1
|
Zhu L, Wu H, Peng L, Huang X, Yang R, Ma W, Zhong L, Li B, Song J, Luo S, Gao L, Wu X, Ma W, Bao F, Liu A. CD4 + Effective Memory T Cell Markers GBP2 and LAG3 Are Risk Factors for PTB and COVID-19 Infection: A Study Integrating Single-Cell Expression Quantitative Trait Locus and Mendelian Randomization Analyses. Int J Mol Sci 2024; 25:9971. [PMID: 39337460 PMCID: PMC11432203 DOI: 10.3390/ijms25189971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Observational studies indicate that variations in peripheral blood mononuclear cell (PBMC) subsets are associated with an increased risk of pulmonary tuberculosis (PTB) and coronavirus disease 2019 (COVID-19), but causal validation is lacking. Here, we combined single-cell expression quantitative trait locus (sc-eQTL) and two-sample mendelian randomization (MR) analyses to elucidate the causal relationship between PBMC subsets and the occurrence of PTB and COVID-19 and verified by RT-qPCR. We observed an increase in the CD4+ Effective Memory T Cell (CD4+ TEM) cluster in both PTB and COVID-19 patients according to the single-cell transcriptional landscape of PBMC. Through MR analysis using an inverse variance weighted (IVW) method, we found strong evidence of positive correlations between CD4+ TEM cell markers (GBP2, TRAV1-2, and ODF2L) and PTB, and between markers (LAG3 and SLFN5) and COVID-19, especially highlighted by lead eQTL-SNPs of GBP2 (rs2256752, p = 4.76321 × 10-15) and LAG3 (rs67706382, p = 6.16× 10-16). Similar results were observed in validation sets, and no pleiotropy was detected in sensitivity analyses including weighted median (WM), MR-Egger, MR-pleiotropy residual sum and outlier, and leave-one-out analyses (all p > 0.05). We visualized the colocalization of marker-eQTLs and markers of PTB and COVID-19 genome-wide association study (GWAS) associations. Based on CellChat analyses, monocytes communicated predominantly with CD4+ TEM cells positively expressing PTB markers (GBP2, TRAV1-2, and ODF2L) and COVID-19 markers (LAG3 and SLFN5) in both PTB and COVID-19. Our data suggest a causal effect between two key CD4+ TEM cell markers (GBP2 and LAG3) and the risk for PTB and COVID-19 infection. Our findings provide novel insights into the biological mechanism for PTB and COVID-19 infection, but future single-cell studies are necessary to further enhance understanding of this find.
Collapse
Affiliation(s)
- Liangyu Zhu
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Hanxin Wu
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Li Peng
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Xun Huang
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Rui Yang
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Weijie Ma
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Lei Zhong
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Bingxue Li
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Jieqin Song
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Suyi Luo
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Li Gao
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Xinya Wu
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Weijiang Ma
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Fukai Bao
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Aihua Liu
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
2
|
Bartens MC, Willcocks S, Werling D, Gibson AJ. Respiratory bioenergetics is enhanced in human, but not bovine macrophages after exposure to M. bovis PPD: Exploratory insights into overall similar Cellular Metabolic Profiles. Innate Immun 2024; 30:136-149. [PMID: 39563509 PMCID: PMC11577332 DOI: 10.1177/17534259241296630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
The role of macrophage (MØ) cellular metabolism and reprogramming during TB infection is of great interest due to the influence of Mycobacterium spp. on MØ bioenergetics. Recent studies have shown that M. tuberculosis induces a TLR2-dependent shift towards aerobic glycolysis, comparable to the established LPS induced pro-inflammatory M1 MØ polarisation. Distinct differences in the metabolic profile of murine and human MØ indicates species-specific differences in bioenergetics. So far, studies examining the metabolic potential of bovine MØ are lacking, thus the basic bioenergetics of bovine and human MØ were explored in response to a variety of innate immune stimuli. Cellular energy metabolism kinetics were measured concurrently for both species on a Seahorse XFe96 platform to generate bioenergetic profiles for the response to the bona-fide TLR2 and TLR4 ligands, FSL-1 and LPS respectively. Despite previous reports of species-specific differences in TLR signalling and cytokine production between human and bovine MØ, we observed similar respiratory profiles for both species. Basal respiration remained constant between stimulated MØ and controls, whereas addition of TLR ligands induced increased glycolysis, as measured by the surrogate parameter ECAR. In contrast to MØ stimulation with M. tuberculosis PPD, another TLR2 ligand, M. bovis PPD treatment significantly enhanced basal respiration rates and glycolysis only in human MØ. Respiratory profiling further revealed significant elevation of ATP-linked OCR and maximal respiration suggesting a strong OXPHOS activation upon M. bovis PPD stimulation in human MØ. Our results provide an exploratory set of data elucidating the basic respiratory profile of bovine vs. human MØ that will not only lay the foundation for future studies to investigate host-tropism of the M. tuberculosis complex but may explain inflammatory differences observed for other zoonotic diseases.
