1
|
IJspeert H, Edwards ESJ, O'Hehir RE, Dalm VASH, van Zelm MC. Update on inborn errors of immunity. J Allergy Clin Immunol 2025; 155:740-751. [PMID: 39724969 DOI: 10.1016/j.jaci.2024.12.1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Ever since the first description of an inherited immunodeficiency in 1952 in a boy with gammaglobulin deficiency, new insights have progressed rapidly in disorders that are now referred to as inborn errors of immunity. In a field where fundamental molecular biology, genetics, immune signaling, and clinical care are tightly intertwined, 2022-24 saw a multitude of advances. Here we report a selection of research updates with a main focus on (1) diagnosis and screening, (2) new genetic defects, (3) susceptibility to severe coronavirus disease 2019 infection and impact of vaccination, and (4) treatment. Importantly, new pathogenic insights more rapidly affect treatment outcomes, either through an earlier and more precise diagnosis or through implementation of novel, personalized treatment. The field is growing rapidly, so awareness, communication, and collaboration are key to improving treatment outcomes.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Emily S J Edwards
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Jeffrey Modell Center, Melbourne, Australia
| | - Robyn E O'Hehir
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Jeffrey Modell Center, Melbourne, Australia
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Jeffrey Modell Center, Melbourne, Australia.
| |
Collapse
|
2
|
Marsh RA, Bleesing JJ, Chiang SCC. Diagnostic testing for hemophagocytic lymphohistiocytosis. J Immunol Methods 2025; 537:113816. [PMID: 39855542 DOI: 10.1016/j.jim.2025.113816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/17/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare clinical syndrome caused by severe systemic hyperinflammation. HLH can be rapidly fatal if unrecognized or inadequately treated. It is important that clinicians are able to utilize diagnostic testing to assess for HLH and determine the underlying causes including possible inborn errors of immunity (IEI). This article summarizes many of the tools available to aid with the diagnostic evaluation of patients with possible HLH and underlying IEI.
Collapse
Affiliation(s)
- Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States; Pharming Healthcare, Warren, NJ, United States.
| | - Jack J Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Samuel Cern Cher Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
3
|
Tomomasa D, Nishimura M, Ohya A, Tanita K, Wakatsuki R, Watanabe R, Miyamoto S, Hoshino A, Kamiya T, Isoda T, Kaneko S, Shimizu M, Hijikata A, Eguchi K, Ishimura M, Maeda Y, Izawa K, Meguro T, Fujimoto K, Ishikita-Murayama E, Suzuki K, Okura E, Uehara T, Takayama T, Okada S, Takagi M, Morio T, Marsh RA, Kanegane H. Comprehensive flow cytometry-based diagnosis of XIAP deficiency. Clin Exp Immunol 2025; 219:uxaf020. [PMID: 40128104 PMCID: PMC12062573 DOI: 10.1093/cei/uxaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025] Open
Abstract
Deficiency of X-linked inhibitor of apoptosis protein (XIAP) is an X-linked recessive inborn error of immunity characterized by abnormal immune responses leading to inflammatory bowel disease and hemophagocytic lymphohistiocytosis. Although XIAP protein expression analysis by flow cytometry (XIAP flow) is commonly used to diagnose XIAP deficiency, certain variants may not affect the protein expression, thereby complicating the diagnostic process. XIAP is crucial for the nucleotide-binding and oligomerization domain 2 (NOD2) signaling pathway. In this study, we aimed to perform a comprehensive analysis of nine patients diagnosed with XIAP deficiency through genetic testing. In addition to XIAP flow, we employed a previously reported method utilizing muramyl dipeptide (MDP) stimulation, a specific agonist of NOD2, to quantitatively evaluate the downstream tumor necrosis factor-alpha (TNFα) production by flow cytometry in patient monocytes (MDP flow). The median mean fluorescence intensity in healthy controls with XIAP flow was 711 (95% confidence interval [CI], 653-815) compared to 195 (95% CI, 161-386) in patients with XIAP deficiency (P < 0.0001). The median percentage of TNFα-producing monocytes in controls with MDP flow was 29.1% (95% CI, 19.6-53.7), while in patients it was 0.34% (95% CI, 0.18-0.82) (P = 0.0008). The receiver operating characteristic curves demonstrated that both XIAP flow and MDP flow exhibited 100% sensitivity and specificity. Taken together, combining XIAP flow and MDP flow analyses allows for a highly accurate diagnosis.
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Madoka Nishimura
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Department of Pediatrics, Graduate School of Medical Sciences Kumamoto University, Kumamoto, Japan
| | - Ayami Ohya
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kay Tanita
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Ryosuke Wakatsuki
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Ryohei Watanabe
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Clinical Research Center, Institute of Science Tokyo Hospital, Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Shuya Kaneko
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Masaki Shimizu
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukako Maeda
- Department of Pediatrics, Faculty of Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Faculty of Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaaki Meguro
- Department of Allergy and Clinical Immunology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | | | - Etsuko Ishikita-Murayama
- Department of Hematology/Oncology, Gunma Children’s Medical Center, Gunma, Japan
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kyogo Suzuki
- Department of Hematology and Oncology, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| | - Eri Okura
- Department of Pediatrics, Shinshu University School of Medicine, Nagano, Japan
| | - Tomoko Uehara
- Department of Pediatrics, Naha City Hospital, Okinawa, Japan
| | - Tomotada Takayama
- General Pediatrics, Okinawa Prefectural Nanbu Medical Center & Children’s Medical Center, Okinawa, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Laboratory of Immunology and Molecular Medicine, Institute of Science Tokyo, Tokyo, Japan
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Dissanayake D, Firouzabady A, Massumi M, de Paz Linares GA, Marshall C, Freeman SA, Laxer RM, Yeung RSM. Interleukin-1-mediated hyperinflammation in XIAP deficiency is associated with defective autophagy. Blood 2024; 144:1183-1192. [PMID: 38820590 DOI: 10.1182/blood.2023023707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
ABSTRACT Deficiency of X-linked inhibitor of apoptosis protein (XIAP) is a rare genetic condition that can present with recurrent episodes of hemophagocytic lymphohistiocytosis (HLH), though the exact mechanisms leading to this hyperinflammatory disorder are unclear. Understanding its biology is critical to developing targeted therapies for this potentially fatal disease. Here, we report on a novel multiexonic intragenic duplication leading to XIAP deficiency with recurrent HLH that demonstrated complete response to interleukin (IL)-1β blockade. We further demonstrate using both primary patient cells and genetically modified THP-1 monocyte cell lines that, contrary to what has previously been shown in mouse cells, XIAP-deficient human macrophages do not produce excess IL-1β when stimulated under standard conditions. Instead, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated hyperproduction of IL-1β is observed only when the XIAP-deficient cells are stimulated under autophagy-promoting conditions and this correlates with defective autophagic flux as measured by decreased accumulation of the early autophagy marker LC3-II. This work, therefore, highlights IL-1β blockade as a therapeutic option for patients with XIAP deficiency experiencing recurrent HLH and identifies a critical role for XIAP in promoting autophagy as a means of limiting IL-1β-mediated hyperinflammation during periods of cellular stress.
Collapse
Affiliation(s)
- Dilan Dissanayake
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Mohammad Massumi
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
| | | | - Christian Marshall
- Division of Genome Diagnostics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ronald M Laxer
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rae S M Yeung
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Rizzo AD, Sanz M, Roffe G, Sajaroff EO, Prado DA, Prieto E, Goris V, Rossi JG, Bernasconi AR. CD62-L down-regulation after L18-MDP stimulation as a complementary flow cytometry functional assay for the diagnosis of XIAP deficiency. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:383-391. [PMID: 38770762 DOI: 10.1002/cyto.b.22181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
X-linked inhibitor of apoptosis (XIAP) deficiency is an infrequent inborn error of immunity caused by mutations in XIAP gene. Most cases present with absence of XIAP protein which can be detected by flow cytometry (FC), representing a rapid diagnostic method. However, since some genetic defects may not preclude protein expression, it is important to include a complementary functional test in the laboratory workup of these patients. L-selectin (CD62-L) is a molecule that is cleaved from the surface membrane of leukocytes upon stimulation of different receptors such as toll like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), including NOD2. Considering that XIAP deficiency impairs NOD2 signaling, we decided to assess CD62-L down-regulation by FC post-stimulation of neutrophils and monocytes with L18-muramyl Di-Peptide (L18-MDP), a NOD2 specific agonist, in order to develop a novel assay for the functional evaluation of patients with suspicion of XIAP defects. Whole blood samples from 20 healthy controls (HC) and four patients with confirmed molecular diagnosis of XIAP deficiency were stimulated with 200 ng/mL of L18-MDP for 2 h. Stimulation with 100 ng/mL of lipopolysaccharide (LPS) was carried out in parallel as a positive control of CD62-L shedding. CD62-L expression was evaluated by FC using an anti CD62-L- antibody and down-regulation was assessed by calculating the difference in CD62-L expression before and after stimulation, both in terms of percentage of CD62-L expressing cells (Δ%CD62-L) and median fluorescence intensity (ΔMFI%). Neutrophils and monocytes from XIAP deficient patients displayed a significantly diminished response to L18-MDP stimulation compared with HC (p < 0.0001), indicating a severely altered mechanism of CD62-L down-regulation following activation of NOD2-XIAP axis. On the other hand, the response to LPS stimulation was comparable between patients and heathy controls, suggesting preserved CD62-L shedding with a different stimulus. FC detection of CD62-L down-regulation in monocytes and neutrophils after whole blood stimulation with L18-MDP results in an effective and rapid functional test for the identification of XIAP deficient patients.
Collapse
Affiliation(s)
- Agustín D Rizzo
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Marianela Sanz
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Georgina Roffe
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Elisa O Sajaroff
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Damian A Prado
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Emma Prieto
- Immunology and Rheumatology Division, Molecular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Verónica Goris
- Immunology and Rheumatology Division, Molecular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Jorge G Rossi
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Andrea R Bernasconi
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
6
|
Chiang SCC, Covill LE, Tesi B, Campbell TM, Schlums H, Nejati-Zendegani J, Mördrup K, Wood S, Theorell J, Sekine T, Al-Herz W, Akar HH, Belen FB, Chan MY, Devecioglu O, Aksu T, Ifversen M, Malinowska I, Sabel M, Unal E, Unal S, Introne WJ, Krzewski K, Gilmour KC, Ehl S, Ljunggren HG, Nordenskjöld M, Horne A, Henter JI, Meeths M, Bryceson YT. Efficacy of T-cell assays for the diagnosis of primary defects in cytotoxic lymphocyte exocytosis. Blood 2024; 144:873-887. [PMID: 38958468 PMCID: PMC11375501 DOI: 10.1182/blood.2024024499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder associated with autosomal recessive variants in genes required for perforin-mediated lymphocyte cytotoxicity. A rapid diagnosis is crucial for successful treatment. Although defective cytotoxic T lymphocyte (CTL) function causes pathogenesis, quantification of natural killer (NK)-cell exocytosis triggered by K562 target cells currently represents a standard diagnostic procedure for primary HLH. We have prospectively evaluated different lymphocyte exocytosis assays in 213 patients referred for evaluation for suspected HLH and related hyperinflammatory syndromes. A total of 138 patients received a molecular diagnosis consistent with primary HLH. Assessment of Fc receptor-triggered NK-cell and T-cell receptor (TCR)-triggered CTL exocytosis displayed higher sensitivity and improved specificity for the diagnosis of primary HLH than routine K562 cell-based assays, with these assays combined providing a sensitivity of 100% and specificity of 98.3%. By comparison, NK-cell exocytosis after K562 target cell stimulation displayed a higher interindividual variability, in part explained by differences in NK-cell differentiation or large functional reductions after shipment. We thus recommend combined analysis of TCR-triggered CTL and Fc receptor-triggered NK-cell exocytosis for the diagnosis of patients with suspected familial HLH or atypical manifestations of congenital defects in lymphocyte exocytosis.
