1
|
Al-Samerria S, Xu H, Diaz-Rubio ME, Phelan J, Su C, Ma K, Newen A, Li K, Yamada S, Negron AL, Wondisford F, Radovick S. Biomarkers of GH deficiency identified in untreated and GH-treated Pit-1 mutant mice. Front Endocrinol (Lausanne) 2025; 16:1539797. [PMID: 40370773 PMCID: PMC12074916 DOI: 10.3389/fendo.2025.1539797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/13/2025] [Indexed: 05/16/2025] Open
Abstract
Background Growth Hormone Deficiency (GHD) is marked by insufficient growth hormone (GH) production, leading to disruptions in growth and metabolism. Its diagnosis is challenging due to the lack of sensitive, specific tests. To address this, we used a novel mouse model with a POU1F1 (Pit-1) gene mutation (K216E). This study aimed to identify metabolic biomarkers of GHD and assess their responsiveness to GH therapy, alongside pathway analysis to uncover disrupted metabolic pathways. Methods The Pit-1^K216E mouse model was validated for GHD through assessments of GH production, growth, and body composition. Metabolomic profiling was conducted to identify biomarkers, while pathway analysis examined disrupted metabolic pathways and their response to GH treatment. This approach aimed to improve understanding of GHD's metabolic impact and potential therapeutic strategies. Results The assessment of the Pit-1^K216E mouse confirmed GHD, as evidenced by reduced GH production and altered body composition. Metabolomic profiling identified three distinct biomarker groups associated with GHD: (1) GHD Biomarkers, found exclusively in GH-deficient mutant mice but absent in WT controls; (2) GH Treatment Responsive Biomarkers, which were altered in GH-deficient mutant mice (GHD) and further modulated following GH treatment, reflecting a response specific to the GHD condition and its treatment, but not observed in WT mice; and (3) GH Treatment-Specific Responsive Biomarkers, observed exclusively in the GHD condition after GH therapy. Pathway analysis revealed significant disruptions in purine metabolism, amino acid metabolism, and protein synthesis, with notable sex-specific differences. Male mice exhibited imbalances in taurine and hypotaurine metabolism, while female mice showed disruptions in tyrosine metabolism and mitochondrial function, highlighting sex-dependent metabolic responses to GHD and GH therapy. Conclusion The Pit-1^K216E mouse model offers a robust platform for exploring GHD's molecular mechanisms. The identification of distinct, sex-specific metabolic biomarkers provides insights into GHD-related metabolic disruptions and supports personalized management strategies. These findings establish a framework for leveraging metabolic biomarkers to enhance the diagnosis and monitoring of GHD, with promising applications for future human studies and therapeutic strategies.
Collapse
Affiliation(s)
- Sarmed Al-Samerria
- Department of Pediatrics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Huiting Xu
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - M. Elena Diaz-Rubio
- Rutgers Cancer Institute, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Joseph Phelan
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Chi Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Keer Ma
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Anna Newen
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Kiana Li
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sayaka Yamada
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Ariel L. Negron
- Department of Pediatrics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Fredric Wondisford
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Sally Radovick
- Department of Pediatrics, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
2
|
Molinari S, Nicolosi ML, Selicorni A, Fossati C, Lattuada M, Bellani I, Arcuti F, Carnevale R, Biondi A, Balduzzi A, Cattoni A. Moebius syndrome and hypopituitarism: a case of multiple pituitary hormone deficiency and revision of the literature. J Pediatr Endocrinol Metab 2025; 38:421-428. [PMID: 39846147 DOI: 10.1515/jpem-2024-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVES Moebius syndrome (MS) is a rare congenital non-progressive rhombencephalic disorder mostly characterised by abducens and facial nerve palsy, but with a multifaceted clinical presentation. Isolated or multiple pituitary hormone deficiencies in the setting of MS have been occasionally reported, but the simultaneous involvement of three or more hypothalamic-pituitary axes has never been described. We hereby report the case of a girl with MS that showed a co-occurrence of GH-, TSH- and ACTH-deficiency. In addition, we provide a systematic revision of all the published cases of hypopituitarism among patients with MS. CASE PRESENTATION A 6-year-old patient with a MS was referred to our outpatient clinic for faltering growth. The combination of stature below -3.0 SDS, impaired height velocity and pathological response to two GH-stimulation tests prompted the diagnosis of GH deficiency and therefore recombinant human GH was undertaken. Brain MRI highlighted a thin infundibular stalk. By the age of 10 years, she started to complain progressive fatigue and the co-occurrence of remarkably decreased fT4 levels in the setting of non-increased TSH led to diagnose central hypothyroidism. Accordingly, she was started on levothyroxine replacement therapy with timely clinical improvement. At the age of 11.3 years, recurrent symptoms consistent with morning hypoglycaemia prompted the prescription of a low-dose ACTH test, that confirmed an ACTH deficiency, in the setting of a multiple pituitary hormonal impairment. CONCLUSIONS Patients with MS are potentially at risk for either isolated or multiple pituitary hormones deficiency. Clinicians should lower the threshold for prescribing a dedicated endocrine assessment.
Collapse
Affiliation(s)
- Silvia Molinari
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | | | | | - Chiara Fossati
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Martina Lattuada
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Iacopo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Federica Arcuti
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Riccardo Carnevale
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Adriana Balduzzi
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Alessandro Cattoni
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Gagliano C, Burattini O, Paradisi L, Recchione S, Santoro L, Caponi L, Ciaschini A, Lionetti ME, Gatti S. Severe neonatal cholestasis in HNF1β deficiency: a case report and literature review. Front Pediatr 2025; 13:1562573. [PMID: 40256398 PMCID: PMC12006077 DOI: 10.3389/fped.2025.1562573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/12/2025] [Indexed: 04/22/2025] Open
Abstract
Neonatal cholestasis can be caused by several conditions, with biliary atresia being the major cause. Genetic and endocrinological etiologies represent other possibilities, with most of them requiring a rapid diagnosis and a specific treatment. We describe a neonatal case of severe cholestasis with low gamma glutamyl transferase in a child presenting with multiple abnormalities, including pituitary stalk interruption syndrome and consequent hypopituitarism. The cholestasis was rapidly resolved with hormone therapy. Genetic analysis showed a de novo 17q chromosome deletion, including the HNF1β gene implicated in liver damage, and this was considered causative of the complex clinical phenotype. Our case highlights the relationship between congenital hypopituitarism and HNF1β gene deletion in 17q12 deletion syndrome as a severe neonatal cholestasis etiology, emphasizing the need to be especially vigilant in cases with associated hypoglycemia. Prompt endocrine evaluation and genetic testing are crucial in neonatal cholestasis to start targeted therapy and long-term monitoring, which could mitigate serious complications.
Collapse
Affiliation(s)
- Chiara Gagliano
- Department of Pediatrics, University Polytechnic of Marche, Ancona, Italy
| | - Olga Burattini
- Department of Pediatrics, University Polytechnic of Marche, Ancona, Italy
| | - Luigi Paradisi
- Department of Pediatrics, University Polytechnic of Marche, Ancona, Italy
| | - Sarah Recchione
- Department of Pediatrics, University Polytechnic of Marche, Ancona, Italy
| | - Lucia Santoro
- Department of Pediatrics, University Polytechnic of Marche, Ancona, Italy
| | - Laura Caponi
- Department of Pediatrics, University Polytechnic of Marche, Ancona, Italy
| | - Annamaria Ciaschini
- Laboratory of Medical Genetics, Azienda Ospedaliero Universitaria Delle Marche, Ancona, Italy
| | | | - Simona Gatti
- Department of Pediatrics, University Polytechnic of Marche, Ancona, Italy
| |
Collapse
|
4
|
Santoro C, Aiello F, Farina A, Miraglia del Giudice E, Pascarella F, Licenziati MR, Improda N, Piluso G, Torella A, Del Vecchio Blanco F, Cirillo M, Nigro V, Grandone A. A Novel Missense Variant in LHX4 in Three Children with Multiple Pituitary Hormone Deficiency Belonging to Two Unrelated Families and Contribution of Additional GLI2 and IGFR1 Variant. CHILDREN (BASEL, SWITZERLAND) 2025; 12:364. [PMID: 40150646 PMCID: PMC11941417 DOI: 10.3390/children12030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Multiple genes can disrupt hypothalamic-pituitary axis development, causing multiple pituitary hormone deficiencies (MPHD). Despite advances in next-generation sequencing (NGS) identifying over 30 key genes, 85% of cases remain unsolved, indicating complex genotype-phenotype correlations and variable inheritance patterns. OBJECTIVE This study aimed to identify the MPHD genetics in three probands from two unrelated families. METHODS Family A had one affected child, while Family B had two affected siblings. All probands exhibited poor growth since birth, and family B's probands were born small for gestational age. Growth hormone deficiency was confirmed in all subjects. Family B's probands responded poorly to growth hormone treatment compared to the first patient. Furthermore, Family A's proband and Family B's younger sibling developed central hypothyroidism, while Family B's older sibling presented hypogonadotropic hypogonadism. Brain magnetic resonance imaging (MRI) revealed pituitary hypoplasia, ectopic posterior pituitary gland, and small sella turcica in all probands. Patients and their available relatives underwent NGS. RESULTS NGS identified the same novel and likely pathogenic LHX4 variant (c.481C>G) in all probands despite the families being unrelated. Additionally, Family A's proband carried a GLI2 variant (c.2105C>A), and Family B's probands carried an IGF1R variant (c.166G>A), both interpreted as being of uncertain significance. CONCLUSIONS This study confirms that heterozygous pathogenic variants of LHX4 can cause MPHD associated with a specific neuroradiological triad of abnormalities despite incomplete penetrance and variable phenotype. Moreover, the co-occurrence of the other two gene variants was debated. The IGF1R variant could explain the unusually poor response to growth hormone therapy in Family B, suggesting an oligogenic mechanism underlying the phenotype.
Collapse
Affiliation(s)
- Claudia Santoro
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Francesca Aiello
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Antonella Farina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Emanuele Miraglia del Giudice
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Filomena Pascarella
- Pediatric Endocrinology Unit, Sant’Anna e San Sebastiano Hospital, Palasciano Street, 81100 Caserta, Italy
| | - Maria Rosaria Licenziati
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, Via Egiziaca a Forcella, 18, 80139 Naples, Italy; (M.R.L.); (N.I.)
| | - Nicola Improda
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, Via Egiziaca a Forcella, 18, 80139 Naples, Italy; (M.R.L.); (N.I.)
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Francesca Del Vecchio Blanco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Mario Cirillo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square, 80138 Naples, Italy;
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square, 80138 Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Anna Grandone
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| |
Collapse
|
5
|
Lee Y, Lee YA, Ko JM, Shin CH, Lee YJ. Clinical and genetic features of childhood-onset congenital combined pituitary hormone deficiency: a retrospective, single-center cohort study. Ann Pediatr Endocrinol Metab 2024; 29:379-386. [PMID: 39778407 PMCID: PMC11725638 DOI: 10.6065/apem.2448008.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE To investigate the clinical characteristics and genetic features of childhood-onset congenital combined pituitary hormone deficiency (cCPHD) in Korean patients. METHODS We retrospectively analyzed 444 patients diagnosed with childhood-onset CPHD at a tertiary center between 1994 and 2021. After excluding acquired case, 43 patients with cCPHD were enrolled. Anthropometric measurements, hormone evaluations, brain magnetic resonance imaging (MRI), extrapituitary phenotypes, and adult outcomes were analyzed. Genetic analyses were performed on 26 patients using a targeted gene panel or whole exome sequencing. RESULTS Mean age at diagnosis was 3.2 years, and 41.9% were diagnosed at less than 1 year old. Short stature was the most frequent (37.2%) initial presentation, and mean height z-score was -2.4. More than half (n=23, 53.5%) of patients had neonatal features suggestive of hypopituitarism; however, only 15 (65.2%) were diagnosed in infancy. Growth hormone deficiency (GHD) was prevalent in 42 (97.7%), and 33 (76.7%) had 3 or more hormone deficiencies. Extrapituitary phenotypes were identified in 31 (72.1%). Brain MRI abnormalities correlated with a higher number of hormone deficiencies (P for trend 0.049) and were present in 33 patients (80.5%). Adult GHD was diagnosed in all 17 investigated patients, and metabolic disturbances were noted in 10 (58.9%). Pathogenic variants in POU1F1, GLI2, HESX1, TBC1D32, and ROBO1 were found in 5 (19.2%). CONCLUSION Considering the high proportion of neonatal presentations, identification of the early neonatal features of hypopituitarism to manage pituitary and extrapituitary phenotypes is critical. The genetic etiology of cCPHD warrants further exploration.
Collapse
Affiliation(s)
- Yoonha Lee
- Department of Pediatrics, Hallym University Dongtan Sacred Heart Hospital, Hwasung, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| |
Collapse
|
6
|
Finn BP, Dattani MT. The molecular basis of hypoprolactinaemia. Rev Endocr Metab Disord 2024; 25:967-983. [PMID: 39417960 DOI: 10.1007/s11154-024-09906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Hypoprolactinaemia is an endocrinopathy which is typically encountered as part of a combined pituitary hormone deficiency picture. The vast majority of genetic causes identified to date have been in the context of congenital hypopituitarism with multiple co-existent endocrinopathies. This is primarily with its closest hormonal relation, namely growth hormone. Acquired hypoprolactinaemia is generally rare in paediatric patients, and usually occurs together with other hormonal deficiencies. Congenital hypopituitarism occurs with an incidence of 1:4,000-10,000 cases and mutations in the following transcription factors account for the majority of documented genetic causes: PROP-1, POU1F1, LHX3/4 as well as documented case reports for a smaller subset of transcription factors and other molecules implicated in lactotroph development and prolactin secretion. Isolated prolactin deficiency has been described in a number of sporadic case reports in the literature, but no cases of mutations in the gene have been described to date. A range of genetic polymorphisms affecting multiple components of the prolactin signalling pathway have been identified in the literature, ranging from RNA spliceosome mutations (RNPC3) to loss of function mutations in IGSF-1. As paediatricians gain a greater understanding of the long-term ramifications of hypoprolactinaemia in terms of metabolic syndrome, type 2 diabetes mellitus and impaired fertility, the expectation is that clinicians will measure prolactin more frequently over time. Ultimately, we will encounter further reports of hypoprolactinaemia-related clinical presentations with further genetic mutations, in turn leading to a greater insight into the molecular basis of hypoprolactinaemia in terms of signalling pathways and downstream mediators. In the interim, the greatest untapped reserve of genetic causes remains within the phenotypic spectrum of congenital hypopituitarism.