Collapse
Affiliation(s)
- Marie-Christine Bartens
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Science, Royal Veterinary College, Hatfield, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, UK
| | - Sam Willcocks
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, UK
- Department of Life Sciences, Brunel University, UK
| | - Dirk Werling
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Science, Royal Veterinary College, Hatfield, UK
| | - Amanda J Gibson
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Science, Royal Veterinary College, Hatfield, UK
- Department of Life Science, Aberystwyth University, UK
| |
Collapse
|
3
|
Zhong T, Chen S, Deng K, Guan J, Zhang J, Lu F, Shichen M, Lv R, Liu Z, Liu Y, Chang P, Liu Z. Magnesium alleviates extracellular histone-induced apoptosis and defective bacterial phagocytosis in macrophages by regulating intracellular calcium signal. Int Immunopharmacol 2024; 132:111870. [PMID: 38547771 DOI: 10.1016/j.intimp.2024.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Extracellular histones have been determined as important mediators of sepsis, which induce excessive inflammatory responses in macrophages and impair innate immunity. Magnesium (Mg2+), one of the essential nutrients of the human body, contributes to the proper regulation of immune function. However, no reports indicate whether extracellular histones affect survival and bacterial phagocytosis in macrophages and whether Mg2+ is protective against histone-induced macrophage damage. Our clinical data revealed a negative correlation between circulating histone and monocyte levels in septic patients, and in vitro experiments confirmed that histones induced mitochondria-associated apoptosis and defective bacterial phagocytosis in macrophages. Interestingly, our clinical data also indicated an association between lower serum Mg2+ levels and reduced monocyte levels in septic patients. Moreover, in vitro experiments demonstrated that Mg2+ attenuated histone-induced apoptosis and defective bacterial phagocytosis in macrophages through the PLC/IP3R/STIM-mediated calcium signaling pathway. Importantly, further animal experiments proved that Mg2+ significantly improved survival and attenuated histone-mediated lung injury and macrophage damage in histone-stimulated mice. Additionally, in a cecal ligation and puncture (CLP) + histone-induced injury mouse model, Mg2+ inhibited histone-mediated apoptosis and defective phagocytosis in macrophages and further reduced bacterial load. Overall, these results suggest that Mg2+ supplementation may be a promising treatment for extracellular histone-mediated macrophage damage in sepsis.
Collapse
Affiliation(s)
- Tao Zhong
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sainan Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Deng
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianbin Guan
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Zhang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Furong Lu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Maoyou Shichen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ronggui Lv
- Department of Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhifeng Liu
- Department of Medicine Intensive Care Units, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China.
| | - Yong Liu
- Department of Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhanguo Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
5
|
Metabolomics insights into the interaction between Pseudomonas plecoglossicida and Epinephelus coioides. Sci Rep 2022; 12:13309. [PMID: 35922642 PMCID: PMC9349296 DOI: 10.1038/s41598-022-17387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
As a highly infectious epidemic in aquaculture, Pseudomonas plecoglossicida infection results in high mortality of teleosts and serious economic losses. Host–pathogen interactions shape the outcome of an infection, yet we still understand little about the molecular mechanism of these pathogen-mediated processes. Here, a P. plecoglossicida strain (NZBD9) and Epinephelus coioides were investigated as a model system to characterize pathogen-induced host metabolic remodeling over the course of infection. We present a non-targeted metabolomics profiling of E. coioides spleens from uninfected E. coioides and those infected with wild-type and clpV-RNA interference (RNAi) strains. The most significant changes of E. coioides upon infection were associated with amino acids, lysophospatidylcholines, and unsaturated fatty acids, involving disturbances in host nutritional utilization and immune responses. Dihydrosphingosine and fatty acid 16:2 were screened as potential biomarkers for assessing P. plecoglossicida infection. The silencing of the P. plecoglossicida clpV gene significantly recovered the lipid metabolism of infected E. coioides. This comprehensive metabolomics study provides novel insights into how P. plecoglossicida shape host metabolism to support their survival and replication and highlights the potential of the virulence gene clpV in the treatment of P. plecoglossicida infection in aquaculture.