Collapse
MESH Headings
- Humans
- Exocytosis
- T-Lymphocytes, Cytotoxic/immunology
- Lymphohistiocytosis, Hemophagocytic/diagnosis
- Lymphohistiocytosis, Hemophagocytic/immunology
- Lymphohistiocytosis, Hemophagocytic/genetics
- Lymphohistiocytosis, Hemophagocytic/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Adolescent
- Child
- Adult
- Female
- K562 Cells
- Male
- Child, Preschool
- Middle Aged
- Infant
- Young Adult
- Aged
- Sensitivity and Specificity
- Prospective Studies
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Samuel C. C. Chiang
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Laura E. Covill
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Tessa M. Campbell
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Heinrich Schlums
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jelve Nejati-Zendegani
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karina Mördrup
- Unit of Pediatric Rheumatology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Wood
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jakob Theorell
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Himmet Haluk Akar
- Department of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatma Burcu Belen
- Department of Pediatrics, Baskent University Medical Faculty, Ankara, Turkey
| | - Mei Yoke Chan
- Haematology/Oncology Service, Department of Paediatric Subspecialties, Kandang Kerbau Women’s and Children’s Hospital, Singapore, Singapore
| | - Omer Devecioglu
- Department of Pediatric Hematology-Oncology, Istanbul Medical School, Istanbul, Turkey
| | - Tekin Aksu
- Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Iwona Malinowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Magnus Sabel
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Ekrem Unal
- Faculty of Health Sciences, Medical Point Hospital, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Sule Unal
- Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Wendy J. Introne
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Kimberly C. Gilmour
- Immunology, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Gustaf Ljunggren
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - AnnaCarin Horne
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marie Meeths
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Lee J, Sim KM, Kang M, Oh HJ, Choi HJ, Kim YE, Pack CG, Kim K, Kim KM, Oh SH, Kim I, Chang I. Understanding the molecular mechanism of pathogenic variants of BIR2 domain in XIAP-deficient inflammatory bowel disease. Sci Rep 2024; 14:853. [PMID: 38191507 PMCID: PMC10774423 DOI: 10.1038/s41598-023-50932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) deficiency causes refractory inflammatory bowel disease. The XIAP protein plays a pivotal role in the pro-inflammatory response through the nucleotide-binding oligomerization domain-containing signaling pathway that is important in mucosal homeostasis. We analyzed the molecular mechanism of non-synonymous pathogenic variants (PVs) of XIAP BIR2 domain. We generated N-terminally green fluorescent protein-tagged XIAP constructs of representative non-synonymous PVs. Co-immunoprecipitation and fluorescence cross-correlation spectroscopy showed that wild-type XIAP and RIP2 preferentially interacted in live cells, whereas all non-synonymous PV XIAPs failed to interact properly with RIP2. Structural analysis showed that various structural changes by mutations, such as hydrophobic core collapse, Zn-finger loss, and spatial rearrangement, destabilized the two loop structures (174-182 and 205-215) that critically interact with RIP2. Subsequently, it caused a failure of RIP2 ubiquitination and loss of protein deficiency by the auto-ubiquitination of all XIAP mutants. These findings could enhance our understanding of the role of XIAP mutations in XIAP-deficient inflammatory bowel disease and may benefit future therapeutic strategies.
Collapse
Affiliation(s)
- Juhwan Lee
- iProtein Therapeutics Inc., Munji-ro 281-9, Yuseong-gu, Daejeon, Korea
| | - Kyoung Mi Sim
- Department of Convergence Medicine, Asan Medical Center, Asan Institutes for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Mooseok Kang
- iProtein Therapeutics Inc., Munji-ro 281-9, Yuseong-gu, Daejeon, Korea
| | - Hyun Ju Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea
| | - Ho Jung Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea
| | - Yeong Eun Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine, Asan Medical Center, Asan Institutes for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, Asan Institutes for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea.
| | - Inki Kim
- Department of Convergence Medicine, Asan Medical Center, Asan Institutes for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea.
- Department of Pharmacology, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea.
| | - Iksoo Chang
- Creative Research Initiatives Center for Proteome Biophysics, Department of Brain Sciences and Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea.
- Department of Brain Sciences and Supercomputing Big Data Center, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
8
|
Chinnici A, Beneforti L, Pegoraro F, Trambusti I, Tondo A, Favre C, Coniglio ML, Sieni E. Approaching hemophagocytic lymphohistiocytosis. Front Immunol 2023; 14:1210041. [PMID: 37426667 PMCID: PMC10324660 DOI: 10.3389/fimmu.2023.1210041] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Hemophagocytic Lymphohistiocytosis (HLH) is a rare clinical condition characterized by sustained but ineffective immune system activation, leading to severe and systemic hyperinflammation. It may occur as a genetic or sporadic condition, often triggered by an infection. The multifaceted pathogenesis results in a wide range of non-specific signs and symptoms, hampering early recognition. Despite a great improvement in terms of survival in the last decades, a considerable proportion of patients with HLH still die from progressive disease. Thus, prompt diagnosis and treatment are crucial for survival. Faced with the complexity and the heterogeneity of syndrome, expert consultation is recommended to correctly interpret clinical, functional and genetic findings and address therapeutic decisions. Cytofluorimetric and genetic analysis should be performed in reference laboratories. Genetic analysis is mandatory to confirm familial hemophagocytic lymphohistiocytosis (FHL) and Next Generation Sequencing is increasingly adopted to extend the spectrum of genetic predisposition to HLH, though its results should be critically discussed with specialists. In this review, we critically revise the reported laboratory tools for the diagnosis of HLH, in order to outline a comprehensive and widely available workup that allows to reduce the time between the clinical suspicion of HLH and its final diagnosis.
Collapse
Affiliation(s)
- Aurora Chinnici
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Linda Beneforti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Francesco Pegoraro
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Irene Trambusti
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Maria Luisa Coniglio
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
9
|
Topal J, Panchal N, Barroeta A, Roppelt A, Mudde A, Gaspar HB, Thrasher AJ, Houghton BC, Booth C. Lentiviral Gene Transfer Corrects Immune Abnormalities in XIAP Deficiency. J Clin Immunol 2023; 43:440-451. [PMID: 36329240 PMCID: PMC9892131 DOI: 10.1007/s10875-022-01389-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND X-linked inhibitor of apoptosis protein (XIAP) deficiency is a severe immunodeficiency with clinical features including hemophagocytic lymphohistiocytosis (HLH) and inflammatory bowel disease (IBD) due to defective NOD2 responses. Management includes immunomodulatory therapies and hematopoietic stem cell transplant (HSCT). However, this cohort is particularly susceptible to the chemotherapeutic regimens and acutely affected by graft-vs-host disease (GvHD), driving poor long-term survival in transplanted patients. Autologous HSC gene therapy could offer an alternative treatment option and would abrogate the risks of alloreactivity. METHODS Hematopoietic progenitor (Lin-ve) cells from XIAPy/- mice were transduced with a lentiviral vector encoding human XIAP cDNA before transplantation into irradiated XIAP y/- recipients. After 12 weeks animals were challenged with the dectin-1 ligand curdlan and recovery of innate immune function was evaluated though analysis of inflammatory cytokines, body weight, and splenomegaly. XIAP patient-derived CD14+ monocytes were transduced with the same vector and functional recovery was demonstrated using in vitro L18-MDP/NOD2 assays. RESULTS In treated XIAPy/- mice, ~40% engraftment of gene-corrected Lin-ve cells led to significant recovery of weight loss, splenomegaly, and inflammatory cytokine responses to curdlan, comparable to wild-type mice. Serum IL-6, IL-10, MCP-1, and TNF were significantly reduced 2-h post-curdlan administration in non-corrected XIAPy/- mice compared to wild-type and gene-corrected animals. Appropriate reduction of inflammatory responses was observed in gene-corrected mice, whereas non-corrected mice developed an inflammatory profile 9 days post-curdlan challenge. In gene-corrected patient CD14+ monocytes, TNF responses were restored following NOD2 activation with L18-MDP. CONCLUSION Gene correction of HSCs recovers XIAP-dependent immune defects and could offer a treatment option for patients with XIAP deficiency.
Collapse
Affiliation(s)
- Joseph Topal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Neelam Panchal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Amairelys Barroeta
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna Roppelt
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Annelotte Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - H Bobby Gaspar
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Orchard Therapeutics, London, UK
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Benjamin C Houghton
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK.
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.
| |
Collapse
|
10
|
Planas R, Felber M, Vavassori S, Pachlopnik Schmid J. The hyperinflammatory spectrum: from defects in cytotoxicity to cytokine control. Front Immunol 2023; 14:1163316. [PMID: 37187762 PMCID: PMC10175623 DOI: 10.3389/fimmu.2023.1163316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Cytotoxic lymphocytes kill target cells through polarized release of the content of cytotoxic granules towards the target cell. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytosis (HLH) that occurs in mice and humans with inborn errors of lymphocyte cytotoxic function. The clinical and preclinical data indicate that the damage seen in severe, virally triggered HLH is due to an overwhelming immune system reaction and not the direct effects of the virus per se. The main HLH-disease mechanism, which links impaired cytotoxicity to excessive release of pro-inflammatory cytokines is a prolongation of the synapse time between the cytotoxic effector cell and the target cell, which prompts the former to secrete larger amounts of cytokines (including interferon gamma) that activate macrophages. We and others have identified novel genetic HLH spectrum disorders. In the present update, we position these newly reported molecular causes, including CD48-haploinsufficiency and ZNFX1-deficiency, within the pathogenic pathways that lead to HLH. These genetic defects have consequences on the cellular level on a gradient model ranging from impaired lymphocyte cytotoxicity to intrinsic activation of macrophages and virally infected cells. Altogether, it is clear that target cells and macrophages may play an independent role and are not passive bystanders in the pathogenesis of HLH. Understanding these processes which lead to immune dysregulation may pave the way to novel ideas for medical intervention in HLH and virally triggered hypercytokinemia.
Collapse
Affiliation(s)
- Raquel Planas
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Matthias Felber
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Jana Pachlopnik Schmid,
| |
Collapse
|
11
|
Engelmann C, Schuhmachers P, Zdimerova H, Virdi S, Hauri-Hohl M, Pachlopnik Schmid J, Grundhoff A, Marsh RA, Wong WWL, Münz C. Epstein Barr virus-mediated transformation of B cells from XIAP-deficient patients leads to increased expression of the tumor suppressor CADM1. Cell Death Dis 2022; 13:892. [PMID: 36270981 PMCID: PMC9587222 DOI: 10.1038/s41419-022-05337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
X-linked lymphoproliferative disease (XLP) is either caused by loss of the SLAM-associated protein (SAP; XLP-1) or the X-linked inhibitor of apoptosis (XIAP; XLP-2). In both instances, infection with the oncogenic human Epstein Barr virus (EBV) leads to pathology, but EBV-associated lymphomas only emerge in XLP-1 patients. Therefore, we investigated the role of XIAP during B cell transformation by EBV. Using humanized mice, IAP inhibition in EBV-infected mice led to a loss of B cells and a tendency to lower viral titers and lymphomagenesis. Loss of memory B cells was also observed in four newly described patients with XIAP deficiency. EBV was able to transform their B cells into lymphoblastoid cell lines (LCLs) with similar growth characteristics to patient mothers' LCLs in vitro and in vivo. Gene expression analysis revealed modest elevated lytic EBV gene transcription as well as the expression of the tumor suppressor cell adhesion molecule 1 (CADM1). CADM1 expression on EBV-infected B cells might therefore inhibit EBV-associated lymphomagenesis in patients and result in the absence of EBV-associated malignancies in XLP-2 patients.
