oyster allergy.
Collapse
Affiliation(s)
- Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Shuai Gao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Na Ni
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Ming-Xuan Wu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yi Gu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xiao Yun
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| |
Collapse
|
7
|
Marques LP, Bernardo YAA, Conte-Junior CA. Applications of high-intensity ultrasound on shrimp: Potential, constraints, and prospects in the extraction and retrieval of bioactive compounds, safety, and quality. J Food Sci 2024; 89:3148-3166. [PMID: 38685866 DOI: 10.1111/1750-3841.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
The global shrimp market holds substantial prominence within the food industry, registering a significant USD 24.7 billion in worldwide exportation in 2020. However, the production of a safe and high-quality product requires consideration of various factors, including the potential for allergenic reactions, occurrences of foodborne outbreaks, and risks of spoilage. Additionally, the exploration of the recovery of bioactive compounds (e.g., astaxanthin [AX], polyunsaturated fatty acids, and polysaccharides) from shrimp waste demands focused attention. Within this framework, this review seeks to comprehend and assess the utilization of high-intensity ultrasound (HIUS), both as a standalone method and combined with other technologies, within the shrimp industry. The objective is to evaluate its applications, limitations, and prospects, with a specific emphasis on delineating the impact of sonication parameters (e.g., power, time, and temperature) on various applications. This includes an examination of undesirable effects and identifying areas of interest for current and prospective research. HIUS has demonstrated promise in enhancing the extraction of bioactive compounds, such as AX, lipids, and chitin, while concurrently addressing concerns such as allergen reduction (e.g., tropomyosin), inactivation of pathogens (e.g., Vibrio parahaemolyticus), and quality improvement, manifesting in reduced melanosis scores and improved peelability. Nonetheless, potential impediments, particularly related to oxidation processes, especially those associated with lipids, pose a hindrance to its widespread implementation, potentially impacting texture properties. Consequently, further optimization studies remain imperative. Moreover, novel applications of sonication in shrimp processing, including brining, thawing, and drying, represent a promising avenue for expanding the utilization of HIUS in the shrimp industry.
Collapse
Affiliation(s)
- Lucas P Marques
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Yago A A Bernardo
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Biochemistry (PPGBq), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Martínez D, Fang L, Meza-Torres C, Garavito G, López-Lluch G, Egea E. Toward Consensus Epitopes B and T of Tropomyosin Involved in Cross-Reactivity across Diverse Allergens: An In Silico Study. Biomedicines 2024; 12:884. [PMID: 38672238 PMCID: PMC11048304 DOI: 10.3390/biomedicines12040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 04/28/2024] Open
Abstract
Tropomyosin (TM) is a pan-allergen with cross-reactivity to arthropods, insects, and nematodes in tropical regions. While IgE epitopes of TM contribute to sensitization, T-cell (MHC-II) epitopes polarize the Th2 immune response. This study aimed to identify linear B and T consensus epitopes among house dust mites, cockroaches, Ascaris lumbricoides, shrimp, and mosquitoes, exploring the molecular basis of cross-reactivity in allergic diseases. Amino acid sequences of Der p 10, Der f 10, Blo t 10, Lit v 1, Pen a 1, Pen m 1, rAsc l 3, Per a 7, Bla g 7, and Aed a 10 were collected from Allergen Nomenclature and UniProt. B epitopes were predicted using AlgPred 2.0 and BepiPred 3.0. T epitopes were predicted with NetMHCIIpan 4.1 against 10 HLA-II alleles. Consensus epitopes were obtained through analysis and Epitope Cluster Analysis in the Immune Epitope Database. We found 7 B-cell epitopes and 28 linear T-cell epitopes binding to MHC II. A unique peptide (residues 160-174) exhibited overlap between linear B-cell and T-cell epitopes, highly conserved across tropomyosin sequences. These findings shed light on IgE cross-reactivity among the tested species. The described immuno-informatics pipeline and epitopes can inform in vitro research and guide synthetic multi-epitope proteins' design for potential allergology immunotherapies. Further in silico studies are warranted to confirm epitope accuracy and guide future experimental protocols.
Collapse
Affiliation(s)
- Dalgys Martínez
- Department of Medicine, Health Sciences Division, Universidad del Norte, Barranquilla 081007, Colombia; (D.M.); (L.F.); (C.M.-T.); (G.G.)
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia
| | - Luis Fang
- Department of Medicine, Health Sciences Division, Universidad del Norte, Barranquilla 081007, Colombia; (D.M.); (L.F.); (C.M.-T.); (G.G.)
| | - Catherine Meza-Torres
- Department of Medicine, Health Sciences Division, Universidad del Norte, Barranquilla 081007, Colombia; (D.M.); (L.F.); (C.M.-T.); (G.G.)
- Department of Physiology, Anatomy, and Cellular Biology, Andalusian Centre for Development Biology (CABD-CSIC-JA), Pablo de Olavide University, 41013 Seville, Spain;
| | - Gloria Garavito
- Department of Medicine, Health Sciences Division, Universidad del Norte, Barranquilla 081007, Colombia; (D.M.); (L.F.); (C.M.-T.); (G.G.)
- Health Sciences Division, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Guillermo López-Lluch
- Department of Physiology, Anatomy, and Cellular Biology, Andalusian Centre for Development Biology (CABD-CSIC-JA), Pablo de Olavide University, 41013 Seville, Spain;
| | - Eduardo Egea
- Department of Medicine, Health Sciences Division, Universidad del Norte, Barranquilla 081007, Colombia; (D.M.); (L.F.); (C.M.-T.); (G.G.)
