1
|
Watanabe K, Han CM, Altman-Singles AR, Liu J, Guo X, Ni A, Bahador M, Ebrahimian T, Kim J, Lee BS, Liu XS, Kim DG. Multiscale characterization of jawbone treated with osteoporosis therapeutic agents. J Mech Behav Biomed Mater 2025; 169:107036. [PMID: 40345077 DOI: 10.1016/j.jmbbm.2025.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
The objective of the current study was to determine whether treatments of bisphosphonate (alendronate (ALN)), parathyroid hormone (PTH), and their combination have an effect on the jawbone in estrogen deficient rats. Six female rats (4-month-old) were used for each sham surgery (SHAM). Twenty-four rats (4-month-old) were ovariectomized and randomly assigned to four equal groups: saline injection (VEH), PTH following saline injection (VEH/PTH), bisphosphonate (ALN), or a combination (ALN/PTH). A hemimandible was randomly dissected from each rat for multiscale (10-2 to 10-7 m) characterization including static and dynamic mechanical stability of teeth in the alveolar socket, tissue mineral density distribution (TMD), and nanoindentation properties of the jawbone matrix. Most jawbone characteristics in OVX and its treatment groups were not significantly different from those of the SHAM group. The surface of alveolar bone (AB) surrounding teeth showed a trend of more erosion and addition of new bone tissues in the OVX rat groups compared to the SHAM group. All TMD parameters rapidly increased up to 60 μm from the periodontal ligament surrounding teeth regardless of the treatment groups. Treatments using each therapeutic agent and its combination did not substantially change those characteristics of jawbones in OVX rats. These findings are different from those of lumbar vertebrae in the same rats that showed a significant bone alteration by OVX and treatments. Thus, the current multiscale characterization of jawbone provides comprehensive information that can help better understand jawbone-specific responses to bone-related complications, including postmenopausal osteoporosis and bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Keiichiro Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Cheol-Min Han
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Allison R Altman-Singles
- Kinesiology & Mechanical Engineering, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Xiaohan Guo
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Mason Bahador
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Tala Ebrahimian
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Jayoung Kim
- Departments of Surgery and BioMedical Sciences, Cedars-Sinai Medical Center, University of California, Los Angeles, CA, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA.
| |
Collapse
|
2
|
Santos TA, Ribeiro JL, Battistelli LS, Anbinder AL. Limosilactobacillus reuteri with menaquinone-7 improves bone biomechanics and microarchitecture in ovariectomized mice: preliminary study. J Bone Miner Metab 2025:10.1007/s00774-025-01600-3. [PMID: 40249504 DOI: 10.1007/s00774-025-01600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/23/2025] [Indexed: 04/19/2025]
Abstract
AIM This study aimed to evaluate the effects of Limosilactobacillus reuteri (LR) and its combination with menaquinone-7 (MK-7; K) on ovariectomy-induced bone loss in mice and on bacterial growth in vitro. METHODS In the in vivo study, animals were divided into five groups: sham-operated (SHAM); ovariectomy (OVX); OVX-LR; OVX-K; OVX-LR-K. After 4 weeks of treatment, femur cortical biomechanical properties, vertebral microarchitecture, osteocalcin levels, Occludin and Jam3 expression, and intestinal histomorphometry were evaluated. In vitro, microbial growth was assessed by incubating L. reuteri with MK-7. After incubation, optical densities were measured, and bacteria were cultured on MRS agar for the colony-forming unit (CFU/ml) counting. RESULTS L. reuteri, MK-7, and their combination significantly improved femur intrinsic biomechanical properties and cortical vertebral thickness. The combined treatment exhibited a synergistic effect on the modulus of elasticity, and increased cortical vertebral volume and the villus/crypt ratio in comparison to OVX. L. reuteri and its combination with MK-7 restored vertebral trabecular microarchitecture values to SHAM levels. However, no significant differences were observed in serum levels of osteocalcin, Occludin or Jam3 expression among groups. In vitro, a significant increase in optical density and viable cell count was observed after 4 h of incubation. CONCLUSION L. reuteri and its combination with MK-7 improved bone biomechanical and microarchitecture properties. We propose a synergistic preventive action of L. reuteri and MK-7 in estrogen-deficient mice. Additionally, the enhanced survival of L. reuteri in the presence of MK-7 may partially explain the observed benefits of the combined treatment in vivo.
Collapse
Affiliation(s)
- Thaís Aguiar Santos
- Institute of Science and Technology, São Paulo State University (Unesp), Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José Dos Campos, SP, CEP: 12245-000, Brazil
| | - Jaqueline Lemes Ribeiro
- Institute of Science and Technology, São Paulo State University (Unesp), Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José Dos Campos, SP, CEP: 12245-000, Brazil
| | - Luisa Souza Battistelli
- Institute of Science and Technology, São Paulo State University (Unesp), Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José Dos Campos, SP, CEP: 12245-000, Brazil
| | - Ana Lia Anbinder
- Institute of Science and Technology, São Paulo State University (Unesp), Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José Dos Campos, SP, CEP: 12245-000, Brazil.
| |
Collapse
|
3
|
Tang R, Gui X, Han R, Gao C, Zhang H, Lu S, Zhao J, Zhou W, Chen A, Sun H, Sun J, Zhai Y, Zhao Z, Zhou C. A shape-adaptive hydrogel with dual antibacterial and osteogenic properties for alveolar bone defect repair. J Mater Chem B 2025; 13:1712-1730. [PMID: 39698823 DOI: 10.1039/d4tb02242d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Alveolar bone defects are often irregular in shape and can severely affect patients' physical and psychological well-being, posing significant challenges in treatment, particularly in cases complicated by systemic diseases. This study presents a shape-adaptive hydrogel with sequential antibacterial and osteogenic functions designed to repair irregular bone defects associated with osteoporosis. Naringin, an estrogen analogue, was conjugated to the hydrogel via disulfide bonds and then uniformly mixed with nano-hydroxyapatite (nano-HAP) to create microspheres. These microspheres were uniformly dispersed within the naringin-loaded hydrogel, forming an injectable and photocurable suspension. Upon implantation, naringin is rapidly released due to diffusion along the concentration gradient and initial hydrogel degradation, providing antibacterial effects and preventing infection. As bone repair progresses, the hydrogel undergoes further degradation and the disulfide bonds break, so that naringin is continuously released, which enhances osteoblast differentiation and inhibits osteoclast differentiation. Material characterization confirmed the presence of disulfide bonds and the sustained release profile of naringin. Both in vitro and in vivo experiments demonstrated the hydrogel's excellent biocompatibility and its effectiveness in repairing regular mandibular defects as well as irregular alveolar bone defects associated with osteoporosis. This hydrogel provides a promising strategy for the development of advanced biomaterials tailored to the complex requirements of irregular bone defect repair under osteoporotic conditions.
Collapse
Affiliation(s)
- Rong Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Canyu Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hui Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shengkai Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Junyu Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China school of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weikai Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China school of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Axuan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huan Sun
- College of Biomedical Engineering, Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China school of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
4
|
Wang HW, Yang CN, Kok SH, Hong CY, Shun CT, Lai EHH, Cheng SJ, Lin HY, Wu FY, Lin SK. 27-Hydroxycholesterol contributes to hypercholesterolemia-associated aggravation of apical periodontitis in ovariectomized rats and raloxifene counteracts its action. Int Endod J 2025; 58:97-110. [PMID: 39256997 DOI: 10.1111/iej.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024]
Abstract
AIM The influence of hypercholesterolemia on the development of apical periodontitis (AP) is inconclusive. Recent studies revealed that cholesterol metabolite 27-hydoxycholesterol (27HC) can affect cellular responses to bacterial infections and oestrogen status and raloxifene may influence its action. Herein, we aimed to examine the impact of 27HC on production of inflammatory mediators by macrophages and the regulatory function of raloxifene. The contribution of 27HC to AP development and the therapeutic effect of raloxifene were evaluated in a rat model. METHODS Murine macrophages J774 cells were used. The expression of inducible nitric oxide synthase (iNOS) was examined by Western blot. The concentrations of C-C motif chemokine ligand (CCL) 2 and 27HC were assessed by enzyme-linked immunosorbent assay. Colorimetric assay was used to evaluate cholesterol levels. Experimental AP was induced in ovariectomized (OVX) or un-operated rats receiving high-fat/high-cholesterol diet (HFHCD) or normal diet (ND). Micro-computed tomography and immunohistochemistry were employed to evaluate disease severity and the therapeutic effect of raloxifene. RESULTS Cholesterol enhanced 27HC production in macrophages. 27HC induced iNOS and CCL2 synthesis by macrophages and estradiol suppressed the responses. In our animal model of AP, HFHCD plus OVX significantly augmented serum and lesion tissue levels of 27HC (p < .05 versus the ND group). Lesion size, infiltration of CD68+ cells, and iNOS+ monocytes were increased in parallel with 27HC accumulation. Raloxifene inhibited pro-inflammatory effects of 27HC on macrophages and suppressed AP progression in HFHCD/OVX rats (p < .05 versus the vehicle control group). CONCLUSIONS Our results suggested that 27HC contributes to AP aggravation associated with hypercholesterolemia. Oestrogen deficiency may both enhance 27HC production and exacerbate its downstream action.
Collapse
Affiliation(s)
- H-W Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-N Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S-H Kok
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-Y Hong
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - C-T Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - E H-H Lai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S-J Cheng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-Y Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - F-Y Wu
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - S-K Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Bedez M, Falgayrac G, Béhal H, Cailliau É, Delattre J, Coutel X, Olejnik C. Long-Term Follow-up After Ovariectomy Reveals Correlations Between Bone Marrow Adiposity and Trabecular Bone Quality in the Proximal Metaphysis of Tibiae in Rats. Calcif Tissue Int 2024; 115:759-770. [PMID: 39375220 PMCID: PMC11531434 DOI: 10.1007/s00223-024-01298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
This study aimed to evaluate the correlation between BMAT and bone quality, describe the long-term effects of ovariectomy on bone, and investigate BMAT's spatial distribution. Fifteen-months-old female Sprague‒Dawley rats were studied, comparing ovariectomized (OVX, n = 22) and sham-operated (SHAM, n = 11) groups at 6 months. Tibias were analyzed for bone microarchitecture, BMAT (microcomputed tomography), mineral parameters (quantitative backscattered electron imaging), and bone composition (Raman microspectroscopy). The OVX tibias showed severe trabecular bone loss (lower bone volume/total volume, p < 0.001) with increased BMAT (higher adipose volume per marrow volume, p < 0.001), decreased mineral content (lower calcium concentration, p < 0.001), and altered organic components (lower mineral/matrix ratio in new bone, p = 0.03 trabecular surface, p < 0.001 trabecular core). When the data are pooled over both groups (SHAM and OVX), the adipose volume/marrow volume ratio was negatively correlated with bone volume/total volume (r = - 0.79, p < 0.001) and mineral/matrix ratio (r = - 0.37, p = 0.04 trabecular surface; r = - 0.65, p < 0.001 trabecular core) and positively correlated with crystallinity (r = 0.55, p = 0.001 trabecular surface; r = 0.49, p = 0.006 trabecular core). The mineral/matrix ratio of trabecular surface new bone was strongly negatively correlated with the adipose compartment nearest to the bone surface. These findings suggest mechanisms underlying BMAT's role in bone resorption.
Collapse
Affiliation(s)
- Maxime Bedez
- MABLab - Marrow Adiposity & Bone Laboratory, Faculté de Chirurgie Dentaire de Lille, Univ. Lille, Lille, CHU Lille, Univ. Littoral Côte d'Opale, ULR 4490, Pl. de Verdun, Lille, France.
| | - Guillaume Falgayrac
- MABLab - Marrow Adiposity & Bone Laboratory, Faculté de Chirurgie Dentaire de Lille, Univ. Lille, Lille, CHU Lille, Univ. Littoral Côte d'Opale, ULR 4490, Pl. de Verdun, Lille, France
| | - Hélène Béhal
- Biostatistics Department, CHU Lille, 59000, Lille, France
| | | | - Jérôme Delattre
- MABLab - Marrow Adiposity & Bone Laboratory, Faculté de Chirurgie Dentaire de Lille, Univ. Lille, Lille, CHU Lille, Univ. Littoral Côte d'Opale, ULR 4490, Pl. de Verdun, Lille, France
| | - Xavier Coutel
- MABLab - Marrow Adiposity & Bone Laboratory, Faculté de Chirurgie Dentaire de Lille, Univ. Lille, Lille, CHU Lille, Univ. Littoral Côte d'Opale, ULR 4490, Pl. de Verdun, Lille, France
| | - Cécile Olejnik
- MABLab - Marrow Adiposity & Bone Laboratory, Faculté de Chirurgie Dentaire de Lille, Univ. Lille, Lille, CHU Lille, Univ. Littoral Côte d'Opale, ULR 4490, Pl. de Verdun, Lille, France
| |
Collapse
|
6
|
Marcantonio CC, Perles GH, Lopes MES, Soares LFF, da Costa PI, Cerri PS, Cirelli JA. Influence of anti-sclerostin monoclonal antibody in the repair of post-extraction sockets of ovariectomized rats. Arch Oral Biol 2024; 162:105962. [PMID: 38569446 DOI: 10.1016/j.archoralbio.2024.105962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This study assessed the impact of an anti-sclerostin monoclonal antibody (Scl-Ab)-based osteoporosis drug on the post-extraction alveolar repair of ovariectomized rats. DESIGN Fifteen female rats were randomly distributed into three groups: CTR (healthy animals), OST (osteoporosis induced by ovariectomy), and OST+Scl-Ab (osteoporosis induction followed by Scl-Ab treatment). Ovariectomy or sham surgery was performed 30 days before baseline, and Scl-Ab or a vehicle was administered accordingly in the groups. After seven days, all rats underwent the first lower molar extraction and were euthanized 15 days later. Computed microtomography, histological analysis, and collagen content measurement were performed on post-extraction sockets and intact mandibular and maxillary bone areas. RESULTS Microtomographic analyses of the sockets and mandibles did not reveal significant differences between groups on bone morphometric parameters (p > 0.05), while maxillary bone analyses resulted in better maintenance of bone architecture in OST+Scl-Ab, compared to OST (p < 0.05). Descriptive histological analysis and polarization microscopy indicated better post-extraction socket repair characteristics and collagen content in OST+Scl-Ab compared to OST (p < 0.05). CONCLUSIONS Scl-Ab-based medication did not accelerate alveolar bone formation but exhibited better post-extraction repair characteristics, and collagen content compared to ovariectomized animals only.