Collapse
Affiliation(s)
- Christine Engelmann
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Hana Zdimerova
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sanamjeet Virdi
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Mathias Hauri-Hohl
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Adam Grundhoff
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Rebecca A. Marsh
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati, Cincinnati, OH USA
| | - Wendy Wei-Lynn Wong
- grid.7400.30000 0004 1937 0650Cell Death and Regulation of Inflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Higuchi T, Izawa K, Miyamoto T, Honda Y, Nishiyama A, Shimizu M, Takita J, Yasumi T. An efficient diagnosis: A patient with X-linked inhibitor of apoptosis protein (XIAP) deficiency in the setting of infantile hemophagocytic lymphohistiocytosis was diagnosed using high serum interleukin-18 combined with common laboratory parameters. Pediatr Blood Cancer 2022; 69:e29606. [PMID: 35187790 DOI: 10.1002/pbc.29606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Toru Higuchi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan.,Department of Pediatrics, Shiga Medical Center for Children, Moriyama, Shiga, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan
| | - Takayuki Miyamoto
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto City, Kyoto, Japan
| | - Atsuko Nishiyama
- Department of Pediatrics, Nara Prefecture General Medical Center, Nara, Japan
| | - Masaki Shimizu
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan
| |
Collapse
|
13
|
Ghalandary M, Li Y, Fröhlich T, Magg T, Liu Y, Rohlfs M, Hollizeck S, Conca R, Schwerd T, Uhlig HH, Bufler P, Koletzko S, Muise AM, Snapper SB, Hauck F, Klein C, Kotlarz D. Valosin-containing protein-regulated endoplasmic reticulum stress causes NOD2-dependent inflammatory responses. Sci Rep 2022; 12:3906. [PMID: 35273242 PMCID: PMC8913691 DOI: 10.1038/s41598-022-07804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
NOD2 polymorphisms may affect sensing of the bacterial muramyl dipeptide (MDP) and trigger perturbed inflammatory responses. Genetic screening of a patient with immunodeficiency and enteropathy revealed a rare homozygous missense mutation in the first CARD domain of NOD2 (ENST00000300589; c.160G > A, p.E54K). Biochemical assays confirmed impaired NOD2-dependent signaling and proinflammatory cytokine production in patient's cells and heterologous cellular models with overexpression of the NOD2 mutant. Immunoprecipitation-coupled mass spectrometry unveiled the ATPase valosin-containing protein (VCP) as novel interaction partner of wildtype NOD2, while the binding to the NOD2 variant p.E54K was abrogated. Knockdown of VCP in coloncarcinoma cells led to impaired NF-κB activity and IL8 expression upon MDP stimulation. In contrast, tunicamycin-induced ER stress resulted in increased IL8, CXCL1, and CXCL2 production in cells with knockdown of VCP, while enhanced expression of these proinflammatory molecules was abolished upon knockout of NOD2. Taken together, these data suggest that VCP-mediated inflammatory responses upon ER stress are NOD2-dependent.
Collapse
Affiliation(s)
- Maryam Ghalandary
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Yue Li
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Thomas Magg
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Yanshan Liu
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Meino Rohlfs
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Sebastian Hollizeck
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Raffaele Conca
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Tobias Schwerd
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Department of Pediatrics, and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Philip Bufler
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
- Department of Pediatrics, School of Medicine Collegium, Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, M5G1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G1A8, Canada
| | - Scott B Snapper
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Fabian Hauck
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany
- Gene Center, LMU Munich, Munich, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany.
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany.
| |
Collapse
|
14
|
Ruan J, Schlüter D, Naumann M, Waisman A, Wang X. Ubiquitin-modifying enzymes as regulators of colitis. Trends Mol Med 2022; 28:304-318. [PMID: 35177326 DOI: 10.1016/j.molmed.2022.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder of the gastrointestinal tract. Although the pathophysiology of IBD is multifaceted, ubiquitination, a post-translational modification, has been shown to have essential roles in its pathogenesis and development. Ubiquitin-modifying enzymes (UMEs) work in synergy to orchestrate the optimal ubiquitination of target proteins, thereby maintaining intestinal homeostasis. Genome-wide association studies (GWAS) have identified multiple UME genes as IBD susceptibility loci, implying the importance of UMEs in IBD. Furthermore, accumulative evidence demonstrates that UMEs affect intestinal inflammation by regulating various aspects, such as intestinal barrier functions and immune responses. Considering the significant functions of UMEs in IBD, targeting UMEs could become a favorable therapeutic approach for IBD.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Xu Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
15
|
Yang L, Booth C, Speckmann C, Seidel MG, Worth AJ, Kindle G, Lankester AC, B G, Gennery AR, Seppanen MR, Morris EC, Burns SO. Phenotype, genotype, treatment, and survival outcomes in patients with X-linked inhibitor of apoptosis deficiency. J Allergy Clin Immunol 2021; 150:456-466. [PMID: 34920033 DOI: 10.1016/j.jaci.2021.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND X-linked inhibitor of apoptosis (XIAP) deficiency is a rare, primary immunodeficiency disease caused by XIAP gene mutations. A broad range of phenotype, severity, and age of onset present challenges for patient management. OBJECTIVE To characterize the phenotype, treatment, and survival outcomes of XIAP deficiency and assess parameters influencing prognosis. METHODS Data published from 2006-2020 were retrospectively analyzed. RESULTS 167 patients from 117 families with XIAP deficiency were reported with 90 different mutations. A wide spectrum of clinical features were seen, of which hemophagocytic lymphohistiocytosis (HLH) and inflammatory bowel disease (IBD) were the most common. Patients frequently developed multiple features with no clear genotype-phenotype correlation. 117 patients were managed conservatively and 50 underwent hematopoietic stem cell transplantation (HSCT), with respective overall survival probabilities of 90% and 53% at age 16 years. The predominant indication for HSCT was early-onset HLH. Active HLH and myeloablative conditioning regimens increased HSCT-related mortality, although HSCT outcome was much better after 2015 than before. For conservatively managed patients reaching adulthood, survival probabilities were 86% at age 30 years and 37% by age 52 years, with worse outcomes for patients developing the disease before the age of 5 years or with new disease features in adulthood. 9 asymptomatic mutation carriers were identified with a median age of 13.5 years. CONCLUSIONS Our study demonstrates the variable nature of XIAP deficiency which evolves over life for individual patients. Better therapeutic strategies and prospective studies are required to reduce morbidity and mortality and improve decision-making and long-term outcomes for patients with XIAP deficiency.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London NW3 2PF, United Kingdom; Institute for Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom; Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Claire Booth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Trust, London WC1N 1JH; Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center - University of Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Germany
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Austen Jj Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Trust, London WC1N 1JH
| | - Gerhard Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center - University of Freiburg, Germany
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Stem Cell Transplantation program, Leiden University Medical Center, Leiden, The Netherlands
| | - Grimbacher B
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom; Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center - University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany
| | | | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University and Pediatric Immunology + HSCT, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Mikko Rj Seppanen
- HUS Rare Disease Center, Children and Adolescents, University of Helsinki and Helsinki University Hospital, Finland
| | - Emma C Morris
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London NW3 2PF, United Kingdom; Institute for Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom
| | - Siobhan O Burns
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London NW3 2PF, United Kingdom; Institute for Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom.
| |
Collapse
|
16
|
Perazzio SF, Palmeira P, Moraes-Vasconcelos D, Rangel-Santos A, de Oliveira JB, Andrade LEC, Carneiro-Sampaio M. A Critical Review on the Standardization and Quality Assessment of Nonfunctional Laboratory Tests Frequently Used to Identify Inborn Errors of Immunity. Front Immunol 2021; 12:721289. [PMID: 34858394 PMCID: PMC8630704 DOI: 10.3389/fimmu.2021.721289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Inborn errors of immunity (IEI), which were previously termed primary immunodeficiency diseases, represent a large and growing heterogeneous group of diseases that are mostly monogenic. In addition to increased susceptibility to infections, other clinical phenotypes have recently been associated with IEI, such as autoimmune disorders, severe allergies, autoinflammatory disorders, benign lymphoproliferative diseases, and malignant manifestations. The IUIS 2019 classification comprises 430 distinct defects that, although rare individually, represent a group affecting a significant number of patients, with an overall prevalence of 1:1,200-2,000 in the general population. Early IEI diagnosis is critical for appropriate therapy and genetic counseling, however, this process is deeply dependent on accurate laboratory tests. Despite the striking importance of laboratory data for clinical immunologists, several IEI-relevant immunoassays still lack standardization, including standardized protocols, reference materials, and external quality assessment programs. Moreover, well-established reference values mostly remain to be determined, especially for early ages, when the most severe conditions manifest and diagnosis is critical for patient survival. In this article, we intend to approach the issue of standardization and quality control of the nonfunctional diagnostic tests used for IEI, focusing on those frequently utilized in clinical practice. Herein, we will focus on discussing the issues of nonfunctional immunoassays (flow cytometry, enzyme-linked immunosorbent assays, and turbidimetry/nephelometry, among others), as defined by the pure quantification of proteins or cell subsets without cell activation or cell culture-based methods.
Collapse
Affiliation(s)
- Sandro Félix Perazzio
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Patricia Palmeira
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Dewton Moraes-Vasconcelos
- Laboratório de Investigação Médica (LIM-56), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Andréia Rangel-Santos
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | | | - Luis Eduardo Coelho Andrade
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
17
|
McClain KL, Bigenwald C, Collin M, Haroche J, Marsh RA, Merad M, Picarsic J, Ribeiro KB, Allen CE. Histiocytic disorders. Nat Rev Dis Primers 2021; 7:73. [PMID: 34620874 PMCID: PMC10031765 DOI: 10.1038/s41572-021-00307-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
The historic term 'histiocytosis' meaning 'tissue cell' is used as a unifying concept for diseases characterized by pathogenic myeloid cells that share histological features with macrophages or dendritic cells. These cells may arise from the embryonic yolk sac, fetal liver or postnatal bone marrow. Prior classification schemes align disease designation with terminal phenotype: for example, Langerhans cell histiocytosis (LCH) shares CD207+ antigen with physiological epidermal Langerhans cells. LCH, Erdheim-Chester disease (ECD), juvenile xanthogranuloma (JXG) and Rosai-Dorfman disease (RDD) are all characterized by pathological ERK activation driven by activating somatic mutations in MAPK pathway genes. The title of this Primer (Histiocytic disorders) was chosen to differentiate the above diseases from Langerhans cell sarcoma and malignant histiocytosis, which are hyperproliferative lesions typical of cancer. By comparison LCH, ECD, RDD and JXG share some features of malignant cells including activating MAPK pathway mutations, but are not hyperproliferative. 'Inflammatory myeloproliferative neoplasm' may be a more precise nomenclature. By contrast, haemophagocytic lymphohistiocytosis is associated with macrophage activation and extreme inflammation, and represents a syndrome of immune dysregulation. These diseases affect children and adults in varying proportions depending on which of the entities is involved.
Collapse
Affiliation(s)
- Kenneth L McClain
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Camille Bigenwald
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Collin
- Human Dendritic Cell Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Julien Haroche
- Department of Internal Medicine, Institut E3M French Reference Centre for Histiocytosis, Pitié-Salpȇtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, OH, USA
| | - Miriam Merad
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Picarsic
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karina B Ribeiro
- Faculdade de Ciȇncias Médicas da Santa Casa de São Paulo, Department of Collective Health, São Paulo, Brazil
| | - Carl E Allen
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Arnold DE, Nofal R, Wakefield C, Lehmberg K, Wustrau K, Albert MH, Morris EC, Heimall JR, Bunin NJ, Kumar A, Jordan MB, Cole T, Choo S, Brettig T, Speckmann C, Ehl S, Salamonowicz M, Wahlstrom J, Rao K, Booth C, Worth A, Marsh RA. Reduced-Intensity/Reduced-Toxicity Conditioning Approaches Are Tolerated in XIAP Deficiency but Patients Fare Poorly with Acute GVHD. J Clin Immunol 2021; 42:36-45. [PMID: 34586554 PMCID: PMC8478634 DOI: 10.1007/s10875-021-01103-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
X-linked inhibitor of apoptosis (XIAP) deficiency is an inherited primary immunodeficiency characterized by chronic inflammasome overactivity and associated with hemophagocytic lymphohistiocytosis (HLH) and inflammatory bowel disease (IBD). Allogeneic hematopoietic cell transplantation (HCT) with fully myeloablative conditioning may be curative but has been associated with poor outcomes. Reports of reduced-intensity conditioning (RIC) and reduced-toxicity conditioning (RTC) regimens suggest these approaches are well tolerated, but outcomes are not well established. Retrospective data were collected from an international cohort of 40 patients with XIAP deficiency who underwent HCT with RIC or RTC. Thirty-three (83%) patients had a history of HLH, and thirteen (33%) patients had IBD. Median age at HCT was 6.5 years. Grafts were from HLA-matched (n = 30, 75%) and HLA-mismatched (n = 10, 25%) donors. There were no cases of primary graft failure. Two (5%) patients experienced secondary graft failure, and three (8%) patients ultimately received a second HCT. Nine (23%) patients developed grade II–IV acute GVHD, and 3 (8%) developed extensive chronic GVHD. The estimated 2-year overall and event-free survival rates were 74% (CI 55–86%) and 64% (CI 46–77%), respectively. Recipient and donor HLA mismatch and grade II–IV acute GVHD were negatively associated with survival on multivariate analysis with hazard ratios of 5.8 (CI 1.5–23.3, p = 0.01) and 8.2 (CI 2.1–32.7, p < 0.01), respectively. These data suggest that XIAP patients tolerate RIC and RTC with survival rates similar to HCT of other genetic HLH disorders. Every effort should be made to prevent acute GVHD in XIAP-deficient patients who undergo allogeneic HCT.
