1
|
Zhang S, Niu H, Zhu J. Personalized nutrition studies of human gut microbiome-polyphenol interactions utilizing continuous multistaged in vitro fermentation models-a narrative review. Nutr Res 2025; 135:101-127. [PMID: 39999639 DOI: 10.1016/j.nutres.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The gut microbiota, a complex community of microorganisms primarily inhabiting the human large intestine, plays a crucial role in human health. Gut dysbiosis, characterized by an imbalance in gut bacterial populations, has been increasingly recognized as a significant factor in the pathogenesis of metabolic diseases such as type 2 diabetes, inflammatory bowel disease, and colorectal cancer. Polyphenols are critical modulators of gut microbial composition and metabolism. However, the extent of polyphenol-induced modulation of the gut microbiome remains largely unexplored. In vitro models offer a convenient and ethical alternative to in vivo studies for investigating nutrient-gut microbiome interactions, facilitating easy sampling and controlled experimental conditions. Among these, continuous multistaged in vitro fermentation models, which simulate different sections of the human gastrointestinal tract (e.g., proximal colon, transverse colon, and distal colon), provide a more accurate representation of the human gut environment compared to single-batch fermentation. Various configurations of these multistaged models have been developed and widely employed in studies examining the effects of polyphenols on the gut microbiome. This review aims to summarize the different configurations of multistaged in vitro fermentation models and recent advancements in their development, highlight key aspects of experimental design, outline commonly used analytical workflows with complementary analyses, and review the restorative effects of polyphenol interventions on dysregulated gut microbiota.
Collapse
Affiliation(s)
- Shiqi Zhang
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Hanmeng Niu
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Moysidou AM, Cheimpeloglou K, Koutra SI, Finos MA, Ofrydopoulou A, Tsoupras A. A Comprehensive Review on the Antioxidant and Anti-Inflammatory Bioactives of Kiwi and Its By-Products for Functional Foods and Cosmetics with Health-Promoting Properties. APPLIED SCIENCES 2024; 14:5990. [DOI: 10.3390/app14145990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Kiwi’s increased popularity as a healthy fruit with several agro-food applications has increased the amount of bio-waste produced like leaf, peel, and seed by-products, usually combined to form a kiwi pomace, which increases the environmental footprint of kiwi fruit and waste management costs. The aim of the present study is to thoroughly review and outline the nutritional content and bioactive components of both kiwi fruit and its by-products, as well as the innovative approaches to obtain and valorize kiwi’s bioactives, phytochemicals, vitamins, and nutrients in several functional food products, nutraceuticals, and cosmetics applications with health-promoting properties. The antioxidant and anti-inflammatory properties and mechanisms of action of the extracted polyphenols, flavonoids, flavones, organic acids, and other bioactive components in both the fruit and in its functional products are also elucidated. Emphasis is given to those bioactive ingredients and extracts from kiwi by-products that can be valorized in various functional foods, supplements, nutraceuticals, nutricosmetics, cosmeceuticals, and cosmetics-related applications, with antioxidant and anti-inflammatory health-promoting properties. Characteristic examples with reported health benefits are the functional kiwi fruit jelly (FKJ),fermented kiwi fruit products like wine, starchy kiwi fruit flour (SKF), and kiwi-derived functional protein bars, cheese and flour, as well as several nutraceuticals and functional cosmetics with kiwi bioactives improving their antioxidant, antiaging, and photoprotective properties, collagen synthesis, skin density, hydration, elasticity, and the wound healing process, while beneficially reducing skin roughness, wrinkles, hyperpigmentation, keratinocyte death, and DNA and cell damage. The limitations and future perspectives for these kiwi bioactive-based applications are also discussed.
Collapse
Affiliation(s)
- Anastasia Maria Moysidou
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Konstantina Cheimpeloglou
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Spyridoula Ioanna Koutra
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Marios Argyrios Finos
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Anna Ofrydopoulou
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| |
Collapse
|
3
|
Kanon AP, Giezenaar C, Roy NC, Jayawardana IA, Lomiwes D, Montoya CA, McNabb WC, Henare SJ. Effects of Green and Gold Kiwifruit Varieties on Antioxidant Neuroprotective Potential in Pigs as a Model for Human Adults. Nutrients 2024; 16:1097. [PMID: 38674790 PMCID: PMC11055029 DOI: 10.3390/nu16081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Kiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.