Collapse
Affiliation(s)
- Bryan Padraig Finn
- Department of Paediatric Endocrinology, Great Ormond Street Children's Hospital, London, UK.
| | - Mehul T Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Children's Hospital, London, UK
- Genetics and Genomic Medicine Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
7
|
Masser BE, Brinkmeier ML, Lin Y, Liu Q, Miyazaki A, Nayeem J, Cheung LYM. Gene Misexpression in a Smoc2+ve/ Sox2-Low Population in Juvenile Prop1-Mutant Pituitary Gland. J Endocr Soc 2024; 8:bvae146. [PMID: 39253355 PMCID: PMC11382140 DOI: 10.1210/jendso/bvae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 09/11/2024] Open
Abstract
Mutations in the pituitary-specific transcription factor Prophet of Pit-1 (PROP1) are the most common genetic etiology of combined pituitary hormone deficiency (CPHD). CPHD is associated with short stature, attributable to growth hormone deficiency and/or thyroid-stimulating hormone deficiency, as well as hypothyroidism and infertility. Pathogenic lesions impair pituitary development and differentiation of endocrine cells. We performed single-cell RNA sequencing of pituitary cells from a wild-type and a Prop1-mutant P4 female mouse to elucidate population-specific differential gene expression. We observed a Smoc2+ve population that expressed low Sox2, which trajectory analyses suggest are a transitional cell state as stem cells differentiate into endocrine cells. We also detected ectopic expression of Sox21 in these cells in the Prop1df/df mutant. Prop1-mutant mice are known to overexpress Pou3f4, which we now show to be also enriched in this Smoc2+ve population. We sought to elucidate the role of Pou3f4 during pituitary development and to determine the contributions of Pou3f4 upregulation to pituitary disease by utilizing double-mutant mice lacking both Prop1 and Pou3f4. However, our data showed that Pou3f4 is not required for normal pituitary development and function. Double mutants further demonstrated that the upregulation of Pou3f4 was not causative for the overexpression of Sox21. These data indicate loss of Pou3f4 is not a potential cause of CPHD, and further studies may investigate the functional consequence of upregulation of Pou3f4 and Sox21, if any, in the novel Smoc2+ve cell population.
Collapse
Affiliation(s)
- Bailey E Masser
- Department of Human Genetics, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yuxuan Lin
- Department of Physiology & Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Qin Liu
- Department of Physiology & Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Aya Miyazaki
- Department of Physiology & Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jannatun Nayeem
- Department of Physiology & Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Leonard Y M Cheung
- Department of Physiology & Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Martinez-Mayer J, Brinkmeier ML, O'Connell SP, Ukagwu A, Marti MA, Miras M, Forclaz MV, Benzrihen MG, Cheung LYM, Camper SA, Ellsworth BS, Raetzman LT, Pérez-Millán MI, Davis SW. Knockout mice with pituitary malformations help identify human cases of hypopituitarism. Genome Med 2024; 16:75. [PMID: 38822427 PMCID: PMC11140907 DOI: 10.1186/s13073-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.
Collapse
Affiliation(s)
- Julian Martinez-Mayer
- Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Sean P O'Connell
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC, 29208, USA
| | - Arnold Ukagwu
- Department of Physiology, Southern Illinois University, 1135 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Marcelo A Marti
- Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mirta Miras
- Hospital De Niños de La Santísima Trinidad, Córdoba, Argentina
| | - Maria V Forclaz
- Servicio de Endocrinología, Hospital Posadas, Buenos Aires, Argentina
| | - Maria G Benzrihen
- Servicio de Endocrinología, Hospital Posadas, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Physiology and Biophyscis, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, 1135 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois, Champaign-Urbana, Urbana, IL, 61801, USA
| | - Maria I Pérez-Millán
- Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC, 29208, USA.
| |
Collapse
|
9
|
Zygmunt-Górska A, Wójcik M, Gilis-Januszewska A, Starmach A, Bik-Multanowski M, Starzyk JB. Comparison of clinical characteristics of a pediatric cohort with combined pituitary hormone deficiency caused by mutation of the PROP1 gene or of other origins. Hormones (Athens) 2024; 23:69-79. [PMID: 38147295 PMCID: PMC10847174 DOI: 10.1007/s42000-023-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
The most commonly identified genetic cause of combined pituitary hormone deficiency (CPHD) is PROP1 gene mutations. The aim of the study was to compare selected clinical features of patients with CPHD caused by variants of the PROP1 gene (CPHD-PROP1) and patients with inborn CPHD of other etiology (CPHD-nonPROP1). MATERIAL AND METHODS The retrospective analysis included childhood medical records of 74 patients (32 female) with CPHD, including 43 patients (23 female) with the mutation in the PROP1 gene. RESULTS Patients with CPHD-PROP1 compared to the CPHD-nonPROP1 presented with the following: significantly higher median birth weight (0.21 vs. - 0.29 SDS, p = 0.019), lower growth velocity within 3 years preceding growth hormone administration (- 2.7 vs. - 0.8 SDS, p < 0.001), higher mean maximal blood concentration of growth hormone within the stimulation process (1.2 vs. 1.08 ng/mL, p = 0.003), lower TSH (1.8 vs. 2.4 µIU/mL, p < 0.001), significantly lower prolactin concentrations (128 vs. 416.3 µIU/mL, p < 0.001), and less frequent typical signs of hypogonadism at birth in boys (n = 6; 30% vs. n = 12, 54%, p < 0.001). Secondary adrenal insufficiency was less frequent in CPHD-PROP1 (20 vs. 25 cases, p = 0.006) and occurred at a later age (13.4 vs. 10.4 years). MRI of the pituitary gland in CPHD-PROP1 revealed a small pituitary gland (21 cases), pituitary gland enlargement (eight cases), and one pituitary stalk interruption and posterior lobe ectopy, while it was normal in nine cases. CONCLUSION Patients with the PROP1 mutations present a clinical picture significantly different from that of other forms of congenital hypopituitarism. Certain specific clinical results may lead to the successful identification of children requiring diagnostics for the PROP1 gene mutation.
Collapse
Affiliation(s)
- Agata Zygmunt-Górska
- Department of Pediatric and Adolescent Endocrinology, University Children's Hospital in Cracow, Cracow, Poland
| | - Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, University Children's Hospital in Cracow, Cracow, Poland.
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Ul. Wielicka 265, 30-663, Cracow, Poland.
| | | | - Anna Starmach
- Department of Pediatric and Adolescent Endocrinology, University Children's Hospital in Cracow, Cracow, Poland
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Ul. Wielicka 265, 30-663, Cracow, Poland
| | | | - Jerzy B Starzyk
- Department of Pediatric and Adolescent Endocrinology, University Children's Hospital in Cracow, Cracow, Poland
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Ul. Wielicka 265, 30-663, Cracow, Poland
| |
Collapse
|
10
|
Jakobsen LK, Jensen RB, Birkebæk NH, Hansen D, Christensen AMR, Bjerrum MC, Christesen HT. Diagnosis and Incidence of Congenital Combined Pituitary Hormone Deficiency in Denmark-A National Observational Study. J Clin Endocrinol Metab 2023; 108:2475-2485. [PMID: 37043518 PMCID: PMC10505542 DOI: 10.1210/clinem/dgad198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
CONTEXT Congenital combined pituitary hormone deficiency (cCPHD) is the loss of ≥2 pituitary hormones caused by congenital factors. OBJECTIVE We aimed to estimate the national incidence of cCPHD diagnosed before age 18 years and in subgroups. METHODS Patients with cCPHD were identified in the Danish National Patient Registry and Danish hospital registries in the period 1996-2020. Hospital files were reviewed and incidences calculated using background population data. Incidence was the main outcome measure. RESULTS We identified 128 patients with cCPHD; 88 (68.8%) were males. The median (range) age at diagnosis was 6.2 (0.01-19.0) years. The median (25th;75th percentile) number of hormone deficiencies at diagnosis was 3 (3; 4) at <1 year vs 2 (2; 2) at 1-17 years, P < .0001. Abnormal pituitary magnetic resonance imaging findings were seen in 70.3% (83/118). For those born in Denmark aged <18 years at diagnosis (n = 116/128) the estimated national incidence (95% CI) of cCPHD was 10.34 (7.79-13.72) per 100 000 births, with an annual incidence rate of 5.74 (4.33-7.62) per million. In subgroup analysis (diagnosis <1 vs 1-17 years), the incidence was highest in the 1-17 years subgroup, 7.97 (5.77-11.00) vs 1.98 (1.39-2.84) per 100 000 births, whereas the annual incidence rate was highest at <1 year, 19.8 (13.9-28.4) vs 4.69 (3.39-6.47) per million births. CONCLUSION cCPHD had the highest incidence rate and the most hormone deficiencies in those diagnosed at <1 year. The incidence was highest in the 1-17 years age group, underscoring the need for multiple pituitary hormone investigations throughout childhood and adolescence in children with only 1 hormone deficiency.
Collapse
Affiliation(s)
- Louise Kjersgaard Jakobsen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, 5000 Odense, Denmark
- OPEN, Open Patient data Explorative Network, Odense University Hospital, 5000 Odense, Denmark
| | - Rikke Beck Jensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Niels Holtum Birkebæk
- Department of Pediatrics and Adolescent Medicine and Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Dorte Hansen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Maja Carsting Bjerrum
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, 5000 Odense, Denmark
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, 5000 Odense, Denmark
- OPEN, Open Patient data Explorative Network, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Gregory LC, Cionna C, Cerbone M, Dattani MT. Identification of genetic variants and phenotypic characterization of a large cohort of patients with congenital hypopituitarism and related disorders. Genet Med 2023; 25:100881. [PMID: 37165954 DOI: 10.1016/j.gim.2023.100881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Congenital hypopituitarism (CH) disorders are phenotypically variable. Variants in multiple genes are associated with these disorders, with variable penetrance and inheritance. METHODS We screened a large cohort (N = 1765) of patients with or at risk of CH using Sanger sequencing, selected according to phenotype, and conducted next-generation sequencing (NGS) in 51 families within our cohort. We report the clinical, hormonal, and neuroradiological phenotypes of patients with variants in known genes associated with CH. RESULTS We identified variants in 178 patients: GH1/GHRHR (51 patients of 414 screened), PROP1 (17 of 253), POU1F1 (15 of 139), SOX2 (13 of 59), GLI2 (7 of 106), LHX3/LHX4 (8 of 110), HESX1 (8 of 724), SOX3 (9 of 354), OTX2 (5 of 59), SHH (2 of 64), and TCF7L1, KAL1, FGFR1, and FGF8 (2 of 585, respectively). NGS identified 26 novel variants in 35 patients (from 24 families). Magnetic resonance imaging showed prevalent hypothalamo-pituitary abnormalities, present in all patients with PROP1, GLI2, SOX3, HESX1, OTX2, LHX3, and LHX4 variants. Normal hypothalamo-pituitary anatomy was reported in 24 of 121, predominantly those with GH1, GHRHR, POU1F1, and SOX2 variants. CONCLUSION We identified variants in 10% (178 of 1765) of our CH cohort. NGS has revolutionized variant identification, and careful phenotypic patient characterization has improved our understanding of CH. We have constructed a flow chart to guide genetic analysis in these patients, which will evolve upon novel gene discoveries.
Collapse
Affiliation(s)
- Louise C Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Cecilia Cionna
- Pediatric Unit, Department of Mother and Child Health, G. Salesi Children's Hospital, Ancona, Italy
| | - Manuela Cerbone
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Endocrinology, Great Ormond Street Hospital for Children, Great Ormond Street, United Kingdom
| | - Mehul T Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Endocrinology, Great Ormond Street Hospital for Children, Great Ormond Street, United Kingdom.
| |
Collapse
|
12
|
Hietamäki J, Kärkinen J, Iivonen AP, Vaaralahti K, Tarkkanen A, Almusa H, Huopio H, Hero M, Miettinen PJ, Raivio T. Presentation and diagnosis of childhood-onset combined pituitary hormone deficiency: A single center experience from over 30 years. EClinicalMedicine 2022; 51:101556. [PMID: 35875813 PMCID: PMC9304914 DOI: 10.1016/j.eclinm.2022.101556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Childhood-onset combined pituitary hormone deficiency (CPHD) has a wide spectrum of etiologies and genetic causes for congenital disease. We aimed to describe the clinical spectrum and genetic etiologies of CPHD in a single tertiary center and estimate the population-level incidence of congenital CPHD. METHODS The retrospective clinical cohort comprised 124 CPHD patients (48 with congenital CPHD) treated at the Helsinki University Hospital (HUH) Children's Hospital between 1985 and 2018. Clinical data were collected from the patient charts. Whole exome sequencing was performed in 21 patients with congenital CPHD of unknown etiology. FINDINGS The majority (61%;76/124) of the patients had acquired CPHD, most frequently due to craniopharyngiomas and gliomas. The estimated incidence of congenital CPHD was 1/16 000 (95%CI, 1/11 000-1/24 000). The clinical presentation of congenital CPHD in infancy included prolonged/severe neonatal hypoglycaemia, prolonged jaundice, and/or micropenis/bilateral cryptorchidism in 23 (66%) patients; despite these clinical cues, only 76% of them were referred to endocrine investigations during the first year of life. The median delay between the first violation of the growth screening rules and the initiation of GH Rx treatment among all congenital CPHD patients was 2·2 years, interquartile range 1·2-3·7 years. Seven patients harbored pathogenic variants in PROP1, SOX3, TBC1D32, OTX2, and SOX2, and one patient carried a likely pathogenic variant in SHH (c.676G>A, p.(Ala226Thr)). INTERPRETATION Our study suggests that congenital CPHD can occur in 1/16 000 children, and that patients frequently exhibit neonatal cues of hypopituitarism and early height growth deflection. These results need to be corroborated in future studies and might inform clinical practice. FUNDING Päivikki and Sakari Sohlberg Foundation, Biomedicum Helsinki Foundation, and Emil Aaltonen Foundation research grants.