Collapse
Affiliation(s)
- Danielle E Arnold
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | | | - Connor Wakefield
- Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg, Hamburg, Germany
| | - Katharina Wustrau
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg, Hamburg, Germany
| | - Michael H Albert
- Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Emma C Morris
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy J Bunin
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Sharon Choo
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Tim Brettig
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Malgorzata Salamonowicz
- Department of Pediatric Stem Cell Transplantation, Hematology and Oncology, Medical University, Wroclaw, Poland
| | - Justin Wahlstrom
- Blood and Marrow Transplantation Program, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Kanchan Rao
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, UK
| | - Claire Booth
- Department of Pediatric Immunology, Great Ormond Street Hospital, London, UK
| | - Austen Worth
- Department of Pediatric Immunology, Great Ormond Street Hospital, London, UK
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| |
Collapse
|
19
|
Chou J, Platt CD, Habiballah S, Nguyen AA, Elkins M, Weeks S, Peters Z, Day-Lewis M, Novak T, Armant M, Williams L, Rockowitz S, Sliz P, Williams DA, Randolph AG, Geha RS. Mechanisms underlying genetic susceptibility to multisystem inflammatory syndrome in children (MIS-C). J Allergy Clin Immunol 2021; 148:732-738.e1. [PMID: 34224783 PMCID: PMC8252701 DOI: 10.1016/j.jaci.2021.06.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a pediatric complication of severe acute respiratory syndrome coronavirus 2 infection that is characterized by multiorgan inflammation and frequently by cardiovascular dysfunction. It occurs predominantly in otherwise healthy children. We previously reported haploinsufficiency of suppressor of cytokine signaling 1 (SOCS1), a negative regulator of type I and II interferons, as a genetic risk factor for MIS-C. OBJECTIVES We aimed to identify additional genetic mechanisms underlying susceptibility to severe acute respiratory syndrome coronavirus 2-associated MIS-C. METHODS In a single-center, prospective cohort study, whole exome sequencing was performed on patients with MIS-C. The impact of candidate variants was tested by using patients' PBMCs obtained at least 7 months after recovery. RESULTS We enrolled 18 patients with MIS-C (median age = 8 years; interquartile range = 5-12.25 years), of whom 89% had no conditions other than obesity. In 2 boys with no significant infection history, we identified and validated hemizygous deleterious defects in XIAP, encoding X-linked inhibitor of apoptosis, and CYBB, encoding cytochrome b-245, beta subunit. Including the previously reported SOCS1 haploinsufficiency, a genetic diagnosis was identified in 3 of 18 patients (17%). In contrast to patients with mild COVID-19, patients with defects in SOCS1, XIAP, or CYBB exhibit an inflammatory immune cell transcriptome with enrichment of differentially expressed genes in pathways downstream of IL-18, oncostatin M, and nuclear factor κB, even after recovery. CONCLUSIONS Although inflammatory disorders are rare in the general population, our cohort of patients with MIS-C was enriched for monogenic susceptibility to inflammation. Our results support the use of next-generation sequencing in previously healthy children who develop MIS-C.
Collapse
Affiliation(s)
- Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Saddiq Habiballah
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Alan A Nguyen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Megan Elkins
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sabrina Weeks
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Zachary Peters
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Megan Day-Lewis
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Tanya Novak
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Myriam Armant
- The TransLab, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Lucinda Williams
- The Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Shira Rockowitz
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, Mass; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Piotr Sliz
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, Mass; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pediatric Oncology, the Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Adrienne G Randolph
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
20
|
Chang I, Park S, Lee HJ, Kim I, Park S, Ahn MK, Lee J, Kang M, Baek IJ, Sung YH, Pack CG, Kang HJ, Lee K, Im HJ, Seo EJ, Kim KM, Yang SK, Song K, Oh SH. Interpretation of XIAP Variants of Uncertain Significance in Paediatric Patients with Refractory Crohn's Disease. J Crohns Colitis 2021; 15:1291-1304. [PMID: 33460440 DOI: 10.1093/ecco-jcc/jjab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Mutations in XIAP can lead to the development of treatment-refractory severe paediatric Crohn's disease [CD], for which haematopoietic stem cell transplantation is the primary therapeutic option. The interpretation of variants of uncertain significance [VUSs] in XIAP needs to be scrutinized. METHODS Targeted next-generation sequencing was performed for 33 male paediatric patients with refractory CD admitted at a tertiary referral hospital. To obtain functional data, biomolecular cell assays and supercomputing molecular dynamics simulations were performed. RESULTS Nine unrelated male patients harboured hemizygous XIAP variants. Four known pathogenic variants and one novel pathogenic variant [p.Lys168Serfs*12] were identified in five patients, and two novel VUSs [p.Gly205del and p.Pro260Ser] and one known VUS [p.Glu350del] were identified in the remaining four. Among children with VUSs, only the subject with p.Gly205del exhibited defective NOD2 signalling. Using molecular dynamics simulation, we determined that the altered backbone torsional energy of C203 in XIAP of p.G205del was ~2 kcal/mol, suggesting loss of zinc binding in the mutant XIAP protein and poor coordination between the mutant XIAP and RIP2 proteins. Elevated auto-ubiquitination of zinc-depleted p.G205del XIAP protein resulted in XIAP protein deficiency. CONCLUSION A high prevalence of XIAP deficiency was noted among children with refractory CD. Advanced functional studies decreased the subjectivity in the case-level interpretation of XIAP VUSs and directed consideration of haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Iksoo Chang
- Supercomputing & Big Data Center, DGIST, Daegu, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Seongjun Park
- Department of Emerging Materials Science, DGIST, Daegu, Korea
| | - Hye-Jin Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Inki Kim
- Department of Convergence Medicine, Asan Institutes for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sojung Park
- Department of Convergence Medicine, Asan Institutes for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Kyoung Ahn
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Juhwan Lee
- Supercomputing & Big Data Center, DGIST, Daegu, Korea
| | - Mooseok Kang
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine, Asan Institutes for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hoon Sung
- Department of Convergence Medicine, Asan Institutes for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine, Asan Institutes for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo-Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kunsong Lee
- Department of Pediatrics, Dankook University College of Medicine, Dankook University Hospital, Chungnam, Korea
| | - Ho Joon Im
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Zhong Y, Huang CH, Soe WM, Chan KW, Isa MS, Soh J, Yap M, MacAry PA, Lau YL, Chai LYA, Shek LPC, Lee BW. A Novel X-Linked Inhibitor of Apoptosis Deficient Variant Showing Attenuated Epstein-Barr Virus Response. J Pediatric Infect Dis Soc 2021; 10:345-348. [PMID: 32448891 DOI: 10.1093/jpids/piaa048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
We report on 2 Asian siblings with X-linked inhibitor of apoptosis deficiency that arose from a novel deletion that presented with Epstein-Barr virus disease and hemophagocytic lymphohistiocytosis. This disease is ascribed to dysfunction in the nucleotide binding and oligomerization domain receptor pathway, tested using a modified muramyl dipeptide-mediated assay.
Collapse
Affiliation(s)
- Youjia Zhong
- Khoo Teck Puat National University Children's Medical Institute, National University Health System, Singapore
| | - Chiung-Hui Huang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Win Mar Soe
- Division of Infectious Diseases, University Medicine Cluster, National University Health System, Singapore
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region (HKSAR), China
| | - Mas Suhaila Isa
- Khoo Teck Puat National University Children's Medical Institute, National University Health System, Singapore
| | - Jianyi Soh
- Khoo Teck Puat National University Children's Medical Institute, National University Health System, Singapore
| | - Mark Yap
- Khoo Teck Puat National University Children's Medical Institute, National University Health System, Singapore
| | - Paul Anthony MacAry
- Life Sciences Institute, National University of Singapore, Singapore.,CREATE-HUJ Consortium, Department of Microbiology, National University of Singapore, Singapore
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region (HKSAR), China.,Shenzhen Engineering Laboratory of Primary Immunodeficiency Diagnosis and Therapy, Hong Kong University (HKU)-Shenzhen Hospital, Shenzhen, China
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, University Medicine Cluster, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Lynette Pei-Chi Shek
- Khoo Teck Puat National University Children's Medical Institute, National University Health System, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bee Wah Lee
- Khoo Teck Puat National University Children's Medical Institute, National University Health System, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
22
|
Shabrish S, Kelkar M, Yadav RM, Bargir UA, Gupta M, Dalvi A, Aluri J, Kulkarni M, Shinde S, Sawant-Desai S, Kambli P, Hule G, Setia P, Jodhawat N, Gaikwad P, Dhawale A, Nambiar N, Gowri V, Pandrowala A, Taur P, Raj R, Uppuluri R, Sharma R, Kini P, Sivasankaran M, Munirathnam D, Vedam R, Vignesh P, Banday A, Rawat A, Aggarwal A, Poddar U, Girish M, Chaudhary A, Sampagar A, Jayaraman D, Chaudhary N, Shah N, Jijina F, Chandrakla S, Kanakia S, Arora B, Sen S, Lokeshwar M, Desai M, Madkaikar M. The Spectrum of Clinical, Immunological, and Molecular Findings in Familial Hemophagocytic Lymphohistiocytosis: Experience From India. Front Immunol 2021; 12:612583. [PMID: 33746956 PMCID: PMC7973116 DOI: 10.3389/fimmu.2021.612583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2021] [Indexed: 11/26/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of immune dysregulation characterized by hyperactivation of the immune system, excessive cytokine secretion and severe systemic inflammation. HLH is classified as familial (FHL) when associated with mutations in PRF1, UNC13D, STX11, and STXBP2 genes. There is limited information available about the clinical and mutational spectrum of FHL patients in Indian population. This study is a retrospective analysis of 101 molecularly characterized FHL patients over the last 10 years from 20 different referral centers in India. FHL2 and FHL3 together accounted for 84% of cases of FHL in our cohort. Patients belonging to different FHL subtypes were indistinguishable based on clinical and biochemical parameters. However, flow cytometry-based assays viz. perforin expression and degranulation assay were found to be specific and sensitive in diagnosis and classification of FHL patients. Molecular characterization of respective genes revealed 76 different disease-causing mutations including 39 (51%) novel mutations in PRF1, UNC13D, STX11, and STXBP2 genes. Overall, survival was poor (28%) irrespective of the age of onset or the type of mutation in our cohort. Altogether, this article sheds light on the current scenario of FHL in India. Our data reveal a wide genetic heterogeneity of FHL in the Indian population and confirms the poor prognosis of FHL. This study also emphasizes that though mutational analysis is important for diagnostic confirmation of FHL, flow cytometry based assays help significantly in rapid diagnosis and functional validation of novel variants identified.