- Health Sciences Division, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
9
|
Zuurveld M, Ogrodowczyk AM, Benedé S, Czolk R, Lucia Bavaro S, Randow S, Markiewicz LH, Wróblewska B, Molina E, Kuehn A, Holzhauser T, Willemsen LEM. Allergenic Shrimp Tropomyosin Distinguishes from a Non-Allergenic Chicken Homolog by Pronounced Intestinal Barrier Disruption and Downstream Th2 Responses in Epithelial and Dendritic Cell (Co)Culture. Nutrients 2024; 16:1192. [PMID: 38674882 PMCID: PMC11053543 DOI: 10.3390/nu16081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Tropomyosins (TM) from vertebrates are generally non-allergenic, while invertebrate homologs are potent pan-allergens. This study aims to compare the risk of sensitization between chicken TM and shrimp TM through affecting the intestinal epithelial barrier integrity and type 2 mucosal immune activation. METHODS Epithelial activation and/or barrier effects upon exposure to 2-50 μg/mL chicken TM, shrimp TM or ovalbumin (OVA) as a control allergen, were studied using Caco-2, HT-29MTX, or HT-29 intestinal epithelial cells. Monocyte-derived dendritic cells (moDC), cocultured with HT-29 cells or moDC alone, were exposed to 50 μg/mL chicken TM or shrimp TM. Primed moDC were cocultured with naïve Th cells. Intestinal barrier integrity (TEER), gene expression, cytokine secretion and immune cell phenotypes were determined in these human in vitro models. RESULTS Shrimp TM, but not chicken TM or OVA exposure, profoundly disrupted intestinal barrier integrity and increased alarmin genes expression in Caco-2 cells. Proinflammatory cytokine secretion in HT-29 cells was only enhanced upon shrimp TM or OVA, but not chicken TM, exposure. Shrimp TM enhanced the maturation of moDC and chemokine secretion in the presence or absence of HT-29 cells, while only in the absence of epithelial cells chicken TM activated moDC. Direct exposure of moDC to shrimp TM increased IL13 and TNFα secretion by Th cells cocultured with these primed moDC, while shrimp TM exposure via HT-29 cells cocultured with moDC sequentially increased IL13 expression and IL4 secretion in Th cells. CONCLUSIONS Shrimp TM, but not chicken TM, disrupted the epithelial barrier while triggering type 2 mucosal immune activation, both of which are key events in allergic sensitization.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Anna M. Ogrodowczyk
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Sara Benedé
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), 28049 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 1359 Kirchberg, Luxembourg
| | - Simona Lucia Bavaro
- Institute of Sciences of Food Production, National Research Council (Ispa-Cnr), 70126 Bari, Italy
| | - Stefanie Randow
- Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Lidia H. Markiewicz
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Elena Molina
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), 28049 Madrid, Spain
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
10
|
Li P, Sheng L, Ye Y, Wang JS, Geng S, Ning D, Sun X. Allergenicity of alternative proteins: research hotspots, new findings, evaluation strategies, regulatory status, and future trends: a bibliometric analysis. Crit Rev Food Sci Nutr 2024; 65:1749-1760. [PMID: 38189352 DOI: 10.1080/10408398.2023.2299748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
As the world population rises, the demand for protein increases, leading to a widening gap in protein supply. There is an unprecedented interest in the development of alternative proteins, but their allergenicity has raised consumer concerns. This review aims to highlight and correlate the current research status of allergenicity studies on alternative proteins based on previously published studies. Current research keywords, hotspots and trends in alternative protein sensitization were analyzed using a mixed-method approach that combined bibliometric analysis and literature review. According to the bibliometric analysis, current research is primarily focused on food science, agriculture, and immunology. There are significant variations in the type and amount of allergens found in alternative proteins. A significant amount of research has been focused on studying plant-based proteins and the cross-reactivity of insect proteins. The allergenicity of alternative proteins has not been studied extensively or in depth. The allergenicity of other alternative proteins and the underlying mechanisms warrant further study. In addition, the lack of a standardized allergy assessment strategy calls for additional efforts by international organizations and collaborations among different countries. This review provides new research and regulatory perspectives for the safe utilization of alternative proteins in human food systems.
Collapse
Affiliation(s)
- Peipei Li
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming, P.R. China
| | - Deli Ning
- Yunnan Academy of Forestry and Grassland, Kunming, P.R. China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| |
Collapse
|
11
|
Bianco M, Ventura G, Calvano CD, Losito I, Cataldi TRI. Food allergen detection by mass spectrometry: From common to novel protein ingredients. Proteomics 2023; 23:e2200427. [PMID: 37691088 DOI: 10.1002/pmic.202200427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Food allergens are molecules, mainly proteins, that trigger immune responses in susceptible individuals upon consumption even when they would otherwise be harmless. Symptoms of a food allergy can range from mild to acute; this last effect is a severe and potentially life-threatening reaction. The European Union (EU) has identified 14 common food allergens, but new allergens are likely to emerge with constantly changing food habits. Mass spectrometry (MS) is a promising alternative to traditional antibody-based assays for quantifying multiple allergenic proteins in complex matrices with high sensitivity and selectivity. Here, the main allergenic proteins and the advantages and drawbacks of some MS acquisition protocols, such as multiple reaction monitoring (MRM) and data-dependent analysis (DDA) for identifying and quantifying common allergenic proteins in processed foodstuffs are summarized. Sections dedicated to novel foods like microalgae and insects as new sources of allergenic proteins are included, emphasizing the significance of establishing stable marker peptides and validated methods using database searches. The discussion involves the in-silico digestion of allergenic proteins, providing insights into their potential impact on immunogenicity. Finally, case studies focussing on microalgae highlight the value of MS as an effective analytical tool for ensuring regulatory compliance throughout the food control chain.