Collapse
Affiliation(s)
- Johanna Hietamäki
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Juho Kärkinen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Anna-Pauliina Iivonen
- Department of Physiology, Medicum Unit, Faculty of Medicine, and Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Kirsi Vaaralahti
- Department of Physiology, Medicum Unit, Faculty of Medicine, and Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Annika Tarkkanen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
- Department of Physiology, Medicum Unit, Faculty of Medicine, and Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Hanna Huopio
- Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Matti Hero
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Päivi J. Miettinen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Taneli Raivio
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
- Department of Physiology, Medicum Unit, Faculty of Medicine, and Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
- Corresponding author at: Faculty of Medicine University of Helsinki, Medicum/Physiology, P.O. Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland.
| |
Collapse
|
13
|
A Novel Splice-Site Deletion in the POU1F1 Gene Causes Combined Pituitary Hormone Deficiency in Multiple Sudanese Pedigrees. Genes (Basel) 2022; 13:genes13040657. [PMID: 35456463 PMCID: PMC9032872 DOI: 10.3390/genes13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Pathogenic variants within the gene encoding the pituitary-specific transcription factor, POU class 1 homeobox 1 (POU1F1), are associated with combined pituitary hormone deficiency (CPHD), including growth hormone, prolactin, and thyrotropin stimulating hormone deficiencies. The aim of the study was to identify genetic aetiology in 10 subjects with CPHD from four consanguineous Sudanese families. Medical history, as well as hormonal and radiological information, was obtained from participants’ medical records. Targeted genetic analysis of the POU1F1 gene was performed in two pedigrees with a typical combination of pituitary deficiencies, using Sanger sequencing, and whole-exome sequencing was performed in the other two pedigrees, where hypocortisolism and additional neurologic phenotypes were also initially diagnosed. In POU1F1 gene (NM_001122757.2) a novel homozygous splice-site deletion—namely, c.744-5_749del—was identified in all 10 tested affected family members as a cause of CPHD. Apart from typical pituitary hormonal deficiencies, most patients had delayed but spontaneous puberty; however, one female had precocious puberty. Severe post-meningitis neurologic impairment was observed in three patients, of whom two siblings had Dyke–Davidoff–Masson syndrome, and an additional distantly related patient suffered from cerebral infarction. Our report adds to the previously reported POU1F1 gene variants causing CPHD and emphasises the importance of genetic testing in countries with high rates of consanguineous marriage such as Sudan. Genetic diagnostics elucidated that the aetiologies of hypopituitarism and brain abnormalities, identified in a subset of affected members, were separate. Additionally, as central hypocortisolism is not characteristic of POU1F1 deficiency, hydrocortisone replacement therapy could be discontinued. Elucidation of a genetic cause, therefore, contributed to the more rational clinical management of hypopituitarism in affected family members.
Collapse
|
14
|
Chen WY, Niu DM, Chen LZ, Yang CF. Congenital hypopituitarism due to novel compound heterozygous POU1F1 gene mutation: A case report and review of the literature. Mol Genet Metab Rep 2021; 29:100819. [PMID: 34815942 PMCID: PMC8593650 DOI: 10.1016/j.ymgmr.2021.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 01/15/2023] Open
Abstract
Failure to thrive is one of the most common complaints in the endocrinology and genetics clinic. An 8-month-old girl with presentation of motor developmental delay, failure to thrive, and midline facial defects, with history of hypoglycemia at birth and central congenital hypothyroidism (CCH), was brought to our genetic clinic. Hormone test demonstrated combined pituitary hormone deficiency with growth hormone deficiency (GHD), central hypothyroidism, and hypoprolactinemia. Brain magnetic resonance imaging (MRI) showed anterior pituitary hypoplasia (APH), abnormal pituitary stalk, and preserved posterior pituitary lobe. Whole exome sequence (WES) identified a compound heterozygous mutation of the POU1F1 gene: c.649C>T (p.Arg217Ter) and c.662T>C (p.Ile221Thr), which are de novo mutation and inherited from mother, respectively. The patient's phenotype was consistent clinically with congenital hypopituitarism due to the POU1F1 gene mutation. Based on our literature review, this is the first report of the c.662T>C mutation, to the best of our knowledge. Our study demonstrates the power of WES for early diagnosis of congenital hypopituitarism with its relative phenotype for improving prognosis and preventing irreversible deficit.
Collapse
Affiliation(s)
- Wei-Yu Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Dau-Ming Niu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Zhen Chen
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Feng Yang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Jadhav S, Diwaker C, Lila AR, Gada JV, Kale S, Sarathi V, Thadani PM, Arya S, Patil VA, Shah NS, Bandgar TR. POU1F1 mutations in combined pituitary hormone deficiency: differing spectrum of mutations in a Western-Indian cohort and systematic analysis of world literature. Pituitary 2021; 24:657-669. [PMID: 33742319 DOI: 10.1007/s11102-021-01140-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
CONTEXT POU1F1 mutations are prevalent in Indian CPHD cohorts. Genotype-phenotype correlation is not well-studied. AIM To describe phenotypic and genotypic spectrum of POU1F1 mutations in our CPHD cohort and present systematic review as well as genotype-phenotype analysis of all mutation-positive cases reported in world literature. METHODS Retrospective study of POU1F1 mutation-positive patients from a western-Indian center. PRISMA guidelines based pubmed search of published literature of all mutation-positive patients. RESULTS Our cohort had 15 POU1F1 mutation-positive patients (9 index, 6 relatives). All had severe GH, TSH and prolactin deficiencies (GHD, TSHD and PD). TSHD was diagnosed earliest followed by GHD (median ages: TSHD-6 months, GHD-3 years), while PD was more variable. Two sisters had central precocious puberty at 7 years of age. Pubic hair was deficient in all post-pubertal patients (females: P1-P2, males: P3-P4). Splice-site/intronic/frameshift mutations were most common, while missense/nonsense mutations were less frequent (33%). Review of world literature yielded 114 patients (82 index patients) from 58 studies. GHD was present in all patients. TSHD was spared in 12.5% and PD in 4.4% patients. Missense/nonsense mutations accounted for 75% of spectrum. Phenotype-genotype analysis revealed higher mean peak-GH levels (1.1 vs 0.2 ng/ml, p = 0.008) and lower prevalence of anterior-pituitary hypoplasia (63.6% vs 86.3%, p = 0.03) in patients with heterozygous than homozygous and compound heterozygous mutations. CONCLUSIONS We present largest series of POU1F1 mutation-positive patients. Precocious puberty and defective pubarche are lesser-appreciated phenotypic features. Our mutation spectrum is different from that of world literature. Patients with heterozygous mutations have milder phenotype.
Collapse
Affiliation(s)
- Swati Jadhav
- Department of Endocrinology, Sapthagiri Institute of Medical Sciences and Research Center, Bengaluru, Karnataka, India
| | - Chakra Diwaker
- Department of Endocrinology, IndiaSeth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Anurag R Lila
- Department of Endocrinology, IndiaSeth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India.
| | - Jugal V Gada
- Department of Endocrinology, Topiwala National Medical College and BYL Nair Hospital, Mumbai, Maharashtra, India
| | - Shantanu Kale
- Department of Endocrinology, IndiaSeth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Center, Bengaluru, Karnataka, India
| | - Puja M Thadani
- Department of Endocrinology, IndiaSeth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Sneha Arya
- Department of Endocrinology, IndiaSeth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Virendra A Patil
- Department of Endocrinology, IndiaSeth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Nalini S Shah
- Department of Endocrinology, IndiaSeth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Tushar R Bandgar
- Department of Endocrinology, IndiaSeth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| |
Collapse
|
16
|
Hage C, Gan HW, Ibba A, Patti G, Dattani M, Loche S, Maghnie M, Salvatori R. Advances in differential diagnosis and management of growth hormone deficiency in children. Nat Rev Endocrinol 2021; 17:608-624. [PMID: 34417587 DOI: 10.1038/s41574-021-00539-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Growth hormone (GH) deficiency (GHD) in children is defined as impaired production of GH by the pituitary gland that results in growth failure. This disease might be congenital or acquired, and occurs in isolation or in the setting of multiple pituitary hormone deficiency. Isolated GHD has an estimated prevalence of 1 patient per 4000-10,000 live births and can be due to multiple causes, some of which are yet to be determined. Establishing the correct diagnosis remains key in children with short stature, as initiating treatment with recombinant human GH can help them attain their genetically determined adult height. During the past two decades, our understanding of the benefits of continuing GH therapy throughout the transition period from childhood to adulthood has increased. Improvements in transitional care will help alleviate the consequent physical and psychological problems that can arise from adult GHD, although the consequences of a lack of hormone replacement are less severe in adults than in children. In this Review, we discuss the differential diagnosis in children with GHD, including details of clinical presentation, neuroimaging and genetic testing. Furthermore, we highlight advances and issues in the management of GHD, including details of transitional care.
Collapse
Affiliation(s)
- Camille Hage
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hoong-Wei Gan
- Genetics & Genomic Medicine Research and Teaching Department, University College London Great Ormond Street Hospital Institute of Child Health, London, UK
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Anastasia Ibba
- Paediatric Endocrine Unit, Paediatric Hospital Microcitemico "A. Cao", AO Brotzu, Cagliari, Italy
| | - Giuseppa Patti
- Department of Paediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Mehul Dattani
- Genetics & Genomic Medicine Research and Teaching Department, University College London Great Ormond Street Hospital Institute of Child Health, London, UK
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sandro Loche
- Paediatric Endocrine Unit, Paediatric Hospital Microcitemico "A. Cao", AO Brotzu, Cagliari, Italy
| | - Mohamad Maghnie
- Department of Paediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Tangirala S, Amboiram P, Balakrishnan U, Rajendran UD. Hypothyroxinaemia in refractory shock: a clue to diagnose hypopituitarism. BMJ Case Rep 2021; 14:14/8/e244414. [PMID: 34340990 PMCID: PMC8330566 DOI: 10.1136/bcr-2021-244414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The rarity of congenital hypopituitarism (CHP) makes it essential for clinicians to be aware of its varying clinical manifestations. We report a neonate with one such unique presentation. A preterm girl baby was managed for respiratory distress. Diffuse cutis marmorata was present since birth; septic screens were positive with placental histopathology showing chorioamnionitis. Newborn screening showed low free thyroxine and normal TSH. Transient hypothyroxinaemia of prematurity was considered. Her respiratory status worsened on day 9, followed by refractory shock. She was treated for sepsis. Further evaluation for absent heart rate variability in response to vasopressor resistant shock led to the detection of hypocortisolism. Low cortisol along with hypothyroxinaemia made hypopituitarism the working diagnosis. Owing to the variable clinical spectrum of CHP, diagnosis is challenging. We highlight a few clinical and laboratory features, which would help in earlier diagnosis of CHP.
Collapse
Affiliation(s)
- Susmitha Tangirala
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Prakash Amboiram
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Umamaheswari Balakrishnan
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Usha Devi Rajendran
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
18
|
Vishnopolska SA, Mercogliano MF, Camilletti MA, Mortensen AH, Braslavsky D, Keselman A, Bergadá I, Olivieri F, Miranda L, Marino R, Ramírez P, Pérez Garrido N, Patiño Mejia H, Ciaccio M, Di Palma MI, Belgorosky A, Martí MA, Kitzman JO, Camper SA, Pérez-Millán MI. Comprehensive Identification of Pathogenic Gene Variants in Patients With Neuroendocrine Disorders. J Clin Endocrinol Metab 2021; 106:1956-1976. [PMID: 33729509 PMCID: PMC8208670 DOI: 10.1210/clinem/dgab177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/12/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Congenital hypopituitarism (CH) can present in isolation or with other birth defects. Mutations in multiple genes can cause CH, and the use of a genetic screening panel could establish the prevalence of mutations in known and candidate genes for this disorder. It could also increase the proportion of patients that receive a genetic diagnosis. METHODS We conducted target panel genetic screening using single-molecule molecular inversion probes sequencing to assess the frequency of mutations in known hypopituitarism genes and new candidates in Argentina. We captured genomic deoxyribonucleic acid from 170 pediatric patients with CH, either alone or with other abnormalities. We performed promoter activation assays to test the functional effects of patient variants in LHX3 and LHX4. RESULTS We found variants classified as pathogenic, likely pathogenic, or with uncertain significance in 15.3% of cases. These variants were identified in known CH causative genes (LHX3, LHX4, GLI2, OTX2, HESX1), in less frequently reported genes (FOXA2, BMP4, FGFR1, PROKR2, PNPLA6) and in new candidate genes (BMP2, HMGA2, HNF1A, NKX2-1). CONCLUSION In this work, we report the prevalence of mutations in known CH genes in Argentina and provide evidence for new candidate genes. We show that CH is a genetically heterogeneous disease with high phenotypic variation and incomplete penetrance, and our results support the need for further gene discovery for CH. Identifying population-specific pathogenic variants will improve the capacity of genetic data to predict eventual clinical outcomes.