Collapse
Affiliation(s)
- Snehal Shabrish
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Madhura Kelkar
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Reetika Malik Yadav
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Umair Ahmed Bargir
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Maya Gupta
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Aparna Dalvi
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Jahnavi Aluri
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Manasi Kulkarni
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Shweta Shinde
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Sneha Sawant-Desai
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Priyanka Kambli
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Gouri Hule
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Priyanka Setia
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Neha Jodhawat
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Pallavi Gaikwad
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Amruta Dhawale
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Nayana Nambiar
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ambreen Pandrowala
- Department of Bone Marrow Transplant, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Ramya Uppuluri
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Ratna Sharma
- Comprehensive Thalassemia Care, Pediatric Hematology-Oncology & Bone Marrow Transplantation Centre, Mumbai, India
| | - Pranoti Kini
- Comprehensive Thalassemia Care, Pediatric Hematology-Oncology & Bone Marrow Transplantation Centre, Mumbai, India
| | - Meena Sivasankaran
- Department of Pediatric Hemato-Oncology, Kanchi Kamakoti CHILDS Trust Hospital, Chennai, India
| | | | - Ramprasad Vedam
- Medgenome Labs Pvt Ltd., Narayana Health City, Bommasandra, India
| | - Pandiarajan Vignesh
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aaqib Banday
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ujjal Poddar
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Meenakshi Girish
- Department of Pediatrics, All India Institute of Medical Sciences, Nagpur, India
| | - Abhijit Chaudhary
- Department of Pediatrics, All India Institute of Medical Sciences, Nagpur, India
| | | | - Dharani Jayaraman
- Department of Pediatrics, Sri Ramchandra Institute of Higher Education and Research, Chennai, India
| | - Narendra Chaudhary
- Department of Pediatrics, All India Institute of Medical Sciences, Bhopal, India
| | | | | | - S Chandrakla
- Department of Haematology, Seth G. S. Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Swati Kanakia
- Lilavati Hospital and Research Centre, Mumbai, India
| | - Brijesh Arora
- Department of Pediatric Oncology, Tata Memorial Hospital, Mumbai, India
| | - Santanu Sen
- Kokilaben Dhirubai Ambani Hospital, Mumbai, India
| | | | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research-National Institute of Immunohaematology, Mumbai, India
| |
Collapse
|
23
|
Topal Y, Gyrd-Hansen M. RIPK2 NODs to XIAP and IBD. Semin Cell Dev Biol 2021; 109:144-150. [DOI: 10.1016/j.semcdb.2020.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
|
24
|
Mudde ACA, Booth C, Marsh RA. Evolution of Our Understanding of XIAP Deficiency. Front Pediatr 2021; 9:660520. [PMID: 34222142 PMCID: PMC8247594 DOI: 10.3389/fped.2021.660520] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
X-linked inhibitor of apoptosis (XIAP) deficiency is a rare inborn error of immunity first described in 2006. XIAP deficiency is characterised by immune dysregulation and a broad spectrum of clinical manifestations, including haemophagocytic lymphohistiocytosis (HLH), inflammatory bowel disease (IBD), hypogammaglobulinemia, susceptibility to infections, splenomegaly, cytopaenias, and other less common autoinflammatory phenomena. Since the first description of the disease, many XIAP deficient patients have been identified and our understanding of the disease has grown. Over 90 disease causing mutations have been described and more inflammatory disease manifestations, such as hepatitis, arthritis, and uveitis, are now well-recognised. Recently, following the introduction of reduced intensity conditioning (RIC), outcomes of allogeneic haematopoietic stem cell transplantation (HSCT), the only curative treatment option for XIAP deficiency, have improved. The pathophysiology of XIAP deficiency is not fully understood, however it is known that XIAP plays a role in both the innate and adaptive immune response and in immune regulation, most notably through modulation of tumour necrosis factor (TNF)-receptor signalling and regulation of NLRP3 inflammasome activity. In this review we will provide an up to date overview of both the clinical aspects and pathophysiology of XIAP deficiency.
Collapse
Affiliation(s)
- Anne C A Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Immunology and Gene Therapy, Great Ormond Street Hospital, London, United Kingdom
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
25
|
Abraham RS. How to evaluate for immunodeficiency in patients with autoimmune cytopenias: laboratory evaluation for the diagnosis of inborn errors of immunity associated with immune dysregulation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:661-672. [PMID: 33275711 PMCID: PMC7727558 DOI: 10.1182/hematology.2020000173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification of genetic disorders associated with dysregulated immunity has upended the notion that germline pathogenic variants in immune genes universally result in susceptibility to infection. Immune dysregulation (autoimmunity, autoinflammation, lymphoproliferation, and malignancy) and immunodeficiency (susceptibility to infection) represent 2 sides of the same coin and are not mutually exclusive. Also, although autoimmunity implies dysregulation within the adaptive immune system and autoinflammation indicates disordered innate immunity, these lines may be blurred, depending on the genetic defect and diversity in clinical and immunological phenotypes. Patients with immune dysregulatory disorders may present to a variety of clinical specialties, depending on the dominant clinical features. Therefore, awareness of these disorders, which may manifest at any age, is essential to avoid a protracted diagnostic evaluation and associated complications. Availability of and access to expanded immunological testing has altered the diagnostic landscape for immunological diseases. Nonetheless, there are constraints in using these resources due to a lack of awareness, challenges in systematic and logical evaluation, interpretation of results, and using results to justify additional advanced testing, when needed. The ability to molecularly characterize immune defects and develop "bespoke" therapy and management mandates a new paradigm for diagnostic evaluation of these patients. The immunological tests run the gamut from triage to confirmation and can be used for both diagnosis and refinement of treatment or management strategies. However, the complexity of testing and interpretation of results often necessitates dialogue between laboratory immunologists and specialty physicians to ensure timely and appropriate use of testing and delivery of care.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
26
|
Jost PJ, Vucic D. Regulation of Cell Death and Immunity by XIAP. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036426. [PMID: 31843992 DOI: 10.1101/cshperspect.a036426] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
X-chromosome-linked inhibitor of apoptosis protein (XIAP) controls cell survival in several regulated cell death pathways and coordinates a range of inflammatory signaling events. Initially identified as a caspase-binding protein, it was considered to be primarily involved in blocking apoptosis from both intrinsic as well as extrinsic triggers. However, XIAP also prevents TNF-mediated, receptor-interacting protein 3 (RIPK3)-dependent cell death, by controlling RIPK1 ubiquitylation and preventing inflammatory cell death. The identification of patients with germline mutations in XIAP (termed XLP-2 syndrome) pointed toward its role in inflammatory signaling. Indeed, XIAP also mediates nucleotide-binding oligomerization domain-containing 2 (NOD2) proinflammatory signaling by promoting RIPK2 ubiquitination within the NOD2 signaling complex leading to NF-κB and MAPK activation and production of inflammatory cytokines and chemokines. Overall, XIAP is a critical regulator of multiple cell death and inflammatory pathways making it an attractive drug target in tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Philipp J Jost
- Medical Department III, School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany.,German Cancer Consortium (DKTK) partner site TUM, DKFZ, 69120 Heidelberg, Germany
| | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
27
|
Yang J, Zhu GH, Wang B, Zhang R, Jia CG, Yan Y, Ma HH, Qin MQ. Haploidentical Hematopoietic Stem Cell Transplantation for XIAP Deficiency: a Single-Center Report. J Clin Immunol 2020; 40:893-900. [PMID: 32627096 DOI: 10.1007/s10875-020-00795-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE X-linked inhibitor of apoptosis (XIAP) deficiency caused by mutations in the XIAP/BIRC4 gene is a rare inherited primary immunodeficiency also known as X-linked lymphoproliferative syndrome type 2 (XLP2). Hematopoietic stem cell transplantation (HSCT) is currently the only curative strategy available. However, few studies of haploidentical HSCT have been published regarding the outcomes in patients with this syndrome. METHODS We evaluated the XIAP gene analysis and clinical characteristics of four Chinese patients with XIAP who underwent haploidentical HSCT. RESULTS The mutations in the two of four patients had not yet been reported in the literature. All of the patients had recurrent hemophagocytic lymphohistiocytosis but did not have a good matched donor and underwent haploidentical HSCT at BCH in China between September 2016 and December 2018. All four patients received antithymocyte globulin with fludarabine-based regimens. Two patients underwent reduced intensity conditioning (RIC), and the other two received modified myeloablative conditioning (MAC) regimens. Three of the four patients survived. Three patients experienced complications with mixed chimerism. One of the four patients who underwent RIC had early graft loss and then developed grade IV acute graft-versus-host disease (GVHD) after donor lymphocyte infusion with bone marrow. The two patients who received MAC survived with no or mild GVHD, even though one of them developed hepatic veno-occlusive disease in the early stage of transplantation. CONCLUSIONS Haploidentical HSCT may be a treatment option for patients with XIAP deficiency who lack a good matched donor. More studies are needed to determine whether modified MAC with reduced toxicity is more suitable for haploidentical transplantation.
Collapse
Affiliation(s)
- Jun Yang
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P.R., China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Capital Medical University, 56 Nanlishi Road, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Guang-Hua Zhu
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P.R., China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Capital Medical University, 56 Nanlishi Road, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Bin Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P.R., China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Capital Medical University, 56 Nanlishi Road, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Rui Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P.R., China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Capital Medical University, 56 Nanlishi Road, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Chen-Guang Jia
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P.R., China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Capital Medical University, 56 Nanlishi Road, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Yan Yan
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P.R., China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Capital Medical University, 56 Nanlishi Road, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Hong-Hao Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P.R., China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Capital Medical University, 56 Nanlishi Road, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Mao-Quan Qin
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P.R., China. .,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China. .,Key Laboratory of Major Diseases in Children, Ministry of Education, Capital Medical University, 56 Nanlishi Road, Beijing, China. .,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China.
| |
Collapse
|
28
|
Van Gorp H, Huang L, Saavedra P, Vuylsteke M, Asaoka T, Prencipe G, Insalaco A, Ogunjimi B, Jeyaratnam J, Cataldo I, Jacques P, Vermaelen K, Dullaers M, Joos R, Sabato V, Stella A, Frenkel J, De Benedetti F, Dehoorne J, Haerynck F, Calamita G, Portincasa P, Lamkanfi M. Blood-based test for diagnosis and functional subtyping of familial Mediterranean fever. Ann Rheum Dis 2020; 79:960-968. [PMID: 32312770 PMCID: PMC7307214 DOI: 10.1136/annrheumdis-2019-216701] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease (AID) worldwide. The disease is caused by mutations in the MEFV gene encoding the inflammasome sensor Pyrin. Clinical diagnosis of FMF is complicated by overlap in symptoms with other diseases, and interpretation of genetic testing is confounded by the lack of a clear genotype-phenotype association for most of the 340 reported MEFV variants. In this study, the authors designed a functional assay and evaluated its potential in supporting FMF diagnosis. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from patients with Pyrin-associated autoinflammation with an FMF phenotype (n=43) or with autoinflammatory features not compatible with FMF (n=8), 10 asymptomatic carriers and 48 healthy donors. Sera were obtained from patients with distinct AIDs (n=10), and whole blood from a subset of patients and controls. The clinical, demographic, molecular genetic factors and other characteristics of the patient population were assessed for their impact on the diagnostic test read-out. Interleukin (IL)-1β and IL-18 levels were measured by Luminex assay. RESULTS The ex vivo colchicine assay may be performed on whole blood or PBMC. The functional assay robustly segregated patients with FMF from healthy controls and patients with related clinical disorders. The diagnostic test distinguished patients with classical FMF mutations (M694V, M694I, M680I, R761H) from patients with other MEFV mutations and variants (K695R, P369S, R202Q, E148Q) that are considered benign or of uncertain clinical significance. CONCLUSION The ex vivo colchicine assay may support diagnosis of FMF and functional subtyping of Pyrin-associated autoinflammation.
Collapse
Affiliation(s)
- Hanne Van Gorp
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Linyan Huang
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pedro Saavedra
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | | | - Tomoko Asaoka
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Giusi Prencipe
- Rheumatology Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Benson Ogunjimi
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Department of Paediatric Rheumatology, Antwerp Hospital Network, Berchem, Belgium
- Department of Paediatrics, University Hospital Brussel, Jette, Belgium
- Antwerp centre for paediatric rheumatology and auto-inflammatory diseases, Antwerp Hospital Network and Antwerp University Hospital, Antwerp, Belgium
| | - Jerold Jeyaratnam
- Department of Pediatric Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilaria Cataldo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Peggy Jacques
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Paediatric Rheumatology, Ghent University, Gent, Belgium
| | - Karim Vermaelen
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Gent, Belgium
| | - Melissa Dullaers
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Clinical Immunology Research Lab, Centre for Primary Immunodeficiency Ghent, Ghent University Hospital, Gent, Belgium
| | - Rik Joos
- Antwerp centre for paediatric rheumatology and auto-inflammatory diseases, Antwerp Hospital Network and Antwerp University Hospital, Antwerp, Belgium
- Department of Pediatric Rheumatology, Ghent University Hospital, Gent, Belgium
| | - Vito Sabato
- Antwerp centre for paediatric rheumatology and auto-inflammatory diseases, Antwerp Hospital Network and Antwerp University Hospital, Antwerp, Belgium
- Immunology-Allergology-Rheumatology, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Alessandro Stella
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Joost Frenkel
- Department of Pediatric Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Joke Dehoorne
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Paediatric Rheumatology, Ghent University, Gent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Centre for Primary Immunodeficiency Ghent, Ghent University Hospital, Gent, Belgium
- Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Gent, Belgium
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Piero Portincasa
- Division of Internal Medicine, Department of Biomedical Sciences and Human Oncology, Clinica Medica "A Murri", University of Bari "Aldo Moro", Bari, Italy
| | - Mohamed Lamkanfi
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| |
Collapse
|
29
|
Parackova Z, Milota T, Vrabcova P, Smetanova J, Svaton M, Freiberger T, Kanderova V, Sediva A. Novel XIAP mutation causing enhanced spontaneous apoptosis and disturbed NOD2 signalling in a patient with atypical adult-onset Crohn's disease. Cell Death Dis 2020; 11:430. [PMID: 32514016 PMCID: PMC7280281 DOI: 10.1038/s41419-020-2652-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
X-linked inhibitor of apoptosis (XIAP) is the most potent human inhibitor of apoptosis, and is also involved in NOD2-dependent NFκB and MAPK signalling cascade activation. The absence or defective function of XIAP leads to the development of a rare and severe primary immunodeficiency known as X-linked lymphoproliferative syndrome type 2 (XLP-2), which is characterized by a triad of clinical manifestations, including a high incidence of haemophagocytic lymphohistiocytosis (HLH), lymphoproliferation and inflammatory bowel disease (IBD), usually with very early onset. Here, we present a novel XIAP mutation identified in a patient with atypical adult-onset IBD complicated by relapsing HLH, splenomegaly and sarcoid-like disease. The c.266delA mutation in the XIAP gene creates a premature stop codon, and causes a severe reduction in XIAP protein expression. The mutation is also associated with impaired spontaneous and staurosporine- and PMA-induced apoptosis accompanied by significantly increased expression of pro-apoptotic genes. We also confirmed the negative impact of this particular XIAP mutation on NOD2-dependent NFκB and MAPK activation, while NOD2-independent activation was found to be unaffected. Moreover, we assume that the mutation has an impact on the overproduction of IL-12 and IFNγ, the shift towards the Th1 immune response and increased numbers of central memory and effector memory CD4+ and CD8+ T cells. All these changes contribute to immune dysregulation and the clinical manifestation of XLP-2.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic.