Collapse
Affiliation(s)
- Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Cosima D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
12
|
Lu Y, Cheng H, Jiang S, Lin L, Lu J. Impact of three different processing methods on the digestibility and allergenicity of Chinese mitten crab (Eriocheir sinensis) tropomyosin. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Gastrointestinal digestion products of shrimp (Penaeus vannamei) proteins retain an allergenic potential. Food Res Int 2022; 162:111916. [DOI: 10.1016/j.foodres.2022.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
|
14
|
Comparative digestion of thermally treated vertebrates and invertebrates allergen pairs in real food matrix. Food Chem 2022; 405:134981. [DOI: 10.1016/j.foodchem.2022.134981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022]
|
15
|
Sun N, Liu Y, Liu K, Wang S, Liu Q, Lin S. Gastrointestinal fate of food allergens and its relationship with allergenicity. Compr Rev Food Sci Food Saf 2022; 21:3376-3404. [PMID: 35751399 DOI: 10.1111/1541-4337.12989] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023]
Abstract
Food allergens are closely related to their gastrointestinal digestion fate, but the changes in food allergens during digestion and related mechanisms are quite complicated. This review presents in detail digestion models for predicting allergenicity, the fates of food allergens in oral, gastric and duodenal digestion, and the applications of digestomics in mapping IgE-binding epitopes of digestion-resistant peptides. Moreover, this review highlights the structure-activity relationships of food allergens during gastrointestinal digestion. Digestion-labile allergens may share common structural characteristics, such as high flexibility, rendering them easier to be hydrolyzed into small fragments with decreased or eliminated allergenicity. In contrast, the presence of disulfide bonds, tightly wound α-helical structures, or hydrophobic domains in food allergens helps them resist gastrointestinal digestion, stabilizing IgE-binding epitopes, thus maintaining their sensitization. In rare cases, digestion leads to increased allergenicity due to exposure of new epitopes. Finally, the action of the food matrix and processing on the digestion and allergenicity of food allergens as well as the underlying mechanisms was overviewed. The food matrix can directly act on the allergen by forming complexes or new epitopes to affect its gastrointestinal digestibility and thereby alter its allergenicity or indirectly affect the allergenicity by competing for enzymatic cleavage or influencing gastrointestinal pH and microbial flora. Several processing techniques attenuate the allergenicity of food proteins by altering their conformation to improve susceptibility to degradation by digestive enzymes. Given the complexity of food components, the food itself rather than a single allergen should be used to obtain more accurate data for allergenicity assessment. PRACTICAL APPLICATION: The review article will help to understand the relationship between food protein digestion and allergenicity, and may provide fundamental information for evaluating and reducing the allergenicity of food proteins.
Collapse
Affiliation(s)
- Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Yao Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Kexin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Shan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Qiaozhen Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
16
|
Klueber J, Czolk R, Codreanu-Morel F, Montamat G, Revets D, Konstantinou M, Cosma A, Hunewald O, Skov PS, Ammerlaan W, Hilger C, Bindslev-Jensen C, Ollert M, Kuehn A. High-dimensional immune profiles correlate with phenotypes of peanut allergy during food-allergic reactions. Allergy 2022; 78:1020-1035. [PMID: 35700055 DOI: 10.1111/all.15408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Food challenges carry a burden of safety, effort and resources. Clinical reactivity and presentation, such as thresholds and symptoms, are considered challenging to predict ex vivo. AIMS To identify changes of peripheral immune signatures during oral food challenges (OFC) that correlate with the clinical outcome in patients with peanut allergy (PA). METHODS Children with a positive (OFC+ , n = 16) or a negative (OFC- , n = 10) OFC-outcome were included (controls, n = 7). Single-cell mass cytometry/unsupervised analysis allowed unbiased immunophenotyping during OFC. RESULTS Peripheral immune profiles correlated with OFC outcome. OFC+ -profiles revealed mainly decreased Th2 cells, memory Treg and activated NK cells, which had an increased homing marker expression signifying immune cell migration into effector tissues along with symptom onset. OFC- -profiles had also signs of ongoing inflammation, but with a signature of a controlled response, lacking homing marker expression and featuring a concomitant increase of Th2-shifted CD4+ T cells and Treg cells. Low versus high threshold reactivity-groups had differential frequencies of intermediate monocytes and myeloid dendritic cells at baseline. Low threshold was associated with increased CD8+ T cells and reduced memory cells (central memory [CM] CD4+ [Th2] T cells, CM CD8+ T cells, Treg). Immune signatures also discriminated patients with preferential skin versus gastrointestinal symptoms, whereby skin signs correlated with increased expression of CCR4, a molecule enabling skin trafficking, on various immune cell types. CONCLUSION We showed that peripheral immune signatures reflected dynamics of clinical outcome during OFC with peanut. Those immune alterations hold promise as a basis for predictive OFC biomarker discovery to monitor disease outcome and therapy of PA.