Collapse
Affiliation(s)
- Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Gabriel Henrique Perles
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Lélio Fernando Ferreira Soares
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Paulo Inácio da Costa
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Paulo Sergio Cerri
- Department of Morphology, Laboratory of Histology and Embryology, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
7
|
Liao Y, Xu J, Zheng Z, Fu R, Zhang X, Gan S, Yang S, Hou C, Xu HHK, Chen W. Novel Nonthermal Atmospheric Plasma Irradiation of Titanium Implants Promotes Osteogenic Effect in Osteoporotic Conditions. ACS Biomater Sci Eng 2024; 10:3255-3267. [PMID: 38684056 DOI: 10.1021/acsbiomaterials.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Osteoporosis is a metabolic disease characterized by bone density and trabecular bone loss. Bone loss may affect dental implant osseointegration in patients with osteoporosis. To promote implant osseointegration in osteoporotic patients, we further used a nonthermal atmospheric plasma (NTAP) treatment device previously developed by our research group. After the titanium implant (Ti) is placed into the device, the working gas flow and the electrode switches are turned on, and the treatment is completed in 30 s. Previous studies showed that this NTAP device can remove carbon contamination from the implant surface, increase the hydroxyl groups, and improve its wettability to promote osseointegration in normal conditions. In this study, we demonstrated the tremendous osteogenic enhancement effect of NTAP-Ti in osteoporotic conditions in rats for the first time. Compared to Ti, the proliferative potential of osteoporotic bone marrow mesenchymal stem cells on NTAP-Ti increased by 180% at 1 day (P = 0.004), while their osteogenic differentiation increased by 149% at 14 days (P < 0.001). In addition, the results indicated that NTAP-Ti significantly improved osseointegration in osteoporotic rats in vivo. Compared to the Ti, the bone volume fraction (BV/TV) and trabecular number (Tb.N) values of NTAP-Ti in osteoporotic rats, respectively, increased by 18% (P < 0.001) and 25% (P = 0.007) at 6 weeks and the trabecular separation (Tb.Sp) value decreased by 26% (P = 0.02) at 6 weeks. In conclusion, this study proved a novel NTAP irradiation titanium implant that can significantly promote osseointegration in osteoporotic conditions.
Collapse
Affiliation(s)
- Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyuan Zhang
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, Maryland 21201, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Li L, Liu Y, Qian X, Zhou L, Fan Y, Yang X, Luo K, Chen Y. Modulating the phenotype and function of bone marrow-derived macrophages via mandible and femur osteoblasts. Int Immunopharmacol 2024; 132:112000. [PMID: 38583238 DOI: 10.1016/j.intimp.2024.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Various studies have been investigated the phenotypic and functional distinctions of craniofacial and long bone cells involved in bone regeneration. However, the process of bone tissue regeneration after bone grafting involves complicated interactions between different cell types at the donor-recipient site. Additionally, differences in alterations of the immune microenvironment at the recipient site remained to be explored. Osteoblasts (OBs) and macrophages (MØ) play essential roles in the bone restoration and regeneration processes in the bone and immune systems, respectively. The modulation of MØ on OBs has been extensively explored in the literature, whereas limited research has been conducted on the influence of OBs on the MØ phenotype and function. In the present study, OBs from the mandible and femur (MOBs and FOBs, respectively) promoted cranial defect regeneration in rats, with better outcomes noted in the MOBs-treated group. After MOBs transplantation, a significant inflammatory response was induced, accompanied by an early increase in IL-10 secretion. And then, there was an upregulation in M2-MØ-related cell markers and inflammatory factor expression. Condition media (CM) of OBs mildly inhibited apoptosis in MØ, enhanced their migration and phagocytic functions, and concurrently increased iNOS and Arg1 expression, with MOB-CM demonstrating more pronounced effects compared to FOB-CM. In conclusion, our investigation showed that MOBs and FOBs have the ability to modulate MØ phenotype and function, with MOBs exhibiting a stronger regulatory potential. These findings provide a new direction for improving therapeutic strategies for bone regeneration in autologous bone grafts from the perspective of the immune microenvironment.
Collapse
Affiliation(s)
- Li Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Yijuan Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Xueshen Qian
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Ling Zhou
- Fujian Provincial Governmental Hospital, Fuzhou 350003, People's Republic of China
| | - Yujie Fan
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, People's Republic of China
| | - Xue Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China.
| | - Yuling Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China.
| |
Collapse
|
9
|
Pal S, Sharma S, Porwal K, Tiwari MC, Khan YA, Kumar S, Kumar N, Chattopadhyay N. The Role of Osteogenic Effect and Vascular Function in Bone Health in Hypertensive Rats: A Study of Anti-hypertensive and Hemorheologic Drugs. Calcif Tissue Int 2024; 114:295-309. [PMID: 38102510 DOI: 10.1007/s00223-023-01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Vascular dysfunction contributes to the development of osteopenia in hypertensive patients, as decreased blood supply to bones results in tissue damage and dysfunction. The effect of anti-hypertensive medicines on bone mass in hypertensive individuals is inconclusive because of the varied mechanism of their action, and suggests that reducing blood pressure (BP) alone is insufficient to enhance bone mass in hypertension. Pentoxifylline (PTX), a hemorheological drug, improves blood flow by reducing blood viscosity and angiogenesis, also has an osteogenic effect. We hypothesized that improving vascular function is critical to increasing bone mass in hypertension. To test this, we screened various anti-hypertensive drugs for their in vitro osteogenic effect, from which timolol and hydralazine were selected. In adult female spontaneously hypertensive rats (SHRs), timolol and hydralazine did not improve vascular function and bone mass, but PTX improved both. In female SHR animals, PTX restored bone mass, strength and mineralization, up to the level of normotensive control rats. In addition, we observed lower blood vasculature in the femur of adult SHR animals, and PTX restored them. PTX also restored the bone vascular and angiogenesis parameters that had been impaired in OVX SHR compared to sham SHR. This study demonstrates the importance of vascular function in addition to increased bone mass for improving bone health as achieved by PTX without affecting BP, and suggests a promising treatment option for osteoporosis in hypertensive patients, particularly at-risk postmenopausal women.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Shivani Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Mahesh C Tiwari
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Yasir A Khan
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India.
| |
Collapse
|
10
|
Kim S, Lee H, Hong J, Kim SHL, Kwon E, Park TH, Hwang NS. Bone-Targeted Delivery of Cell-Penetrating-RUNX2 Fusion Protein in Osteoporosis Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301570. [PMID: 37574255 PMCID: PMC10558633 DOI: 10.1002/advs.202301570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/20/2023] [Indexed: 08/15/2023]
Abstract
The onset of osteoporosis leads to a gradual decrease in bone density due to an imbalance between bone formation and resorption. To achieve optimal drug efficacy with minimal side effects, targeted drug delivery to the bone is necessary. Previous studies have utilized peptides that bind to hydroxyapatite, a mineral component of bone, for bone-targeted drug delivery. In this study, a hydroxyapatite binding (HAB) tag is fused to 30Kc19α-Runt-related transcription factor 2 (RUNX2) for bone-targeting. This recombinant protein can penetrate the nucleus of human mesenchymal stem cells (hMSCs) and act as a master transcription factor for osteogenesis. The HAB tag increases the binding affinity of 30Kc19α-RUNX2 to mineral deposition in mature osteoblasts and bone tissue, without affecting its osteogenic induction capability. In the osteoporosis mouse model, intravenous injection of HAB-30Kc19α-RUNX2 results in preferential accumulation in the femur and promotes bone formation while reducing toxicity in the spleen. These findings suggest that HAB-30Kc19α-RUNX2 may be a promising candidate for bone-targeted therapy in osteoporosis.
Collapse
Affiliation(s)
- Seoyeon Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Haein Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jiyeon Hong
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seung Hyun L. Kim
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Euntaek Kwon
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- BioMAX/N‐Bio InstituteInstitute of BioEngineerigSeoul National University1 Gwanakro, Gwanak‐guSeoul08826Republic of Korea
- Department of Nutritional Science and Food ManagementEwha Womans University52, Ewhayeodae‐gil, Seodaemun‐guSeoul03760Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- BioMAX/N‐Bio InstituteInstitute of BioEngineerigSeoul National University1 Gwanakro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
11
|
Park KM, Lee N, Kim J, Kim HS, Park W. Preventive effect of teriparatide on medication-related osteonecrosis of the jaw in rats. Sci Rep 2023; 13:15518. [PMID: 37726385 PMCID: PMC10509150 DOI: 10.1038/s41598-023-42607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
This study aimed to investigate the preventive effect of teriparatide (TPD) administration on medication-related osteonecrosis of the jaw (MRONJ) before tooth extraction due to periodontal lesions in bilaterally ovariectomized female rats treated with zoledronic acid. Thirty skeletally mature Sprague-Dawley rats were randomly divided into three groups: control (CONT, n = 10), zoledronic acid (ZA, n = 10), and zoledronic acid and teriparatide (ZA-TPD, n = 10). The rats were sacrificed 8 weeks after tooth extraction. Micro-computed tomography analysis of the tibia showed that bone mineral density was highest in the CONT, followed by that in the ZA and ZA-TPD groups (CONT/ZA, p = 0.009; CONT/ZA-TPD, p < 0.001; ZA/ZA-TPD, p < 0.001). In the trabecular bone analysis of the extraction site, significant differences in specific bone surface (CONT/ZA, p = 0.010; CONT/ZA-TPD, p = 0.007; ZA/ZA-TPD, p = 0.002) and trabecular thickness (CONT/ZA-TPD, p = 0.002; ZA/ZA-TPD, p = 0.002) were observed. Histological analyses of the extraction sites revealed characteristic MRONJ lesions in the ZA group. Osteonecrosis, inflammatory cells, and sequestrum were less frequently observed in the ZA-TPD group than in the ZA group. In conclusion, TPD administration before tooth extraction helped reduce the occurrence of MRONJ in rats treated with zoledronic acid, confirming its preventative effects.
Collapse
Affiliation(s)
- Kyeong-Mee Park
- Department of Advanced General Dentistry, Human Identification Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Namkwon Lee
- Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jaeyeon Kim
- Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Wonse Park
- Department of Advanced General Dentistry, Human Identification Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Ali M, Lee Y, Ha B, Jung J, Lee BY, Kim DS, Lee MY, Kim YS. The bone-protective benefits of amino-conjugated calcium in an ovariectomized (OVX) rat model. Life Sci 2023; 328:121927. [PMID: 37437650 DOI: 10.1016/j.lfs.2023.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Low bone density, fragility, and microarchitectural disintegration are the symptoms of osteoporosis. An imbalance between bone growth and resorption can lead to osteoporosis. This study evaluated the effects of amino-calcium (AC) on bone protection in ovariectomized control group (NC) rats. Amino-calcium (AC) was characterized using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), and nuclear magnetic resonance spectroscopy analyses (NMR). After determining the biocompatibility of amino-calcium (AC) with MC3T3-E1 cells, alkaline phosphatase staining revealed significant changes on day 7. Three of the four groups underwent ovariectomy, whereas one group received a placebo. On micro-computed tomography, in vivo, data showed increased bone volume fraction in the femoral head and shaft areas in the amino-calcium (AC) group. Hematoxylin and eosin staining showed a bone mass and architectural protection in the amino-calcium (AC) group compared with the calcium carbonate and OVX control group. RNA sequencing analysis revealed high expression of osteogenesis-related genes in MC3T3-E1 cells. RNA sequencing revealed a significant fold change in the expression of integrin-binding sialoprotein (IBSP), bone gamma-carboxyglutamate proteins 1 and 2(BGLAP1 and BGLAP2), and periostin (POSTN). The study concluded that supplementing the OVX rats with calcium enhanced bone protection.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Youri Lee
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Bin Ha
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Jaeeun Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Byung-Yeol Lee
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; BTN Co., Ltd., 407ho, Entrepreneurship Hall, 22 Soonchunhyang-ro, Asan, Chungnam 31538, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
13
|
Shaul J, Hill R, Bruder S, Tilton A, Howe J. Triphasic calcium-based implant material resorbs and is replaced with bone in ovariectomized rats with or without bisphosphonate treatment. J Orthop Res 2022; 40:2271-2280. [PMID: 34935182 DOI: 10.1002/jor.25255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/08/2021] [Accepted: 12/19/2021] [Indexed: 02/04/2023]
Abstract
This study evaluated the effects of AGN1, a triphasic calcium-based material, and alendronate (A) on distal femoral defect bone repair in ovariectomized (OVX) rats. Of 106 rats, 92 were OVX'ed at 12 weeks old and underwent a 12-week induction period. Animals were randomized into five groups: OVX Control, OVX Alendronate Control, Normal Control, OVX Implantation, OVX Alendronate + Implantation. OVX Alendronate Control and OVX Alendronate + Implantation groups received alendronate injection twice weekly (0.015 mg/kg) from 6 weeks until sacrifice. Twelve weeks after OVX, 2.5 mm diameter by 4.0 mm long cylindrical, bilateral distal femoral defects were created in experimental animals. One defect was left empty, and one filled with AGN1. Dual-energy X-ray absorptiometry, microcomputed tomography, and histomorphometry were performed 0-, 6-, 12-, and 18-week postdefect/implantation surgery (N = 6-8/group). Results showed OVX induced significant and progressive bone loss which alendronate prevented. Histomorphometry demonstrated rapid AGN1 resorption: AGN1 resorbed from 95.1 ± 0.7% filling of the implant site (week 0) to 1.3 ± 1.0% (18 weeks) with no significant alendronate effect (1.6 ± 1.1%, 18 weeks). Bone formation in empty defects consisted primarily of cortical wall healing, whereas AGN1 implants demonstrated cortical wall healing with new trabecular bone filling the subcortical space. Alendronate dramatically increased bone formation in empty and AGN1 defects. We conclude AGN1 is resorbed and replaced by new cortical and trabecular bone in this OVX model, and alendronate did not compromise these effects.