Collapse
Affiliation(s)
- Alexander P. Kanon
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Caroline Giezenaar
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Food Experience and Sensory Testing Laboratory, School of Food and Advanced Technology, Palmerston North 4410, New Zealand
| | - Nicole C. Roy
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Isuri A. Jayawardana
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
| | - Dominic Lomiwes
- Immune Health and Physical Performance, Nutrition and Health Group, The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Smart Foods and Bioproducts, AgResearch Ltd., Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Sharon J. Henare
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
| |
Collapse
|
4
|
He K, Gao Q, Su J, Shang H, Meng X, Jiang S, Liu D, Huang B. Gut Microbiome and Metabolomics Study of Selenium-Enriched Kiwifruit Regulating Hyperlipidemia in Mice Induced by a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20386-20401. [PMID: 38055355 DOI: 10.1021/acs.jafc.3c00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Our previous study showed that as a substitute for statins, selenium-enriched kiwifruit (Se-Kiwi) might reduce blood lipids and protect the liver in Kunming mice, but the underlying mechanism remains unclear. Metabolic regulation of mammalian intestinal microflora plays an important role in obesity and related diseases induced by a high-fat diet (HFD). Here, samples of serum, liver, colon, and fresh feces from the Se-Kiwi-treated hyperlipidemia C57BL/6J mouse model were collected. Based on metabolome (UHPLC-Q-TOF MS) and gut microbiome (16S rDNA) analyses as well as the integrative analysis of physiological and biochemical indices and pathological data of mice, we aimed to systematically illustrate the gut microbiome and metabolomics mechanism of Se-Kiwi in HFD-induced hyperlipidemic mice. As a result, Se-Kiwi can significantly increase the abundance of potentially beneficial gut bacteria such as Parabacteroides, Bacteroides, and Allobaculum in the colon and improve hyperlipidemia by regulating the digestion and absorption of vitamins, pyrimidine metabolism, purine metabolism, and other metabolic pathways, which have been confirmed by the following fecal microbiota transplantation experiment. This process was significantly regulated by the Ada, Gda, Pank1, Ppara, Pparg, and Cd36 genes. These findings may provide a theoretical basis for the research and development of selenium-enriched functional foods in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Qian Gao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Hai Shang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Xia Meng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Bei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| |
Collapse
|
5
|
Goya-Jorge E, Bondue P, Gonza I, Laforêt F, Antoine C, Boutaleb S, Douny C, Scippo ML, de Ribaucourt JC, Crahay F, Delcenserie V. Butyrogenic, bifidogenic and slight anti-inflammatory effects of a green kiwifruit powder (Kiwi FFG®) in a human gastrointestinal model simulating mild constipation. Food Res Int 2023; 173:113348. [PMID: 37803696 DOI: 10.1016/j.foodres.2023.113348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Green kiwi (Actinidia deliciosa var. Hayward) is a fruit with important nutritional attributes and traditional use as a laxative. In this work, we studied in vitro the colonic fermentation of a standardized green kiwifruit powder (Kiwi FFG®) using representative intestinal microbial content of mildly constipated women. Static (batch) and dynamic configurations of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) were used to estimate the impact of Kiwi FFG® in the human gut. Analysis of metabolites revealed a significant butyrogenic effect of the kiwifruit powder and, consistently, butyrate-producing bacterial populations (i.e., Faecalibacterium prausnitzii, Cluster IV, Roseburia spp.) were greatly increased in the dynamic gastrointestinal model. Bifidobacterium spp. was also found boosted in the microflora of ascending and transverse colon sections, and a significant rise of Akkermansia muciniphila was identified in the transverse colon. Reporter gene assays using human intestinal cells (HT-29) showed that kiwifruit fermentation metabolites activate the aryl hydrocarbon receptor (AhR) transcriptional pathway, which is an important regulator of intestinal homeostasis and immunity. Moreover, modulation in the production of human interleukins (IL-6 and IL-10) in Caco-2 cells suggested a potential mild anti-inflammatory effect of the kiwifruit powder and its gut microbiota-derived metabolites. Our results suggested a potential health benefit of Kiwi FFG® in the gut microbiota, particularly in the context of constipated people.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Pauline Bondue
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium; ORTIS S.A., Hinter der Heck 46, 4750 Elsenborn, Belgium
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Fanny Laforêt
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Céline Antoine
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Samiha Boutaleb
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | | | | | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| |
Collapse
|
6
|
Cui N, Wang M, Zou Q, Wang Z, Jiang S, Chen X, Zha Y, Xiang L, Zhao L. Water-potassium coupling at different growth stages improved kiwifruit (Actinidia spp.) quality and water/potassium productivity without yield loss in the humid areas of South China. AGRICULTURAL WATER MANAGEMENT 2023; 289:108552. [DOI: 10.1016/j.agwat.2023.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Li X, Li Y, Gao J, Mi S, Mao K, Zhang T, Wang X, Sang Y. Chemical composition of naturally-fermented mixed fruit product and in vitro bioactivities. Lebensm Wiss Technol 2023; 181:114771. [DOI: 10.1016/j.lwt.2023.114771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Kim YJ, Lee JO, Kim SY, Lee JM, Lee E, Na J, Yoo KH, Park SJ, Kim BJ. Effect of A. polygama APEE (Actinidia polygama ethanol extract) or APWE (Actinidia polygama water extract) on wrinkle formation in UVB-irradiated hairless mice. J Cosmet Dermatol 2023; 22:311-319. [PMID: 35302698 DOI: 10.1111/jocd.14925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Actinidia polygama (silver vine) is considered a medical plant which has been used in oriental medicine. It has been used for the treatment of pain, gout, rheumatoid arthritis, and inflammation. Few studies reported on the effect of Actinidia polygama (silver vine) on skin photoaging. OBJECTIVE To evaluate the anti-photoaging effect of the ethanol and water extracts of A. polygama (APEE and APWE, respectively) in UVB-irradiated hairless mice. METHODS SKH-1 hairless mice were exposed to UVB irradiation (30-60 mJ/cm2 ), following orally APEE or APWE oral administration for 10 weeks. We examined the effect on winkle improvement by a measuring Fullscope, PRIMOS, Craniometer, and Cutometer. Furthermore, we analyzed histological changes in mouse dorsal skin through hematoxylin and eosin (H&E) and Masson's trichrome (MT) staining. The expression of matrix metalloproteinase (1, 3, and 9) was analyzed by immunoblotting. RESULTS Oral administration of APEE or APWE at 100 or 200 mg/kg in UVB-irradiated mice alleviated the symptoms of skin aging, such as wrinkling, epidermal hyperplasia, and water loss. In addition, the APEE or APWE oral administration increased skin elasticity by enhancing the production of type I collagen, elastin, and hyaluronic acid synthase and downregulating matrix metalloproteinase (1, 3, and 9) expression. CONCLUSION Based on results for our study, APEE or APWE could protect the UVB-mediated skin wrinkle and is new target for the developing anti-wrinkle cosmetics.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, R&D Center, Graduate School, Chung-Ang University, Seoul, Korea
| | - Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Su-Young Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jung Min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, R&D Center, Graduate School, Chung-Ang University, Seoul, Korea
| | - Esther Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jungtae Na
- Department of Life Science, Sogang University, Seoul, Korea
| | - Kwang-Ho Yoo
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | | | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, R&D Center, Graduate School, Chung-Ang University, Seoul, Korea
| |
Collapse
|
9
|
Krakhmaleva IL, Molkanova OI, Orlova ND, Koroleva OV, Mitrofanova IV. Plant growth regulators on the micropropagtion of Actinidia cultivars. CIÊNCIA E AGROTECNOLOGIA 2023; 47. [DOI: 10.1590/1413-7054202347008923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
ABSTRACT Actinidia Lindl., commonly known as kiwifruit, is a valuable berry crop. The area of commercial kiwifruit plantations is increasing; the global production of kiwifruit is about 0.62% of the total production of major fruit crops. The use of biotechnological methods, which can significantly accelerate the propagation of quality planting materials, is considered to be relevant for the propagation of this crop. In this study, we optimized the culture medium composition at the micropropagation stage for the effective cultivation of promising cultivars of A. arguta, A. kolomikta, and A. polygama. We investigated the features of Actinidia morphogenesis depending on the genotype, the concentration of 6-Benzylaminopurine (0.5, 0.8, and 1.0 mg L-1), and plant growth regulators (6-Benzylaminopurine, meta-topolin, and 2-isopentenyladenine at a concentration of 0.5 mg L-1) in the media Quoirin and Lepoivre. Actinidia arguta (multiplication rate of 8.0) and A. polygama (6.8) developed faster at the micropropagation stage compared to A. kolomikta (4.9). The studied Actinidia representatives were cultured most effectively on Quoirin and Lepoivre media supplemented with 0.5 mg L-1 meta-topolin, compared to the media containing 0.5 mg L-1 6-Benzylaminopurine and 0.5 mg L-1 2-isopentenyladenine. The use of meta-topolin in the medium contributed to the increase in various morphometric traits, such as the height of microshoots (up to 28% depending on the species), their number (up to 52%), and their multiplication rate (up to 42%). We also recorded a high morphogenic capacity of the investigated species.
Collapse
|
10
|
Klemm P, Christ M, Altegoer F, Freitag J, Bange G, Lechner M. Evolutionary reconstruction, nomenclature and functional meta-analysis of the Kiwellin protein family. FRONTIERS IN PLANT SCIENCE 2022; 13:1034708. [PMID: 36618657 PMCID: PMC9813671 DOI: 10.3389/fpls.2022.1034708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Crop diseases caused by pathogens critically affect global food security and plant ecology. Pathogens are well adapted to their host plants and have developed sophisticated mechanisms allowing successful colonization. Plants in turn have taken measures to counteract pathogen attacks resulting in an evolutionary arms race. Recent studies provided mechanistic insights into how two plant Kiwellin proteins from Zea mays mitigate the activity of the chorismate mutase Cmu1, a virulence factor secreted by the fungal pathogen Ustilago maydis during maize infection. Formerly identified as human allergens in kiwifruit, the biological function of Kiwellins is apparently linked to plant defense. We combined the analysis of proteome data with structural predictions to obtain a holistic overview of the Kiwellin protein family, that is subdivided into proteins with and without a N-terminal kissper domain. We found that Kiwellins are evolutionarily conserved in various plant species. At median five Kiwellin paralogs are encoded in each plant genome. Structural predictions revealed that Barwin-like proteins and Kiwellins cannot be discriminated purely at the sequence level. Our data shows that Kiwellins emerged in land plants (embryophyta) and are not present in fungi as suggested earlier. They evolved via three major duplication events that lead to clearly distinguishable subfamilies. We introduce a systematic Kiwellin nomenclature based on a detailed evolutionary reconstruction of this protein family. A meta-analysis of publicly available transcriptome data demonstrated that Kiwellins can be differentially regulated upon the interaction of plants with pathogens but also with symbionts. Furthermore, significant differences in Kiwellin expression levels dependent on tissues and cultivars were observed. In summary, our study sheds light on the evolution and regulation of a large protein family and provides a framework for a more detailed understanding of the molecular functions of Kiwellins.
Collapse
Affiliation(s)
- Paul Klemm
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Marvin Christ
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Institute of Microbiology, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Molecular Physiology of Microbes, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
11
|
Ricciardi T, Giangrieco I, Alessandri C, Rafaiani C, Tuppo L, Tamburrini M, Digilio AF, Ciardiello MA, Mari A. Pattern of sensitization to Juniperus oxycedrus 4EF-hand polcalcin, Jun o 4, compared with the 2EF-hand grass homolog Phl p 7 in a general Italian population of subjects suffering from pollinosis. Clin Immunol 2021; 234:108894. [PMID: 34843986 DOI: 10.1016/j.clim.2021.108894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Cupressaceae pollen causes allergic reactions worldwide with long-lasting symptomatic periods. Currently, no cypress polcalcin is available for diagnostic purposes. With the aim to investigate the pattern of sensitization to a cypress polcalcin, a synthetic gene of Jun o 4, the Juniperus oxycedrus 4EF-hand polcalcin, was cloned and expressed in Escherichia coli. Its features were investigated in comparison with the grass 2EF-hand Phl p 7. Rhinitis was the symptom most frequently reported in a cohort of Italian patients sensitized to rJun o 4 and/or rPhl p 7. The detection of many pollen allergic patients sensitized to the cypress polcalcin, but negative to Phl p 7, indicates that Phl p 7 cannot be further considered a marker of sensitization towards all the polcalcins. A 4EF-hand cypress polcalcin claims the inclusion in allergy diagnostic tests. In addition, the sensitivity of polcalcins to gastrointestinal digestion is reported and discussed for the first time.