Collapse
Affiliation(s)
- Julia Klueber
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense C, Denmark
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Françoise Codreanu-Morel
- Department of Allergology and Immunology, Centre Hospitalier de Luxembourg-Kanner Klinik, Luxembourg, Luxembourg
| | - Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense C, Denmark
| | - Dominique Revets
- National Cytometry Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Maria Konstantinou
- National Cytometry Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Per Stahl Skov
- RefLab ApS, Copenhagen, Denmark.,Institute of Immunology, National University of Copenhagen, Copenhagen, Denmark
| | - Wim Ammerlaan
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense C, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense C, Denmark
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
17
|
Chakrapani N, Fischer J, Swiontek K, Codreanu-Morel F, Hannachi F, Morisset M, Mugemana C, Bulaev D, Blank S, Bindslev-Jensen C, Biedermann T, Ollert M, Hilger C. α-Gal present on both glycolipids and glycoproteins contributes to immune response in meat-allergic patients. J Allergy Clin Immunol 2022; 150:396-405.e11. [PMID: 35459547 DOI: 10.1016/j.jaci.2022.02.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The α-Gal syndrome is associated with the presence of IgE directed to the carbohydrate galactose-α-1,3-galactose (α-Gal) and is characterized by a delayed allergic reaction occurring 2 to 6 hours after ingestion of mammalian meat. On the basis of their slow digestion and processing kinetics, α-Gal-carrying glycolipids have been proposed as the main trigger of the delayed reaction. OBJECTIVE We analyzed and compared the in vitro allergenicity of α-Gal-carrying glycoproteins and glycolipids from natural food sources. METHODS Proteins and lipids were extracted from pork kidney (PK), beef, and chicken. Glycolipids were purified from rabbit erythrocytes. The presence of α-Gal and IgE binding of α-Gal-allergic patient sera (n = 39) was assessed by thin-layer chromatography as well as by direct and inhibition enzyme-linked immunosorbent assay. The in vitro allergenicity of glycoproteins and glycolipids from different meat extracts was determined by basophil activation test. Glycoprotein stability was evaluated by simulated gastric and intestinal digestion assays. RESULTS α-Gal was detected on glycolipids of PK and beef. Patient IgE antibodies recognized α-Gal bound to glycoproteins and glycolipids, although binding to glycoproteins was more potent. Rabbit glycolipids were able to strongly activate patient basophils, whereas lipid extracts from PK and beef were also found to trigger basophil activation, but at a lower capacity compared to the respective protein extracts. Simulated gastric digestion assays of PK showed a high stability of α-Gal-carrying proteins in PK. CONCLUSION Both α-Gal-carrying glycoproteins and glycolipids are able to strongly activate patient basophils. In PK and beef, α-Gal epitopes seem to be less abundant on glycolipids than on glycoproteins, suggesting a major role of glycoproteins in delayed anaphylaxis upon consumption of these food sources.
Collapse
Affiliation(s)
- Neera Chakrapani
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | | | - Farah Hannachi
- Immunology-Allergology Unit, Centre Hospitalier Luxembourg, Differdange, Luxembourg
| | - Martine Morisset
- Immunology-Allergology Unit, Centre Hospitalier Luxembourg, Differdange, Luxembourg
| | - Clément Mugemana
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| | - Dmitry Bulaev
- Competence Center for Methodology and Statistics, LIH, Esch-sur-Alzette, Luxembourg
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environment Health, Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
18
|
He XR, Yang Y, Kang S, Chen YX, Zheng PY, Chen GX, Chen XM, Cao MJ, Jin T, Liu GM. Crystal Structure Analysis and IgE Epitope Mapping of Allergic Predominant Region in Scylla paramamosain Filamin C, Scy p 9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1282-1292. [PMID: 35040643 DOI: 10.1021/acs.jafc.1c07922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamin C (FLN c) is a novel allergen in shellfish. In this study, FLN c from Scylla paramamosain was divided into three regions for recombinant expression based on the number of domains and amino acids. Using dot blot and basophil activation tests, the allergic predominant region of FLN c was determined to be 336-531 amino acid positions (named FLN c-M). It was confirmed that by X-ray diffraction, the crystal structure of FLN c-M with immunoglobulin-like folding at a resolution of 1.7 Å was obtained. The monomer was a barrel structure composed of 16 β-strands and 2 α-helices. Three conformational epitopes were predicted, six linear epitopes were verified by serological test, and they were positioned on the crystal structure of FLN c-M. For the first time, the crystal structure of the allergic predominant region of FLN c was determined, and it provided an accurate template for the localization of IgE epitopes.
Collapse
Affiliation(s)
- Xin-Rong He
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Yang Yang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361000, China
| | - Shuai Kang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Ye-Xin Chen
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Pei-Yi Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui 230000, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| | - Xiao-Mei Chen
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Min-Jie Cao
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui 230000, China
| | - Guang-Ming Liu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| |
Collapse
|
19
|
Cheng JH, Wang H, Sun DW. An overview of tropomyosin as an important seafood allergen: Structure, cross-reactivity, epitopes, allergenicity, and processing modifications. Compr Rev Food Sci Food Saf 2021; 21:127-147. [PMID: 34954871 DOI: 10.1111/1541-4337.12889] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
Tropomyosin (TM) is a major allergen in crustaceans, which often causes allergy and is fatal to some consumers. Currently, the most effective treatment is to avoid ingesting TM, although most adverse events occur in accidental ingestion. In this review, the molecular characterization, epitopes, cross-reactivity, and pathogenesis of TM are introduced and elucidated. Modification of TM by traditional processing methods such as heat treatment and enzymatic hydrolysis, and innovative processing technologies including high-pressure treatment, cold plasma (CP), ultrasound, pulsed electric field (PEF), pulsed ultraviolet, microwave and irradiation are discussed in detail. Particularly, enzymolysis, PEF, and CP technologies show great potential for modifying TM and more studies are needed to verify their effectiveness for the seafood industry. Possible mechanisms and the advantages/disadvantages of these technologies for the mitigation of TM allergenicity are also highlighted. Further work should be conducted to investigate the allergenicity caused by protein segments such as epitopes, examine the interaction sites between the allergen and the processing techniques and reveal the reduction mechanism of allergenicity.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Belfield, Ireland
| |
Collapse
|
20
|
Ji NR, Han XY, Yu CC, Wang YJ, He XR, Liu H, Huan F, Lai D, Cao MJ, Liu GM. Analysis of Immunoreactivity of α/α 2-Tropomyosin from Haliotis discus hannai, Based on IgE Epitopes and Structural Characteristics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15403-15413. [PMID: 34881872 DOI: 10.1021/acs.jafc.1c06401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tropomyosin (TM) was reported to be a supercoil allergen of shellfish. However, little information is available about its link between structure and allergenicity. In this study, the subunit of TM (α-TM) and supercoil of TM (α2-TM) were identified from Haliotis discus hannai. α2-TM showed higher immunoreactivity than α-TM. Meanwhile, seven linear epitopes in α-TM and α2-TM were verified, and two conformational epitopes in α2-TM were predicted. The physicochemical properties and chemical bond assays confirmed the existence of the disulfide bond in α2-TM. According to spectroscopy and hydrophobicity analysis, α-TM showed higher α-helix features and blueshift of the fluorescence intensity peak compared with those of α2-TM. The structure analysis revealed the possibility of conformational epitopes in α2-TM, which could explain the immunoreactivity differences between α-TM and α2-TM further. These results improved the understanding of Haliotis discus hannai TM, which lay the foundation for the food processing of abalone.