Collapse
Affiliation(s)
| | - Ronald Hill
- AgNovos Healthcare, Rockville, Maryland, USA
| | - Scott Bruder
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - James Howe
- AgNovos Healthcare, Rockville, Maryland, USA
- Department of Orthopedic Surgery, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
14
|
Liu J, Watanabe K, Dabdoub SM, Lee BS, Kim DG. Site-specific characteristics of bone and progenitor cells in control and ovariectomized rats. Bone 2022; 163:116501. [PMID: 35872108 DOI: 10.1016/j.bone.2022.116501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
One-third of postmenopausal women experience at least one osteoporotic bone fracture in their lifetime that occurs spontaneously or from low-impact events. However, osteoporosis-associated jaw bone fractures are extremely rare. It was also observed that jaw bone marrow stem cells (BMSCs) have a higher capacity to form mineralized tissues than limb BMSCs. At present, the underlying causes and mechanisms of variations between jaw bone and limb bone during postmenopause are largely unknown. Thus, the objective of the current study was to examine the site-specific effects of estrogen deficiency using comprehensive analysis of bone quantity and quality, and its association with characterization of cellular components of bone. Nine rats (female, 6 months old) for each bilateral sham and ovariectomy (OVX) surgery were obtained and maintained for 2 months after surgery. A hemi-mandible and a femur from each rat were characterized for parameters of volume, mineral density, cortical and trabecular morphology, and static and dynamic mechanical analysis. Another set of 5 rats (female, 9 months old) was obtained for assays of BMSCs. Following cytometry to identify BMSCs, bioassays for proliferation, and osteogenic, adipogenic, chondrogenic differentiation, and cell mitochondrial stress tests were performed. In addition, mRNA expression of BMSCs was analyzed. OVX decreased bone quantity and quality (mineral content, morphology, and energy dissipation) of femur while those of mandible were not influenced. Cellular assays demonstrated that mandible BMSCs showed greater differentiation than femur BMSCs. Gene ontology pathway analysis indicated that the mandibular BMSCs showed most significant differential expression of genes in the regulatory pathways of osteoblast differentiation, SMAD signaling, cartilage development, and glucose transmembrane transporter activity. These findings suggested that active mandibular BMSCs maintain bone formation and mineralization by balancing the rapid bone resorption caused by estrogen deficiency. These characteristics likely help reduce the risk of osteoporotic fracture in postmenopausal jawbone.
Collapse
Affiliation(s)
- Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Keiichiro Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Shareef M Dabdoub
- Division of Biostatistics and Computational Biology, Department of Periodontics, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, IA 52242, USA.
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Elghareeb MM, Elshopakey GE, Elkhooly TA, Salama B, Samy A, Bazer FW, Elmetwally MA, Almutairi MH, Aleya L, Abdel-Daim MM, Rezk S. Estradiol and zinc-doped nano hydroxyapatite as therapeutic agents in the prevention of osteoporosis; oxidative stress status, inflammation, bone turnover, bone mineral density, and histological alterations in ovariectomized rats. Front Physiol 2022; 13:989487. [PMID: 36200054 PMCID: PMC9527315 DOI: 10.3389/fphys.2022.989487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoporosis (OP) is a serious health problem, and the most popular therapeutic strategy for OP is hormone replacement (estrogen); however, it increases the risk of reproductive cancers. Hydroxyapatite (HA) nanoparticles have a similar chemical structure to the bone mineral component and can be used as a new remedy for OP. This study was designed to investigate the osteoporosis-protective potential of nano zinc hydroxyapatite (ZnHA-NPs) and/or estradiol (E2) combined therapy. A total of 35 adult female rats were assigned into five groups (n = 7): 1) control group; 2) ovariectomized group (OVX); 3) OVX received oral estradiol replacement therapy (OVX/E2); 4) OVX received ZnHA replacement therapy (OVX/ZnHA); and 5) OVX received both estradiol and ZnHA-NPs combined therapy (OVX/E2+ZnHA). After 3 months of treatment, serum bone markers and estrogen level, oxidative/antioxidant, and inflammatory cytokines were determined. Additionally, femoral expression of estrogen receptors alpha and beta (ESR1; ESR2), receptor activator of nuclear factor-kappa B (RANKL) ligand, osteoprotegerin (OPG), bone mineral density (BMD), histological alterations, and immunohistochemical expression of vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) were assessed. ALP, PINP, Ca, and P concentrations improved significantly (p < 0.05) in all treatment groups, especially in the OVX/E + ZnHA group. MDA and NO were higher in OVX rats, while SOD activity and GSH were lower (p < 0.05). E2 alone or with ZnHA-NPs restored the estimated antioxidant molecules and cytokines toward normal levels in OVX rats (p < 0.05). On the other hand, E2 and ZnHA increased OPG and OC expression in femurs while decreasing ESR1, ESR2, and NF-kB expression (p < 0.05). The combination treatment was superior in the restoration of normal femoral histoarchitecture and both cortical and trabecular BMD (p < 0.05). Overall, the combined therapy of OVX/E2+ZnHA was more effective than the individual treatments in attenuating excessive bone turnover and preventing osteoporosis.
Collapse
Affiliation(s)
- Mona M. Elghareeb
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Tarek A. Elkhooly
- Nanomedicine Research Unit, Faculty of Medicine, Delta University for Science and Technology, Belqas, Egypt
- Refractories, Ceramics, and Building Materials Department, National Research Centre, Giza, Egypt
- Department of Physics, Faculty of Science, New Mansoura University, New Mansoura City, Egypt
| | - Basma Salama
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Alaa Samy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Mohammed A Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- UMR CNRS 6249, Chrono-Environnement Laboratory, Bourgogne, Franche-Comté University, Besançon, France
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Dai F, Zhang Y, Xu D, Liu C, Cao Q, Gui L, Lu Y, Zhang Q. Effects of long term diabetogenic high fat diet on bone in ovariectomized female rats. Biotech Histochem 2022; 98:20-28. [PMID: 35762155 DOI: 10.1080/10520295.2022.2083685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A diabetogenic high fat diet (HFD) can be used to induce insulin resistance and obesity in animal models; however, its effects on bone are unknown. We investigated the effects of long term HFD on bone in ovariectomized (OVX) female rats. We used 12-week-old female rats divided randomly into four groups: sham operation (sham), sham operation with HFD (SHFD), OVX and OVX with HFD (OVX + HFD). Ovaries were removed in the OVX and OVX + HFD groups and the SHFD and OVX + HFD groups were fed a HFD for 28 weeks. Serum estrogen, testosterone, lipid, adiponectin, leptin, tartrate-resistant acid phosphatase (TRAP) and N-mid fragment of osteocalcin (N-MID-OT) levels were measured. Structure, apoptosis and specific transcription factors in bone were evaluated using pathologic, densitometric and immunohistochemical analysis. Body weight, serum leptin, TRAP and testosterone levels were increased, while serum N-MID-OT, estrogen and adiponectin levels were decreased in the SHFD, OVX and OVX + HFD groups. Expression of BCL2-associated X protein, caspase-3, matrix metalloproteinase-9 and calcitonin was increased, while bone mineral density (BMD) and content (BMC) in femurs and lumbar spine, and expression of B cell lymphoma 2, type 1 collagen and osteocalcin were decreased in the bones of the SHFD, OVX and OVX + HFD groups. All indices were greatest in the OVX + HFD group and HFD produced a detrimental effect on bone in both normal and OVX rats, which may be due to increased apoptosis in bone and increased leptin and decreased adiponectin levels in serum. The effects of HFD and OVX may be synergistic.
Collapse
Affiliation(s)
- Fang Dai
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui
| | - Yi Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Dongmei Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Chao Liu
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui
| | - Qiongqiong Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Li Gui
- The Comprehensive Laboratory, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China.,The Comprehensive Laboratory, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Qiu Zhang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui
| |
Collapse
|
17
|
Impact of Whole Body Vibration and Zoledronic Acid on Femoral Structure after Ovariectomy: Morphological Evaluation. J Clin Med 2022; 11:jcm11092441. [PMID: 35566566 PMCID: PMC9101134 DOI: 10.3390/jcm11092441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Our study aimed to evaluate the effect of whole body vibration (WBV) treatment as an non-pharmacological method of treatment for early osteopenia in ovariectomized female rats. In total, 48 female Wistar rats were assigned to two groups: sham-operated control (SHAM, n = 12) and ovariectomized (n = 36). Four weeks after ovariectomy, the animals were divided into three experimental groups (n = 12 each): ovariectomized (OVX), ovariectomized subjected to whole body vibration with acceleration level of 0.3 g (OVX + WBV), or ovariectomized subjected to i.m. injection of Zoledronic acid at a dose of 0.025 mg/kg (OVX + ZOL). After the 8th and 16th week of treatment n = 6 rats from each group were euthanized and isolated femora were subjected to histological examination of trabecular bone and analysis of the expression of collagen 1 (Col1), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-Β ligand (RANKL) involved in bone turnover. The obtained results indicated that widespread vibration therapy can provide negative outcomes such as deterioration of trabecular bone histomorphometry.
Collapse
|
18
|
Ward DL, Schroeder L, Tinius A, Niccoli S, Voth R, Lees SJ, Silcox M, Viola B, Sanzo P. Ovariectomized Rat Model and Shape Variation in the Bony Labyrinth. Anat Rec (Hoboken) 2022; 305:3283-3296. [PMID: 35103405 DOI: 10.1002/ar.24878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Postmenopausal osteoporosis is a serious concern in aging individuals, but has not been explored for its potential to alter the shape of the inner ear by way of increased remodelling in the otic capsule. The otic capsule, or bony labyrinth, is thought to experience uniquely limited remodelling after development due to high levels of osteoprotegerin. On this basis, despite the widespread remodelling that accompanies osteoporosis, we hypothesize that both the shape and volume of the semicircular canals will resist such changes. To test this hypothesis, we conducted three-dimensional geometric morphometric shape analysis on microcomputed tomographic data collected on the semicircular canals of an ovariectomized (OVX) rat model. A Procrustes ANOVA found no statistically significant differences in shape between surgery and sham groups, and morphological disparity testing likewise found no differences in shape variation. Univariate testing found no differences in semicircular volume between OVX and control groups. The range of variation in the OVX group, however, is greater than in the sham group but this difference does not reach statistical significance, perhaps because of a combination of small effect size and low sample size. This finding suggests that labyrinthine shape remains a tool for assessing phylogeny and function in the fossil record, but that it is possible that osteoporosis may be contributing to intraspecific shape variation in the bony labyrinth. This effect warrants further exploration at a microstructural level with continued focus on variables related to remodelling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Devin L Ward
- University of Toronto, Department of Anthropology, Toronto, Ontario
| | - Lauren Schroeder
- University of Toronto Mississauga, Department of Anthropology, Mississauga, Ontario
| | - Alexander Tinius
- University of Toronto, Department of Ecology & Evolutionary Biology, Toronto, Ontario
| | - Sarah Niccoli
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Riley Voth
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Simon J Lees
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Mary Silcox
- University of Toronto Scarborough, Department of Anthropology, Scarborough, Ontario
| | - Bence Viola
- University of Toronto, Department of Anthropology, Toronto, Ontario
| | - Paolo Sanzo
- Lakehead University, Northern Ontario School of Medicine and School of Kinesiology, Thunder Bay, Ontario
| |
Collapse
|
19
|
Skic A, Puzio I, Tymicki G, Kołodziej P, Pawłowska-Olszewska M, Skic K, Beer-Lech K, Bieńko M, Gołacki K. Effect of Nesfatin-1 on Rat Humerus Mechanical Properties under Quasi-Static and Impact Loading Conditions. MATERIALS 2022; 15:ma15010333. [PMID: 35009479 PMCID: PMC8746063 DOI: 10.3390/ma15010333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022]
Abstract
The investigations on the response of bone tissue under different loading conditions are important from clinical and engineering points of view. In this paper, the influence of nesfatin-1 administration on rat humerus mechanical properties was analyzed. The classical three-point bending and impact tests were carried out for three rat bone groups: control (SHO), the humerus of animals under the conditions of established osteopenia (OVX), and bones of rats receiving nesfatin-1 after ovariectomy (NES). The experiments proved that the bone strength parameters measured under various mechanical loading conditions increased after the nesfatin-1 administration. The OVX bones were most susceptible to deformation and had the smallest fracture toughness. The SEM images of humerus fracture surface in this group showed that ovariectomized rats had a much looser bone structure compared to the SHO and NES females. Loosening of the bone structure was also confirmed by the densitometric and qualitative EDS analysis, showing a decrease in the OVX bones’ mineral content. The samples of the NES group were characterized by the largest values of maximum force obtained under both quasi-static and impact conditions. The energies absorbed during the impact and the critical energy for fracture (from the three-point bending test) were similar for the SHO and NES groups. Statistically significant differences were observed between the mean Fi max values of all analyzed sample groups. The obtained results suggest that the impact test was more sensitive than the classical quasi-static three-point bending one. Hence, Fi max could be used as a parameter to predict bone fracture toughness.