Collapse
Affiliation(s)
- Teresa Ricciardi
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy; Allergy Data Laboratories (ADL), Latina, Italy
| | - Ivana Giangrieco
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy; Allergy Data Laboratories (ADL), Latina, Italy.
| | - Claudia Alessandri
- Allergy Data Laboratories (ADL), Latina, Italy; Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Chiara Rafaiani
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Lisa Tuppo
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy; Allergy Data Laboratories (ADL), Latina, Italy
| | | | | | | | - Adriano Mari
- Allergy Data Laboratories (ADL), Latina, Italy; Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| |
Collapse
|
12
|
Gao Y, Ping H, Li B, Li Y, Zhao F, Ma Z. Characterization of free, conjugated, and bound phenolics in early and late ripening kiwifruit cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4743-4750. [PMID: 33491781 DOI: 10.1002/jsfa.11120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Kiwifruit (Actinidia) has long been called the 'king of fruits' because of its unique flavor and the wide range of bioactive compounds which contains ascorbic acid, phenolics and minerals. These bioactivities are influenced by species and cultivar. However, to date few studies are concerned with the effect of ripening time on fruit quality. Here, early and late ripening kiwifruits were investigated to determine their content of ascorbic acid, organic acid, and phenolic compounds. RESULTS Early ripening cultivars contained higher quinic acid and malic acid, while citric acid were found in large amounts in late ripening kiwifruits. Most of the early ripening cultivars contained higher free phenolic fractions than the late ripening fruits, mainly due to the high levels of epicatechin. However, conjugated phenolics, mainly including caffeic and 2,3,4-trihydroxybenzoic acid, achieved higher levels in the late ripening cultivars. Free phenolics were higher than conjugated phenolics in the early ripening cultivars. Principal component analysis revealed some key compounds that differentiated the kiwifruits, and all the kiwifruits were divided into two subgroups as early and late ripening cultivars. CONCLUSION Ripening time had a great impact on the accumulation of bioactive compounds. The early ripening cultivars, compared to the late ripening ones, were characterized by higher levels of free neochlorogenic acid and epicatechin, while the late ripening kiwifruits contained higher amounts of conjugated phenolics. Results from this study provide further insights into the health-promoting phenolic compounds in kiwifruit, and also provide good evidence to aid consumer selection. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hua Ping
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bingru Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yang Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fang Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhihong Ma
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
13
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Sanz V, López-Hortas L, Torres M, Domínguez H. Trends in kiwifruit and byproducts valorization. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Kesh SS, Palai S. Roles of medicinal plants in the treatment of connective tissue diseases. PHYTOCHEMISTRY, THE MILITARY AND HEALTH 2021:353-366. [DOI: 10.1016/b978-0-12-821556-2.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Characterization of Bacteriophages against Pseudomonas Syringae pv. Actinidiae with Potential Use as Natural Antimicrobials in Kiwifruit Plants. Microorganisms 2020; 8:microorganisms8070974. [PMID: 32610695 PMCID: PMC7409275 DOI: 10.3390/microorganisms8070974] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of a bacterial canker in kiwifruit plants and has caused economic losses worldwide. Currently, the primary strategies to control this pathogen include the use of copper-based compounds and even antibiotics. However, the emergence of isolates of Psa that are resistant to these agrochemicals has raised the need for new alternatives to control this pathogen. Bacteriophages have been proposed as an alternative to control bacterial infections in agriculture, including Psa. Here, we show the isolation and characterization of 13 phages with the potential to control Psa infections in kiwifruit plants. The phages were characterized according to their host range and restriction fragment length polymorphism (RFLP) pattern. Four phages were selected according to their lytic effect on the bacteria and their tolerance to different environmental conditions of pH (4–7), temperature (4–37 °C), and solar radiation exposure (30 and 60 min). The selected phages (CHF1, CHF7, CHF19, and CHF21) were sequenced, revealing a high identity with the podophage of Psa phiPSA2. In vitro assays with kiwifruit leaf samples demonstrated that the mixture of phages reduced the Psa bacterial load within three hours post-application and was able to reduce the damage index in 50% of cases. Similarly, assays with kiwifruit plants maintained in greenhouse conditions showed that these phages were able to reduce the Psa bacterial load in more than 50% of cases and produced a significant decrease in the damage index of treated plants after 30 days. Finally, none of the selected phages were able to infect the other bacteria present in the natural microbiota of kiwifruit plants. These results show that bacteriophages are an attractive alternative to control Psa infections in kiwifruit plants.