Collapse
Affiliation(s)
- Nai-Ru Ji
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xin-Yu Han
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Chen-Chen Yu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yu-Jia Wang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xin-Rong He
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Hong Liu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Huan
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, China
| | - Min-Jie Cao
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
21
|
Boyle RJ, Shamji MH. Developments in the field of allergy in 2020 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2021; 51:1531-1537. [PMID: 34750898 DOI: 10.1111/cea.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
While 2020 will be remembered for the global coronavirus pandemic, there were also important advances in the field of allergy. In this review article, we summarize key findings reported in Clinical and Experimental Allergy during 2020. We hope this provides readers with an accessible snapshot of the work published in our journal during this time.
Collapse
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|
22
|
Huan F, Han TJ, Liu M, Li MS, Yang Y, Liu QM, Lai D, Cao MJ, Liu GM. Identification and characterization of Crassostrea angulata arginine kinase, a novel allergen that causes cross-reactivity among shellfish. Food Funct 2021; 12:9866-9879. [PMID: 34664604 DOI: 10.1039/d1fo02042k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oyster is a common food that causes allergy. However, little information is available about its allergens and cross-reactivity. In this study, arginine kinase (AK) was identified as a novel allergen in Crassostrea angulata. The primary sequence of AK was cloned which encoded 350 amino acids, and recombinant AK (rAK) was obtained. The immunodot results, secondary structure and digestive stability showed that native AK and rAK had similar IgG/IgE-binding activity and physicochemical properties. Serological analysis of 14 oyster-sensitive individuals demonstrated that AK exhibited cross-reactivity among oysters, shrimps, and crabs. Furthermore, nine epitopes in oyster AK were verified using inhibition dot blots and inhibition enzyme linked immunosorbent assay, six of which were similar to the epitopes of shrimp/crab AK. The most conserved epitopes were P5 (121-133) and P6 (133-146), which may be responsible for the cross-reactivity caused by AK. These findings will provide a deeper understanding of oyster allergens and cross-reactivity among shellfish.
Collapse
Affiliation(s)
- Fei Huan
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Tian-Jiao Han
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Meng Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Meng-Si Li
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Yang Yang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| |
Collapse
|
23
|
Huang Y, Li Z, Wu Y, Guo Y, Pavase TR, Chen G, Zhang Z, Lin H. Comparison of immunological properties of recombinant and natural turbot (Scophthalmus maximus) parvalbumin. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03771-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Insect Protein-Based Diet as Potential Risk of Allergy in Dogs. Animals (Basel) 2021; 11:ani11071942. [PMID: 34209808 PMCID: PMC8300419 DOI: 10.3390/ani11071942] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Before insects can be used widely as an alternative source of dietary protein, their allerginicity should be investigated. Therefore, the aim of our study was to assess the potential adverse reactions of the immune system of dogs against Tenebrio molitor proteins. Dogs sensitised to storage mites T. putrescentiae and A. siro were included. Clinically healthy and clinically allergic dogs were compared. Proteins were extracted from mealworm larvae and their digestibility determined by in vitro incubation with digestive proteases. Mealworm protein extracts and digests were analysed by SDS-PAGE. Canine sera tested for the presence of mite-specific IgEs were used for subsequent Western blotting. LC-MS/MS analysis was used to identify mealworm proteins and their allergenic potential was predicted with the AllermatchTM tool. The binding of canine sera IgEs to mealworm proteins was confirmed; however, the differences between the two groups of dogs were not significant. Moreover, no clear correlation was found between sensitisation to storage mites and clinical status of the dogs. Altogether, 17 different proteins were identified, including tropomyosin, α-amylase, and Tm-E1a cuticular protein that are known cross-reacting IgE-binding allergens. Our results suggest that dogs allergic to mites may clinically express also the cross-reactivity with mealworm proteins.