Collapse
Affiliation(s)
- Sebastian Alexis Vishnopolska
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Florencia Mercogliano
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Andrea Camilletti
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Amanda Helen Mortensen
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Federico Olivieri
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Lucas Miranda
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Roxana Marino
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Pablo Ramírez
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Natalia Pérez Garrido
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Helen Patiño Mejia
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Marta Ciaccio
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Maria Isabel Di Palma
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Alicia Belgorosky
- Hospital de Pediatría Garrahan-CONICET, Ciudad de Buenos Aires, Argentina
| | - Marcelo Adrian Martí
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Jacob Otto Kitzman
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Sally Ann Camper
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| | - Maria Ines Pérez-Millán
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| |
Collapse
|
19
|
Kyöstilä K, Niskanen JE, Arumilli M, Donner J, Hytönen MK, Lohi H. Intronic variant in POU1F1 associated with canine pituitary dwarfism. Hum Genet 2021; 140:1553-1562. [PMID: 33550451 PMCID: PMC8519942 DOI: 10.1007/s00439-021-02259-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
The anterior pituitary gland secretes several endocrine hormones, essential for growth, reproduction and other basic physiological functions. Abnormal development or function of the pituitary gland leads to isolated or combined pituitary hormone deficiency (CPHD). At least 30 genes have been associated with human CPHD, including many transcription factors, such as POU1F1. CPHD occurs spontaneously also in mice and dogs. Two affected breeds have been reported in dogs: German Shepherds with a splice defect in the LHX3 gene and Karelian Bear Dogs (KBD) with an unknown genetic cause. We obtained samples from five KBDs presenting dwarfism and abnormal coats. A combined analysis of genome-wide association and next-generation sequencing mapped the disease to a region in chromosome 31 and identified a homozygous intronic variant in the fourth exon of the POU1F1 gene in the affected dogs. The identified variant, c.605-3C>A, resided in the splice region and was predicted to affect splicing. The variant's screening in three new prospective cases, related breeds, and ~ 8000 dogs from 207 breeds indicated complete segregation in KBDs with a carrier frequency of 8%, and high breed-specificity as carriers were found at a low frequency only in Lapponian Herders, a related breed. Our study establishes a novel canine model for CPHD with a candidate POU1F1 defect.
Collapse
Affiliation(s)
- Kaisa Kyöstilä
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Genoscoper Laboratories Ltd (Wisdom Health), Helsinki, Finland
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. .,Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
20
|
Bosch i Ara L, Katugampola H, Dattani MT. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front Pediatr 2021; 8:600962. [PMID: 33634051 PMCID: PMC7902025 DOI: 10.3389/fped.2020.600962] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Congenital hypopituitarism (CH) is characterized by a deficiency of one or more pituitary hormones. The pituitary gland is a central regulator of growth, metabolism, and reproduction. The anterior pituitary produces and secretes growth hormone (GH), adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, and prolactin. The posterior pituitary hormone secretes antidiuretic hormone and oxytocin. Epidemiology: The incidence is 1 in 4,000-1 in 10,000. The majority of CH cases are sporadic; however, a small number of familial cases have been identified. In the latter, a molecular basis has frequently been identified. Between 80-90% of CH cases remain unsolved in terms of molecular genetics. Pathogenesis: Several transcription factors and signaling molecules are involved in the development of the pituitary gland. Mutations in any of these genes may result in CH including HESX1, PROP1, POU1F1, LHX3, LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, GLI2, and FGF8. Over the last 5 years, several novel genes have been identified in association with CH, but it is likely that many genes remain to be identified, as the majority of patients with CH do not have an identified mutation. Clinical manifestations: Genotype-phenotype correlations are difficult to establish. There is a high phenotypic variability associated with different genetic mutations. The clinical spectrum includes severe midline developmental disorders, hypopituitarism (in isolation or combined with other congenital abnormalities), and isolated hormone deficiencies. Diagnosis and treatment: Key investigations include MRI and baseline and dynamic pituitary function tests. However, dynamic tests of GH secretion cannot be performed in the neonatal period, and a diagnosis of GH deficiency may be based on auxology, MRI findings, and low growth factor concentrations. Once a hormone deficit is confirmed, hormone replacement should be started. If onset is acute with hypoglycaemia, cortisol deficiency should be excluded, and if identified this should be rapidly treated, as should TSH deficiency. This review aims to give an overview of CH including management of this complex condition.
Collapse
Affiliation(s)
- Laura Bosch i Ara
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Harshini Katugampola
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mehul T. Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
21
|
Prodam F, Caputo M, Mele C, Marzullo P, Aimaretti G. Insights into non-classic and emerging causes of hypopituitarism. Nat Rev Endocrinol 2021; 17:114-129. [PMID: 33247226 DOI: 10.1038/s41574-020-00437-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Hypopituitarism is defined as one or more partial or complete pituitary hormone deficiencies, which are related to the anterior and/or posterior gland and can have an onset in childhood or adulthood. The most common aetiology is a sellar or suprasellar lesion, often an adenoma, which causes hypopituitarism due to tumour mass effects, or the effects of surgery and/or radiation therapy. However, other clinical conditions, such as traumatic brain injury, and autoimmune and inflammatory diseases, can result in hypopituitarism, and there are also genetic causes of hypopituitarism. Furthermore, the use of immune checkpoint inhibitors to treat cancer is increasing the risk of hypopituitarism, with a pattern of hormone defects that is different from the classic patterns and depends on mechanisms that are specific for each drug. Moreover, autoantibody production against the pituitary and hypothalamus has been demonstrated in studies investigating the development or worsening of some cases of hypopituitarism. Finally, evidence suggests that posterior pituitary damage can affect oxytocin secretion. The aim of this Review is to summarize current knowledge on non-classic and emerging causes of hypopituitarism, so as to help clinicians improve early identification, avoid life-threatening events and improve the clinical care and quality of life of patients at risk of hypopituitarism.
Collapse
Affiliation(s)
- Flavia Prodam
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Marina Caputo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Chiara Mele
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Paolo Marzullo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Division of General Medicine, I.R.C.C.S. Istituto Auxologico Italiano, Ospedale San Giuseppe, Verbania, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
22
|
Jullien N, Saveanu A, Vergier J, Marquant E, Quentien MH, Castinetti F, Galon-Faure N, Brauner R, Marrakchi Turki Z, Tauber M, El Kholy M, Linglart A, Rodien P, Fedala NS, Bergada I, Cortet-Rudelli C, Polak M, Nicolino M, Stuckens C, Barlier A, Brue T, Reynaud R. Clinical lessons learned in constitutional hypopituitarism from two decades of experience in a large international cohort. Clin Endocrinol (Oxf) 2021; 94:277-289. [PMID: 33098107 DOI: 10.1111/cen.14355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023]
Abstract
CONTEXT The international GENHYPOPIT network collects phenotypical data and screens genetic causes of non-acquired hypopituitarism. AIMS To describe main phenotype patterns and their evolution through life. DESIGN Patients were screened according to their phenotype for coding sequence variations in 8 genes: HESX1, LHX3, LHX4, PROP1, POU1F1, TBX19, OTX2 and PROKR2. RESULTS Among 1213 patients (1143 index cases), the age of diagnosis of hypopituitarism was congenital (24%), in childhood (28%), at puberty (32%), in adulthood (7.2%) or not available (8.8%). Noteworthy, pituitary hormonal deficiencies kept on evolving during adulthood in 49 of patients. Growth Hormone deficiency (GHD) affected 85.8% of patients and was often the first diagnosed deficiency. AdrenoCorticoTropic Hormone deficiency rarely preceded GHD, but usually followed it by over 10 years. Pituitary Magnetic Resonance Imaging (MRI) abnormalities were common (79.7%), with 39.4% pituitary stalk interruption syndrome (PSIS). The most frequently associated extrapituitary malformations were ophthalmological abnormalities (16.1%). Prevalence of identified mutations was 7.3% of index cases (84/1143) and 29.5% in familial cases (n = 146). Genetic analysis in 449 patients without extrapituitary phenotype revealed 36 PROP1, 2 POU1F1 and 17 TBX19 mutations. CONCLUSION This large international cohort highlights atypical phenotypic presentation of constitutional hypopituitarism, such as post pubertal presentation or adult progression of hormonal deficiencies. These results justify long-term follow-up, and the need for systematic evaluation of associated abnormalities. Genetic defects were rarely identified, mainly PROP1 mutations in pure endocrine phenotypes.
Collapse
Affiliation(s)
- Nicolas Jullien
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Alexandru Saveanu
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
- Department of Endocrinology, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Centre de Référence des Maladies Rares de l'Hypophyse, CHU Conception, Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
- Laboratory of Molecular Biology, CHU Conception, Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| | - Julia Vergier
- Paediatric Endocrinology Unit, Department of Paediatrics, CHU Timone Enfants, Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| | - Emeline Marquant
- Paediatric Endocrinology Unit, Department of Paediatrics, CHU Timone Enfants, Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| | - Marie Helene Quentien
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - Frederic Castinetti
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
- Department of Endocrinology, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Centre de Référence des Maladies Rares de l'Hypophyse, CHU Conception, Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| | - Noémie Galon-Faure
- Department of Paediatrics, Centre Hospitalier du Pays d'Aix, Aix-En-Provence, France
| | - Raja Brauner
- Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France
| | | | - Maité Tauber
- Paediatric Endocrinology Unit, Department of Paediatrics, Children Hospital, Toulouse University Hospital, Toulouse, France
| | | | - Agnès Linglart
- Paediatric Endocrinology Unit, Department of Paediatrics, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Patrice Rodien
- Endocrinology Department, Angers University Hospital, Angers, France
| | | | - Ignacio Bergada
- Children Hospital "Ricardo Gutierrez", Bueno-Aires, Argentina
| | | | - Michel Polak
- Paediatric Endocrinology Unit, Department of Paediatrics, Hôpital Universitaire Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), INSERM U1016, Institut IMAGINE, Paris, France
| | - Marc Nicolino
- Paediatric Endocrinology Unit, Department of Paediatrics, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon (HCL), Bron, France
| | - Chantal Stuckens
- Department of Paediatrics, Hôpital Jeanne de Flandre, Lille University Hospital, Lille, France
| | - Anne Barlier
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
- Department of Endocrinology, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Centre de Référence des Maladies Rares de l'Hypophyse, CHU Conception, Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
- Laboratory of Molecular Biology, CHU Conception, Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| | - Thierry Brue
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
- Department of Endocrinology, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Centre de Référence des Maladies Rares de l'Hypophyse, CHU Conception, Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| | - Rachel Reynaud
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
- Centre de Référence des Maladies Rares de l'Hypophyse, CHU Conception, Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
- Paediatric Endocrinology Unit, Department of Paediatrics, CHU Timone Enfants, Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| |
Collapse
|
23
|
Alesi V, Dentici ML, Genovese S, Loddo S, Bellacchio E, Orlando V, Di Tommaso S, Catino G, Calacci C, Calvieri G, Pompili D, Ubertini G, Dallapiccola B, Capolino R, Novelli A. Homozygous HESX1 and COL1A1 Gene Variants in a Boy with Growth Hormone Deficiency and Early Onset Osteoporosis. Int J Mol Sci 2021; 22:ijms22020750. [PMID: 33451138 PMCID: PMC7828579 DOI: 10.3390/ijms22020750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
We report on a patient born to consanguineous parents, presenting with Growth Hormone Deficiency (GHD) and osteoporosis. SNP-array analysis and exome sequencing disclosed long contiguous stretches of homozygosity and two distinct homozygous variants in HESX1 (Q6H) and COL1A1 (E1361K) genes. The HESX1 variant was described as causative in a few subjects with an incompletely penetrant dominant form of combined pituitary hormone deficiency (CPHD). The COL1A1 variant is rare, and so far it has never been found in a homozygous form. Segregation analysis showed that both variants were inherited from heterozygous unaffected parents. Present results further elucidate the inheritance pattern of HESX1 variants and recommend assessing the clinical impact of variants located in C-terminal propeptide of COL1A1 gene for their potential association with rare recessive and early onset forms of osteoporosis.
Collapse
Affiliation(s)
- Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
- Correspondence:
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (M.L.D.); (B.D.); (R.C.)
| | - Silvia Genovese
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Sara Loddo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Emanuele Bellacchio
- Department of Research Laboratories, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy;
| | - Valeria Orlando
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Silvia Di Tommaso
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Giorgia Catino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Chiara Calacci
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Giusy Calvieri
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Daniele Pompili
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | | | - Bruno Dallapiccola
- Medical Genetics Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (M.L.D.); (B.D.); (R.C.)
| | - Rossella Capolino
- Medical Genetics Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (M.L.D.); (B.D.); (R.C.)