Collapse
|
17
|
Pérez-Burilo S, Pastoriza S, Rufián-Henares JA. Kiwifruit. NUTRITIONAL COMPOSITION AND ANTIOXIDANT PROPERTIES OF FRUITS AND VEGETABLES 2020:565-580. [DOI: 10.1016/b978-0-12-812780-3.00035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Shah MA, Niaz K, Aslam N, Vargas-de la Cruz C, Kabir A, Khan AH, Khan F, Panichayupakaranant P. Analysis of proteins, peptides, and amino acids. RECENT ADVANCES IN NATURAL PRODUCTS ANALYSIS 2020:723-747. [DOI: 10.1016/b978-0-12-816455-6.00024-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Mazzarella N, Giangrieco I, Visone S, Santonicola P, Achenbach J, Zampi G, Tamburrini M, Di Schiavi E, Ciardiello MA. Green kiwifruit extracts protect motor neurons from death in a spinal muscular atrophy model in Caenorhabditis elegans. Food Sci Nutr 2019; 7:2327-2335. [PMID: 31367361 PMCID: PMC6657744 DOI: 10.1002/fsn3.1078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 12/17/2022] Open
Abstract
Kiwifruit is considered a functional food and a good source of nutraceuticals. Among the possible beneficial effects of kiwifruit species, a neuroprotective activity exerted in rats with learning and memory impairment induced by exposure to different chemicals was reported. We sought to investigate the neuroprotective activities of kiwifruit toward spinal muscular atrophy (SMA). To this purpose, we have used a recently developed Caenorhabditis elegans SMA model, displaying an age-dependent degeneration of motor neurons detected as locomotory defects, disappearance of fluorescent markers, and apoptotic death of targeted neurons. Although an anti-nematode activity is reported for kiwifruit, it has been verified that neither green (Actinidia deliciosa, cultivar Hayward) nor gold (Actinidia chinensis, cultivar Hort 16A) kiwifruit extracts cause detectable effects on wild-type C. elegans growth and life cycle. Conversely, green kiwifruit extracts have a clear effect on the C. elegans SMA model by partially rescuing the degeneration and death of motor neurons and the locomotion impairment. The gold species does not show the same effect. The components responsible for the neuroprotection are macromolecules with a molecular weight higher than 3 kDa, present in the green and not in the yellow kiwifruit. In conclusion, this is the first study reporting a protective activity of green kiwifruit toward motor neurons. In addition, we demonstrate that C. elegans is an animal model suitable to study the biological activities contained in kiwifruit. Therefore, this model can be exploited for future investigations aimed at identifying kiwifruit molecules with potential applications in the field of human health.
Collapse
Affiliation(s)
| | | | - Serena Visone
- Institute of Biosciences and BioResourcesCNRNaplesItaly
| | | | | | | | | | | | | |
Collapse
|
20
|
Russo I, Del Giorno C, Giangrieco I, Hajji N, Ciardiello MA, Iovino P, Ciacci C. A Peptide from Kiwifruit Exerts Anti-Inflammatory Effects in Celiac Disease Mucosa. J Am Coll Nutr 2019; 38:433-440. [PMID: 30794064 DOI: 10.1080/07315724.2018.1541426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/17/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Objective: Celiac disease is an immune-mediated disease of the intestine triggered by gluten. Gluten elicits, in genetically susceptible individuals, cytokine responses that are then transmitted to the immunocompetent cells. Vegetables and fruit have anti-inflammatory and antioxidant properties with a protective effect on intestinal epithelium. Kiwifruit is known to have beneficial effects on the intestinal tissues, and it is the only plant food containing the peptide kissper, with anti-inflammatory properties. The aim of this study was the evaluation of the kissper effect on the gluten-induced inflammation in celiac disease. Methods: We used an in vitro model of intestinal culture explant from celiac disease patients and non-celiac disease patients, cultured for 24 hours with the toxic gliadin peptide P31-43 and kissper preincubation. Results: Our data showed HLA-DR and TG2 reduction in the celiac disease mucosa pretreated with kissper, as well as a reduction of COX-2 in two patients. No differences we observed for the TGF-b1 and IL-15 levels in supernatants upon kissper pretreatment. Conclusions: The preliminary results suggest that kissper has a potential anti-inflammatory role in celiac disease.
Collapse
Affiliation(s)
- Ilaria Russo
- a Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana , University of Salerno , Baronissi , SA , Italy
| | - Chiara Del Giorno
- a Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana , University of Salerno , Baronissi , SA , Italy
| | - Ivana Giangrieco
- b Institute of Biosciences and BioResources , CNR , Naples , Italy
| | - Najla Hajji
- a Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana , University of Salerno , Baronissi , SA , Italy
| | | | - Paola Iovino
- a Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana , University of Salerno , Baronissi , SA , Italy
| | - Carolina Ciacci
- a Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana , University of Salerno , Baronissi , SA , Italy
| |
Collapse
|
21
|
Fernández-Tomé S, Hernández-Ledesma B, Chaparro M, Indiano-Romacho P, Bernardo D, Gisbert JP. Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Richardson DP, Ansell J, Drummond LN. The nutritional and health attributes of kiwifruit: a review. Eur J Nutr 2018; 57:2659-2676. [PMID: 29470689 PMCID: PMC6267416 DOI: 10.1007/s00394-018-1627-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/27/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To describe the nutritional and health attributes of kiwifruit and the benefits relating to improved nutritional status, digestive, immune and metabolic health. The review includes a brief history of green and gold varieties of kiwifruit from an ornamental curiosity from China in the 19th century to a crop of international economic importance in the 21st century; comparative data on their nutritional composition, particularly the high and distinctive amount of vitamin C; and an update on the latest available scientific evidence from well-designed and executed human studies on the multiple beneficial physiological effects. Of particular interest are the digestive benefits for healthy individuals as well as for those with constipation and other gastrointestinal disorders, including symptoms of irritable bowel syndrome. The mechanisms of action behind the gastrointestinal effects, such as changes in faecal (stool) consistency, decrease in transit time and reduction of abdominal discomfort, relate to the water retention capacity of kiwifruit fibre, favourable changes in the human colonic microbial community and primary metabolites, as well as the naturally present proteolytic enzyme actinidin, which aids protein digestion both in the stomach and the small intestine. The effects of kiwifruit on metabolic markers of cardiovascular disease and diabetes are also investigated, including studies on glucose and insulin balance, bodyweight maintenance and energy homeostasis. CONCLUSIONS The increased research data and growing consumer awareness of the health benefits of kiwifruit provide logical motivation for their regular consumption as part of a balanced diet. Kiwifruit should be considered as part of a natural and effective dietary strategy to tackle some of the major health and wellness concerns around the world.