Collapse
Affiliation(s)
- Anna Skic
- Department of Mechanical Engineering and Automation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland; (P.K.); (K.B.-L.); (K.G.)
- Correspondence: (A.S.); (I.P.)
| | - Iwona Puzio
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (G.T.); (M.P.-O.); (M.B.)
- Correspondence: (A.S.); (I.P.)
| | - Grzegorz Tymicki
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (G.T.); (M.P.-O.); (M.B.)
| | - Paweł Kołodziej
- Department of Mechanical Engineering and Automation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland; (P.K.); (K.B.-L.); (K.G.)
| | - Marta Pawłowska-Olszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (G.T.); (M.P.-O.); (M.B.)
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland;
| | - Karolina Beer-Lech
- Department of Mechanical Engineering and Automation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland; (P.K.); (K.B.-L.); (K.G.)
| | - Marek Bieńko
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (G.T.); (M.P.-O.); (M.B.)
| | - Krzysztof Gołacki
- Department of Mechanical Engineering and Automation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland; (P.K.); (K.B.-L.); (K.G.)
| |
Collapse
|
20
|
Körmendi S, Vecsei B, Ambrus S, Orhan K, Dobó-Nagy C. Evaluation of the effect of vitamin D3 on mandibular condyles in an ovariectomized mouse model: a micro-CT study. BMC Oral Health 2021; 21:627. [PMID: 34876086 PMCID: PMC8650511 DOI: 10.1186/s12903-021-01980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/26/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND This study aimed to investigate the effect of ovariectomy and vitamin D3 on bone microstructure; this effect was examined in three regions of interest at one femoral and two mandibular sampling sites bone in an ovariectomized mouse model. METHODS Thirty-six week-old female mice were randomly divided into three groups: 10 subjects were given oral cholecalciferol (vitamin D3) daily for 6 weeks after undergoing bilateral ovariectomy (D3 group), while 10 ovariectomized subjects (OVX) and 10 subjects who underwent a sham operation (SHAM) received peanut oil daily during the investigation. After extermination, the left hemimandible and femur were removed and scanned by micro-CT. The bone micromorphology parameters were analyzed and the BMD was calculated. RESULTS The bone volume fraction (BV/TV) was significantly lower in the trabecular bone of the mandibular condyle in the OVX group than in the SHAM and D3 groups. Also there was a significant difference between the SHAM and D3 groups. The specific bone surface (BS/BV) was significantly higher in the OVX and D3 groups than in the SHAM group. Trabecular thickness (Tb.Th) was significantly higher in the SHAM group, and the trabecular bone pattern factor (Tb.Pf) was significantly higher in the OVX group than in the other two groups. Bone mineral density (BMD) of the femur and the mandible was significantly lower in the OVX group than in the SHAM and D3 groups. CONCLUSIONS Our results show that ovariectomy causes a significantly weaker bone microstructure in the mandibular condyle, where the protective effect of vitamin D3 resulted in a partial resorption.
Collapse
Affiliation(s)
- Szandra Körmendi
- Department of Prosthodontics, Semmelweis University, Szentkirályi u. 47, Budapest, 1088 Hungary
| | - Bálint Vecsei
- Department of Prosthodontics, Semmelweis University, Szentkirályi u. 47, Budapest, 1088 Hungary
| | - Szilvia Ambrus
- Department of Prosthodontics, Semmelweis University, Szentkirályi u. 47, Budapest, 1088 Hungary
| | - Kaan Orhan
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Emniyet Mah.İncitaş sokak.Sabancı Kız yurdu karşısı, 06500 Ankara, Turkey
| | - Csaba Dobó-Nagy
- Department of Oral Diagnostics, Semmelweis University, Szentkirályi u. 47, Budapest, 1088 Hungary
| |
Collapse
|
21
|
Köse D, Köse A, Halıcı Z, Çadırcı E, Tavacı T, Gürbüz MA, Maman A. Bosentan, a drug used in the treatment of pulmonary hypertension, can prevent development of osteoporosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:922-927. [PMID: 34712422 PMCID: PMC8528255 DOI: 10.22038/ijbms.2021.54152.12172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): We examined the antiosteoporotic effect of bosentan (Bose) by radiographic, histopathological, and molecular methods. Materials and Methods: Rats were divided into 4 groups of 8 rats each: one control (Sham), one osteoporosis only (OP), and two osteoporosis groups treated with Bose doses of 50 and 100 mg/kg (OP+Bose50, OP+Bose100). Six weeks later, Bose was administered for eight weeks to animals undergoing ovariectomy. The left femoral bone of the rats was evaluated in vitro after surgical removal. Bone mineral density (BMD) was analyzed by Dual-energy X-ray absorptiometry (DEXA). Endothelin 1 (ET-1), ET-A, and ET-B expressions were examined by real-time polymerase chain reaction (real time-PCR). In addition, bone tissue was evaluated histopathologically. Results: Compared with the osteoporosıs group, Bose significantly increased BMD values at both 50 and 100 mg/kg doses. ET-1 mRNA levels were significantly higher in the OP group than in the Sham group, while ET-1 mRNA levels were significantly lower in Bose treatment groups. ET-A mRNA levels were significantly lower in the OP group than in the Sham group, while ET-A mRNA levels were significantly higher in Bose treatment groups. Histopathological results supported the molecular results. Conclusion: Our study is the first to demonstrate the molecular, radiological, and histopathological effects of Bose in preventing osteoporosis in rats.
Collapse
Affiliation(s)
- Duygu Köse
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey, 905074704150
| | - Ahmet Köse
- University of Health Sciences, Faculty of Medicine, Department of Orthopedics And Traumatology, Erzurum, Turkey, 905066330520
| | - Zekai Halıcı
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey, 905323868884
| | - Elif Çadırcı
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey, 905362328001
| | - Taha Tavacı
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey, 9005059177816
| | - Muhammed Ali Gürbüz
- Faculty of Medicine, Department of Histology And Embryology Department, Atatürk University, Erzurum, Turkey, 905522265686
| | - Adem Maman
- Faculty of Medicine, Department of Nuclear Medicine, Atatürk University, Erzurum, Turkey, 905063661925
| |
Collapse
|
22
|
Chatterjee M, Faot F, Correa C, Kerckhofs J, Vandamme K. Is the Jaw Bone Micro-Structure Altered in Response to Osteoporosis and Bisphosphonate Treatment? A Micro-CT Analysis. Int J Mol Sci 2021; 22:6559. [PMID: 34207275 PMCID: PMC8234121 DOI: 10.3390/ijms22126559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
The aim of the study was to quantify the micro-architectural changes of the jaw bone in response to ovariectomy, exposed or not to bisphosphonate treatment. A total of 47 Wistar rats were ovariectomized (OVX) or sham-operated (shOVX) and exposed to osteoporosis preventive treatment for eight weeks either with bisphosphonates (alendronate, ALN; group OVX-ALN) three days/week at a dose of 2 mg/kg or with saline solution (untreated control condition; group OVX). The bone morphometric parameters of the trabecular jaw bone were assessed using ex vivo micro-computed tomography. The regions of interest investigated in the maxilla were the inter-radicular septum of the second molar and the tuber. The regions quantified in the mandible included the three molar regions and the condyle. A one-way analysis of variance followed by pairwise comparison using Tukey's HSD and the Games-Howell test was conducted to explore significant differences between the groups. In the maxilla, OVX decreased the bone volume in the inter-radicular septum of the second molar. Bisphosphonate treatment was able to prevent this deterioration of the jaw bone. The other investigated maxillary regions were not affected by (un)treated ovariectomy. In the mandible, OVX had a significant negative impact on the jaw bone in the buccal region of the first molar and the inter-radicular region of the third molar. Treatment with ALN was able to prevent this jaw bone loss. At the condyle site, OVX significantly deteriorated the trabecular connectivity and shape, whereas preventive bisphosphonate treatment showed a positive effect on this trabecular bone region. No significant results between the groups were observed for the remaining regions of interest. In summary, our results showed that the effects of ovariectomy-induced osteoporosis are manifested at selected jaw bone regions and that bisphosphonate treatment is capable to prevent these oral bone changes.
Collapse
Affiliation(s)
- Marissa Chatterjee
- Department of Oral Health Sciences & Restorative Dentistry, KU Leuven & UZ Leuven, 3000 Leuven, Belgium; (M.C.); (F.F.); (C.C.); (J.K.)
| | - Fernanda Faot
- Department of Oral Health Sciences & Restorative Dentistry, KU Leuven & UZ Leuven, 3000 Leuven, Belgium; (M.C.); (F.F.); (C.C.); (J.K.)
- School of Dentistry, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Cassia Correa
- Department of Oral Health Sciences & Restorative Dentistry, KU Leuven & UZ Leuven, 3000 Leuven, Belgium; (M.C.); (F.F.); (C.C.); (J.K.)
- UNICAMP/Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Jente Kerckhofs
- Department of Oral Health Sciences & Restorative Dentistry, KU Leuven & UZ Leuven, 3000 Leuven, Belgium; (M.C.); (F.F.); (C.C.); (J.K.)
| | - Katleen Vandamme
- Department of Oral Health Sciences & Restorative Dentistry, KU Leuven & UZ Leuven, 3000 Leuven, Belgium; (M.C.); (F.F.); (C.C.); (J.K.)
| |
Collapse
|
23
|
Irisin Has a Protective Role against Osteoporosis in Ovariectomized Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5570229. [PMID: 33997010 PMCID: PMC8096550 DOI: 10.1155/2021/5570229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 10/27/2022]
Abstract
The reduction in estrogen levels results in a decrease in bone density at menopause. Irisin is a myokine that modulates the benefits of exercise, which may include bone health. This study was planned to examine irisin's impact in preventing osteoporosis after ovariectomy. 4 groups of female albino rats (10 rats/group): control, sham-operated, ovariectomized (OVX-control), and OVX-irisin-treated. Serum levels of bone markers [osteocalcin (OC), bone alkaline phosphatase (BALP), tartrate-resistant acid phosphatase (TRAP), calcium (Ca++), phosphorus (P)], glucose, and insulin were being measured. Body mass index, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), dry and ash femur weight, and bone contents of Ca++ and P were investigated. The femur was examined histopathologically. The OVX-control group showed an increase in serum levels of OC, BALP, TRAP, calcium, phosphorus, BMI, glucose, insulin, and HOMA-IR (P < 0.05) and a reduction in dry and ash weight of the femur, the concentration of calcium and phosphorus content in bone ash (P < 0.05). The OVX-irisin-treated group exhibited a decrease in serum levels of OC, BALP and TRAP, calcium, phosphorus, BMI, glucose, insulin, HOMA-IR (P < 0.05), and a rise in dry and ash weight of the femur, the concentration of calcium and phosphorus in bone ash (P < 0.05). Histological examination of the distal femur diaphysis of the OVX-irisin-treated group exhibited proper bone architecture and density compared with that of the OVX-control group. It is concluded that irisin treatment in the OVX rats safeguarded the regular bone architecture and normal levels of serum bone biomarkers. Irisin may be a possible novel target in the prohibition of postmenopausal osteoporosis.