Collapse
|
6
|
Akhtar M, Chen Y, Ma Z, Zhang X, Shi D, Khan JA, Liu H. Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:350-360. [PMID: 35510031 PMCID: PMC9040132 DOI: 10.1016/j.aninu.2021.11.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Gut inflammation is a challenging concern in humans and animals, which disturbs normal growth and leads to severe bowel diseases. Short chain fatty acids (SCFA) are the gut microbiota metabolites produced from fermentation of non-digestible carbohydrates, and have been reported to modulate gut inflammation. SCFA have been implicated as the potential therapeutic bioactive molecules for gut inflammatory diseases, and could be an alternative to antibiotic growth promoters (AGP). In this review, the existing knowledge about the types of SCFA, the related gut microbes producing SCFA, the roles of SCFA in maintaining gut homeostasis, and how SCFA modulate gut inflammation is summarized. The therapeutic application of SCFA in the treatment of inflammatory bowel disease (IBD) is also highlighted.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyu Ma
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolong Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jawaria A. Khan
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Lötscher J, Martí I Líndez AA, Kirchhammer N, Cribioli E, Giordano Attianese GMP, Trefny MP, Lenz M, Rothschild SI, Strati P, Künzli M, Lotter C, Schenk SH, Dehio P, Löliger J, Litzler L, Schreiner D, Koch V, Page N, Lee D, Grählert J, Kuzmin D, Burgener AV, Merkler D, Pless M, Balmer ML, Reith W, Huwyler J, Irving M, King CG, Zippelius A, Hess C. Magnesium sensing via LFA-1 regulates CD8 + T cell effector function. Cell 2022; 185:585-602.e29. [PMID: 35051368 DOI: 10.1016/j.cell.2021.12.039] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.
Collapse
Affiliation(s)
- Jonas Lötscher
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Adrià-Arnau Martí I Líndez
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nicole Kirchhammer
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Elisabetta Cribioli
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Greta Maria Paola Giordano Attianese
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Marcel P Trefny
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Markus Lenz
- University of Applied Science Northwestern Switzerland, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - Sacha I Rothschild
- Division of Medical Oncology and Comprehensive Cancer Center, University Hospital Basel, 4031 Basel, Switzerland; Swiss Group for Clinical Cancer Research, 3008 Bern, Switzerland
| | - Paolo Strati
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marco Künzli
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - Claudia Lotter
- Department of Pharmaceutical Sciences, Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Department of Pharmaceutical Sciences, Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Philippe Dehio
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Jordan Löliger
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Ludivine Litzler
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - David Schreiner
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - Victoria Koch
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Dahye Lee
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Jasmin Grählert
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Dmitry Kuzmin
- Hornet Therapeutics Ltd, London SW1Y 5ES, UK; Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne-Valérie Burgener
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Miklos Pless
- Swiss Group for Clinical Cancer Research, 3008 Bern, Switzerland; Department of Oncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Department for Biomedical Research (DBMR), University Clinic for Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, University of Bern, 3008 Bern, Switzerland; Diabetes Center Berne (DCB), 3010 Bern, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Carolyn G King
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Division of Medical Oncology and Comprehensive Cancer Center, University Hospital Basel, 4031 Basel, Switzerland
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
8
|
Liang W, He X, Bi J, Hu T, Sun Y. Role of reactive oxygen species in tumors based on the 'seed and soil' theory: A complex interaction (Review). Oncol Rep 2021; 46:208. [PMID: 34328200 PMCID: PMC8329912 DOI: 10.3892/or.2021.8159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) can serve as the 'soil' for the growth and survival of tumor cells and function synergically with tumor cells to mediate tumor progression and therapeutic resistance. Reactive oxygen species (ROS) is somewhat of a double‑edged sword for tumors. Accumulating evidence has reported that regulating ROS levels can serve an anti‑tumor role in the TME, including the promotion of cancer cell apoptosis, inhibition of angiogenesis, preventing immune escape, manipulating tumor metabolic reorganization and improving drug resistance. In the present review, the potential role of ROS in anti‑tumor therapy was summarized, including the possibility of directly or indirectly targeting the TME.