| | - Tomas Milota
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Petra Vrabcova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Jitka Smetanova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Michael Svaton
- CLIP-Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Tomas Freiberger
- Molecular Genetics Laboratory, Center of Cardiovascular Surgery and Transplantation, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Kanderova
- CLIP-Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| |
Collapse
|
30
|
Ouahed J, Spencer E, Kotlarz D, Shouval DS, Kowalik M, Peng K, Field M, Grushkin-Lerner L, Pai SY, Bousvaros A, Cho J, Argmann C, Schadt E, Mcgovern DPB, Mokry M, Nieuwenhuis E, Clevers H, Powrie F, Uhlig H, Klein C, Muise A, Dubinsky M, Snapper SB. Very Early Onset Inflammatory Bowel Disease: A Clinical Approach With a Focus on the Role of Genetics and Underlying Immune Deficiencies. Inflamm Bowel Dis 2020; 26:820-842. [PMID: 31833544 PMCID: PMC7216773 DOI: 10.1093/ibd/izz259] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Very early onset inflammatory bowel disease (VEO-IBD) is defined as IBD presenting before 6 years of age. When compared with IBD diagnosed in older children, VEO-IBD has some distinct characteristics such as a higher likelihood of an underlying monogenic etiology or primary immune deficiency. In addition, patients with VEO-IBD have a higher incidence of inflammatory bowel disease unclassified (IBD-U) as compared with older-onset IBD. In some populations, VEO-IBD represents the age group with the fastest growing incidence of IBD. There are contradicting reports on whether VEO-IBD is more resistant to conventional medical interventions. There is a strong need for ongoing research in the field of VEO-IBD to provide optimized management of these complex patients. Here, we provide an approach to diagnosis and management of patients with VEO-IBD. These recommendations are based on expert opinion from members of the VEO-IBD Consortium (www.VEOIBD.org). We highlight the importance of monogenic etiologies, underlying immune deficiencies, and provide a comprehensive description of monogenic etiologies identified to date that are responsible for VEO-IBD.
Collapse
Affiliation(s)
- Jodie Ouahed
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Elizabeth Spencer
- Division of Gastroenterology, Hepatology and Nutrition, Mount Sinai Hospital, New York City, NY, USA
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. Von Haunder Children’s Hospital, University Hospital, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Kowalik
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Kaiyue Peng
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA,Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Leslie Grushkin-Lerner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Boston, MA USA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, Dr. Henry D. Janowitz Division of Gastroenterology, New York, NY, USA
| | - Carmen Argmann
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric Schadt
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA,Sema4, Stamford, CT, USA
| | - Dermot P B Mcgovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edward Nieuwenhuis
- Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands
| | - Fiona Powrie
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Holm Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Department of Pediatrics, University of Oxford, Oxford, UK
| | - Christoph Klein
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aleixo Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada. Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Marla Dubinsky
- Division of Gastroenterology, Hepatology and Nutrition, Mount Sinai Hospital, New York City, NY, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA,Address correspondence to: Scott B. Snapper, MD, PhD, Children's Hospital Boston, Boston, Massachusetts, USA.
| |
Collapse
|
31
|
Zhang J, Sun Y, Shi X, Zhang R, Wang Y, Xiao J, Cao J, Gao Z, Wang J, Wu L, Wei W, Wang Z. Genotype characteristics and immunological indicator evaluation of 311 hemophagocytic lymphohistiocytosis cases in China. Orphanet J Rare Dis 2020; 15:112. [PMID: 32375849 PMCID: PMC7201972 DOI: 10.1186/s13023-020-01390-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/23/2020] [Indexed: 11/11/2022] Open
Abstract
Background Primary hemophagocytic lymphohistiocytosis (pHLH) is a genetic disorder that is classically diagnosed by genetic testing. Secondary HLH (sHLH) is usually caused by infections, malignancies, or autoimmune disorders, but may display some mutations or polymorphisms. Rapid immunological assays examining natural killer (NK) cell activity, degranulation function (CD107a), and protein expression related to genetic deficiencies have been recommended for early pHLH identification. Methods A retrospective analysis of 311 HLH patients from a Chinese population was performed to evaluate the potential correlations between genetic testing and rapid immunological assays; genotyping characteristics, age of onset, and etiology were examined. Results Among the 128 (128/311) patients who were positive in the genetic screening, the most frequently detected mutant gene was UNC13D (29%), followed by LYST (21%), PRF1 (17%), and STXBP2 (10%). Among pHLH patients (n = 39), the majority (67%) had PRF1 and UNC13D defects. FHL-2 was predominant (12/27, 44%) in patients aged under 18, while FHL-3 was the most common (6/12, 50%) in adults. Differences in genetic variant types and etiological components were noted in HLH patients based on the age of onset. NK cell activity and CD107a were observed to show a consistent trend (Ptrend < 0.001) when grouping patients according to the severity of the genetic variant type. Moreover, NK cell activity was generally consistent within a certain range of ΔCD107a values (Ptrend < 0.001). The PPV for bi-allelic degranulation gene mutations in patients with CD107a < 5% was 38.9% (7/18), while the PPV in patients with CD107a ≤10% was 16.7% (13/78). The PPV for pHLH was 41.4% (29/70) with NK cell activity ≤13%. To further evaluate the diagnostic efficacy of NK cell activity assay in pHLH, a receiver operating characteristic (ROC) curve was generated and showed an area under the curve (AUC) of 0.872, and the optimal cutoff value was determined to be 13.425% with a sensitivity of 84.21% and specificity of 80.67% when the corresponding Youden index was maximized. Flow cytometry screening for deficient proteins, including perforin, SAP, and XIAP, showed a relatively high sensitivity (83.33–93.33%). The positive predictive values (PPVs) of perforin and XIAP were relatively low (20.83–26.92%), but the negative predictive values (NPVs) for all three were excellent (all > 98%). Conclusions Various immunological indicators have different clinical prediction and application values for the diagnosis of pHLH. The degree of reduction of immunological indicators also needs attention, and choosing appropriate cutoff value may be of important significance in guiding clinical judgment for pHLH.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing, 10050, China
| | - Yuan Sun
- Department of Hematology, Beijing Jing Du Children's Hospital, Beijing, China
| | - Xiaodong Shi
- Department of Hematology, Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yini Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing, 10050, China
| | - Juan Xiao
- Department of Hematology, Beijing Jing Du Children's Hospital, Beijing, China
| | - Jing Cao
- Department of Hematology, Capital Institute of Pediatrics, Beijing, China
| | - Zhuo Gao
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing, 10050, China
| | - Jingshi Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing, 10050, China
| | - Lin Wu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing, 10050, China
| | - Wei Wei
- Clinical Epidemiology and Evidence-based Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing, 10050, China.
| |
Collapse
|
32
|
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev 2020; 291:174-189. [PMID: 31402499 DOI: 10.1111/imr.12791] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein-Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non-malignant and malignant B-cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV - notably the central role of T-cell expansion and its regulation in the pathophysiology of EBV-associated diseases. On one hand, the defective expansion of EBV-specific CD8 T cells results from mutations in genes involved in T-cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co-stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4-1BB)) leads to impaired elimination of proliferating EBV-infected B cells and the occurrence of lymphoma. On the other hand, protracted T-cell expansion and activation after the defective killing of EBV-infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T- and NK cell-cytotoxicity. In this setting, the persistence of EBV-infected cells results in HLH, a condition characterized by unleashed T-cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co-receptor molecules (CD27, CD137, and SLAM-R) selectively involved in immune responses against infected B cells via specific T-B cell interactions.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Collège de France, Paris, France.,Inserm UMR 1163, Paris, France
| |
Collapse
|
33
|
Serra EG, Schwerd T, Moutsianas L, Cavounidis A, Fachal L, Pandey S, Kammermeier J, Croft NM, Posovszky C, Rodrigues A, Russell RK, Barakat F, Auth MKH, Heuschkel R, Zilbauer M, Fyderek K, Braegger C, Travis SP, Satsangi J, Parkes M, Thapar N, Ferry H, Matte JC, Gilmour KC, Wedrychowicz A, Sullivan P, Moore C, Sambrook J, Ouwehand W, Roberts D, Danesh J, Baeumler TA, Fulga TA, Carrami EM, Ahmed A, Wilson R, Barrett JC, Elkadri A, Griffiths AM, Snapper SB, Shah N, Muise AM, Wilson DC, Uhlig HH, Anderson CA. Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease. Nat Commun 2020; 11:995. [PMID: 32081864 PMCID: PMC7035382 DOI: 10.1038/s41467-019-14275-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Very-early-onset inflammatory bowel disease (VEO-IBD) is a heterogeneous phenotype associated with a spectrum of rare Mendelian disorders. Here, we perform whole-exome-sequencing and genome-wide genotyping in 145 patients (median age-at-diagnosis of 3.5 years), in whom no Mendelian disorders were clinically suspected. In five patients we detect a primary immunodeficiency or enteropathy, with clinical consequences (XIAP, CYBA, SH2D1A, PCSK1). We also present a case study of a VEO-IBD patient with a mosaic de novo, pathogenic allele in CYBB. The mutation is present in ~70% of phagocytes and sufficient to result in defective bacterial handling but not life-threatening infections. Finally, we show that VEO-IBD patients have, on average, higher IBD polygenic risk scores than population controls (99 patients and 18,780 controls; P < 4 × 10-10), and replicate this finding in an independent cohort of VEO-IBD cases and controls (117 patients and 2,603 controls; P < 5 × 10-10). This discovery indicates that a polygenic component operates in VEO-IBD pathogenesis.