Collapse
|
24
|
Liu J, Kim EK, Ni A, Kim YR, Zheng F, Lee BS, Kim DG. Multiscale characterization of ovariectomized rat femur. J Biomech 2021; 122:110462. [PMID: 33915473 DOI: 10.1016/j.jbiomech.2021.110462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Estrogen deficiency activates bone resorbing cells (osteoclasts) and to a lesser extent bone forming cells (osteoblasts), resulting in a gap between resorption and formation that leads to a net loss of bone. These cell activities alter bone architecture and tissue composition. Thus, the objective of this study is to examine whether multiscale (10-2 to 10-7 m) characterization can provide more integrated information to understand the effects of estrogen deficiency on the fracture risk of bone. This is the first study to examine the effects of estrogen deficiency on multiscale characteristics of the same bone specimen. Sprague-Dawley female rats (6 months old) were obtained for a bilateral ovariectomy (OVX) or a sham operation (sham). Micro-computed tomography of rat femurs provided bone volumetric, mineral density, and morphological parameters. Dynamic mechanical analysis, static elastic and fracture mechanical testing, and nanoindentation were also performed using the same femur. As expected, the current findings indicate that OVX reduces bone quantity (mass and bone mineral density) and quality (morphology, and fracture displacement). Additionally, they demonstrated reductions in amount and heterogeneity of tissue mineral density (TMD) and viscoelastic properties. The current results validate that multiscale characterization for the same bone specimen can provide more comprehensive insights to understand how the bone components contributed to mechanical behavior at different scales.
Collapse
Affiliation(s)
- Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Eun Kyoung Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Yong-Rak Kim
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX, USA
| | - Fengyuan Zheng
- Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Osteogenesis Differences Around Titanium Implant and in Bone Defect Between Jaw Bones and Long Bones. J Craniofac Surg 2021; 31:2193-2198. [PMID: 33136853 DOI: 10.1097/scs.0000000000006795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is to evaluate the osteogenesis around titanium implant and in bone defect or fracture in jaw bones and long bones in ovariectomized (OVX) animal models. The literature on the osteogenesis around titanium implant and in bone defect or fracture in jaw bones and long bones was reviewed with charts. Fourty-eight rats were randomly divided into OVX group with ovariectomy and SHAM (sham-surgery) group with sham surgery. Titanium implants were inserted in the right mandibles and tibiae; bone defects were created in the left mandibles and tibiae. Two-week postoperatively, mandibles and tibiae of 8 rats were harvested and examined by hematoxylin and eosin staining and histological analysis; 4-week postoperatively, all mandibles and tibiae were harvested and examined by Micro-CT and histological analysis. A total of 52 articles were included in this literature review. Tibial osteogenesis around titanium implant and in bone defect in OVX group were significantly decreased compared with SHAM group. However, osteogenesis differences in the mandible both around titanium implant and in bone defect between groups were not statistically significant. OVX-induced osteoporosis suppresses osteogenesis around titanium implant and in the bone defect or fracture in long bones significantly while has less effect on that in the jaw bones.
Collapse
|
26
|
Kim EH, Jeon YK, Pak K, Kang T, Kim KE, Kim SJ, Kim IJ, Kim K. Effect of tamoxifen with or without gonadotropin-releasing hormone analog on DXA values in women with breast cancer. Sci Rep 2021; 11:3407. [PMID: 33564017 PMCID: PMC7873035 DOI: 10.1038/s41598-021-82824-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to compare the changes in DXA values including trabecular bone score (TBS) and bone mineral density (BMD) of lumbar spine (LS) and femur according to the hormone therapies including tamoxifen (TMXF) treatment with or without gonadotropin releasing hormone analog (GnRH analog) in women with breast cancer. We enrolled 119 women with breast cancer who had undergone breast-conserving surgery or mastectomy followed by TMXF treatment for postmenopausal women (TMXF group, n = 63, 52.9%) or by combination therapy of TMXF combined with GnRH analog for premenopausal women (TMXF + GnRH group, n = 56, 47.1%) from December 2013 to December 2017. The median follow-up period was 13 months (interquartile range [IQR], 12.0–14.75) for TMXF group and 13.5 months (IQR, 12.00–16.00) for TMXF + GnRH group, respectively. Patients did not receive bone-modifying therapy. The baseline dual-energy X-ray absorptiometry (DXA) scan before breast cancer surgery and follow-up DXA during hormone therapy. Comparing the first and follow-up DXA results, BMD in LS were significantly decreased in both TMXF (P < 0.001, mean difference: − 0.06) and TMXF + GnRH (P < 0.001, mean difference: − 0.09) groups. BMD values of femoral neck (P = 0.0011, mean difference: − 0.01) and total femur (P < 0.001, mean difference: − 0.03) was significantly changed between the baseline and follow-up DXA in TMXF + RnRH group. In the TMX group, a significant changed occurred in the BMD in total femur (P < 0.001, mean difference: − 0.030) but not the BMD of femoral neck (P = 0.095, mean difference: − 0.007). Regarding TBS, no significant change was found in the TMXF (P = 0.574, mean difference: − 0.004) group, whereas there was a significant decrease in TBS in the TMXF + GnRH (P < 0.001, mean difference: − 0.02) group during follow-up. TBS is more sensitive in reflecting the bone microarchitecture changes by TMXF or GnRH agonist in breast cancer patients than BMD. This finding demonstrates that TBS can be a useful parameter to detect bone microarchitectural changes in clinical applications.
Collapse
Affiliation(s)
- Eun Heui Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Yun Kyung Jeon
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Taewoo Kang
- Busan Cancer Center (Breast Cancer Clinic) and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kyung-Eun Kim
- Busan Cancer Center (Breast Cancer Clinic) and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Seong-Jang Kim
- Department of Nuclear Medicine and Research Institute for Convergence of Biomedical Science and Technology, Yangsan Pusan National University Hospital, Yangsan, Republic of Korea
| | - In-Joo Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.
| |
Collapse
|
27
|
Só BB, Silveira FM, Llantada GS, Jardim LC, Calcagnotto T, Martins MAT, Martins MD. Effects of osteoporosis on alveolar bone repair after tooth extraction: A systematic review of preclinical studies. Arch Oral Biol 2021; 125:105054. [PMID: 33667958 DOI: 10.1016/j.archoralbio.2021.105054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE This systematic review aimed to address whether the alveolar socket repair after a tooth extraction is impacted by an osteoporotic phenotype and propose methodological observations. DESIGN A search strategy in MEDLINE/PubMed, EMBASE, Web of Science, and Scopus databases was performed. Quality assessment was carried out through the SYRCLE Risk of Bias tool. RESULTS Out of the 1147 potentially relevant records, 25 met the inclusion criteria. Most of the studies were performed in rats, and ovariectomy (OVX) was the most frequent osteoporosis induction method. Histomorphometry, micro-computed tomography (microCT), and immunohistochemistry were the main bone repair evaluation methods. Most of the included studies (88 %) presented negative impacts of osteoporosis on the alveolar socket repair. Only three studies (12 %) showed no statistical differences among groups. Overall, most of the quality assessment categories presented a high percentage of unclear risk of bias due to insufficient information in the studies. CONCLUSIONS The results indicated that an osteoporotic phenotype seems to impair alveolar socket repair after tooth extraction. However, there is still a lack of information and standardization. Therefore, further studies should consider the proposed methodological aspects regarding animal characteristics, OVX associated with a low calcium diet, waiting 8 weeks to osteoporosis induction, maxillary molars as the best option for tooth extraction, confirming and reporting OVX and osteoporosis success, and an appropriate method of repair analysis.
Collapse
Affiliation(s)
- Bruna Barcelos Só
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2492, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Felipe Martins Silveira
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, CEP: 13414-903, Piracicaba, SP, Brazil
| | - Gabriela Sauer Llantada
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2492, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Luisa Comerlato Jardim
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2492, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Thiago Calcagnotto
- Oral and Maxillofacial Surgery Department, FATEC Dental CEEO, Igrejinha, R. Independência, 290, CEP: 95650-000, RS, Brazil
| | - Marco Antonio Trevizani Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2492, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2492, CEP: 90035-003, Porto Alegre, RS, Brazil; Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, CEP: 13414-903, Piracicaba, SP, Brazil.
| |
Collapse
|
28
|
Kim DM, Shim IK, Shin MJ, Choi JH, Lee YN, Jeon IH, Kim H, Park D, Kholinne E, Koh KH. A Combination Treatment of Raloxifene and Vitamin D Enhances Bone-to-Tendon Healing of the Rotator Cuff in a Rat Model. Am J Sports Med 2020; 48:2161-2169. [PMID: 32574070 DOI: 10.1177/0363546520927015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tearing and degeneration of the rotator cuff at the tendon-to-bone junction are common in adults aged ≥50 years. Few studies have reported on the relationship between estrogen and the rotator cuff enthesis. In addition to preventing bone loss, selective estrogen receptor modulators have been shown to improve tendon and muscle quality. PURPOSE To evaluate the effects of raloxifene (RLX) and vitamin D on rotator cuff tendon-to-bone healing in a rat model. STUDY DESIGN Controlled laboratory study. METHODS A total of 29 female rats (58 shoulders) were assigned to 4 groups: (1) control group, (2) ovariectomy (OVX)-only group, (3) no RLX group (OVX and rotator cuff repair [RCR]), and (4) RLX group (OVX, RCR, and RLX). Rats that did not undergo rotator cuff tear (RCT) surgery were divided into the control and OVX-only groups according to OVX surgery. Rats that underwent RCT surgery and RCR were divided into the no RLX and RLX groups according to RLX and vitamin D administration. An estrogen-deficient state was induced by OVX at 12 weeks of age. Bone mineral density (BMD) and trabecular bone characteristics were measured by micro-computed tomography, and healing of the tendon-to-bone junction was evaluated by biomechanical testing, histomorphometry, and micro-magnetic resonance imaging (MRI). RESULTS The mean final body weight (BW; 461.6 ± 47.3 g) of the OVX-only group was significantly higher and BMD (0.25 ± 0.07 g/cm3) was significantly lower (P < .001) than the mean final BW (338.5 ± 35.1 g) and BMD (0.48 ± 0.05 g/cm3) of the control group. In contrast, the RLX group showed that the BW (369.6 ± 35.8 g) and BMD (0.41 ± 0.08 g/cm3) were not significantly different from the control group. The RLX group had a significantly higher histomorphometric total score (8.50 ± 1.05) than the no RLX group (4.83 ± 2.48). On biomechanical testing, the RLX group (29.7 ± 9.1 N) showed a significantly higher load to failure than the no RLX group (19.4 ± 8.8 N). On micro-MRI, the RLX group had a more homogeneous low signal and tendon continuity than the no RLX group. CONCLUSION The combination treatment of RLX and vitamin D prevented a decrease in local BMD (greater tuberosity of the proximal humerus) and enhanced tendon-to-bone healing of the rotator cuff in a rat model. CLINICAL RELEVANCE This study induced an estrogen-deficient state similar to the human postmenopausal state and used drugs that are actually being prescribed in a clinical situation.
Collapse
Affiliation(s)
- Dong Min Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Orthopedic Surgery, Kangnam Korea Hospital, Seoul, Republic of Korea
| | - In Kyoung Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Myung Jin Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Choi
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Na Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyojune Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dongjun Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Erica Kholinne
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Orthopedic Surgery, St Carolus Hospital, Jakarta, Indonesia
| | - Kyoung-Hwan Koh
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Watanabe K, Lewis S, Guo X, Ni A, Lee BS, Deguchi T, Kim DG. Regional variations of jaw bone characteristics in an ovariectomized rat model. J Mech Behav Biomed Mater 2020; 110:103952. [PMID: 32957244 DOI: 10.1016/j.jmbbm.2020.103952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Postmenopausal osteoporosis causes severe loss of bone quantity and quality in limb bone but has a lesser effect on jaw bone. Thus, the objective of this study was to examine whether ovariectomy (OVX) and mastication alter the regional variation of jaw bone characteristics. Sprague-Dawley female rats (6 months) were given a bilateral OVX or a sham operation (SHAM) (n = 10 for each group). After 2 months post-OVX, the hemi-mandible from each rat was dissected. A micro-computed tomography based mean, standard deviation (SD), the lower and upper 5th percentile (Low5 and High5) values of tissue mineral density (TMD) histograms were assessed for whole bone (WB), alveolar bone (AB), cortical bone (CB), and trabecular bone (TB) regions. Morphology of TB and periodontal ligament (PDL) was also obtained. Layers of AB were segmented up to 400 μm from the PDL. Mechanical properties at the tissue level were measured by nanoindentation at the same site by a single loading-unloading cycle of indentation in hydration. The AB and TB regions had significantly lower TMD Mean, Low5, and High5 but higher SD than the CB region for both sham and OVX groups (p < 0.01). TMD parameters of the OVX group rapidly increased up to 60 μm away from the PDL and were significantly higher than those of the sham group starting at 280 μm and farther in the CB region (p < 0.05). All values of morphological and nanoindentation parameters were not significantly different between sham and OVX groups (p > 0.06). Estrogen deficiency induced by OVX did not deteriorate bone characteristics including mineral density, morphology, and nanoindentation parameters in rat mandibles. Masticatory loading had an effect on the TMD parameters at the limited region of AB. These results provide insight into why osteoporosis-associated jaw bone fractures are extremely rare.