Collapse
Affiliation(s)
| | - Juliet Ansell
- Zespri International Ltd., 400 Maunganui Road, Mount Maunganui 3116, Tauranga, New Zealand
| | - Lynley N Drummond
- Drummond Food Science Advisory Ltd., 1137 Drain Road, Killinchy, 7682, New Zealand.
| |
Collapse
|
23
|
Li HY, Yuan Q, Yang YL, Han QH, He JL, Zhao L, Zhang Q, Liu SX, Lin DR, Wu DT, Qin W. Phenolic Profiles, Antioxidant Capacities, and Inhibitory Effects on Digestive Enzymes of Different Kiwifruits. Molecules 2018; 23:molecules23112957. [PMID: 30428549 PMCID: PMC6278324 DOI: 10.3390/molecules23112957] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023] Open
Abstract
In order to obtain high-quality kiwifruits with health-promoting characteristics, physicochemical properties, phenolic profiles, antioxidant capacities, and inhibitory effects on digestive enzymes (pancreatic lipase and α-glucosidase), of fourteen different types of kiwifruit obtained from China were systematically investigated and compared. Noticeable variations in the fruits’ physicochemical properties and phenolic profiles were observed among them. The total phenolic content of Actinidia chinensis cv. Hongshi, A. chinensis cv. Jinshi, and A. chinensis cv. Jinlong were 16.52 ± 0.26 mg GAE/g DW (dry weight), 13.38 ± 0.20 mg GAE/g DW, and 11.02 ± 0.05 mg GAE/g DW, respectively, which were much higher than those of the other tested kiwifruits. According to high performance liquid chromatography (HPLC) analysis, phenolic compounds, including procyanidin B1, procyanidin B2, (−)-epicatechin, chlorogenic acid, gallic acid, and quercetin-3-rhamnoside, were found to be the major compounds in kiwifruits, while procyanidin B1, procyanidin B2, and chlorogenic acid were the most abundant phenolic compounds. Furthermore, all the tested kiwifruits exerted remarkable antioxidant capacities and inhibitory effects on pancreatic lipase and α-glucosidase. Indeed, A. chinensis cv. Hongshi, Actinidia chinensis cv. Jinshi, and Actinidia chinensis cv. Jinlong exhibited much better antioxidant capacities and inhibitory effects on digestive enzymes than those of the other tested kiwifruits. Particularly, A. polygama showed the highest inhibitory activity on α-glucosidase. Therefore, Actinidia chinensis cv. Hongshi, Actinidia chinensis cv. Jinshi, and Actinidia chinensis cv. Jinlong, as well as A. polygama could be important dietary sources of natural antioxidants and natural inhibitors against pancreatic lipase and α-glucosidase, which is helpful for meeting the growing demand for high-quality kiwifruits with health-promoting characteristics in China.
Collapse
Affiliation(s)
- Hong-Yi Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qin Yuan
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Yu-Ling Yang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qiao-Hong Han
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Jing-Liu He
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Li Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Shu-Xiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - De-Rong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ding-Tao Wu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The medical management of inflammatory bowel disease (IBD) remains problematic with a pressing need for innovation in drug development as well as delivery of personalized therapies. Both the disease's inherent pathophysiologic complexity and heterogeneity in its etiology conspire in making it difficult to accurately model for either the purposes of basic research or drug development. Multiple attempts at creating meaningful experimental models have fallen short of adequately recapitulating the disease and most do not capture any aspect of the cause or the effects of patient heterogeneity that underlays most of the difficulties faced by physicians and their patients. In vivo animal models, tissue culture systems, and more recent synthetic biology approaches are all too simplistically reductionist for the task. However, ex vivo culture platforms utilizing patient biopsies offer a system that more closely mimics end-stage disease processes that can be studied in detail and subjected to experimental manipulations. RECENT FINDINGS Recent studies describe further optimization of mucosal explant cultures in order to increase tissue viability and maintain a polarized epithelial layer. Current applications of the platform include studies of the interplay between the epithelial, immune and stromal compartment of the intestinal tissue, investigation of host-microbial interactions, preclinical evaluation of candidate drugs and uncovering mechanisms of action of established or emerging treatments for IBD. SUMMARY Patient explant-based assays offer an advanced biological system in IBD that recapitulates disease complexity and reflects the heterogeneity of the patient population. In its current stage of development, the system can be utilized for drug testing prior to the costlier and time-consuming evaluation by clinical trials. Further refinement of the technology and establishment of assay readouts that correlate with therapeutic outcomes will yield a powerful tool for personalized medicine approaches in which individual patient responses to available treatments are assessed a priori, thus reducing the need for trial and error within the clinical setting.
Collapse
|
25
|
Relationship between composition and bioactivity of persimmon and kiwifruit. Food Res Int 2018; 105:461-472. [PMID: 29433237 DOI: 10.1016/j.foodres.2017.11.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022]
|
26
|
Bayer SB, Gearry RB, Drummond LN. Putative mechanisms of kiwifruit on maintenance of normal gastrointestinal function. Crit Rev Food Sci Nutr 2017; 58:2432-2452. [PMID: 28557573 DOI: 10.1080/10408398.2017.1327841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kiwifruits are recognized as providing relief from constipation and symptoms of constipation-predominant irritable bowel syndrome (IBS-C). However, the underlying mechanisms, specifically in regards to gastrointestinal transit time and motility, are still not completely understood. This review provides an overview on the physiological and pathophysiological processes underlying constipation and IBS-C, the composition of kiwifruit, and recent advances in the research of kiwifruit and abdominal comfort. In addition, gaps in the research are highlighted and scientific studies of other foods with known effects on the gastrointestinal tract are consulted to find likely mechanisms of action. While the effects of kiwifruit fiber are well documented, observed increases in gastrointestinal motility caused by kiwifruit are not fully characterized. There are a number of identified mechanisms that may be activated by kiwifruit compounds, such as the induction of motility via protease-activated signaling, modulation of microflora, changes in colonic methane status, bile flux, or mediation of inflammatory processes.