Collapse
Affiliation(s)
| | - Tobias Schwerd
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig Maximilians University, Munich, Germany
| | | | - Athena Cavounidis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Laura Fachal
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Nicholas M Croft
- Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- The Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | | | | | | | - Farah Barakat
- Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- The Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | | | | | | | - Krzysztof Fyderek
- Department of Paediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Simon P Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, UK
| | - Miles Parkes
- IBD Research Unit, Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, UK
| | | | - Helen Ferry
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Julie C Matte
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Andrzej Wedrychowicz
- Department of Paediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Peter Sullivan
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Carmel Moore
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jennifer Sambrook
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Willem Ouwehand
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David Roberts
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant - Oxford Centre, Level 2, John Radcliffe Hospital, Oxford, UK
- Biomedical Research Centre, Oxford - Haematology Theme, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - John Danesh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Toni A Baeumler
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Eli M Carrami
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ahmed Ahmed
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, Surgical Innovation and Evaluation and Molecular Diagnostics Themes, University of Oxford, Oxford, UK
| | - Rachel Wilson
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Abdul Elkadri
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Anne M Griffiths
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Neil Shah
- Great Ormond Street Hospital, London, UK
| | - Aleixo M Muise
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - David C Wilson
- Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Carl A Anderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
34
|
Nambu R, Muise AM. Advanced Understanding of Monogenic Inflammatory Bowel Disease. Front Pediatr 2020; 8:618918. [PMID: 33553075 PMCID: PMC7862769 DOI: 10.3389/fped.2020.618918] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 12/29/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic disorders that cause relapsing inflammation in the gastrointestinal tract and comprise three major subgroups of Crohn's disease (CD), ulcerative colitis (UC), and IBD-unclassified (IBDU). Recent advances in genomic technologies have furthered our understanding of IBD pathogenesis. It includes differentiation rare monogenic disorders exhibiting IBD and IBD-like inflammation (monogenic IBD) from patients with the common polygenic form of IBD. Several novel genes responsible for monogenic IBD have been elucidated, and the number of reports has increased due to advancements in molecular functional analysis. Identification of these pathogenic genetic mutations has helped in elucidating the details of the immune response associated with gastrointestinal inflammation and in providing individualized treatments for patients with severe IBD that is often unresponsive to conventional therapy. The majority of monogenic IBD studies have focused on young children diagnosed <6 years of age (very early-onset IBD); however, a recent study revealed high prevalence of monogenic IBD in older children aged >6 years of age as well. Meanwhile, although patients with monogenic IBD generally show co-morbidities and/or extraintestinal manifestation at the time of diagnosis, cases of IBD developing as the initial symptom with unremarkable prodromal symptoms have been reported. It is crucial that the physicians properly match genetic analytical data with clinical diagnosis and/or differential diagnosis. In this review, we summarize the essential clues that may physicians make a correct diagnosis of monogenic disease, including classification, prevalence and clinical phenotype based on available literatures.
Collapse
Affiliation(s)
- Ryusuke Nambu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,SickKids Inflammatory Bowel Disease Center, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama, Japan
| | - Aleixo M Muise
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,SickKids Inflammatory Bowel Disease Center, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics, Institute of Medical Science and Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Flow Cytometry in the Diagnosis and Follow Up of Human Primary Immunodeficiencies. EJIFCC 2019; 30:407-422. [PMID: 31814814 PMCID: PMC6893889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Primary immunodeficiencies (PID) comprise a group of more than 300 mostly monogenetic disorders of the immune system leading to infection susceptibility and a variety of associated clinical and immunological complications. In a majority of these disorders the absence, disproportions or dysfunction of leucocyte subpopulations or of proteins expressed by these cells are observed. These distinctive features are studied by multicolour flow cytometry and the results are used for diagnosis, follow up, classification and therapy monitoring in patients with PIDs. Although a definite diagnosis almost always relies on genetic analysis in PIDs, the results of flow cytometric diagnostics are pivotal in the initial diagnostic assessment of suspected PID patients and often guide the treating physician to a more selective and efficient genetic diagnostic procedure, even in the era of next generation sequencing technology. Furthermore, phenotypic and functional flow cytometry tests allow to validate novel genetic variants and the mapping of complex disturbances of the immune system in individual patients in a personalized manner. In this review we give an overview on phenotypic, functional as well as disease/protein specific flow cytometric assays in the diagnosis of PID and highlight diagnostic strategies and specialties for several selected PIDs by way of example.
Collapse
|
36
|
Knop J, Spilgies LM, Rufli S, Reinhart R, Vasilikos L, Yabal M, Owsley E, Jost PJ, Marsh RA, Wajant H, Robinson MD, Kaufmann T, Wong WWL. TNFR2 induced priming of the inflammasome leads to a RIPK1-dependent cell death in the absence of XIAP. Cell Death Dis 2019; 10:700. [PMID: 31541082 PMCID: PMC6754467 DOI: 10.1038/s41419-019-1938-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023]
Abstract
The pediatric immune deficiency X-linked proliferative disease-2 (XLP-2) is a unique disease, with patients presenting with either hemophagocytic lymphohistiocytosis (HLH) or intestinal bowel disease (IBD). Interestingly, XLP-2 patients display high levels of IL-18 in the serum even while in stable condition, presumably through spontaneous inflammasome activation. Recent data suggests that LPS stimulation can trigger inflammasome activation through a TNFR2/TNF/TNFR1 mediated loop in xiap−/− macrophages. Yet, the direct role TNFR2-specific activation plays in the absence of XIAP is unknown. We found TNFR2-specific activation leads to cell death in xiap−/− myeloid cells, particularly in the absence of the RING domain. RIPK1 kinase activity downstream of TNFR2 resulted in a TNF/TNFR1 cell death, independent of necroptosis. TNFR2-specific activation leads to a similar inflammatory NF-kB driven transcriptional profile as TNFR1 activation with the exception of upregulation of NLRP3 and caspase-11. Activation and upregulation of the canonical inflammasome upon loss of XIAP was mediated by RIPK1 kinase activity and ROS production. While both the inhibition of RIPK1 kinase activity and ROS production reduced cell death, as well as release of IL-1β, the release of IL-18 was not reduced to basal levels. This study supports targeting TNFR2 specifically to reduce IL-18 release in XLP-2 patients and to reduce priming of the inflammasome components.
Collapse
Affiliation(s)
- Janin Knop
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Lisanne M Spilgies
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Stefanie Rufli
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ramona Reinhart
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Lazaros Vasilikos
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Monica Yabal
- III. Medizinische Klink, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Erika Owsley
- UC Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, USA
| | - Philipp J Jost
- III. Medizinische Klink, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Rebecca A Marsh
- UC Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, USA
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Mark D Robinson
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
37
|
Ammann S, Fuchs S, Martin-Martin L, Castro CN, Spielberger B, Klemann C, Elling R, Heeg M, Speckmann C, Hainmann I, Kaiser-Labusch P, Horneff G, Thalhammer J, Bredius RG, Stadt UZ, Lehmberg K, Fuchs I, von Spee-Mayer C, Henneke P, Ehl S. Functional flow cytometry of monocytes for routine diagnosis of innate primary immunodeficiencies. J Allergy Clin Immunol 2019; 145:434-437.e4. [PMID: 31526803 DOI: 10.1016/j.jaci.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Sandra Ammann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lydia Martin-Martin
- Department of Clinical Immunology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Carla N Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Christian Klemann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ina Hainmann
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | | | - Gerd Horneff
- Department of Pediatrics, Asklepios Clinic Sankt Augustin, Centre for Pediatric Rheumatology, Sankt Augustin, Germany; Department of Pediatric and Adolescents medicine, Medical faculty, University Hospital of Cologne, Cologne, Germany
| | - Julian Thalhammer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robbert G Bredius
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Udo Zur Stadt
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilka Fuchs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline von Spee-Mayer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
38
|
Chiang SCC, Bleesing JJ, Marsh RA. Current Flow Cytometric Assays for the Screening and Diagnosis of Primary HLH. Front Immunol 2019; 10:1740. [PMID: 31396234 PMCID: PMC6664088 DOI: 10.3389/fimmu.2019.01740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Advances in flow cytometry have led to greatly improved primary immunodeficiency (PID) diagnostics. This is due to the fact that patient blood cells in suspension do not require further processing for analysis by flow cytometry, and many PIDs lead to alterations in leukocyte numbers, phenotype, and function. A large portion of current PID assays can be classified as “phenotyping” assays, where absolute numbers, frequencies, and markers are investigated using specific antibodies. Inherent drawbacks of antibody technology are the main limitation to this type of testing. On the other hand, “functional” assays measure cellular responses to certain stimuli. While these latter assays are powerful tools that can be used to detect defects in entire pathways and distinguish variants of significance, it requires samples with robust viability and also skilled processing. In this review, we concentrate on hemophagocytic lymphohistiocytosis (HLH), describing the principles and accuracies of flow cytometric assays that have been proven to assist in the screening diagnosis of primary HLH.
Collapse
Affiliation(s)
- Samuel Cern Cher Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jack J Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
39
|
Wright M, Chandrakasan S, Okou DT, Yin H, Jurickova I, Denson LA, Kugathasan S. Early Onset Granulomatous Colitis Associated with a Mutation in NCF4 Resolved with Hematopoietic Stem Cell Transplantation. J Pediatr 2019; 210:220-225. [PMID: 31027832 PMCID: PMC8415091 DOI: 10.1016/j.jpeds.2019.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/09/2023]
Abstract
A 4-year-old boy presented with perianal abscess and granulomatous colitis, which led the diagnosis of Crohn's disease. He became refractory to all available therapies and required colectomy. Targeted sequencing revealed a deleterious variant in NCF4, causing severe neutrophil dysfunction. He underwent hematopoietic stem cell transplantation (HSCT) with an excellent outcome.
Collapse
Affiliation(s)
- Mathew Wright
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Shanmuganathan Chandrakasan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA;,Pediatric Institute, Children’s Healthcare of Atlanta, Atlanta, GA
| | - David T. Okou
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Hong Yin
- Pediatric Institute, Children’s Healthcare of Atlanta, Atlanta, GA;,Department of pathology, Emory University School of Medicine, Atlanta, GA
| | - Ingrid Jurickova
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Subra Kugathasan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Pediatric Institute, Children's Healthcare of Atlanta, Atlanta, GA.
| |
Collapse
|
40
|
Hrdinka M, Yabal M. Inhibitor of apoptosis proteins in human health and
disease. Genes Immun 2019; 20:641-650. [DOI: 10.1038/s41435-019-0078-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
|
41
|
Hrdinka M, Schlicher L, Dai B, Pinkas DM, Bufton JC, Picaud S, Ward JA, Rogers C, Suebsuwong C, Nikhar S, Cuny GD, Huber KV, Filippakopoulos P, Bullock AN, Degterev A, Gyrd-Hansen M. Small molecule inhibitors reveal an indispensable scaffolding role of RIPK2 in NOD2 signaling. EMBO J 2018; 37:embj.201899372. [PMID: 30026309 PMCID: PMC6120666 DOI: 10.15252/embj.201899372] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/06/2023] Open
Abstract
RIPK2 mediates inflammatory signaling by the bacteria‐sensing receptors NOD1 and NOD2. Kinase inhibitors targeting RIPK2 are a proposed strategy to ameliorate NOD‐mediated pathologies. Here, we reveal that RIPK2 kinase activity is dispensable for NOD2 inflammatory signaling and show that RIPK2 inhibitors function instead by antagonizing XIAP‐binding and XIAP‐mediated ubiquitination of RIPK2. We map the XIAP binding site on RIPK2 to the loop between β2 and β3 of the N‐lobe of the kinase, which is in close proximity to the ATP‐binding pocket. Through characterization of a new series of ATP pocket‐binding RIPK2 inhibitors, we identify the molecular features that determine their inhibition of both the RIPK2‐XIAP interaction, and of cellular and in vivoNOD2 signaling. Our study exemplifies how targeting of the ATP‐binding pocket in RIPK2 can be exploited to interfere with the RIPK2‐XIAP interaction for modulation of NOD signaling.