Collapse
|
25
|
De Marchi L, Wangorsch A, Zoccatelli G. Allergens from Edible Insects: Cross-reactivity and Effects of Processing. Curr Allergy Asthma Rep 2021; 21:35. [PMID: 34056688 PMCID: PMC8165055 DOI: 10.1007/s11882-021-01012-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The recent introduction of edible insects in Western countries has raised concerns about their safety in terms of allergenic reactions. The characterization of insect allergens, the sensitization and cross-reactivity mechanisms, and the effects of food processing represent crucial information for risk assessment. RECENT FINDINGS Allergic reactions to different insects and cross-reactivity with crustacean and inhalant allergens have been described, with the identification of new IgE-binding proteins besides well-known pan-allergens. Depending on the route of sensitization, different potential allergens seem to be involved. Food processing may affect the solubility and the immunoreactivity of insect allergens, with results depending on species and type of proteins. Chemical/enzymatic hydrolysis, in some cases, abolishes immunoreactivity. More studies based on subjects with a confirmed insect allergy are necessary to identify major and minor allergens and the role of the route of sensitization. The effects of processing need to be further investigated to assess the risk associated with the ingestion of insect-containing food products.
Collapse
Affiliation(s)
- Laura De Marchi
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | | |
Collapse
|
26
|
Barre A, Pichereaux C, Simplicien M, Burlet-Schiltz O, Benoist H, Rougé P. A Proteomic- and Bioinformatic-Based Identification of Specific Allergens from Edible Insects: Probes for Future Detection as Food Ingredients. Foods 2021; 10:foods10020280. [PMID: 33573235 PMCID: PMC7911787 DOI: 10.3390/foods10020280] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing development of edible insect flours as alternative sources of proteins added to food and feed products for improving their nutritional value, necessitates an accurate evaluation of their possible adverse side-effects, especially for individuals suffering from food allergies. Using a proteomic- and bioinformatic-based approach, the diversity of proteins occurring in currently consumed edible insects such as silkworm (Bombyx mori), cricket (Acheta domesticus), African migratory locust (Locusta migratoria), yellow mealworm (Tenebrio molitor), red palm weevil (Rhynchophorus ferrugineus), and giant milworm beetle (Zophobas atratus), was investigated. Most of them consist of phylogenetically-related protein allergens widely distributed in the different groups of arthropods (mites, insects, crustaceans) and mollusks. However, a few proteins belonging to discrete protein families including the chemosensory protein, hexamerin, and the odorant-binding protein, emerged as proteins highly specific for edible insects. To a lesser extent, other proteins such as apolipophorin III, the larval cuticle protein, and the receptor for activated protein kinase, also exhibited a rather good specificity for edible insects. These proteins, that are apparently missing or much less represented in other groups of arthropods, mollusks and nematods, share well conserved amino acid sequences and very similar three-dimensional structures. Owing to their ability to trigger allergic responses in sensitized people, they should be used as probes for the specific detection of insect proteins as food ingredients in various food products and thus, to assess their food safety, especially for people allergic to edible insects.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Carole Pichereaux
- Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (AIB), CNRS, 31326 Toulouse, France;
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, 31077 Toulouse, France;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, 31077 Toulouse, France;
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
- Correspondence: ; Tel.: +33-6955-20851
| |
Collapse
|
27
|
Czolk R, Klueber J, Sørensen M, Wilmes P, Codreanu-Morel F, Skov PS, Hilger C, Bindslev-Jensen C, Ollert M, Kuehn A. IgE-Mediated Peanut Allergy: Current and Novel Predictive Biomarkers for Clinical Phenotypes Using Multi-Omics Approaches. Front Immunol 2021; 11:594350. [PMID: 33584660 PMCID: PMC7876438 DOI: 10.3389/fimmu.2020.594350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023] Open
Abstract
Food allergy is a collective term for several immune-mediated responses to food. IgE-mediated food allergy is the best-known subtype. The patients present with a marked diversity of clinical profiles including symptomatic manifestations, threshold reactivity and reaction kinetics. In-vitro predictors of these clinical phenotypes are evasive and considered as knowledge gaps in food allergy diagnosis and risk management. Peanut allergy is a relevant disease model where pioneer discoveries were made in diagnosis, immunotherapy and prevention. This review provides an overview on the immune basis for phenotype variations in peanut-allergic individuals, in the light of future patient stratification along emerging omic-areas. Beyond specific IgE-signatures and basophil reactivity profiles with established correlation to clinical outcome, allergenomics, mass spectrometric resolution of peripheral allergen tracing, might be a fundamental approach to understand disease pathophysiology underlying biomarker discovery. Deep immune phenotyping is thought to reveal differential cell responses but also, gene expression and gene methylation profiles (eg, peanut severity genes) are promising areas for biomarker research. Finally, the study of microbiome-host interactions with a focus on the immune system modulation might hold the key to understand tissue-specific responses and symptoms. The immune mechanism underlying acute food-allergic events remains elusive until today. Deciphering this immunological response shall enable to identify novel biomarker for stratification of patients into reaction endotypes. The availability of powerful multi-omics technologies, together with integrated data analysis, network-based approaches and unbiased machine learning holds out the prospect of providing clinically useful biomarkers or biomarker signatures being predictive for reaction phenotypes.
Collapse
Affiliation(s)
- Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Julia Klueber
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Martin Sørensen
- Department of Pediatric and Adolescent Medicine, University Hospital of North Norway, Tromsø, Norway
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Françoise Codreanu-Morel
- Department of Allergology and Immunology, Centre Hospitalier de Luxembourg-Kanner Klinik, Luxembourg, Luxembourg
| | - Per Stahl Skov
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
- RefLab ApS, Copenhagen, Denmark
- Institute of Immunology, National University of Copenhagen, Copenhagen, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
28
|
Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens? Clin Rev Allergy Immunol 2021; 62:1-36. [DOI: 10.1007/s12016-020-08826-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
|
29
|
Liu M, Han TJ, Huan F, Li MS, Xia F, Yang Y, Wu YH, Chen GX, Cao MJ, Liu GM. Effects of thermal processing on the allergenicity, structure, and critical epitope amino acids of crab tropomyosin. Food Funct 2021; 12:2032-2043. [DOI: 10.1039/d0fo02869j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food processing can change the structure and immunoreactivity of purified allergens, but the effect of food processing on the immunoreactivity of the processed and purified allergen is still poorly understood.