Collapse
Affiliation(s)
- Wei Liang
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Xinying He
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jianqiang Bi
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Tingting Hu
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Yunchuan Sun
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
9
|
Macciò A, Oppi S, Madeddu C. COVID-19 and cytokine storm syndrome: can what we know about interleukin-6 in ovarian cancer be applied? J Ovarian Res 2021; 14:28. [PMID: 33550983 PMCID: PMC7868172 DOI: 10.1186/s13048-021-00772-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Improving early diagnosis along with timely and effective treatment of COVID-19 are urgently needed. However, at present, the mechanisms underlying disease spread and development, defined prognosis, and immune status of patients with COVID-19 remain to be determined. Patients with severe disease state exhibit a hyperinflammatory response associated with cytokine storm syndrome, hypercoagulability, and depressed cell-mediated immunity. These clinical manifestations, sharing similar pathogenesis, have been well-studied in patients with advanced ovarian cancer. The present review suggests treatment approaches for COVID-19 based on strategies used against ovarian cancer, which shares similar immunopathology and associated coagulation disorders.The chronicization of the hyperinflammatory cytokine storm in patients with severe COVID-19 highlights a defective resistance phase that leads to aspecific chronic inflammation, associated with oxidative stress, which impairs specific T-cell response, induces tissue and endothelial damage, and thrombosis associated with systemic effects that lead to severe multi-organ failure and death. These events are similar to those observed in advanced ovarian cancer which share similar pathogenesis mediated primarily by Interleukin-6, which is, as well demonstrated in ovarian cancer, the key cytokine driving the immunopathology, related systemic symptoms, and patient prognosis.Consistent with findings in other disease models with similar immunopathology, such as advanced ovarian cancer, treatment of severe COVID-19 infection should target inflammation, oxidative stress, coagulation disorders, and immunodepression to improve patient outcome. Correctly identifying disease stages, based on available laboratory data, and developing a specific protocol for each phase is essential for effective treatment.
Collapse
Affiliation(s)
- Antonio Macciò
- Department of Gynecologic Oncology, Businco Hospital, "Azienda di Rilievo Nazionale ad Alta Specializzazione G. Brotzu", Via Jenner, 09100, Cagliari, Italy.
| | - Sara Oppi
- Hematology and Transplant Center, Businco Hospital, "Azienda di Rilievo Nazionale ad Alta Specializzazione G. Brotzu", Cagliari, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Macciò A, Madeddu C. Blocking inflammation to improve immunotherapy of advanced cancer. Immunology 2020; 159:357-364. [PMID: 31821533 PMCID: PMC7078000 DOI: 10.1111/imm.13164] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
The ability to induce functional reprogramming of regulatory T (Treg) cells in the tumor microenvironment is an extremely important therapeutic opportunity. However, when discussing such an approach, the opposing effect that the activation of the Treg cell compartments may have in inducing the immune inflammatory response and its link with the efficacy of immunotherapy should be considered. In fact, Treg reprogramming has a dual effect: immediate, with mechanisms that activate immunosurveillance, and late, mediated by the macrophage activation that yields an inflammatory status that is deleterious for the antineoplastic efficiency of the immune system response. Persistence of the inflammatory response is associated with specific changes of oxidative and glycolytic metabolic pathways that interfere with conventional T-cell activation and function and may be one of the reasons for the failure of immunotherapy in advanced cancer patients. Therefore, in addition to modulating Treg cell action, the combined use of drugs able to block chronic inflammation mediated mainly by macrophages, to counteract the oxidative stress, and to positively regulate the metabolic derangements, could improve the effectiveness of modern immunotherapy. In conclusion, reprogramming of Treg cells may be an appropriate strategy for treating early stages of neoplastic diseases, whereas other immunosuppressive mechanisms should be the target of a combined immunotherapy approach in more advanced phases of cancer.
Collapse
Affiliation(s)
- Antonio Macciò
- Department of Gynecologic OncologyAzienda Ospedaliera BrotzuCagliariItaly
| | - Clelia Madeddu
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| |
Collapse
|
11
|
Dimeloe S, Mauro C. Translating immunometabolism: towards curing human diseases by targeting metabolic processes underpinning the immune response. Clin Exp Immunol 2019; 197:141-142. [PMID: 31327170 PMCID: PMC6642880 DOI: 10.1111/cei.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/01/2022] Open
Affiliation(s)
- S. Dimeloe
- College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - C. Mauro
- College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|