Collapse
Affiliation(s)
- Matous Hrdinka
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Lisa Schlicher
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Bing Dai
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Daniel M Pinkas
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Joshua C Bufton
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Sarah Picaud
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Jennifer A Ward
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Catherine Rogers
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Sameer Nikhar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Kilian Vm Huber
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Panagis Filippakopoulos
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mads Gyrd-Hansen
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Quaranta M, Wilson R, Gonçalves Serra E, Pandey S, Schwerd T, Gilmour K, Klenerman P, Powrie F, Keshav S, Travis SPL, Anderson CA, Uhlig HH. Consequences of Identifying XIAP Deficiency in an Adult Patient With Inflammatory Bowel Disease. Gastroenterology 2018; 155:231-234. [PMID: 29894681 DOI: 10.1053/j.gastro.2018.03.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/26/2018] [Indexed: 12/02/2022]
Affiliation(s)
- Maria Quaranta
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rachel Wilson
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Sumeet Pandey
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tobias Schwerd
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Paul Klenerman
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fiona Powrie
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital and Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Satish Keshav
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Simon P L Travis
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Holm H Uhlig
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford, UK; Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
43
|
Latour S, Winter S. Inherited Immunodeficiencies With High Predisposition to Epstein-Barr Virus-Driven Lymphoproliferative Diseases. Front Immunol 2018; 9:1103. [PMID: 29942301 PMCID: PMC6004768 DOI: 10.3389/fimmu.2018.01103] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
Epstein–Barr Virus (EBV) is a gamma-herpes virus that infects 90% of humans without any symptoms in most cases, but has an oncogenic potential, especially in immunocompromised individuals. In the past 30 years, several primary immunodeficiencies (PIDs) associated with a high risk to develop EBV-associated lymphoproliferative disorders (LPDs), essentially consisting of virus-associated hemophagocytic syndrome, non-malignant and malignant B-cell LPDs including non-Hodgkin and Hodgkin’s types of B lymphomas have been characterized. Among them are SH2D1A (SAP), XIAP, ITK, MAGT1, CD27, CD70, CTPS1, RASGRP1, and CORO1A deficiencies. Penetrance of EBV infection ranges from 50 to 100% in those PIDs. Description of large cohorts and case reports has refined the specific phenotypes associated with these PIDs helping to the diagnosis. Specific pathways required for protective immunity to EBV have emerged from studies of these PIDs. SLAM-associated protein-dependent SLAM receptors and MAGT1-dependent NKG2D pathways are important for T and NK-cell cytotoxicity toward EBV-infected B-cells, while CD27–CD70 interactions are critical to drive the expansion of EBV-specific T-cells. CTPS1 and RASGRP1 deficiencies further strengthen that T-lymphocyte expansion is a key step in the immune response to EBV. These pathways appear to be also important for the anti-tumoral immune surveillance of abnormal B cells. Monogenic PIDs should be thus considered in case of any EBV-associated LPDs.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Equipe de Recherche Labéllisée, Ligue National contre le Cancer, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Equipe de Recherche Labéllisée, Ligue National contre le Cancer, Paris, France
| |
Collapse
|
44
|
Uhlig HH, Booth C. A Spectrum of Genetic Variants Contributes to Immune Defects and Pathogenesis of Inflammatory Bowel Diseases. Gastroenterology 2018; 154:2022-2024. [PMID: 29733833 DOI: 10.1053/j.gastro.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit and Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL GOS Institute of Child Health and Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
45
|
Amininejad L, Charloteaux B, Theatre E, Liefferinckx C, Dmitrieva J, Hayard P, Muls V, Maisin JM, Schapira M, Ghislain JM, Closset P, Talib M, Abramowicz M, Momozawa Y, Deffontaine V, Crins F, Mni M, Karim L, Cambisano N, Ornemese S, Zucchi A, Minsart C, Deviere J, Hugot JP, De Vos M, Louis E, Vermeire S, Van Gossum A, Coppieters W, Twizere JC, Georges M, Franchimont D. Analysis of Genes Associated With Monogenic Primary Immunodeficiency Identifies Rare Variants in XIAP in Patients With Crohn's Disease. Gastroenterology 2018; 154:2165-2177. [PMID: 29501442 DOI: 10.1053/j.gastro.2018.02.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS A few rare monogenic primary immunodeficiencies (PIDs) are characterized by chronic intestinal inflammation that resembles Crohn's disease (CD). We investigated whether 23 genes associated with 10 of these monogenic disorders contain common, low-frequency, or rare variants that increase risk for CD. METHODS Common and low frequency variants in 1 Mb loci centered on the candidate genes were analyzed using meta-data corresponding to genotypes of approximately 17,000 patients with CD or without CD (controls) in Europe. The contribution of rare variants was assessed by high-throughput sequencing of 4750 individuals, including 660 early-onset and/or familial cases among the 2390 patients with CD. Variants were expressed from vectors in SW480 or HeLa cells and functions of their products were analyzed in immunofluorescence, luciferase, immunoprecipitation, and immunoblot assays. RESULTS We reproduced the association of the interleukin 10 locus with CD (P = .007), although none of the significantly associated variants modified the coding sequence of interleukin 10. We found XIAP to be significantly enriched for rare coding mutations in patients with CD vs controls (P = .02). We identified 4 previously unreported missense variants associated with CD. Variants in XIAP cause the PID X-linked lymphoproliferative disease type 2, yet none of the carriers of these variants had all the clinical features of X-linked lymphoproliferative disease type 2. Identified XIAP variants S123N, R233Q, and P257A were associated with an impaired activation of NOD2 signaling after muramyl dipeptide stimulation. CONCLUSIONS In a systematic analysis of variants in 23 PID-associated genes, we confirmed the association of variants in XIAP with CD. Further screenings for CD-associated variants and analyses of their functions could increase our understanding of the relationship between PID-associated genes and CD pathogenesis.
Collapse
Affiliation(s)
- Leila Amininejad
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Benoit Charloteaux
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Emilie Theatre
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Claire Liefferinckx
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Julia Dmitrieva
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Pierre Hayard
- Department of Gastroenterology Charleroi University Hospital, Charleroi, Belgium
| | - Vincianne Muls
- Department of Gastroenterology, Saint Pierre Hospital, Brussels, Belgium
| | - Jean-Marc Maisin
- Department of Gastroenterology, Jolimont Hospital, La Louvière, Belgium
| | - Michael Schapira
- Department of Gastroenterology, Jolimont Hospital, La Louvière, Belgium
| | | | - Pierre Closset
- Department of Gastroenterology, Ixelles Hospital, Brussels, Belgium
| | - Mehdi Talib
- Department of Gastroenterology, Brugmann Hospital, Brussels, Belgium
| | - Marc Abramowicz
- Department of Human genetics, Erasme hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Yukihide Momozawa
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Valerie Deffontaine
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - François Crins
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Myriam Mni
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Latifa Karim
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium; Groupe Interdisciplinaire de Génoprotéomique Appliquée Genomics Platform, University of Liège, Liège, Belgium
| | - Nadine Cambisano
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium; Groupe Interdisciplinaire de Génoprotéomique Appliquée Genomics Platform, University of Liège, Liège, Belgium
| | - Sandra Ornemese
- Grappe Interdisciplinaire de Génoprotéomique Appliquée Imaging Platform, University of Liège, Liège, Belgium
| | - Alessandro Zucchi
- Laboratory of Parasitology, Université Libre de Bruxelles, Brussels, Belgium
| | - Charlotte Minsart
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Deviere
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Hugot
- Institut National de la Santé et de la Recherche Médicale U843, Hôpital Robert Debré, Paris, France
| | - Martine De Vos
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Edouard Louis
- Department of Gastroenterology, Sart Tilman Hospital, University of Liège, Liège, Belgium
| | - Severine Vermeire
- Department of Clinical and Experimental Medecine, Gastroenterology Section, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Andre Van Gossum
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Wouter Coppieters
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium; Groupe Interdisciplinaire de Génoprotéomique Appliquée Genomics Platform, University of Liège, Liège, Belgium
| | - Jean-Claude Twizere
- Laboratory of Protein Signalling and Interactions, Groupe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée and Faculty of Veterinary Medecine, University of Liège, Liège, Belgium
| | - Denis Franchimont
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology and Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
46
|
Marsh RA, Haddad E. How i treat primary haemophagocytic lymphohistiocytosis. Br J Haematol 2018; 182:185-199. [DOI: 10.1111/bjh.15274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Rebecca A. Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency; Cincinnati Children's Hospital Medical Center; Cincinnati OH USA
| | - Elie Haddad
- Department of Pediatrics; Department of Microbiology, Infectious Diseases and Immunology; CHU Sainte-Justine; University of Montreal; Montreal QC Canada
| |
Collapse
|
47
|
Fang YH, Luo YY, Yu JD, Lou JG, Chen J. Phenotypic and genotypic characterization of inflammatory bowel disease in children under six years of age in China. World J Gastroenterol 2018; 24:1035-1045. [PMID: 29531467 PMCID: PMC5840468 DOI: 10.3748/wjg.v24.i9.1035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze clinical differences between monogenic and nonmonogenic very-early-onset inflammatory bowel disease (VEO-IBD) and to characterize monogenic IBD phenotypically and genotypically via genetic testing. METHODS A retrospective analysis of children aged 0 to 6 years diagnosed with VEO-IBD in a tertiary hospital in southern China from 2005 to 2017 was performed. Clinical data for VEO-IBD patients were collected, and genetic characteristics were analyzed using whole exome sequencing or target gene panel sequencing. RESULTS A total of 54 VEO-IBD patients were included in this study. A diagnosis of Crohn's disease (CD) or CD-like intestinal manifestations accounted for 72.2% of the VEO-IBD cases. Nine patients (16.7%) were identified by genetic testing as having monogenic IBD. The median age of diagnosis in the monogenic group was younger than that of the nonmonogenic IBD group, at 18 mo (interquartile range (IQR): 4 to 78) and 43.5 mo (IQR: 3 to 173), respectively; the P-value was 0.021. The incidence of perianal disease in the monogenic group was higher than that in the nonmonogenic group (P = 0.001). However, there were no significant differences between weight-for-age and height-for-age Z-scores between the two groups, and similar laboratory results were obtained for the two groups. Five patients were found to have IL10 receptor mutation, two patients had chronic granulomatous disease, one patient had common variable immunodeficiency disease, and one patient had X-linked inhibitor of apoptosis protein deficiency. CONCLUSION A high proportion of monogenic IBD was observed in the VEO-IBD group, especially with disease onset before the age of 6 mo. Monogenic IBD and nonmonogenic IBD exhibited similar clinical features. Furthermore, next-generation sequencing played an important role in the diagnosis of monogenic IBD, and IL10 receptor mutation was predominant in this cohort.
Collapse
Affiliation(s)
- You-Hong Fang
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - You-You Luo
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Jin-Dan Yu
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Jin-Gan Lou
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Jie Chen
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| |
Collapse
|
48
|
Richardson AM, Moyer AM, Hasadsri L, Abraham RS. Diagnostic Tools for Inborn Errors of Human Immunity (Primary Immunodeficiencies and Immune Dysregulatory Diseases). Curr Allergy Asthma Rep 2018; 18:19. [PMID: 29470720 DOI: 10.1007/s11882-018-0770-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an overview of diagnostic testing in primary immunodeficiency and immune dysregulatory disorders (PIDDs), particularly focusing on flow cytometry and genetic techniques, utilizing specific examples of PIDDs. RECENT FINDINGS Flow cytometry remains a vital tool in the diagnosis and monitoring of immunological diseases. Its utility ranges from cellular analysis and specific protein quantitation to functional assays and signaling pathway analysis. Mass cytometry combines flow cytometry and mass spectrometry to dramatically increase the throughput of multivariate single-cell analysis. Next-generation sequencing in combination with other molecular techniques and processing algorithms has become more widely available and identified the diverse and heterogeneous genetic underpinnings of these disorders. As the spectrum of disease is further clarified by increasing immunological, genetic, and epigenetic knowledge, the careful application of these diagnostic tools and bioinformatics will assist not only in our understanding of these complex disorders, but also enable the implementation of personalized therapeutic approaches for disease management.
Collapse
Affiliation(s)
- Annely M Richardson
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
49
|
Marsh RA. Epstein-Barr Virus and Hemophagocytic Lymphohistiocytosis. Front Immunol 2018; 8:1902. [PMID: 29358936 PMCID: PMC5766650 DOI: 10.3389/fimmu.2017.01902] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous virus that infects nearly all people worldwide without serious sequela. However, for patients who have genetic diseases which predispose them to the development of hemophagocytic lymphohistiocytosis (HLH), EBV infection is a life-threatening problem. As a part of a themed collection of articles on EBV infection and human primary immune deficiencies, we will review key concepts related to the understanding and treatment of HLH.
Collapse
Affiliation(s)
- Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
50
|
Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int 2018; 67:43-54. [PMID: 28684198 DOI: 10.1016/j.alit.2017.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/09/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of inherited diseases of the immune system. The definite diagnosis of PID is ascertained by genetic analysis; however, this takes time and is costly. Flow cytometry provides a rapid and highly sensitive tool for diagnosis of PIDs. Flow cytometry can evaluate specific cell populations and subpopulations, cell surface, intracellular and intranuclear proteins, biologic effects associated with specific immune defects, and certain functional immune characteristics, each being useful for the diagnosis and evaluation of PIDs. Flow cytometry effectively identifies major forms of PIDs, including severe combined immunodeficiency, X-linked agammaglobulinemia, hyper IgM syndromes, Wiskott-Aldrich syndrome, X-linked lymphoproliferative syndrome, familial hemophagocytic lymphohistiocytosis, autoimmune lymphoproliferative syndrome, IPEX syndrome, CTLA 4 haploinsufficiency and LRBA deficiency, IRAK4 and MyD88 deficiencies, Mendelian susceptibility to mycobacterial disease, chronic mucocuneous candidiasis, and chronic granulomatous disease. While genetic analysis is the definitive approach to establish specific diagnoses of PIDs, flow cytometry provides a tool to effectively evaluate patients with PIDs at relatively low cost.
Collapse
|