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| |
Collapse
|
24
|
Lauffer P, Zwaveling-Soonawala N, Naafs JC, Boelen A, van Trotsenburg ASP. Diagnosis and Management of Central Congenital Hypothyroidism. Front Endocrinol (Lausanne) 2021; 12:686317. [PMID: 34566885 PMCID: PMC8458656 DOI: 10.3389/fendo.2021.686317] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Central congenital hypothyroidism (CH) is defined as thyroid hormone (TH) deficiency at birth due to insufficient stimulation by the pituitary of the thyroid gland. The incidence of central CH is currently estimated at around 1:13,000. Central CH may occur in isolation, but in the majority of cases (60%) it is part of combined pituitary hormone deficiencies (CPHD). In recent years several novel genetic causes of isolated central CH have been discovered (IGSF1, TBL1X, IRS4), and up to 90% of isolated central CH cases can be genetically explained. For CPHD the etiology usually remains unknown, although pituitary stalk interruption syndrome does seem to be the most common anatomic pituitary malformation associated with CPHD. Recent studies have shown that central CH is a more severe condition than previously thought, and that early detection and treatment leads to good neurodevelopmental outcome. However, in the neonatal period the clinical diagnosis is often missed despite hospital admission because of feeding problems, hypoglycemia and prolonged jaundice. This review provides an update on the etiology and prognosis of central CH, and a practical approach to diagnosis and management of this intriguing condition.
Collapse
Affiliation(s)
- Peter Lauffer
- Emma Children’s Hospital, Amsterdam University Medical Centers (UMC), Department of Pediatric Endocrinology, University of Amsterdam, Amsterdam, Netherlands
| | - Nitash Zwaveling-Soonawala
- Emma Children’s Hospital, Amsterdam University Medical Centers (UMC), Department of Pediatric Endocrinology, University of Amsterdam, Amsterdam, Netherlands
| | - Jolanda C. Naafs
- Emma Children’s Hospital, Amsterdam University Medical Centers (UMC), Department of Pediatric Endocrinology, University of Amsterdam, Amsterdam, Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - A. S. Paul van Trotsenburg
- Emma Children’s Hospital, Amsterdam University Medical Centers (UMC), Department of Pediatric Endocrinology, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: A. S. Paul van Trotsenburg,
| |
Collapse
|
25
|
Brauner R, Bignon-Topalovic J, Bashamboo A, McElreavey K. Pituitary stalk interruption syndrome is characterized by genetic heterogeneity. PLoS One 2020; 15:e0242358. [PMID: 33270637 PMCID: PMC7714207 DOI: 10.1371/journal.pone.0242358] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pituitary stalk interruption syndrome is a rare disorder characterized by an absent or ectopic posterior pituitary, interrupted pituitary stalk and anterior pituitary hypoplasia, as well as in some cases, a range of heterogeneous somatic anomalies. A genetic cause is identified in only around 5% of all cases. Here, we define the genetic variants associated with PSIS followed by the same pediatric endocrinologist. Exome sequencing was performed in 52 (33 boys and 19 girls), including 2 familial cases single center pediatric cases, among them associated 36 (69.2%) had associated symptoms or syndromes. We identified rare and novel variants in genes (37 families with 39 individuals) known to be involved in one or more of the following-midline development and/or pituitary development or function (BMP4, CDON, GLI2, GLI3, HESX1, KIAA0556, LHX9, NKX2-1, PROP1, PTCH1, SHH, TBX19, TGIF1), syndromic and non-syndromic forms of hypogonadotropic hypogonadism (CCDC141, CHD7, FANCA, FANCC, FANCD2, FANCE, FANCG, IL17RD, KISS1R, NSMF, PMM2, SEMA3E, WDR11), syndromic forms of short stature (FGFR3, NBAS, PRMT7, RAF1, SLX4, SMARCA2, SOX11), cerebellum atrophy with optic anomalies (DNMT1, NBAS), axonal migration (ROBO1, SLIT2), and agenesis of the corpus callosum (ARID1B, CC2D2A, CEP120, CSPP1, DHCR7, INPP5E, VPS13B, ZNF423). Pituitary stalk interruption syndrome is characterized by a complex genetic heterogeneity, that reflects a complex phenotypic heterogeneity. Seizures, intellectual disability, micropenis or cryptorchidism, seen at presentation are usually considered as secondary to the pituitary deficiencies. However, this study shows that they are due to specific gene mutations. PSIS should therefore be considered as part of the phenotypic spectrum of other known genetic syndromes rather than as specific clinical entity.
Collapse
Affiliation(s)
- Raja Brauner
- Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France
| | | | - Anu Bashamboo
- Human Developmental Genetics Unit, Institute Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics Unit, Institute Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
26
|
Kale S, Gada JV, Jadhav S, Lila AR, Sarathi V, Budyal S, Patt H, Goroshi MR, Thadani PM, Arya S, Kamble AA, Patil VA, Acharya S, Sankhe S, Shivane V, Raghavan V, Bandgar TR, Shah NS. Genetic spectrum and predictors of mutations in four known genes in Asian Indian patients with growth hormone deficiency and orthotopic posterior pituitary: an emphasis on regional genetic diversity. Pituitary 2020; 23:701-715. [PMID: 32894409 DOI: 10.1007/s11102-020-01078-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CONTEXT Regional variation in prevalence of genetic mutations in growth hormone deficiency (GHD) is known. AIM Study phenotype and prevalence of mutations in GH1, GHRHR, POU1F1, PROP1 genes in GHD cohort. METHODS One hundred and two patients {Isolated GHD (IGHD): 79; combined pituitary hormone deficiency (CPHD): 23} with orthotopic posterior pituitary were included. Auxologic, hormonal and radiological details were studied. All four genes were analysed in IGHD patients. POU1F1 and PROP1 were studied in CPHD patients. RESULTS Of 102, 19.6% were familial cases. Height SDS, mean (SD) was - 5.14 (1.63). Peak GH, median (range) was 0.47 ng/ml (0-6.59), 72.5% patients had anterior pituitary hypoplasia (APH). Twenty mutations (novel: 11) were found in 43.1% patients (n = 44, IGHD-36, CPHD-8). GHRHR mutations (n = 32, p.Glu72* = 24) were more common than GH1 mutations (n = 4) in IGHD cohort. POU1F1 mutations (n = 6) were more common than PROP1 mutations (n = 2) in CPHD cohort. With few exceptions, this prevalence pattern is contrary to most studies in world-literature. No patients with peak GH > 4 ng/ml had mutations, signifying it as negative predictor. While many parameters were significant on univariate analysis, only positive family history and lower median peak GH levels were significant predictors of mutations on multivariate analysis in IGHD patients. CONCLUSION At variance with world literature, we found reverse predominance of GHRHR over GH1 mutations, POU1F1 over PROP1 mutations and predominance of GHRHR p.Glu72* mutations thus re-affirming the regional diversity in GHD genetics. We report positive and negative predictors of mutations in GHD.
Collapse
Affiliation(s)
- Shantanu Kale
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Jugal V Gada
- Department of Endocrinology, Topiwala National Medical College and BYL Nair Hospital, Mumbai, Maharashtra, India
| | - Swati Jadhav
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Anurag R Lila
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Center, Bangalore, Karnataka, India
| | - Sweta Budyal
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Hiren Patt
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | | | - Puja M Thadani
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Sneha Arya
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Aparna A Kamble
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Virendra A Patil
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India.
| | - Shrikrishna Acharya
- Department of Endocrinology, K S Hegde Medical Academy, Mangalore, Karnataka, India
| | - Shilpa Sankhe
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Vyankatesh Shivane
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Vijaya Raghavan
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Tushar R Bandgar
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Nalini S Shah
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| |
Collapse
|
27
|
Matsumoto R, Suga H, Aoi T, Bando H, Fukuoka H, Iguchi G, Narumi S, Hasegawa T, Muguruma K, Ogawa W, Takahashi Y. Congenital pituitary hypoplasia model demonstrates hypothalamic OTX2 regulation of pituitary progenitor cells. J Clin Invest 2020; 130:641-654. [PMID: 31845906 DOI: 10.1172/jci127378] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Pituitary develops from oral ectoderm in contact with adjacent ventral hypothalamus. Impairment in this process results in congenital pituitary hypoplasia (CPH); however, there have been no human disease models for CPH thus far, prohibiting the elucidation of the underlying mechanisms. In this study, we established a disease model of CPH using patient-derived induced pluripotent stem cells (iPSCs) and 3D organoid technique, in which oral ectoderm and hypothalamus develop simultaneously. Interestingly, patient iPSCs with a heterozygous mutation in the orthodenticle homeobox 2 (OTX2) gene showed increased apoptosis in the pituitary progenitor cells, and the differentiation into pituitary hormone-producing cells was severely impaired. As an underlying mechanism, OTX2 in hypothalamus, not in oral ectoderm, was essential for progenitor cell maintenance by regulating LHX3 expression in oral ectoderm via FGF10 expression in the hypothalamus. Convincingly, the phenotype was reversed by the correction of the mutation, and the haploinsufficiency of OTX2 in control iPSCs revealed a similar phenotype, demonstrating that this mutation was responsible. Thus, we established an iPSC-based congenital pituitary disease model, which recapitulated interaction between hypothalamus and oral ectoderm and demonstrated the essential role of hypothalamic OTX2.
Collapse
Affiliation(s)
- Ryusaku Matsumoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and.,Department of iPS cell Applications, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology, and Innovation, Kobe, Hyogo, Japan
| | - Hidetaka Suga
- Department of Diabetes and Endocrinology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Takashi Aoi
- Department of iPS cell Applications, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology, and Innovation, Kobe, Hyogo, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Hidenori Fukuoka
- Department of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Genzo Iguchi
- Department of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Hyogo, Japan.,Medical Center for Student Health, Kobe University, Kobe, Hyogo, Japan.,Department of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Muguruma
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan.,Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| |
Collapse
|
28
|
Bulut FD, Özdemir Dilek S, Kotan D, Mengen E, Gürbüz F, Yüksel B. Mutations Within the Transcription Factor PROP1 in a Cohort of Turkish Patients with Combined Pituitary Hormone Deficiency. J Clin Res Pediatr Endocrinol 2020; 12:261-268. [PMID: 31948187 PMCID: PMC7499144 DOI: 10.4274/jcrpe.galenos.2020.2019.0191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Mutations of the genes encoding transcription factors which play important roles in pituitary morphogenesis, differentiation and maturation may lead to combined pituitary hormone deficiency (CPHD). PROP1 gene mutations are reported as the most frequent genetic aetiology of CHPD. The aim of this study was to describe the phenotypes of Turkish CPHD patients and define the frequency of PROP1 mutations. METHODS Fifty-seven CPHD patients from 50 families were screened for PROP1 mutations. The patients were affected by growth hormone (GH) and additional anterior pituitary hormone deficiencies. RESULTS All patients had GH deficiency. In addition, 98.2% had central hypothyroidism, 45.6% had hypogonadotropic hypogonadism, 43.8% had adrenocorticotropic hormone deficiency and 7.1% had prolactin deficiency. Parental consanguinity rate was 50.9% and 14 cases were familial. Mean height standard deviation score (SDS) and weight SDS were -3.8±1.4 and -3.1±2.0, respectively. Of 53 patients with available pituitary imaging, 32 (60.4%) showed abnormalities. None had extra-pituitary abnormalities. Eight index patients had PROP1 gene mutations. Five sporadic patients were homozygous for c.301_302delAG (p.Leu102CysfsTer8) mutation, two siblings had exon 2 deletion, two siblings had complete gene deletion and two siblings were homozygous for the novel c.353A>G (p.Q118R) mutation. The frequency of the PROP1 mutations was 16% in our cohort. Mutation rate was significantly higher in familial cases compared to sporadic cases (42.8% vs 11.6%; p<0.01). CONCLUSION Phenotype of patients regarding hormonal deficiencies, pituitary morphology, presence of extra-pituitary findings, family history of CPHD and parental consanguinity are important for deciding which pituitary transcription factor deficiency should be investigated. PROP1 mutation frequencies vary in different populations and its prevalence is high in Turkish CPHD patients.
Collapse
Affiliation(s)
- Fatma Derya Bulut
- Adana City Training and Research Hospital, Clinic of Pediatrics, Adana, Turkey,* Address for Correspondence: Adana City Training and Research Hospital, Clinic of Pediatrics, Adana, Turkey Phone: +90 532 743 27 18 E-mail:
| | - Semine Özdemir Dilek
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - Damla Kotan
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - Eda Mengen
- Ankara City Hospital, Children’s Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey
| | - Fatih Gürbüz
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - Bilgin Yüksel
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| |
Collapse
|
29
|
Doknic M, Gasic V, Stojanovic M, Pavlovic S, Marinkovic S, Miljic D, Pekic S, Manojlovic-Gacic E, Damjanovic D, Soldatovic I, Petakov M. Hypopituitarism in five PROP1 mutation siblings: long-lasting natural course and the effects of growth hormone replacement introduction in middle adulthood. Pituitary 2020; 23:400-408. [PMID: 32415500 DOI: 10.1007/s11102-020-01049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Twenty years after the first description of combined hypopituitarism (CPHD) caused by PROP1 mutations, the phenotype of affected subjects is still challenging for clinicians. These patients suffer from pituitary hormone deficits ranging from IGHD to panhypopituitarism. ACTH deficiency usually develops later in life. Pituitary size is variable. PROP1 mutation is the most frequent in familial congenital hypopituitarism (CH). Reports on initiation of hormonal replacement including growth hormone (GH) in adults with CH are scarce. We identified 5 adult siblings with CPHD due to PROP1 mutation (301-302delAG), aged 36-51 years (4 females), never treated for hormone deficiencies. They presented with short stature (SD from - 3.7 to - 4.7), infantile sexual characteristic, moderate abdominal obesity and low bone mineral density in 3 of them. Complete hypopituituitarism was confirmed in three siblings, while two remaining demonstrated GH, TSH, FSH and LH deficiencies. Required hormonal replacement including rhGH was initiated in all patients. After several months necessity for hydrocortisone replacement developed in all patients. After 2 years of continual replacement therapy, BMD and body composition (measured by DXA-dual X-ray absorptiometry) improved in all subjects, most prominently in two younger females and the male sibling. Besides rhGH therapy, these three patients have received sex hormones contributing to the favorable effect. The male sibling was diagnosed with brain glioblastoma two years following complete hormonal replacement. This report provides important experience regarding hormonal replacement, particularly rhGH treatment, in adults with long-term untreated CH. Beneficial effect of such therapy are widely acknowledged, yet these subjects could be susceptible to certain risks of hormonal treatment initiated in adulthood. Careful and continual clinical follow-up is thus strongly advised.