Collapse
Affiliation(s)
- Simone Birgit Bayer
- a Department of Pathology , Center for Free Radical Research, University of Otago , 2 Riccarton Avenue, PO Box 4345, Christchurch , New Zealand
| | - Richard Blair Gearry
- b Department of Medicine , University of Otago , 2 Riccarton Avenue, PO Box 4345, Christchurch , New Zealand
| | - Lynley Ngaio Drummond
- c Drummond Food Science Advisory Ltd. , 1137 Drain Road, Killinchy RD 2, Leeston , New Zealand
| |
Collapse
|
27
|
Mahmoud YI. Kiwi fruit (Actinidia deliciosa) ameliorates gentamicin-induced nephrotoxicity in albino mice via the activation of Nrf2 and the inhibition of NF-κB (Kiwi & gentamicin-induced nephrotoxicity). Biomed Pharmacother 2017; 94:206-218. [PMID: 28759758 DOI: 10.1016/j.biopha.2017.07.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022] Open
Abstract
Gentamicin is a potent aminoglycoside antibiotic, but the risk of nephrotoxicity limits its prolonged use. The toxicity of gentamicin is believed to result from oxidative stress, a condition that could be counteracted by dietary antioxidants. This study determines the possible renoprotective effects of kiwifruit against the pathophysiological and ultrastructural alterations induced by gentamicin. Mice were intraperitoneally injected with gentamicin (100mg/kg body weight) for eight consecutive days, and kiwi juice was administered for 8days, either concomitant to or after gentamicin injection. Gentamicin caused nephrotoxicity evidenced by the significant elevation of serum creatinine and blood urea nitrogen levels, along with significant reduction of serum sodium and potassium ions, compared to normal controls. This was associated with proximal tubular necrosis, lysosomal accumulation and mitochondrial alterations, together with glomerular atrophy, mesangial hypercellularity, and inflammatory cell infiltration. Moreover, immunohistochemical results pointed to the relevant role of Nrf2 and NF-κB in gentamicin-induced nephrotoxicity. Kiwi administration, especially when given after gentamicin injection, significantly ameliorated gentamicin-induced pathophysiological alterations, increased the nuclear immunoreactivity of Nrf2 and decreased that of NF-κB. In short, kiwi fruit shows a promising role as a nephroprotective agent against gentamicin-induced nephrotoxicity via attenuating oxidative stress, inflammation and cell death.
Collapse
Affiliation(s)
- Yomna I Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia P.O. Box 11566, Cairo, Egypt.
| |
Collapse
|
28
|
Ciacci C, Russo I. Kiwifruit Peptides, Gastrointestinal Protection, and Oxidative Stress. GASTROINTESTINAL TISSUE 2017:305-309. [DOI: 10.1016/b978-0-12-805377-5.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Giangrieco I, Proietti S, Moscatello S, Tuppo L, Battistelli A, La Cara F, Tamburrini M, Famiani F, Ciardiello MA. Influence of Geographical Location of Orchards on Green Kiwifruit Bioactive Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9172-9179. [PMID: 27933987 DOI: 10.1021/acs.jafc.6b03930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Italy is one of the world's major kiwifruit producers and exporters with orchards located in different areas from the north to the south of the peninsula. This study sought to investigate for the first time the possible influence of the geographical location of kiwifruit orchards on some fruit components, selected because of their involvement in beneficial or negative effects on human health. The fruits harvested in 16 Italian areas were analyzed, and the results obtained show that the observed variations of the relative amounts of total proteins, kiwellin, the major allergen actinidin, ascorbate, polyphenols, and superoxide dismutase (SOD)-like activity seem not to be related to the geographical location of the orchards. In contrast, the high concentration of the nutraceutical peptide kissper seems to have some relationship with the cultivation area. In fact, its amount is much higher in the fruits from the Lazio region, thus providing added value to these kiwifruits.
Collapse
Affiliation(s)
- Ivana Giangrieco
- Istituto di Bioscienze e Biorisorse, CNR , Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Simona Proietti
- Istituto di Biologia Agro-ambientale e Forestale, CNR , V.le Marconi 2, I-05010 Porano, Italy
| | - Stefano Moscatello
- Istituto di Biologia Agro-ambientale e Forestale, CNR , V.le Marconi 2, I-05010 Porano, Italy
| | - Lisa Tuppo
- Istituto di Bioscienze e Biorisorse, CNR , Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Alberto Battistelli
- Istituto di Biologia Agro-ambientale e Forestale, CNR , V.le Marconi 2, I-05010 Porano, Italy
| | - Francesco La Cara
- Istituto di Biologia Agro-ambientale e Forestale, CNR , Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Maurizio Tamburrini
- Istituto di Bioscienze e Biorisorse, CNR , Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia , Via Borgo XX Giugno 74, I-06121 Perugia, Italy
| | | |
Collapse
|
30
|
Russo I, Zeppa P, Iovino P, Del Giorno C, Zingone F, Bucci C, Puzziello A, Ciacci C. The culture of gut explants: A model to study the mucosal response. J Immunol Methods 2016; 438:1-10. [PMID: 27475701 DOI: 10.1016/j.jim.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023]
Abstract
Various experimental model designs have been used to analyze the inflammatory pathways in human gastrointestinal illnesses. Traditionally, analytical techniques and animal models are popular experimental tools to study the inflammation process of intestinal diseases. However, the comparison of results between animal and human models is difficult for the inconsistency of outcomes. Although there are different animal models for studying the intestinal diseases, none of them fully represents the physiological and environmental conditions typical of the human species. Also, there is currently a concerted effort to decrease the experimental use of animals. On the converse, experimental protocols using the culture of gut mucosa had become popular with the advent of endoscopy which allows explanting multiple fragments from the intestine. The peculiar characteristic of this model is the ability to preserve in vitro the features that we found in vivo, thus also the response to various stimuli that differs from person to person. The aim of the present paper is to provide a review of some of the possible uses of the organ intestinal mucosa culture.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Pio Zeppa
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Paola Iovino
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Chiara Del Giorno
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Fabiana Zingone
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Cristina Bucci
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Alessandro Puzziello
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Carolina Ciacci
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy.