Collapse
Affiliation(s)
- Keiichiro Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Samantha Lewis
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaohan Guo
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Toru Deguchi
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Yousefzadeh N, Kashfi K, Jeddi S, Ghasemi A. Ovariectomized rat model of osteoporosis: a practical guide. EXCLI JOURNAL 2020; 19:89-107. [PMID: 32038119 PMCID: PMC7003643 DOI: 10.17179/excli2019-1990] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
Osteoporosis affects about 200 million people worldwide and is a silent disease until a fracture occurs. Management of osteoporosis is still a challenge that warrants further studies for establishing new prevention strategies and more effective treatment modalities. For this purpose, animal models of osteoporosis are appropriate tools, of which the ovariectomized rat model is the most commonly used. The aim of this study is to provide a 4-step guideline for inducing a rat model of osteoporosis by ovariectomy (OVX): (1) selection of the rat strain, (2) choosing the appropriate age of rats at the time of OVX, (3) selection of an appropriate surgical method and verification of OVX, and (4) evaluation of OVX-induced osteoporosis. This review of literature shows that (i) Sprague-Dawley and Wistar rats are the most common strains used, both responding similarly to OVX; (ii) six months of age appears to be the best time for inducing OVX; (iii) dorsolateral skin incision is an appropriate choice for initiating OVX; and (iv) the success of OVX can be verified 1-3 weeks after surgery, following cessation of the regular estrus cycles, decreased estradiol, progesterone, and uterine weight as well as increased LH and FSH levels. Current data shows that the responses of trabecular bones of proximal tibia, lumbar vertebrae and femur to OVX are similar to those in humans; however, for short-term studies, proximal tibia is recommended. Osteoporosis in rats is verified by lower bone mineral density and lower trabecular number and thickness as well as higher trabecular separation, changes that are observed at 14, 30, and 60 days post-OVX in proximal tibia, lumbar vertebrae and femur, respectively.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Wang Z, Fu M, Wang Y, Meng Q, Guan Y, Zhang Y. Injectable Carrier for Zero-Order Release of Salmon Calcitonin. ACS Biomater Sci Eng 2019; 6:485-493. [DOI: 10.1021/acsbiomaterials.9b01680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zuwei Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mian Fu
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuanpeng Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongjun Zhang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Brady RD, Wong KR, Robinson DL, Mychasiuk R, McDonald SJ, D'Cunha RA, Yamakawa GR, Sun M, Wark JD, Lee PVS, O'Brien TJ, Casillas-Espinosa PM, Shultz SR. Bone Health in Rats With Temporal Lobe Epilepsy in the Absence of Anti-Epileptic Drugs. Front Pharmacol 2019; 10:1278. [PMID: 31749702 PMCID: PMC6842946 DOI: 10.3389/fphar.2019.01278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Rationale: Epilepsy patients often exhibit reduced bone mineral density and are at an increased risk of bone fracture. Whether these bone abnormalities are due to the use of anti-epileptic drugs (AED’s) or the disease itself is unknown. For example, although decreased bone health in epilepsy patients is generally attributed to the use of AED’s, seizures can also trigger a number of physiological processes that have the potential to affect bone. Therefore, to assess whether bone abnormalities occur in epilepsy in the absence of AED’s, the current study investigated mechanical characteristics and trabecular bone morphology in rats with chronic temporal lobe epilepsy. Methods: Ten-week old male Wistar rats underwent kainic acid-induced status epilepticus (SE; n = 7) or a sham procedure (n = 9). Rats were implanted with EEG recording electrodes at nine weeks post-SE, and video-EEG was continuously recorded for one week at 10- and 22-weeks post-SE to confirm that SE rats had spontaneous seizures. Open-field testing to assess locomotion was conducted at 23-weeks post-SE. At 24-weeks post-SE, rats were euthanized and tibia were extracted to determine trabecular morphology by micro-computed tomography (µCT), while femurs were used to investigate mechanical properties via 3-point bending. Results: All post-SE rats had spontaneous seizures at 10- and 22-weeks post-SE, while none of the sham rats had seizures. µCT trabecular analysis of tibia revealed no differences in total volume, bone volume, bone volume fraction, trabecular number, or trabecular separation between post-SE or sham rats, although post-SE rats did have increased trabecular thickness. There were also no group differences in total distance travelled in the open field suggesting that activity levels did not account for the increased trabecular thickness. In addition, no differences in mechanical properties of femurs were observed between the two groups. Conclusion: There was a lack of overt bone abnormalities in rats with chronic temporal lobe epilepsy in the absence of AED treatment. Although further studies are still needed, these findings may have important implications towards understanding the source (e.g., AED treatments) of bone abnormalities in epilepsy patients.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Ryan A D'Cunha
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - John D Wark
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Lee C, Lee JH, Han SS, Kim YH, Choi YJ, Jeon KJ, Jung HI. Site-specific and time-course changes of postmenopausal osteoporosis in rat mandible: comparative study with femur. Sci Rep 2019; 9:14155. [PMID: 31578360 PMCID: PMC6775083 DOI: 10.1038/s41598-019-50554-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/12/2019] [Indexed: 12/05/2022] Open
Abstract
Although the effects of osteoporosis on the skeleton are well studied, site-specific and long-term studies on the mandible are still lacking. This study investigated the time-course changes of the bone microarchitecture in the mandibular condyle in comparison to the corresponding changes in the alveolar bone, body of the mandible, and femur. Thirty-six 11-week-old female Sprague-Dawley rats were divided into ovariectomized (OVX) (24 rats) and sham (12 rats) groups. The right femur and mandible were obtained from 6 OVX rats and 3 sham rats at 8, 12, 26, and 36 weeks after surgery, respectively. The histomorphometric analysis was performed using micro-computed tomography and histologic assessments from the (1) distal femur; (2) the alveolar bone and (3) the body of the mandible; (4) the subchondral and (5) the central region of the condyle. The Brown-Forsythe test was used to verify the assumptions for statistical analysis, and the Mann-Whitney U test was then performed. The mandibular condyle showed increased trabecular bone in both the OVX and sham groups, while the bone density was reduced in the distal femur and the mandible interradicular septum and body. When comparing the OVX group to the sham group, only the central condyle showed a significant reduction in bone density at 36 weeks. Osteoporosis behaves in different manners in different parts of the skeleton, and clinicians should be aware that patients displaying osteoporotic changes in the mandible are expected to show severely advanced bone mineral density reduction in other bones, such as the femur.
Collapse
Affiliation(s)
- Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jeong-Hee Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| | - Young Hyun Kim
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yoon-Joo Choi
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kug Jin Jeon
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hoi In Jung
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
34
|
Silva RAB, Sousa‐Pereira AP, Lucisano MP, Romualdo PC, Paula‐Silva FWG, Consolaro A, Silva LAB, Nelson‐Filho P. Alendronate inhibits osteocyte apoptosis and inflammation via
IL
‐6, inhibiting bone resorption in periapical lesions of ovariectomized rats. Int Endod J 2019; 53:84-96. [DOI: 10.1111/iej.13206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 01/29/2023]
Affiliation(s)
- R. A. B. Silva
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | | | - M. P. Lucisano
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - P. C. Romualdo
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - F. W. G. Paula‐Silva
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - A. Consolaro
- Department of Stomatology Bauru School of Dentistry University of São Paulo Bauru Brazil
| | - L. A. B. Silva
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - P. Nelson‐Filho
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| |
Collapse
|
35
|
Chanpaisaeng K, Reyes Fernandez PC, Fleet JC. Dietary calcium intake and genetics have site-specific effects on peak trabecular bone mass and microarchitecture in male mice. Bone 2019; 125:46-53. [PMID: 31078711 PMCID: PMC6604851 DOI: 10.1016/j.bone.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022]
Abstract
Trabecular bone (Tb) is used for rapid exchange of calcium (Ca) in times of physiologic need and the site-specific characteristics of Tb may explain why certain sites are more vulnerable to osteoporosis. We hypothesized that peak trabecular bone mass (PTBM) and Tb microarchitecture are differentially regulated by dietary Ca intake, genetics, or Gene-by-Diet (GxD) interactions at the distal femur and the fifth lumbar (L5) vertebra. Male mice from 62 genetically distinct lines were fed basal (0.5%) or low (0.25%) Ca diets from 4 to 12 wks of age. Afterwards, the right femur and L5 vertebra were removed and trabecular bone was analyzed by μCT. In mice fed the basal diet, bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Conn.D) were significantly higher in the L5 vertebra than femur. Femur Tb had a weaker, more rod-like structure than the L5 vertebrae while mice fed the low Ca diet developed rod-like structures at both sites. Dietary Ca restriction also caused a greater relative reduction of Tb.N and Conn.D in the femur than L5 vertebra, i.e. it was more harmful to the integrity of Tb microarchitecture in femur. Genetics was a major determinant of Tb at both sites, e.g. heritability of BV/TV on the basal diet = 0.65 (femur) and 0.68 (L5 vertebra). However, while GxD interactions altered the impact of dietary Ca restriction on Tb parameters at both sites, the effect was not uniform, e.g. some lines had site-specific responses to Ca restriction. The significance of our work is that there are site-specific effects of dietary Ca restriction and genetics that work independently and interactively to influence the attainment of PTBM and Tb microarchitecture.
Collapse
Affiliation(s)
- Krittikan Chanpaisaeng
- Department of Nutrition Science, Purdue University, USA; Interdepartmental Graduate Nutrition Program (INP), Purdue University, USA
| | - Perla C Reyes Fernandez
- Department of Nutrition Science, Purdue University, USA; Interdepartmental Graduate Nutrition Program (INP), Purdue University, USA
| | - James C Fleet
- Department of Nutrition Science, Purdue University, USA; Interdepartmental Graduate Nutrition Program (INP), Purdue University, USA.
| |
Collapse
|
36
|
Lee JH, Han SS, Lee C, Kim YH, Battulga B. Microarchitectural changes in the mandibles of ovariectomized rats: a systematic review and meta-analysis. BMC Oral Health 2019; 19:128. [PMID: 31242880 PMCID: PMC6595683 DOI: 10.1186/s12903-019-0799-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
Background This study aimed to examine radiologic microarchitectural changes in the mandibles of ovariectomized (OVX) rats through a systematic review and meta-analysis and to identify factors of the OVX rat model that influence on the bone microstructure. Methods Eligible articles were identified by searching electronic databases, including Embase, Medline, Web of Science, and KoreaMed, for articles published from January 1966 to November 2017. Two reviewers independently performed study selection, data extraction, and quality assessment. The pooled standardized mean difference (SMD) with 95% confidence intervals was calculated using a random-effects model. Subgroup analysis and meta-regression were performed to explore the effect of potential sources on the outcomes. The reliability of the results was assessed by sensitivity analysis and publication bias. Results Of 1160 studies, 16 studies (120 OVX and 120 control rats) were included in the meta-analysis. Compared to the control group, the OVX rats’ trabecular bone volume fraction (SMD = − 2.41, P < 0.01, I2 = 81%), trabecular thickness (SMD = − 1.73, P < 0.01, I2 = 73%) and bone mineral density (SMD = − 0.95, P = 0.01, I2 = 71%) displayed the bone loss consistent with osteoporosis. The trabecular separation (SMD = 1.66, P < 0.01, I2 = 51%) has widen in the OVX mandibular bone in comparison to the control group. However, the trabecular number showed no indication to detect the osteoporosis (SMD = − 0.45, P = 0.38, I2 = 76%). The meta-regression indicated that longer post-OVX periods led to greater changes in bone mineral density (β = − 0.104, P = 0.017). However, the rats’ age at OVX was not linked to bone microstructure change. Conclusions Using meta-regression and sensitivity analysis techniques, heterogeneity across the micro CT studies of OVX-induced osteoporosis was found. The major factors of heterogeneity were the region of interest and post-OVX period. Our assessment can assist in designing experiments to maximize the usefulness of OVX rat model.
Collapse
Affiliation(s)
- Jeong-Hee Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea.
| | - Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Young Hyun Kim
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Bulgan Battulga
- School of Dentistry, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
37
|
Mohebi S, Torkaman G, Bahrami F, Darbani M. Postural instability and position of the center of pressure into the base of support in postmenopausal osteoporotic and nonosteoporotic women with and without hyperkyphosis. Arch Osteoporos 2019; 14:58. [PMID: 31161413 DOI: 10.1007/s11657-019-0581-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED In postmenopausal women, thoracic hyperkyphosis affects postural instability in the sagittal plane, whereas osteoporosis affects it in the frontal plane. Decrease of hip muscle strength can be changed the center of pressure distance to the center of base of support. These results may be important to design the therapeutic exercise for decreasing the postural instability. PURPOSE In this study, we investigated the effect of bone mineral density (BMD) and thoracic kyphosis on the center of pressure (CoP) sway and its location related to the base of support (BoS). METHODS Ten young and 39 postmenopausal women voluntarily participated in this study. Postmenopausal women were divided into four groups according to the thoracic kyphosis angle (normal kyphotic < 50° ≤ hyperkyphotic) and T-score values. The isometric strength of the trunk and lower limb muscles were measured. The CoP postural sway was measured in a comfortable double stance position, and the location of the CoP was then determined related to the BoS. RESULTS In both hyperkyphotic groups (osteoporotic and normal BMD), the strength of back extension and hip adduction showed a significant decrease compared to the normal kyphotic groups. In the osteoporotic groups (hyper- and normal kyphotic), hip abduction and ankle plantar flexion were significantly weaker than those in the nonosteoporotic groups. In both hyperkyphotic groups, velocity of the CoP displacement in the anterior-posterior (AP) direction was significantly higher than that in the young group, while, in both of the osteoporotic groups, velocity of the CoP displacement in the medio-lateral (ML) direction was significantly higher than that in the young group. In postmenopausal women, hip extensor strength negatively and significantly correlated with the CoP distance to the center of the BoS. CONCLUSION It appears that thoracic hyperkyphosis affects postural instability in the AP direction and that a decrease of BMD affects postural instability in the ML direction.