Collapse
Affiliation(s)
- Mirjana Doknic
- Neuroendocrine Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Dr Subotic 13, 11000, Belgrade, Serbia.
- Faculty of Medicine, University Belgrade, Belgrade, Serbia.
| | - Vladimir Gasic
- Institute of Molecular Genetics and Genetic Engineering, University Belgrade, Belgrade, Serbia
| | - Marko Stojanovic
- Neuroendocrine Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Dr Subotic 13, 11000, Belgrade, Serbia
- Faculty of Medicine, University Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University Belgrade, Belgrade, Serbia
| | - Snezana Marinkovic
- Special Hospital for Thyroid Gland and Metabolism Diseases, Zlatibor, Serbia
| | - Dragana Miljic
- Neuroendocrine Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Dr Subotic 13, 11000, Belgrade, Serbia
- Faculty of Medicine, University Belgrade, Belgrade, Serbia
| | - Sandra Pekic
- Neuroendocrine Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Dr Subotic 13, 11000, Belgrade, Serbia
- Faculty of Medicine, University Belgrade, Belgrade, Serbia
| | | | - Dusan Damjanovic
- Center for Radiology Imaging - Magnetic Resonance and Gamma Knife, Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University Belgrade, Belgrade, Serbia
| | - Ivan Soldatovic
- Institute of Medical Statistics and Informatics, Belgrade, Serbia
- Faculty of Medicine, University Belgrade, Belgrade, Serbia
| | - Milan Petakov
- Neuroendocrine Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Dr Subotic 13, 11000, Belgrade, Serbia
- Faculty of Medicine, University Belgrade, Belgrade, Serbia
| |
Collapse
|
30
|
Gregory LC, Dattani MT. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J Clin Endocrinol Metab 2020; 105:5614788. [PMID: 31702014 DOI: 10.1210/clinem/dgz184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Congenital hypopituitarism (CH) is characterized by the presence of deficiencies in one or more of the 6 anterior pituitary (AP) hormones secreted from the 5 different specialized cell types of the AP. During human embryogenesis, hypothalamo-pituitary (HP) development is controlled by a complex spatio-temporal genetic cascade of transcription factors and signaling molecules within the hypothalamus and Rathke's pouch, the primordium of the AP. EVIDENCE ACQUISITION This mini-review discusses the genes and pathways involved in HP development and how mutations of these give rise to CH. This may present in the neonatal period or later on in childhood and may be associated with craniofacial midline structural abnormalities such as cleft lip/palate, visual impairment due to eye abnormalities such as optic nerve hypoplasia (ONH) and microphthalmia or anophthalmia, or midline forebrain neuroradiological defects including agenesis of the septum pellucidum or corpus callosum or the more severe holoprosencephaly. EVIDENCE SYNTHESIS Mutations give rise to an array of highly variable disorders ranging in severity. There are many known causative genes in HP developmental pathways that are routinely screened in CH patients; however, over the last 5 years this list has rapidly increased due to the identification of variants in new genes and pathways of interest by next-generation sequencing. CONCLUSION The majority of patients with these disorders do not have an identified molecular basis, often making management challenging. This mini-review aims to guide clinicians in making a genetic diagnosis based on patient phenotype, which in turn may impact on clinical management.
Collapse
Affiliation(s)
- Louise Cheryl Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
31
|
Parkin K, Kapoor R, Bhat R, Greenough A. Genetic causes of hypopituitarism. Arch Med Sci 2020; 16:27-33. [PMID: 32051702 PMCID: PMC6963153 DOI: 10.5114/aoms.2020.91285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/24/2019] [Indexed: 01/13/2023] Open
Abstract
Hypopituitarism in neonates is rare, but has life-threatening complications if untreated. This review describes the features of hypopituitarism and the evidence for which infants in whom a genetic cause should be suspected. Importantly, neonates are often asymptomatic or present with non-specific symptoms. Hypopituitarism can be due to abnormal gland development as a result of genetic defects, which result from mutations in gene coding for transcription factors which regulate pituitary development. The mutations can be divided into those causing isolated hypopituitarism or those causing syndromes with associated hypopituitarism. The latter involve mutations in transcription factors which regulate pituitary, as well as extra-pituitary development. There is a paucity of evidence as to which patients should be investigated for genetic mutations, but detailed clinical and biochemical phenotyping with magnetic resonance imaging of the pituitary gland could help target those in whom genetic investigations would be most appropriate.
Collapse
Affiliation(s)
- Katherine Parkin
- King’s College London, Guy’s King’s and St Thomas School of Medicine, London, United Kingdom
| | - Ritika Kapoor
- Department of Paediatric Endocrinology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ravindra Bhat
- Neonatal Intensive Care Centre, King’s College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, United Kingdom
| | - Anne Greenough
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, United Kingdom
- NIHR Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, United Kingdom
| |
Collapse
|
32
|
Bajuk Studen K, Stefanija MA, Saveanu A, Barlier A, Brue T, Pfeifer M. Genetic analysis of adult Slovenian patients with combined pituitary hormone deficiency. Endocrine 2019; 65:379-385. [PMID: 31093944 DOI: 10.1007/s12020-019-01949-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/04/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Among genetic causes of combined pituitary hormone deficiency (CPHD), mutations of genes coding for transcription factors involved in pituitary development have been implicated. Congenital CPHD is a rare disease; therefore, it is important to expand the knowledge about incidence and regional distribution of specific mutations. The aim of this paper is to report results of genetic analyses of adult Slovenian patients with CPHD. METHODS Twenty-three adult Slovenian patients with early childhood onset CPHD were included in the study. Blood samples were collected through the GENHYPOPIT network to assess possible mutations of six genes (PROP1/HESX1/LHX4/LHX3/POU1F1) involved in the pituitary development following an established algorithm. RESULTS In seven out of 23 patients (30%) a specific mutation in genes encoding pituitary transcription factors was discovered. In five patients, two different mutations of the PROP1 gene (c.150delA and c.301-302delAG) were identified. One patient was heterozygous for a missense variant in the LHX4 gene. Additionally, one patient was positive for a mutation in the gene coding for prokineticin receptor-2. CONCLUSIONS Our study confirms that the two most common mutations of the PROP1 gene globally are also the most frequent mutations in the cohort of adult Slovenian patients with CHPD. Other mutations of pituitary transcription factor genes are extremely rare.
Collapse
Affiliation(s)
- Katica Bajuk Studen
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.
| | - Magdalena Avbelj Stefanija
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000, Ljubljana, Slovenia
| | - Alexandru Saveanu
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Laboratory of Molecular Biology, Hôpital de la Conception, 13005, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
| | - Anne Barlier
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Laboratory of Molecular Biology, Hôpital de la Conception, 13005, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Centre de Référence des Maladies Rares de l'hypophyse HYPO, Department of Endocrinology, Hôpital de la Conception, 13005, Marseille, France
| | - Thierry Brue
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Centre de Référence des Maladies Rares de l'hypophyse HYPO, Department of Endocrinology, Hôpital de la Conception, 13005, Marseille, France
| | - Marija Pfeifer
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
33
|
Chen J, Zhang XX, Wu XC, Li J. [Clinical and genetic characteristics of a young child with combined pituitary hormone deficiency type I caused by POU1F1 gene variation]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:685-689. [PMID: 31315769 PMCID: PMC7389113 DOI: 10.7499/j.issn.1008-8830.2019.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/30/2019] [Indexed: 06/10/2023]
Abstract
This paper reports the clinical and genetic characteristics of a case of combined pituitary hormone deficiency type I (CPHD1) caused by POU domain, class 1, transcription factor 1 (POU1F1) gene variation. A 2 years and 3 months old girl mainly presented with short stature, special facial features of prominent forehead, enophthalmos, and short mandible, loose skin, central hypothyroidism, complete growth hormone deficiency, and anterior pituitary hypoplasia. Gene analysis identified a novel heterozygous mutation, c.889C>T (p.R297W), in POU1F1 gene, and this locus of her parents was wild-type. This mutation was analyzed as a possible pathogenic variant according to the guidelines of the American College of Medical Genetics and Genomics, which has not been previously reported in the literature and conforms to the autosomal dominant inheritance. This child was diagnosed with CPHD1. Her height increased by 19.8 cm and showed a catch-up growth trend after one year of combined treatment with growth hormone and euthyrox. This study enriches the mutation spectrum of POU1F1 gene and has important significance for the diagnosis and classification of combined pituitary hormone deficiency.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | | | | | | |
Collapse
|
34
|
Correa FA, Nakaguma M, Madeira JLO, Nishi MY, Abrão MG, Jorge AAL, Carvalho LR, Arnhold IJP, Mendonça BB. Combined pituitary hormone deficiency caused by PROP1 mutations: update 20 years post-discovery. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:167-174. [PMID: 31090814 PMCID: PMC10522137 DOI: 10.20945/2359-3997000000139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/12/2019] [Indexed: 11/23/2022]
Abstract
The first description of patients with combined pituitary hormone deficiencies (CPHD) caused by PROP1 mutations was made 20 years ago. Here we updated the clinical and genetic characteristics of patients with PROP1 mutations and summarized the phenotypes of 14 patients with 7 different pathogenic PROP1 mutations followed at the Hospital das Clínicas of the University of Sao Paulo. In addition to deficiencies in GH, TSH, PRL and gonadotropins some patients develop late ACTH deficiency. Therefore, patients with PROP1 mutations require permanent surveillance. On magnetic resonance imaging, the pituitary stalk is normal, and the posterior lobe is in the normal position. The anterior lobe in patients with PROP1 mutations is usually hypoplastic but may be normal or even enlarged. Bi-allelic PROP1 mutations are currently the most frequently recognized genetic cause of CPHD worldwide. PROP1 defects occur more frequently among offspring of consanguineous parents and familial cases, but they also occur in sporadic cases, especially in countries in which the prevalence of PROP1 mutations is relatively high. We classified all reported PROP1 variants described to date according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines: 29 were pathogenic, 2 were likely pathogenic, and 2 were of unknown significance. An expansion of the phenotype of patients with PROP1 mutations was observed since the first description 20 years ago: variable anterior pituitary size, different pathogenic mutations, and late development of ACTH deficiency. PROP1 mutations are the most common cause of autosomal recessive CPHD with a topic posterior pituitary lobe. Arch Endocrinol Metab. 2019;63(2):167-74.
Collapse
Affiliation(s)
- Fernanda A Correa
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marilena Nakaguma
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - João L O Madeira
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Milena G Abrão
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Luciani R Carvalho
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Berenice B Mendonça
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
35
|
Nakaguma M, Correa FA, Santana LS, Benedetti AFF, Perez RV, Huayllas MKP, Miras MB, Funari MFA, Lerario AM, Mendonca BB, Carvalho LRS, Jorge AAL, Arnhold IJP. Genetic diagnosis of congenital hypopituitarism by a target gene panel: novel pathogenic variants in GLI2, OTX2 and GHRHR. Endocr Connect 2019; 8:590-595. [PMID: 30959475 PMCID: PMC6510710 DOI: 10.1530/ec-19-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 01/13/2023]
Abstract
AIM Congenital hypopituitarism has an incidence of 1:3500-10,000 births and is defined by the impaired production of pituitary hormones. Early diagnosis has an impact on management and genetic counselling. The clinical and genetic heterogeneity of hypopituitarism poses difficulties to select the order of genes to analyse. The objective of our study is to screen hypopituitarism genes (candidate and previously related genes) simultaneously using a target gene panel in patients with congenital hypopituitarism. METHODS Screening of 117 subjects with congenital hypopituitarism for pathogenic variants in 26 genes associated with congenital hypopituitarism by massively parallel sequencing using a customized target gene panel. RESULTS We found three novel pathogenic variants in OTX2 c.295C>T:p.Gln99*, GLI2 c.1681G>T:p.Glu561* and GHRHR c.820_821insC:p.Asp274Alafs*113, and the previously reported variants in GHRHR c.57+1G>A and PROP1 [c.301_302delAG];[c.109+1G>A]. CONCLUSIONS Our results indicate that a custom-designed panel is an efficient method to screen simultaneously variants of biological and clinical relevance for congenital GH deficiency. A genetic diagnosis was possible in 5 out of 117 (4%) patients of our cohort. We identified three novel pathogenic variants in GHRHR, OTX2 and GLI2 expanding the spectrum of variants associated with congenital hypopituitarism.