Collapse
|
30
|
Occupational allergic contact urticaria to tropomyosin from squid. Allergol Select 2020; 4:129-134. [PMID: 33326506 PMCID: PMC7734873 DOI: 10.5414/alx02121e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
A cook’s mate working in an Austrian restaurant reported acutely occurring urticarial skin lesions after processing and cooking squid. The prick-to-prick test with squid showed a ++ positive urticarial reaction. Elevated specific IgE antibody levels to squid, shrimp, and house dust mites as well as to tropomyosin from shrimp and house dust mite could be detected in the ImmunoCAP. By means of immunoblot and ELISA, a reaction to squid extract as well as increased IgE antibody levels to squid and tropomyosin from squid could be detected. The patient was diagnosed with a clinically and occupationally relevant type I allergy to squid with cross-reaction to tropomyosin of other invertebrates and therefore recognized as an occupational disease.
Collapse
|
31
|
Zhang J, Liu W, Zhang R, Zhao X, Fang L, Qin X, Gu R, Lu J, Li G. Hypoallergenic mutants of the major oyster allergen Cra g 1 alleviate oyster tropomyosin allergenic potency. Int J Biol Macromol 2020; 164:1973-1983. [PMID: 32758611 DOI: 10.1016/j.ijbiomac.2020.07.325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022]
Abstract
Design of hypoallergen with low IgE reactivity is desirable for allergen-specific immunotherapy. Despite oyster tropomyosin (Cra g 1) is considered as the major allergen, no immunotherapy is available now. In the current research, we generated hypoallergens of Cra g 1 and evaluated their allergenicity. Four hypoallergenic derivatives were constructed by epitope deletion or site-directed mutagenesis on grounds of the identified epitopes. They showed obvious reduction in reactivity towards IgE from oyster-allergic patients and Cra g 1-sensitized BN rats, as well as significant decrease in degranulation and secretion of allergic mediators including histamine, IL-4, IL-6 and TNF-α. In addition, to further investigate the molecular mechanism, we examined the effects of these variants on FcεRI-dependent signalling pathway in IgE-challenged RBL-2H3 cells. We found that the hypoallergenic mutants were able to attenuate FcεRI-mediated signaling cascades in tested cells. These results indicate that the hypoallergenic molecules have ideal characteristics and offer a promising new strategy in clinical immunotherapy for shellfish-allergic subjects.
Collapse
Affiliation(s)
- Jiangtao Zhang
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Wenying Liu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Ruixue Zhang
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Xiaohan Zhao
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Lei Fang
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Xiuyuan Qin
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Ruizeng Gu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China.
| | - Guoming Li
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China.
| |
Collapse
|
32
|
Mapping and IgE-binding capacity analysis of heat/digested stable epitopes of mud crab allergens. Food Chem 2020; 344:128735. [PMID: 33279350 DOI: 10.1016/j.foodchem.2020.128735] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 12/31/2022]
Abstract
Mud crab (Scylla paramamosain) is widely consumed after thermal processing. It is necessary to comprehensively evaluate of the allergenic potential and epitopes of allergens in high temperature-pressure (HTP) treated S. paramamosain. Tropomyosin and arginine kinase presented higher prevalence (30.77% and 42.13%) than the other three important crab allergens by component-resolved diagnosis. The surface expression of basophils CD63 and CD203c were decreased in HTP treated crab, an effect that was even more evident after digestion and absorption by the intestinal Caco-2 cell model. Of the 35 stable epitope, six were for the first time identified in shellfish. Seven heat/digested stable peptides of tropomyosin retained IgE-binding capacity and were shown to interact with MHC-II. Five epitopes (amino acids 19-29, 99-109, 153-162, 170-188 and 211-221) were the first identified in crab. The study provides insight into prevention and therapy of crab allergy, as well as helps to reduce crab allergenicity during thermal processing.
Collapse
|
33
|
Xu LL, Zhang HW, Zhang XM, Lin H, Guo YM, Yu C, Sun LR, Li ZX. Natural Shrimp ( Litopenaeus vannamei) Tropomyosin Shows Higher Allergic Properties than Recombinant Ones as Compared through SWATH-MS-Based Proteomics and Immunological Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11553-11567. [PMID: 32941022 DOI: 10.1021/acs.jafc.0c03840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tropomyosin (TM) is the major shrimp allergen that could trigger anaphylactic reactions. Recently, recombinant TM (rTM) has been accepted widely in the field of allergen-specific immunotherapy, but the allergenicity of rTM has not been compared with natural TM (nTM) based on an in vitro digestion profile. In this work, IgG-/IgE binding, allergen peptides, and degranulation ability of the digested samples in simulated gastric fluid/simulated intestinal fluid/gastrointestinal models from nTM and rTM were evaluated by immunoassays, proteomics, and basophil degranulation assay. Results showed that pepsin-digested and trypsin-digested samples of rTM exhibited lower IgG-/IgE binding and degranulation than those of nTM. More peptides of the digested samples from rTM (57.8%) matched shrimp allergic epitopes than those from nTM (33.3%). However, the peptide SITDELDQTF (269-278) appeared most frequently. These findings would supply foundation data for epitope-based immunotherapy to shrimp allergic individuals.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Hong Wei Zhang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, P. R. China
| | - Xiao Mei Zhang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, P. R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Yu Man Guo
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Li Rui Sun
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
34
|
Abstract
This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.