| |
Collapse
|
31
|
Antioxidant and Vasodilator Activity of Ugni molinae Turcz. (Murtilla) and Its Modulatory Mechanism in Hypotensive Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6513416. [PMID: 27688827 PMCID: PMC5027056 DOI: 10.1155/2016/6513416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/22/2016] [Accepted: 07/10/2016] [Indexed: 12/21/2022]
Abstract
Hypertension is a systemic condition with high morbidity and mortality rates worldwide, which poses an increased risk for cardiovascular diseases. In this study, we demonstrated the antioxidant and vasodilator activity of Ugni molinae Turcz. (Murtilla) fruit, a berry native to Chile and proposed models to explain its modulatory mechanism in hypotensive response. Murtilla fruits were cultivated in a germplasm bank and submitted to chemical and biological analyses. The phenolic compounds gallic acid, Catechin, Quercetin-3-β-D-glucoside, Myricetin, Quercetin, and Kaempferol were identified. Murtilla extract did not generate toxic effects on human endothelial cells and had significant antioxidant activity against ROS production, lipid peroxidation, and superoxide anion production. Furthermore, it showed dose-dependent vasodilator activity in aortic rings in the presence of endothelium, whose hypotensive mechanism is partially mediated by nitric oxide synthase/guanylate cyclase and large-conductance calcium-dependent potassium channels. Murtilla fruits might potentially have beneficial effects on the management of cardiovascular diseases.
Collapse
|
32
|
|
33
|
Offermann LR, Giangrieco I, Perdue ML, Zuzzi S, Santoro M, Tamburrini M, Cosgrove DJ, Mari A, Ciardiello MA, Chruszcz M. Elusive Structural, Functional, and Immunological Features of Act d 5, the Green Kiwifruit Kiwellin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6567-76. [PMID: 26146952 DOI: 10.1021/acs.jafc.5b02159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Kiwellin (Act d 5) is an allergenic protein contained in kiwifruit pulp in high amounts. The aim of this study was to investigate the three-dimensional structure of the natural molecule from green kiwifruit and its possible function. Kiwellin was crystallized, and its structure, including post-translational modifications, was elucidated. The molecular weight and structural features, in solution, were analyzed by gel filtration and circular dichroism, respectively. Although structurally similar to expansin, kiwellin lacks expansin activity and carbohydrate binding. A specific algorithm was applied to investigate any possible IgE reactivity correlation between kiwellin and a panel of 102 allergens, including expansins and other carbohydrate-binding allergens. The available data suggest a strong dependence of the kiwellin structure on the environmental/experimental conditions. This dependence therefore poses challenges in detecting the correlations between structural, functional, and immunological features of this protein.
Collapse
Affiliation(s)
- Lesa R Offermann
- †Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ivana Giangrieco
- §Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Makenzie L Perdue
- †Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sara Zuzzi
- #Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
- ΔAssociated Centers for Molecular Allergology, Rome and Latium, Italy
| | - Mario Santoro
- #Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
- ΔAssociated Centers for Molecular Allergology, Rome and Latium, Italy
| | - Maurizio Tamburrini
- §Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Daniel J Cosgrove
- ⊥Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adriano Mari
- #Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
- ΔAssociated Centers for Molecular Allergology, Rome and Latium, Italy
| | | | - Maksymilian Chruszcz
- †Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
34
|
Hamiaux C, Maddumage R, Middleditch MJ, Prakash R, Brummell DA, Baker EN, Atkinson RG. Crystal structure of kiwellin, a major cell-wall protein from kiwifruit. J Struct Biol 2014; 187:276-281. [PMID: 25093947 DOI: 10.1016/j.jsb.2014.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/13/2023]
Abstract
Kiwellin is a cysteine-rich, cell wall-associated protein with no known structural homologues. It is one of the most abundant proteins in kiwifruit (Actinidia spp.), and has been shown to be recognised by IgE of some patients allergic to kiwifruit. Cleavage of kiwellin into an N-terminal 4 kDa peptide called kissper and a core domain called KiTH is mediated by actinidin in vitro, and isolation of the kissper peptide from green-fleshed kiwifruit extracts suggested it may result from in vivo processing of kiwellin. In solution, kissper is highly flexible and displays pore-forming activity in synthetic lipid-bilayers. We present here the 2.05 Å resolution crystal structure of full-length kiwellin, purified from its native source, Actinidia chinensis (gold-fleshed kiwifruit). The structure confirms the modularity of the protein and the intrinsic flexibility of kissper and reveals that KiTH harbours a double-psi β-barrel fold hooked to an N-terminal β hairpin. Comparisons with structurally-related proteins suggest that a deep gorge located at the protein surface forms a binding site for endogenous ligands.
Collapse
Affiliation(s)
- Cyril Hamiaux
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| | - Ratnasiri Maddumage
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Martin J Middleditch
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Roneel Prakash
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Edward N Baker
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| |
Collapse
|