Collapse
Affiliation(s)
- Marilena Nakaguma
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Fernanda A Correa
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Lucas S Santana
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Anna F F Benedetti
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Ricardo V Perez
- Serviço de Endocrinologia, Hospital do Servidor Público Estadual de São Paulo, Instituto de Assistência Médica ao Servidor Público Estadual (HSPE-IAMSPE), São Paulo, Brasil
| | | | - Mirta B Miras
- Hospital de Niños Santísima Trinidad, Cordoba, Argentina
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Antonio M Lerario
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Luciani R S Carvalho
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
- Correspondence should be addressed to I J P Arnhold:
| |
Collapse
|
36
|
Argente J, Tatton-Brown K, Lehwalder D, Pfäffle R. Genetics of Growth Disorders-Which Patients Require Genetic Testing? Front Endocrinol (Lausanne) 2019; 10:602. [PMID: 31555216 PMCID: PMC6742727 DOI: 10.3389/fendo.2019.00602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
The second 360° European Meeting on Growth Hormone Disorders, held in Barcelona, Spain, in June 2017, included a session entitled Pragmatism vs. Curiosity in Genetic Diagnosis of Growth Disorders, which examined current concepts of genetics and growth in the clinical setting, in terms of both growth failure and overgrowth. For patients with short stature, multiple genes have been identified that result in GH deficiency, which may be isolated or associated with additional pituitary hormone deficiencies, or in growth hormone resistance, primary insulin-like growth factor (IGF) acid-labile subunit deficiency, IGF-I deficiency, IGF-II deficiency, IGF-I resistance, and primary PAPP-A2 deficiency. While genetic causes of short stature were previously thought to primarily be associated with the GH-IGF-I axis, it is now established that multiple genetic anomalies not associated with the GH-IGF-I axis can result in short stature. A number of genetic anomalies have also been shown to be associated with overgrowth, some of which involve the GH-IGF-I axis. In patients with overgrowth in combination with an intellectual disability, two predominant gene families, the epigenetic regulator genes, and PI3K/AKT pathway genes, have now been identified. Specific processes should be followed for decisions on which patients require genetic testing and which genes should be examined for anomalies. The decision to carry out genetic testing should be directed by the clinical process, not merely for research purposes. The intention of genetic testing should be to direct the clinical options for management of the growth disorder.
Collapse
Affiliation(s)
- Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III and IMDEA Institute, Madrid, Spain
- *Correspondence: Jesús Argente
| | - Katrina Tatton-Brown
- Institute of Cancer Research, St George's University Hospital NHS Foundation Trust, London and St George's University of London, London, United Kingdom
| | - Dagmar Lehwalder
- Global Medical Affairs, Merck Healthcare KGaA, Darmstadt, Germany
| | - Roland Pfäffle
- Department of Pediatrics, University of Leipzig, Leipzig, Germany
- Roland Pfäffle
| |
Collapse
|
37
|
Gergics P. Pituitary Transcription Factor Mutations Leading to Hypopituitarism. EXPERIENTIA SUPPLEMENTUM (2012) 2019; 111:263-298. [PMID: 31588536 DOI: 10.1007/978-3-030-25905-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Congenital pituitary hormone deficiency is a disabling condition. It is part of a spectrum of disorders including craniofacial midline developmental defects ranging from holoprosencephaly through septo-optic dysplasia to combined and isolated pituitary hormone deficiency. The first genes discovered in the human disease were based on mouse models of dwarfism due to mutations in transcription factor genes. High-throughput DNA sequencing technologies enabled clinicians and researchers to find novel genetic causes of hypopituitarism for the more than three quarters of patients without a known genetic diagnosis to date. Transcription factor (TF) genes are at the forefront of the functional analysis of novel variants of unknown significance due to the relative ease in in vitro testing in a research lab. Genetic testing in hypopituitarism is of high importance to the individual and their family to predict phenotype composition, disease progression and to avoid life-threatening complications such as secondary adrenal insufficiency.This chapter aims to highlight our current understanding about (1) the contribution of TF genes to pituitary development (2) the diversity of inheritance and phenotype features in combined and select isolated pituitary hormone deficiency and (3) provide an initial assessment on how to approach variants of unknown significance in human hypopituitarism. Our better understanding on how transcription factor gene variants lead to hypopituitarism is a meaningful step to plan advanced therapies to specific genetic changes in the future.
Collapse
Affiliation(s)
- Peter Gergics
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Ahern S, Daniels M, Bhangoo A. LHX3 deficiency presenting in the United States with severe developmental delay in a child of Syrian refugee parents. Endocrinol Diabetes Metab Case Rep 2018; 2018:EDM180079. [PMID: 30481152 PMCID: PMC6280131 DOI: 10.1530/edm-18-0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 02/02/2023] Open
Abstract
In this case report, we present a novel mutation in Lim-homeodomain (LIM-HD) transcription factor, LHX3, manifesting as combined pituitary hormone deficiency (CPHD). This female patient was originally diagnosed in Egypt during infancy with Diamond Blackfan Anemia (DBA) requiring several blood transfusions. Around 10 months of age, she was diagnosed and treated for central hypothyroidism. It was not until she came to the United States around two-and-a-half years of age that she was diagnosed and treated for growth hormone deficiency. Her response to growth hormone replacement on linear growth and muscle tone were impressive. She still suffers from severe global development delay likely due to delay in treatment of congenital central hypothyroidism followed by poor access to reliable thyroid medications. Her diagnosis of DBA was not confirmed after genetic testing in the United States and her hemoglobin normalized with hormone replacement therapies. We will review the patient's clinical course as well as a review of LHX3 mutations and the associated phenotype. Learning points: Describe an unusual presentation of undertreated pituitary hormone deficiencies in early life Combined pituitary hormone deficiency due to a novel mutation in pituitary transcription factor, LHX3 Describe the clinical phenotype of combined pituitary hormone deficiency due to LHX3 mutations.
Collapse
Affiliation(s)
- Susan Ahern
- Division of Endocrinology, UCLA School of Medicine, Ventura, California, USA
| | - Mark Daniels
- Division of Pediatric Endocrinology, Children's Hospital of Orange County, Orange, California, USA
| | - Amrit Bhangoo
- Division of Pediatric Endocrinology, Children's Hospital of Orange County, Orange, California, USA
| |
Collapse
|
39
|
Blum WF, Klammt J, Amselem S, Pfäffle HM, Legendre M, Sobrier ML, Luton MP, Child CJ, Jones C, Zimmermann AG, Quigley CA, Cutler GB, Deal CL, Lebl J, Rosenfeld RG, Parks JS, Pfäffle RW. Screening a large pediatric cohort with GH deficiency for mutations in genes regulating pituitary development and GH secretion: Frequencies, phenotypes and growth outcomes. EBioMedicine 2018; 36:390-400. [PMID: 30266296 PMCID: PMC6197701 DOI: 10.1016/j.ebiom.2018.09.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Werner F Blum
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany; Center of Child and Adolescent Medicine, Justus Liebig University, Feulgenstrasse 12, 35392 Giessen, Germany.
| | - Jürgen Klammt
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany
| | - Serge Amselem
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | - Heike M Pfäffle
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany
| | - Marie Legendre
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | - Marie-Laure Sobrier
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | - Marie-Pierre Luton
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | | | - Christine Jones
- Eli Lilly and Company, Werner-Reimers-Strasse 2-4, 61352 Bad Homburg, Germany
| | | | | | | | - Cheri L Deal
- University of Montreal and CHU Ste-Justine, Montreal, Canada
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, University Hospital Motol, V Uvalu 84, 150 06 Prague, 5, Czech Republic
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, USA
| | - John S Parks
- Division of Pediatric Endocrinology and Diabetes, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA 30322, USA
| | - Roland W Pfäffle
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany
| |
Collapse
|
40
|
Youngblood JL, Coleman TF, Davis SW. Regulation of Pituitary Progenitor Differentiation by β-Catenin. Endocrinology 2018; 159:3287-3305. [PMID: 30085028 DOI: 10.1210/en.2018-00563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
The pituitary gland is a critical organ that is necessary for many physiological processes, including growth, reproduction, and stress response. The secretion of pituitary hormones from specific cell types regulates these essential processes. Pituitary hormone cell types arise from a common pool of pituitary progenitors, and mutations that disrupt the formation and differentiation of pituitary progenitors result in hypopituitarism. Canonical WNT signaling through CTNNB1 (β-catenin) is known to regulate the formation of the POU1F1 lineage of pituitary cell types. When β-catenin is deleted during the initial formation of the pituitary progenitors, Pou1f1 is not transcribed, which leads to the loss of the POU1F1 lineage. However, when β-catenin is deleted after lineage specification, there is no observable effect. Similarly, the generation of a β-catenin gain-of-function allele in early pituitary progenitors or stem cells results in the formation of craniopharyngiomas, whereas stimulating β-catenin in differentiated cell types has no effect. PROP1 is a pituitary-specific transcription factor, and the peak of PROP1 expression coincides with a critical time point in pituitary organogenesis-that is, after pituitary progenitor formation but before lineage specification. We used a Prop1-cre to conduct both loss- and gain-of-function studies on β-catenin during this critical time point. Our results demonstrate that pituitary progenitors remain sensitive to both loss and gain of β-catenin at this time point, and that either manipulation results in hypopituitarism.
Collapse
Affiliation(s)
- Julie L Youngblood
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Tanner F Coleman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
41
|
Pérez Millán MI, Vishnopolska SA, Daly AZ, Bustamante JP, Seilicovich A, Bergadá I, Braslavsky D, Keselman AC, Lemons RM, Mortensen AH, Marti MA, Camper SA, Kitzman JO. Next generation sequencing panel based on single molecule molecular inversion probes for detecting genetic variants in children with hypopituitarism. Mol Genet Genomic Med 2018; 6:514-525. [PMID: 29739035 PMCID: PMC6081231 DOI: 10.1002/mgg3.395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Congenital Hypopituitarism is caused by genetic and environmental factors. Over 30 genes have been implicated in isolated and/or combined pituitary hormone deficiency. The etiology remains unknown for up to 80% of the patients, but most cases have been analyzed by limited candidate gene screening. Mutations in the PROP1 gene are the most common known cause, and the frequency of mutations in this gene varies greatly by ethnicity. We designed a custom array to assess the frequency of mutations in known hypopituitarism genes and new candidates, using single molecule molecular inversion probes sequencing (smMIPS). METHODS We used this panel for the first systematic screening for causes of hypopituitarism in children. Molecular inversion probes were designed to capture 693 coding exons of 30 known genes and 37 candidate genes. We captured genomic DNA from 51 pediatric patients with CPHD (n = 43) or isolated GH deficiency (IGHD) (n = 8) and their parents and conducted next generation sequencing. RESULTS We obtained deep coverage over targeted regions and demonstrated accurate variant detection by comparison to whole-genome sequencing in a control individual. We found a dominant mutation GH1, p.R209H, in a three-generation pedigree with IGHD. CONCLUSIONS smMIPS is an efficient and inexpensive method to detect mutations in patients with hypopituitarism, drastically limiting the need for screening individual genes by Sanger sequencing.
Collapse
Affiliation(s)
- María I. Pérez Millán
- Institute of Biomedical Investigations (INBIOMED‐UBA‐CONICET)University of Buenos AiresBuenos AiresArgentina
| | - Sebastian A. Vishnopolska
- Department of Biological Chemistry (IQUIBICEN‐UBA‐CONICET)Faculty of Exact and Natural SciencesUniversity of Buenos AiresBuenos AiresArgentina
| | | | - Juan P. Bustamante
- Department of Biological Chemistry (IQUIBICEN‐UBA‐CONICET)Faculty of Exact and Natural SciencesUniversity of Buenos AiresBuenos AiresArgentina
| | - Adriana Seilicovich
- Institute of Biomedical Investigations (INBIOMED‐UBA‐CONICET)University of Buenos AiresBuenos AiresArgentina
| | - Ignacio Bergadá
- División de EndocrinologíaHospital de Niños Ricardo GutiérrezCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’ (CEDIE) CONICET – FEIBuenos AiresArgentina
| | - Débora Braslavsky
- División de EndocrinologíaHospital de Niños Ricardo GutiérrezCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’ (CEDIE) CONICET – FEIBuenos AiresArgentina
| | - Ana C. Keselman
- División de EndocrinologíaHospital de Niños Ricardo GutiérrezCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’ (CEDIE) CONICET – FEIBuenos AiresArgentina
| | | | | | - Marcelo A. Marti
- Department of Biological Chemistry (IQUIBICEN‐UBA‐CONICET)Faculty of Exact and Natural SciencesUniversity of Buenos AiresBuenos AiresArgentina
| | - Sally A. Camper
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Jacob O. Kitzman
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
42
|
Crisafulli G, Aversa T, Zirilli G, De Luca F, Gallizzi R, Wasniewska M. Congenital hypopituitarism: how to select the patients for genetic analyses. Ital J Pediatr 2018; 44:47. [PMID: 29625578 PMCID: PMC5889615 DOI: 10.1186/s13052-018-0484-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/23/2018] [Indexed: 11/10/2022] Open
Affiliation(s)
- Giuseppe Crisafulli
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy
| | - Tommaso Aversa
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy
| | - Giuseppina Zirilli
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy
| | - Filippo De Luca
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy.
| | - Romina Gallizzi
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy
| | - Malgorzata Wasniewska
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy
| |
Collapse
|
43
|
Abstract
Mutations of growth hormone genes and pituitary transcription factors account for a small proportion of cases of severe congenital hypopituitarism. Most cases show characteristic MRI findings of pituitary stalk interruption syndrome. Clinical suspicion should prompt assessment of cortisol, free T4, thyroid-stimulating hormone, and growth hormone levels together with MRI of the hypothalamic and pituitary regions.