Collapse
|
35
|
Xu LL, Chen J, Sun LR, Gao X, Lin H, Ahmed I, Pramod SN, Li ZX. Analysis of the allergenicity and B cell epitopes in tropomyosin of shrimp (Litopenaeus vannamei) and correlation to cross-reactivity based on epitopes with fish (Larimichthys crocea) and clam (Ruditapes philippinarum). Food Chem 2020; 323:126763. [PMID: 32334299 DOI: 10.1016/j.foodchem.2020.126763] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Tropomyosin (TM) is a highly conserved protein that considered as the major allergen of crustacean and mollusk species, while, fish-TM also shares high homology with low allergenicity. In this study, the amino acid sequence, B cell epitopes and allergenicity of shrimp (Litopenaeus vannamei), which is widely consumed, were evaluated by using immunoinformatic tools, dot-blot, enzyme-linked immunosorbent assay (ELISA) and mediator release assay. Meanwhile, cross-reactivity of allergic epitopes of fish-TM, shrimp-TM and clam-TM were assessed. Results showed that three IgE-binding epitopes (X1: 47-61, QKRMQQLENDLDQVQ; X2: 97-108, EDLERSEERLNT and X3: 244-257, RSVQKLQKEVDRLE) of shrimp-TM also exhibited degranulation ability. In comparison with epitopes from shrimp-TM, those from clam-TM showed high cross-reactivity (>80%) and degranulation ability, while those from fish-TM showed low cross-reactivity (<20%). These findings would apply a new understanding of the cross-reactivity of TM from fish, shrimp and clam in terms of allergenic epitopes.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jin Chen
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Li Rui Sun
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Xiang Gao
- Department of Allergy, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266071, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - S N Pramod
- Department of Studies in Biochemistry, Sahyadri Science College, Kuvempu University, Shimoga-577203, Karnataka 560037, India
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
36
|
Klueber J, Costa J, Randow S, Codreanu‐Morel F, Verhoeckx K, Bindslev‐Jensen C, Ollert M, Hoffmann‐Sommergruber K, Morisset M, Holzhauser T, Kuehn A. Homologous tropomyosins from vertebrate and invertebrate: Recombinant calibrator proteins in functional biological assays for tropomyosin allergenicity assessment of novel animal foods. Clin Exp Allergy 2020; 50:105-116. [PMID: 31541579 PMCID: PMC6973240 DOI: 10.1111/cea.13503] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/29/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Novel foods may provide new protein sources for a growing world population but entail risks of unexpected food-allergic reactions. No guidance on allergenicity assessment of novel foods exists, while for genetically modified (GM) crops it includes comparison of sequence identity with known allergens, digestibility tests and IgE serum screening. OBJECTIVE As a proof of concept, to evaluate non-/allergenic tropomyosins (TMs) regarding their potential as new calibrator proteins in functional biological in vitro assays for the semi-quantitative allergy risk assessment of novel TM-containing animal foods with mealworm TM as an example. METHODS Purified TMs (shrimp, Penaeus monodon; chicken Gallus gallus; E coli overexpression) were compared by protein sequencing, circular dichroism analysis and in vitro digestion. IgE binding was quantified using shrimp-allergic patients' sera (ELISA). Biological activities were investigated (skin testing; titrated basophil activation tests, BAT), compared to titrated biological mediator release using humanized rat basophil leukaemia (RBL) cells. RESULTS Shrimp and chicken TMs showed high sequence homology, both alpha-helical structures and thermal stability. Shrimp TM was stable during in vitro gastric digestion, chicken TM degraded quickly. Both TMs bound specific IgE from shrimp-allergic patients (significantly higher for shrimp TM), whereas skin reactivity was mostly positive with only shrimp TM. BAT and RBL cell assays were positive with shrimp and chicken TM, although at up to 100- to 1000-times lower allergen concentrations for shrimp than chicken TM. In RBL cell assays using both TM as calibrators, an activation of effector cells by mealworm TM similar to that by shrimp TM confirmed the already reported high allergenic potency of mealworm TM as a novel protein source. CONCLUSIONS & CLINICAL RELEVANCE According to current GM crops' allergenicity assessment, non-allergenic chicken TM could falsely be considered an allergen on a weight-of-evidence approach. However, calibrating allergenic potency in functional BAT and RBL cell assays with clinically validated TMs allowed for semi-quantitative discrimination of novel food protein's allergenicity. With TM calibration as a proof of concept, similar systems of homologous protein might be developed to scale on an axis of allergenicity.
Collapse
Affiliation(s)
- Julia Klueber
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
- Department of Dermatology and Allergy CenterOdense Research Center for AnaphylaxisUniversity of Southern DenmarkOdense CDenmark
| | - Joana Costa
- REQUIMTE‐LAQV/Faculdade de Farmácia daUniversidade do PortoPortoPortugal
| | | | | | | | - Carsten Bindslev‐Jensen
- Department of Dermatology and Allergy CenterOdense Research Center for AnaphylaxisUniversity of Southern DenmarkOdense CDenmark
| | - Markus Ollert
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
- Department of Dermatology and Allergy CenterOdense Research Center for AnaphylaxisUniversity of Southern DenmarkOdense CDenmark
| | | | - Martine Morisset
- National Unit of Immunology and AllergologyCentre Hospitalier de LuxembourgLuxembourgLuxembourg
- Present address:
Unité d’AllergologieCHU AngersAngersFrance
| | | | - Annette Kuehn
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|