Collapse
Affiliation(s)
- Sanaz Mohebi
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Giti Torkaman
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box: 1411713116, Ale-Ahmad Ave., Tehran, Iran.
| | - Fariba Bahrami
- Human Motor Control and Computational Neuroscience Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Malihe Darbani
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
38
|
Osteogenic and angiogenic characterization of mandible and femur osteoblasts. J Mol Histol 2019; 50:105-117. [PMID: 30635760 DOI: 10.1007/s10735-019-09810-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
|
39
|
Arioka M, Zhang X, Li Z, Tulu US, Liu Y, Wang L, Yuan X, Helms JA. Osteoporotic Changes in the Periodontium Impair Alveolar Bone Healing. J Dent Res 2019; 98:450-458. [PMID: 30626268 DOI: 10.1177/0022034518818456] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is associated with decreased bone density and increased bone fragility, but how this disease affects alveolar bone healing is not clear. The objective of this study was to determine the extent to which osteoporosis affects the jaw skeleton and then to evaluate possible mechanisms whereby an osteoporotic phenotype might affect the rate of alveolar bone healing following tooth extraction. Using an ovariectomized mouse model coupled with micro-computed tomographic imaging, histologic, molecular, and cellular assays, we first demonstrated that the appendicular and jaw skeletons both develop osteoporotic phenotypes. Next, we demonstrated that osteoporotic mice exhibit atrophy of the periodontal ligament (PDL) and that this atrophy was accompanied by a reduction in the pool of osteoprogenitor cells in the PDL. The paucity of PDL-derived osteoprogenitor cells in osteoporotic mice was associated with significantly slower extraction socket healing. Collectively, these analyses demonstrate that the jaw skeleton is susceptible to the untoward effects of osteoporosis that manifest as thinner, more porous alveolar bone, PDL thinning, and slower bone repair. These findings have potential clinical significance for older osteopenic patients undergoing reconstructive procedures.
Collapse
Affiliation(s)
- M Arioka
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA.,2 Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - X Zhang
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA.,3 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z Li
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA.,4 Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - U S Tulu
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Y Liu
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA.,3 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Wang
- 3 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Yuan
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - J A Helms
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
40
|
Saul D, Geisberg LK, Gehle T, Hoffmann DB, Tezval M, Sehmisch S, Komrakova M. Changes in Musculoskeletal System and Metabolism in Osteoporotic Rats Treated With Urocortin. Front Endocrinol (Lausanne) 2019; 10:400. [PMID: 31293517 PMCID: PMC6601316 DOI: 10.3389/fendo.2019.00400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/06/2019] [Indexed: 01/30/2023] Open
Abstract
Objective: In aging population, postmenopausal osteoporosis and decline of musculoskeletal function, referred to as "frailty syndrome" lead to loss of bone and muscle, causing falls, and fall-related injuries. To limit the impact of this portentous duo, simultaneous treatment of both is needed. Urocortin (UCN) has been reported to improve osteoporotic bone properties while its effect on muscle has not been addressed yet. Design and Methods: We aimed to investigate the effect of urocortin in vivo on skeletal muscle structure in osteopenic rats. Sixty Sprague-Dawley rats were divided into five groups: four were ovariectomized (OVX) and one underwent sham operation (SHAM). One ovariectomized group was left untreated (OVX), while one was treated with urocortin s.c. in 3 μg/kg body weight (bw) (OVX+UCN low), one with 30 μg/kg (OVX+UCN high), while one group was treated with estradiol orally (OVX+E: 0.2 mg/kg bw), each for 35 days. Mm. gastrocnemius, longissimus, and soleus were isolated and capillary density as well as diameters of type I and II fibers were measured. In addition, we examined the effect of UCN on tibia using biomechanical, micro-CT and ashing analysis and investigated the blood serum. Results: We demonstrated a positive effect of UCN on M. soleus, in which fiber diameter was positively influenced. The biomechanical and structural parameters of bone were not changed in UCN treated rats. The higher cholesterol, glucose and triglyceride levels in the "UCN high" group raise concern about this treatment. Conclusions: Our results portray urocortin as a substance that can be assessed for future therapeutic treatments of estrogen deficiency. New and Noteworthy: Urocortin has a positive effect on M. soleus (diameter). Urocortin raises serum cholesterol and triglyceride levels. Bone tissue was not affected by UCN.
Collapse
Affiliation(s)
- Dominik Saul
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Laura Katharina Geisberg
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Torben Gehle
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Daniel Bernd Hoffmann
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Mohammad Tezval
- Klinik für Unfallchirurgie, Sporttraumatologie und Handchirurgie, Klinikum Vest, Recklinghausen, Germany
| | - Stephan Sehmisch
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Marina Komrakova
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
- *Correspondence: Marina Komrakova ; orcid.org/0000-0002-6225-4378
| |
Collapse
|
41
|
Dereka X, Calciolari E, Donos N, Mardas N. Osseointegration in osteoporotic-like condition: A systematic review of preclinical studies. J Periodontal Res 2018; 53:933-940. [PMID: 29845622 DOI: 10.1111/jre.12566] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Osteoporosis is one of the most common skeletal disorders affecting a significant percentage of people worldwide. Research data suggested that systemic diseases such as osteoporosis could act as risk factors for osseointegration, jeopardizing the healing process and thus the predictability of dental implant success on compromised patients. It is well accepted that preclinical studies in animal models reproducing the osteoporotic condition are one of the most important stages in the research of new biomaterials and therapeutic modalities. The aim of this systematic review was to investigate whether osteoporosis compromises dental implant osseointegration in experimental osteoporotic-like conditions. A 3-stage systematic literature research was conducted in MEDLINE via OVID and EMBASE up to and including March 2017. Experimental studies reporting on dental implant osseointegration on different osteoporotic animal models were assessed. The studies had to report on the percentage of bone-to-implant contact (%BIC) as the primary outcome. ARRIVE guidelines for reporting on animal research were applied to evaluate the methodological quality and risk of bias of the studies. Fifty-seven studies met the inclusion criteria and were assessed qualitatively. The most adopted animal model was the rat. A variability of %BIC values was observed, ranging from 30% to 99% and from 26% to 94% for the healthy and osteoporotic group, respectively. The great majority (47) of the included studies concluded that estrogen deficiency significantly affects BIC values, 9 studies stated that it was not possible to observe statistical differences in BIC between ovariectomized and healthy groups and 1 study did not provide a comparison between the healthy and osteoporotic group. Owing to the great heterogeneity in implant surface, study design, observation time-points, site of implant placement and reported outcomes, a meta-analysis could not be performed. An overall high risk of bias was observed, owing to the limited information on animal housing and husbandry, baseline characteristics and health status, ethical statement and allocation to the experimental groups provided. Although the available studies seem to suggest a lower osseointegration in osteoporotic-like conditions, no robust conclusions can be drawn due to the great heterogeneity and overall low quality of the available studies. Future studies with emphasis on minimizing the possible sources of bias and evaluating osseointegration of dental implants placed into jawbones instead of long bones are warranted.
Collapse
Affiliation(s)
- X Dereka
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - E Calciolari
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - N Donos
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - N Mardas
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| |
Collapse
|
42
|
Hua Y, Bi R, Zhang Y, Xu L, Guo J, Li Y. Different bone sites-specific response to diabetes rat models: Bone density, histology and microarchitecture. PLoS One 2018; 13:e0205503. [PMID: 30346963 PMCID: PMC6197850 DOI: 10.1371/journal.pone.0205503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Diabetes mellitus (DM) is the most common metabolic disorder that is characterized by hyperglycemia, it can be categorized by T1DM and T2DM. T1DM is also reported to cause bone loss. However, most reports regarding this aspect of T1DM have only investigated a single site; a comparison of bone loss from different areas of the body is still lacking. METHODS Thirty-five 12-week-old Sprague Dawley® (SD) rats were separated to seven groups. Five rats were euthanized without any surgery at 0 weeks for histological examination and determination of baseline characteristics. In 15 of the rats, DM was induced via Streptozotocin (STZ)-injection, and they were separated to 3 groups (4 weeks, 8 weeks and 12 weeks after STZ-injection). The remaining 15 rats were used as the control group (4 weeks, 8 weeks and 12 weeks after saline-injection). We tested bone-mass loss at four skeletal sites, the tibia, the femur greater trochanter, the spine, and the mandibular bones using micro-computed tomography (CT) and histological tests. RESULTS Tibia was influenced the most obvious(BV/TV decreased by 27.3%, 52.5%, and 81.2% at 4 weeks, 8 weeks, and 12 weeks, respectively. p<0.05). In contrast, the other three sites were influenced to a lesser extent and bone loss became prominent at a later time point according to the histological and micro-CT tests(Femur: BV/TV did not decrease significantly at the first month or second month. However, and decreased by 49.4% at the third month, P<0.05. Mandible: the BV/TV only decreased by 6.5% at 1 month after STZ-injection. There was still a significant difference between the second and third months. The BV/TV decreased by 47.0% and 68.1% at 2 months and 3 months, respectively, (p<0.05) Spine: the BV/TV only decreased by 6.7%. However, significant change was observed in the spine at the second month and third month after STZ injection. The BV/TV decreased by 45.4% and 64.3%, respectively, p<0.05). CONCLUSION The results indicate that T1DM can severely influence the bone structure of the 4 skeletal sites. Further, areas with dense trabecular bones were influenced less and at a later time point in comparison to the tibial region. CLINICAL RELEVANCE Our research can serve as a guide to help increase the success rate of implant treatment, and help decrease the fracture risk in different bone types with greater accuracy.
Collapse
Affiliation(s)
- Yunwei Hua
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Luchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaoyang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
43
|
Shangguan Y, Wen Y, Tan Y, Qin J, Jiang H, Magdalou J, Chen L, Wang H. Intrauterine Programming of Glucocorticoid-Insulin-Like Growth Factor-1 Axis-Mediated Developmental Origin of Osteoporosis Susceptibility in Female Offspring Rats with Prenatal Caffeine Exposure. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2863-2876. [PMID: 30273601 DOI: 10.1016/j.ajpath.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
Epidemiologic investigations suggest that excessive intake of caffeine during pregnancy is one of the risk factors for osteoporosis in adult offspring. However, the phenomena and mechanisms have remained obscure. This study found that prenatal caffeine exposure (PCE) leads to persistent bone dysplasia in gestational day 20 and postnatal week 12 offspring rats and increases the susceptibility to osteoporosis in postnatal week 28 offspring rats. In the embryonic period, PCE increases the concentration of serum corticosterone and inhibits the expression of insulin-like growth factor-1 (IGF1) and osteogenic differentiation genes. After birth, the recovery of IGF1 expression in PCE offspring is unable to completely compensate osteogenic function, and chronic stress can lead to a further decrease in IGF1 expression. In vitro experiments found that corticosterone instead of caffeine restrains mineralized nodule formation and osteoblast differentiation by inhibiting IGF1 expression. The corticosterone inhibits H3K9 and H3K14 histone acetylation of IGF1 in osteoblasts through glucocorticoid receptor and CCAAT and enhancer binding protein α, respectively. In conclusion, glucocorticoid instead of caffeine inhibits bone IGF1 expression via glucocorticoid receptor and CCAAT and enhancer binding protein α and mediates the PCE-induced bone dysplasia and bone mass reduction in offspring fetal rats, which may contribute to osteoporosis susceptibility in adulthood.
Collapse
Affiliation(s)
- Yangfan Shangguan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, People's Republic of China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, People's Republic of China
| | - Yang Tan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, People's Republic of China
| | - Jun Qin
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, People's Republic of China
| | - Hongqiang Jiang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, People's Republic of China
| | - Jacques Magdalou
- UMR 7561 CNRS-Université de Lorraine, Faculté de Médicine, Vandoeuvre-lès-Nancy, France
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, People's Republic of China.
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, People's Republic of China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
44
|
Romualdo PC, Cunha NBFF, Leoni GB, Sousa-Neto MD, Consolaro A, de Queiroz AM, da Silva RAB, da Silva LAB, Nelson-Filho P. The effect of ovariectomy and 2 antiresorptive therapeutic agents on bone response in rats: A 3-dimensional imaging analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 126:218-225. [PMID: 29748038 DOI: 10.1016/j.oooo.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/14/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate bone mineral density (BMD) and microarchitecture in femurs and maxillary bones of ovariectomized (OVX) rats treated or not treated with alendronate (ALD) or odanacatib (ODN). STUDY DESIGN Twenty rats were divided into groups: SHAM, OVX, OVX/ALD, and OVX/ODN. After 12 weeks, the femurs and maxillae were removed and subjected to 3-dimensional analysis by micro-computed tomography. Results were analyzed with 1-way analysis of variance and Tukey's post hoc test (α = 0.05). RESULTS OVX decreased maxillary and femoral BMD and altered femoral microarchitecture (P < .05). The drugs increased BMD of both types of bones, but only ALD maintained the phenotype similar to the SHAM group. The action of ALD was limited to the femoral trabecular separation (Tb.Sp). OVX and the drugs had no effect on the microarchitecture of the maxilla (P > .05). CONCLUSIONS ALD and ODN therapy increased BMD in both bones after ovariectomy. ALD was more successful than ODN in preserving the morphology of bone similar to the SHAM group. ALD maintained the phenotype for Tb.Sp in the femur, but ODN did not. In the maxillae, neither ovariectomy nor the 2 antiresorptive drugs had significant effects on microarchitecture.