Collapse
Affiliation(s)
- John S Parks
- Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
44
|
Zwaveling-Soonawala N, Alders M, Jongejan A, Kovacic L, Duijkers FA, Maas SM, Fliers E, van Trotsenburg ASP, Hennekam RC. Clues for Polygenic Inheritance of Pituitary Stalk Interruption Syndrome From Exome Sequencing in 20 Patients. J Clin Endocrinol Metab 2018; 103:415-428. [PMID: 29165578 DOI: 10.1210/jc.2017-01660] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
CONTEXT Pituitary stalk interruption syndrome (PSIS) consists of a small/absent anterior pituitary lobe, an interrupted/absent pituitary stalk, and an ectopic posterior pituitary lobe. Mendelian forms of PSIS are detected infrequently (<5%), and a polygenic etiology has been suggested. GLI2 variants have been reported at a relatively high frequency in PSIS. OBJECTIVE To provide further evidence for a non-Mendelian, polygenic etiology of PSIS. METHODS Exome sequencing (trio approach) in 20 patients with isolated PSIS. In addition to searching for (potentially) pathogenic de novo and biallelic variants, a targeted search was performed in a panel of genes associated with midline brain development (223 genes). For GLI2 variants, both (potentially) pathogenic and relatively rare variants (<5% in the general population) were studied. The frequency of GLI2 variants was compared with that of a reference population. RESULTS We found four additional candidate genes for isolated PSIS (DCHS1, ROBO2, CCDC88C, and KIF14) and one for syndromic PSIS (KAT6A). Eleven GLI2 variants were present in six patients. A higher frequency of a combination of two GLI2 variants (M1352V + D1520N) was found in the study group compared with a reference population (10% vs 0.68%). (Potentially) pathogenic variants were identified in genes associated with midline brain anomalies, including holoprosencephaly, hypogonadotropic hypogonadism, and absent corpus callosum and in genes involved in ciliopathies. CONCLUSION Combinations of variants in genes associated with midline brain anomalies are frequently present in PSIS and sustain the hypothesis of a polygenic cause of PSIS.
Collapse
Affiliation(s)
- Nitash Zwaveling-Soonawala
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Bioinformatics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lidija Kovacic
- Novartis Ireland Ltd, Beech Hill Office Campus, Dublin, Ireland
| | - Floor A Duijkers
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - A S Paul van Trotsenburg
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Elizabeth M, Hokken-Koelega ACS, Schuilwerve J, Peeters RP, Visser TJ, de Graaff LCG. Genetic screening of regulatory regions of pituitary transcription factors in patients with idiopathic pituitary hormone deficiencies. Pituitary 2018; 21:76-83. [PMID: 29255988 PMCID: PMC5767207 DOI: 10.1007/s11102-017-0850-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE Mutation frequencies of PROP1, POU1F1 and HESX1 in patients with combined pituitary hormone deficiencies (CPHD) vary substantially between populations. They are low in sporadic CPHD patients in Western Europe. However, most clinicians still routinely send DNA of their CPHD patients for genetic screening of these pituitary transcription factors. Before we can recommend against screening of PROP1, POU1F1 and HESX1 as part of routine work-up for Western-European sporadic CPHD patients, it is crucial to rule out possible defects in regulatory regions of these genes, which could also disturb the complex process of pituitary organogenesis. METHODS The regulatory regions of PROP1, POU1F1 and HESX1 are not covered by Whole Exome Sequencing as they are largely located outside the coding regions. Therefore, we manually sequenced the regulatory regions, previously defined in the literature, of PROP1, POU1F1 and HESX1 among 88 Dutch patients with CPHD. We studied promoter SNPs in relation to phenotypic data. RESULTS We found six known SNPs in the PROP1 promoter. In the POU1F1 promoter, we found one new variant and two known SNPs. We did not find any variant in the HESX1 promoter. CONCLUSION Although the new POU1F1 variant might explain the phenotype of one patient, the general conclusion of this study is that variants in regulatory regions of PROP1, POU1F1 and HESX1 are rare in patients with sporadic CPHD in the Netherlands. We recommend that genetic screening of these pituitary transcription factors should no longer be part of routine work-up for Western-European, and especially Dutch, sporadic CPHD patients.
Collapse
Affiliation(s)
| | - Anita C S Hokken-Koelega
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
- Pediatrics, Subdivision Endocrinology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Joyce Schuilwerve
- Internal Medicine, Subdivision Endocrinology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Robin P Peeters
- Internal Medicine, Subdivision Endocrinology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
- Academic Center for Thyroid Diseases, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Theo J Visser
- Internal Medicine, Subdivision Endocrinology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
- Academic Center for Thyroid Diseases, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Laura C G de Graaff
- Academic Center for Growth Disorders, Erasmus MC Rotterdam, Rotterdam, The Netherlands.
- Internal Medicine, Subdivision Endocrinology, Erasmus MC Rotterdam, Rotterdam, The Netherlands.
- Department of Internal Medicine, Erasmus MC, University Medical Center, Room D-411, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Madeira JL, Nishi MY, Nakaguma M, Benedetti AF, Biscotto IP, Fernandes T, Pequeno T, Figueiredo T, Franca MM, Correa FA, Otto AP, Abrão M, Miras MB, Santos S, Jorge AA, Costalonga EF, Mendonca BB, Arnhold IJ, Carvalho LR. Molecular analysis of brazilian patients with combined pituitary hormone deficiency and orthotopic posterior pituitary lobe reveals eight different PROP1 alterations with three novel mutations. Clin Endocrinol (Oxf) 2017; 87:725-732. [PMID: 28734020 DOI: 10.1111/cen.13430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Mutations in PROP1, HESX1 and LHX3 are associated with combined pituitary hormone deficiency (CPHD) and orthotopic posterior pituitary lobe (OPP). OBJECTIVE To identify mutations in PROP1, HESX1 and LHX3 in a large cohort of patients with CPHD and OPP (35 Brazilian, two Argentinian). DESIGN AND METHODS We studied 23 index patients with CPHD and OPP (six familial and 17 sporadic) as well as 14 relatives. PROP1 was sequenced by the Sanger method in all except one sporadic case studied using a candidate gene panel. Multiplex ligation-dependent probe amplification (MLPA) was applied to one familial case in whom PROP1 failed to amplify by PCR. In the 13 patients without PROP1 mutations, HESX1 and LHX3 were sequenced by the Sanger method. RESULTS We identified PROP1 mutations in 10 index cases. Three mutations were novel: one affecting the initiation codon (c.1A>G) and two affecting splicing sites, c.109+1G>A and c.342+1G>C. The known mutations, c.150delA (p.Arg53Aspfs*112), c.218G>A (p.Arg73His), c.263T>C (p.Phe88Ser) and c.301_302delAG (p.Leu102Cysfs*8), were also detected. MLPA confirmed complete PROP1 deletion in one family. We did not identify HESX1 and LHX3 mutations by Sanger. CONCLUSION PROP1 mutations are a prevalent cause of congenital CPHD with OPP, and therefore, PROP1 sequencing must be the first step of molecular investigation in patients with CPHD and OPP, especially in populations with a high frequency of PROP1 mutations. In the absence of mutations, massively parallel sequencing is a promising approach. The high prevalence and diversity of PROP1 mutations is associated with the ethnic background of this cohort.
Collapse
Affiliation(s)
- Joao Lo Madeira
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Marilena Nakaguma
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Anna F Benedetti
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Isabela Peixoto Biscotto
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Thamiris Fernandes
- Departamento de Clínica Médica da Faculdade de Medicina da Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Thiago Pequeno
- Núcleo de Estudos em Genética e Educação, Universidade Estadual da Paraíba, Campina Grande, Paraíba, Brazil
| | - Thalita Figueiredo
- Núcleo de Estudos em Genética e Educação, Universidade Estadual da Paraíba, Campina Grande, Paraíba, Brazil
| | - Marcela M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Fernanda A Correa
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Aline P Otto
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Milena Abrão
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Mirta B Miras
- Servicio de Endocrinología Hospital de Niños de la Santísima Trinidad Córdoba, Córdoba, Argentina
| | - Silvana Santos
- Núcleo de Estudos em Genética e Educação, Universidade Estadual da Paraíba, Campina Grande, Paraíba, Brazil
| | - Alexander Al Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Unidade de Endocrinologia-Genética - LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Everlayny F Costalonga
- Departamento de Clínica Médica da Faculdade de Medicina da Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ivo Jp Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Luciani R Carvalho
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
47
|
Simm F, Griesbeck A, Choukair D, Weiß B, Paramasivam N, Klammt J, Schlesner M, Wiemann S, Martinez C, Hoffmann GF, Pfäffle RW, Bettendorf M, Rappold GA. Identification of SLC20A1 and SLC15A4 among other genes as potential risk factors for combined pituitary hormone deficiency. Genet Med 2017; 20:728-736. [DOI: 10.1038/gim.2017.165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022] Open
|
48
|
Guo QH, Wang CZ, Wu ZQ, Qin Y, Han BY, Wang AP, Wang BA, Dou JT, Wu XS, Mu YM. Multi-genic pattern found in rare type of hypopituitarism: a whole-exome sequencing study of Han Chinese with pituitary stalk interruption syndrome. J Cell Mol Med 2017; 21:3626-3632. [PMID: 28707430 PMCID: PMC5706574 DOI: 10.1111/jcmm.13272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare type of hypopituitarism manifesting various degrees of pituitary hormone deficiency. Although mutations have been identified in some familial cases, the underpinning mechanisms of sporadic patients with PSIS who are in a vast majority remain elusive, necessitating a comprehensive study using systemic approaches. We postulate that other genetic mechanisms may be responsible for the sporadic PSIS. To test this hypothesis, we conducted a study in 24 patients with PSIS of Han Chinese with no family history using whole‐exome sequencing (WES) and bioinformatic analysis. We identified a group of heterozygous mutations in 92% (22 of 24) of the patients, and these genes are mostly associated with Notch, Shh, Wnt signalling pathways. Importantly, 83% (20 of 24) of the patients had more than one mutation in those pathways suggesting synergy of compound mutations underpin the pathogenesis of sporadic PSIS.
Collapse
Affiliation(s)
- Qing-Hua Guo
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.,Department of Endocrinology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan, China
| | - Cheng-Zhi Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Zhi-Qiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yan Qin
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, Weihui City, Henan, China
| | - Bai-Yu Han
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.,Department of Endocrinology and Metabolism, The 264 Hospital of PLA, Taiyuan, Shanxi, China
| | - An-Ping Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Bao-An Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Jing-Tao Dou
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Sheng Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Yi-Ming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
49
|
Zheng J, Mao J, Xu H, Wang X, Huang B, Liu Z, Cui M, Xiong S, Ma W, Min L, Kaiser UB, Nie M, Wu X. Pulsatile GnRH Therapy May Restore Hypothalamus-Pituitary-Testis Axis Function in Patients With Congenital Combined Pituitary Hormone Deficiency: A Prospective, Self-Controlled Trial. J Clin Endocrinol Metab 2017; 102:2291-2300. [PMID: 28368486 PMCID: PMC5505206 DOI: 10.1210/jc.2016-3990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/22/2017] [Indexed: 01/22/2023]
Abstract
CONTEXT The effectiveness of pulsatile gonadotropin-releasing hormone (GnRH) therapy in patients with congenital combined pituitary hormone deficiency (CCPHD) has not been investigated because of the limited number of patients, as well as these patients' presumed pituitary hypoplasia, poor gonadotrophic cell reserve, and impaired gonadotrophic response to GnRH. OBJECTIVE To assess the pituitary response to pulsatile GnRH therapy in men with CCPHD. DESIGN Prospective, self-controlled, 3-month clinical trial. SETTINGS University endocrine clinic. PATIENTS Men with hypogonadotropic hypogonadism caused by CCPHD. INTERVENTION Pulsatile GnRH was administered subcutaneously for 3 months. MAIN OUTCOME MEASURES Primary endpoints were total serum testosterone, testicular volume, and luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels. Secondary endpoints included occurrence of spermatogenesis. RESULTS A total of 40 men with CCPHD completed the study. Of these, 60% (24 of 40) showed a good response to pulsatile GnRH treatment (response group). At 3 months, their LH and FSH levels increased to within the normal range and their testosterone levels increased to 8.67 ± 4.83 nmol/L. Of the patients in the response group, 33.3% (8 of 24) of them achieved spermatogenesis. The remaining 40% (16 of 40) of patients had a poor response to pulsatile GnRH treatment. Magnetic resonance imaging (MRI) did not reveal any correlation between pituitary response and pituitary height and/or integrity of the pituitary stalk. CONCLUSIONS This study suggests that gonadotrophs in patients with CCPHD can exist and be functional-even with MRI evidence of pituitary hypoplasia or dysplasia. Pulsatile GnRH therapy restored pituitary-testis axis function in 60% of patients with CCPHD. These results may directly guide the clinical therapeutic choice.
Collapse
Affiliation(s)
- Junjie Zheng
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| | - Jiangfeng Mao
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| | - Hongli Xu
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| | - Xi Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| | - Bingkun Huang
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| | - Zhaoxiang Liu
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| | - Mingxuan Cui
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| | - Shuyu Xiong
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| | - Wanlu Ma
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| | - Le Min
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Min Nie
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| | - Xueyan Wu
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, Ministry of Health, Beijing 100730, China
| |
Collapse
|
50
|
Parsons SJH, Wright NB, Burkitt-Wright E, Skae MS, Murray PG. A heterozygous microdeletion of 20p12.2-3 encompassing PROKR2
and BMP2
in a patient with congenital hypopituitarism and growth hormone deficiency. Am J Med Genet A 2017; 173:2261-2267. [DOI: 10.1002/ajmg.a.38306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/09/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Samuel J. H. Parsons
- Manchester Academic Health Sciences Centre, Centre for Paediatrics and Child Health, Institute of Human Development; University of Manchester; Manchester UK
| | - Neville B. Wright
- Department of Paediatric Radiology; Royal Manchester Children's Hospital; Manchester UK
| | - Emma Burkitt-Wright
- Genomic Medicine; St Mary's Hospital; Manchester UK
- Manchester Academic Health Sciences Centre, Centre for Genomic Medicine, Institute of Human Development; University of Manchester; Manchester UK
| | - Mars S. Skae
- Department of Paediatric Endocrinology; Royal Manchester Children's Hospital; Manchester UK
| | - Phillip G. Murray
- Manchester Academic Health Sciences Centre, Centre for Paediatrics and Child Health, Institute of Human Development; University of Manchester; Manchester UK
- Department of Paediatric Endocrinology; Royal Manchester Children's Hospital; Manchester UK
| |
Collapse
|