Collapse
Affiliation(s)
- Priscilla Coutinho Romualdo
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | - Graziela Bianchi Leoni
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alberto Consolaro
- Department of Oral Pathology, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Alexandra Mussolino de Queiroz
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raquel Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lea Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
45
|
Vinel A, Coudert AE, Buscato M, Valera MC, Ostertag A, Katzenellenbogen JA, Katzenellenbogen BS, Berdal A, Babajko S, Arnal JF, Fontaine C. Respective role of membrane and nuclear estrogen receptor (ER) α in the mandible of growing mice: Implications for ERα modulation. J Bone Miner Res 2018; 33:1520-1531. [PMID: 29624728 PMCID: PMC6563159 DOI: 10.1002/jbmr.3434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Estrogens play an important role in bone growth and maturation as well as in the regulation of bone turnover in adults. Although the effects of 17β-estradiol (E2) are well documented in long bones and vertebrae, little is known regarding its action in the mandible. E2 actions could be mediated by estrogen receptor (ER) α or β. ERs act primarily as transcriptional factors through two activation functions (AFs), AF1 and AF2, but they can also elicit membrane-initiated steroid signaling (MISS). The aim of the present study was to define ER pathways involved in E2 effects on mandibular bone. Using mice models targeting ERβ or ERα, we first show that E2 effects on mandibular bone are mediated by ERα and do not require ERβ. Second, we show that nuclear ERαAF2 is absolutely required for all the actions of E2 on mandibular bone. Third, inactivation of ERαMISS partially reduced the E2 response on bone thickness and volume, whereas there was no significant impact on bone mineral density. Altogether, these results show that both nuclear and membrane ERα are requested to mediate full estrogen effects in the mandible of growing mice. Finally, selective activation of ERαMISS is able to exert an effect on alveolar bone but not on the cortical compartment, contrary to its protective action on femoral cortical bone. To conclude, these results highlight similarities but also specificities between effects of estrogen in long bones and in the mandible that could be of interest in therapeutic approaches to treat bone mass reduction. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alexia Vinel
- INSERM-U 1048, I2MC, University of Toulouse 3, Toulouse, France
| | - Amelie E Coudert
- Molecular Oral Pathophysiology Team, Centre de Recherche des Cordeliers, INSERM-U 1138, University of Paris-Diderot, Paris, France
| | - Melissa Buscato
- INSERM-U 1048, I2MC, University of Toulouse 3, Toulouse, France
| | | | - Agnès Ostertag
- UMR1132, BIOSCAR, University of Paris-Diderot, Paris, France
| | | | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ariane Berdal
- Molecular Oral Pathophysiology Team, Centre de Recherche des Cordeliers, INSERM-U 1138, University of Paris-Diderot, Paris, France
| | - Sylvie Babajko
- Molecular Oral Pathophysiology Team, Centre de Recherche des Cordeliers, INSERM-U 1138, University of Paris-Diderot, Paris, France
| | | | | |
Collapse
|
46
|
Chen CH, Wang L, Serdar Tulu U, Arioka M, Moghim MM, Salmon B, Chen CT, Hoffmann W, Gilgenbach J, Brunski JB, Helms JA. An osteopenic/osteoporotic phenotype delays alveolar bone repair. Bone 2018; 112:212-219. [PMID: 29704698 DOI: 10.1016/j.bone.2018.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/10/2018] [Accepted: 04/21/2018] [Indexed: 12/27/2022]
Abstract
Aging is associated with a function decline in tissue homeostasis and tissue repair. Aging is also associated with an increased incidence in osteopenia and osteoporosis, but whether these low bone mass diseases are a risk factor for delayed bone healing still remains controversial. Addressing this question is of direct clinical relevance for dental patients, since most implants are performed in older patients who are at risk of developing low bone mass conditions. The objective of this study was to assess how an osteopenic/osteoporotic phenotype affected the rate of new alveolar bone formation. Using an ovariectomized (OVX) rat model, the rates of tooth extraction socket and osteotomy healing were compared with age-matched controls. Imaging, along with molecular, cellular, and histologic analyses, demonstrated that OVX produced an overt osteoporotic phenotype in long bones, but only a subtle phenotype in alveolar bone. Nonetheless, the OVX group demonstrated significantly slower alveolar bone healing in both the extraction socket, and in the osteotomy produced in a healed extraction site. Most notably, osteotomy site preparation created a dramatically wider zone of dying and dead osteocytes in the OVX group, which was coupled with more extensive bone remodeling and a delay in the differentiation of osteoblasts. Collectively, these analyses demonstrate that the emergence of an osteoporotic phenotype delays new alveolar bone formation.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Craniofacial Research Center, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan 33305, Taiwan; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liao Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - U Serdar Tulu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masaki Arioka
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Melika Maghazeh Moghim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; University College London Medical School, University College London, London WC1E 6BT, UK
| | - Benjamin Salmon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Paris Descartes University - Sorbonne Paris Cité, EA 2496 - Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine Department, Bretonneau Hospital, HUPNVS, AP-HP, Paris, France
| | - Chien-Tzung Chen
- Craniofacial Research Center, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan 33305, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
| | - Waldemar Hoffmann
- Nobel Biocare Services AG P.O. Box, CH-8058 Zürich-Flughafen, Switzerland
| | - Jessica Gilgenbach
- Nobel Biocare Services AG P.O. Box, CH-8058 Zürich-Flughafen, Switzerland
| | - John B Brunski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Romualdo PC, Lucisano MP, Paula-Silva FWG, Leoni GB, Sousa-Neto MD, Silva RAB, Silva LAB, Nelson-Filho P. Ovariectomy Exacerbates Apical Periodontitis in Rats with an Increase in Expression of Proinflammatory Cytokines and Matrix Metalloproteinases. J Endod 2018; 44:780-785. [PMID: 29550006 DOI: 10.1016/j.joen.2018.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The aim of this study was to evaluate the gene expression of proinflammatory cytokines, matrix metalloproteinases (MMPs), and cathepsin K in apical periodontitis (AP) and the volume of lesions in ovariectomized and sham-operated rats. METHODS Twenty 12-week-old female Wistar rats were subjected to ovariectomy (OVX) or sham surgery. After 9 weeks, access cavities were prepared in the maxillary and mandibular first molars, pulp tissue was removed, and canals were exposed to the oral environment during 21 days for the induction of AP. The groups were as follows: sham, OVX, sham+AP, and OVX+AP. Animals were euthanized, and blocks containing the maxillary first molar and the surrounding bone were removed for quantification of proinflammatory cytokines cathepsin K and MMP genes by real-time polymerase chain reaction. The hemimandibles containing the mandibular first molars were used for analysis of the AP lesion volume by micro-computed tomographic imaging. RESULTS AP in OVX rats showed an increased expression of interleukin 1 beta, tumor necrosis factor alpha, interleukin 6, MMP-8, and MMP-13 (P < .05). OVX alone, without AP induction, did not affect the expression of the evaluated genes. Additionally, AP induced an increase in cathepsin K expression, without significant differences between AP in the sham and OVX groups (P > .05). Micro-computed tomographic imaging showed a significantly greater AP lesion mean volume in OVX compared with sham animals (P < .05). CONCLUSIONS AP lesions in ovariectomized rats are larger and have an increased expression of proinflammatory cytokines and MMPs, indicating that the infection combined with ovariectomy has an important role in the regulation of these signaling molecules and enzymes during the development of AP. Based on that, it may be assumed that the hypoestrogenic condition aggravates inflammation and degradation of extracellular matrix components in AP, which may provide insight into understanding the development of AP in female postmenopausal patients.
Collapse
Affiliation(s)
- Priscilla Coutinho Romualdo
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Marília P Lucisano
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco Wanderley G Paula-Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Graziela B Leoni
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Manoel D Sousa-Neto
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raquel Assed B Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lea Assed B Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
48
|
Piasecki J, Ireland A, Piasecki M, Cameron J, McPhee JS, Degens H. The strength of weight-bearing bones is similar in amenorrheic and eumenorrheic elite long-distance runners. Scand J Med Sci Sports 2018; 28:1559-1568. [DOI: 10.1111/sms.13062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2018] [Indexed: 01/25/2023]
Affiliation(s)
- J. Piasecki
- School of Healthcare Science; Manchester Metropolitan University; Manchester UK
| | - A. Ireland
- School of Healthcare Science; Manchester Metropolitan University; Manchester UK
| | - M. Piasecki
- School of Healthcare Science; Manchester Metropolitan University; Manchester UK
| | - J. Cameron
- School of Healthcare Science; Manchester Metropolitan University; Manchester UK
| | - J. S. McPhee
- School of Healthcare Science; Manchester Metropolitan University; Manchester UK
| | - H. Degens
- School of Healthcare Science; Manchester Metropolitan University; Manchester UK
- Institute of Sport Science and Innovations; Lithuanian Sports University; Kaunas Lithuania
| |
Collapse
|
49
|
Zhou S, Wang G, Qiao L, Ge Q, Chen D, Xu Z, Shi D, Dai J, Qin J, Teng H, Jiang Q. Age-dependent variations of cancellous bone in response to ovariectomy in C57BL/6J mice. Exp Ther Med 2018; 15:3623-3632. [PMID: 29545892 DOI: 10.3892/etm.2018.5839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 12/21/2017] [Indexed: 11/05/2022] Open
Abstract
The ovariectomized (OVX) mouse model has been widely accepted to be suitable for the study of postmenopausal osteoporosis. However, whether C57BL/6J mice, a commonly used genetic background mouse strain, is an appropriate model for postmenopausal osteoporosis remains controversial. The present study investigated the effect of the OVX model on alterations in bone density and microarchitecture in C57BL/6J female mice of different ages. C57BL/6J mice were divided into 8-, 12- and 16-week-old groups (OVX8, OVX12 and OVX16) from the beginning of OVX. At 8 weeks post-surgery, the mice were anesthetized and micro-computed tomography was used to analyze the bone density and microarchitecture. The results revealed that OVX-induced loss of cancellous bone was greatest in OVX8, moderate in OVX12, and only a weak bone loss was observed in the OVX16 group when compared with the SHAM16 control group. In addition, the effect of genetic backgrounds in response to the OVX model were examined. Several other strains of mice, including inbred (BALB/c) and outbred (ICR and Kunming), were used in the present study, all of which were subjected to OVX at 8 weeks of age. The present findings revealed that the highest rate of bone loss was detected in C57BL/6J female mice. In addition, treatment with estrogen (17β-estradiol, 30 µg/kg five times per week) led to a significant increase in bone density in C57BL/6J mice compared with the other strains of mice. Therefore, these results may provide novel insights into the age- and strain-associated effect of OVX on regulating turnover of bone in female mice. The present findings also suggest 8-week-old C57BL/6J mice as an animal model for postmenopausal osteoporosis and preclinical testing of potential therapies for this disease.
Collapse
Affiliation(s)
- Sheng Zhou
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Guanghu Wang
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Liang Qiao
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Qiting Ge
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210061, P.R. China
| | - Dongyang Chen
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhihong Xu
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Dongquan Shi
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jin Dai
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jinzhong Qin
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210061, P.R. China
| | - Huajian Teng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210061, P.R. China
| | - Qing Jiang
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210061, P.R. China
| |
Collapse
|
50
|
Shah FA, Stoica A, Cardemil C, Palmquist A. Multiscale characterization of cortical bone composition, microstructure, and nanomechanical properties in experimentally induced osteoporosis. J Biomed Mater Res A 2017; 106:997-1007. [PMID: 29143443 DOI: 10.1002/jbm.a.36294] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Cortical bone plays a vital role in determining overall bone strength. We investigate the structural, compositional, and nanomechanical properties of cortical bone following ovariectomy (OVX) of 12-week-old Sprague Dawley rats, since this animal model is frequently employed to evaluate the performance of implantable biomaterials in compromised bone healing conditions. Morphological parameters and material properties of bone in the geometrical center of the femoral cortex were investigated four and eight weeks post-OVX and in unoperated controls (Ctrl), using X-ray micro-computed tomography, backscattered electron scanning electron microscopy, Raman spectroscopy, and nanoindentation. The OVX animals showed increase in body weight, diminished bone mineral density, increased intracortical porosity, but increased bone mass through periosteal apposition (e.g., increases in periosteal perimeter, cortical cross-sectional thickness, and cross-sectional area). However, osteocyte densities, osteocyte lacunar dimensions, and the nanomechanical behavior on the single mineralized collagen fibril level remained unaffected. Our correlative multiscale investigation provides structural, chemical, and nanomechanical evidence substantiating earlier reports suggesting that rats ovariectomized at 12 weeks undergo simultaneous bone loss and growth, resulting in the effects of OVX being less obvious. Periosteal apposition contradicts the conventional view of bone loss in osteoporosis but appears advantageous for the greater functional demand imposed on the skeleton by increased body weight and fragility induced by increased intracortical porosity. Through a variety of morphological changes, it is likely that 12-week-old rats are able to adapt to OVX-related microstructural and compositional alterations. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 997-1007, 2018.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| | - Adrian Stoica
- Plasma Technologies, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Carina Cardemil
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden.,Department of Oral and Maxillofacial Surgery, Linköping University Hospital, Linköping, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| |
Collapse
|