1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
2
|
Lv C, Ao J, Wang J, Tang M, Liu AA, Pang DW. Host-cell-assisted construction of a folate-engineered nanocarrier based on viral light particles for targeted cancer therapy. NANOSCALE 2021; 13:17881-17889. [PMID: 34673870 DOI: 10.1039/d1nr04903h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeted cancer therapy has aroused the broad interest of researchers due to its accuracy in specific tumor targeting and its few side effects on normal cells. In the last decades, oncolytic viral light particles (L-particles) have been transformed into smart nanocarriers for targeted drug delivery. However, these L-particles, similar to the oncolytic viruses that they are derived from, can only recognize tumor cells expressing corresponding receptors, severely limiting their universal application. Although modification of targeting agents onto their envelope can overcome this limitation, it is still a great challenge to do so without interfering with their biofunction since the envelope is fragile. Herein, a host-cell-assisted strategy is proposed to construct folate-engineered nanocarriers (F-L-particles) with their biofunctions maintained to the largest extent. The F-L-particles were further multi-functionalized by encapsulating ultrasmall near-infrared quantum dots and antitumor drugs in them for tumor real-time imaging and therapy. Such a moderate, efficient and convenient cell-based strategy facilitates the development and widespread application of these bio-nanocarriers in the field of targeted cancer therapy, and drives the interdisciplinary studies of nanotechnology, chemistry, and virology.
Collapse
Affiliation(s)
- Cheng Lv
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai 200123, People's Republic of China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ji Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Man Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
3
|
Birzer A, Kraner ME, Heilingloh CS, Mühl-Zürbes P, Hofmann J, Steinkasserer A, Popella L. Mass Spectrometric Characterization of HSV-1 L-Particles From Human Dendritic Cells and BHK21 Cells and Analysis of Their Functional Role. Front Microbiol 2020; 11:1997. [PMID: 33117298 PMCID: PMC7550753 DOI: 10.3389/fmicb.2020.01997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/28/2020] [Indexed: 12/01/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a very common human pathogenic virus among the world’s population. The lytic replication cycle of HSV-1 is, amongst others, characterized by a tripartite viral gene expression cascade, the assembly of nucleocapsids involving their subsequent nuclear egress, tegumentation, re-envelopment and the final release of progeny viral particles. During productive infection of a multitude of different cell types, HSV-1 generates not only infectious heavy (H-) particles, but also non-infectious light (L-) particles, lacking the capsid. In monocyte-derived mature dendritic cells (mDCs), HSV-1 causes a non-productive infection with the predominant release of L-particles. Until now, the generation and function of L-particles is not well understood, however, they are described as factors transferring viral components to the cellular microenvironment. To obtain deeper insights into the L-particle composition, we performed a mass-spectrometry-based analysis of L-particles derived from HSV-1-infected mDCs or BHK21 cells and H-particles from the latter one. In total, we detected 63 viral proteins in both H- and L-particle preparations derived from HSV-1-infected BHK21 cells. In L-particles from HSV-1-infected mDCs we identified 41 viral proteins which are differentially distributed compared to L-particles from BHK21 cells. In this study, we present data suggesting that L-particles modify mDCs and suppress their T cell stimulatory capacity. Due to the plethora of specific viral proteins incorporated into and transmitted by L-particles, it is tempting to speculate that L-particles manipulate non-infected bystander cells for the benefit of the virus.
Collapse
Affiliation(s)
- Alexandra Birzer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Max Edmund Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Linda Popella
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Quemin ERJ, Machala EA, Vollmer B, Pražák V, Vasishtan D, Rosch R, Grange M, Franken LE, Baker LA, Grünewald K. Cellular Electron Cryo-Tomography to Study Virus-Host Interactions. Annu Rev Virol 2020; 7:239-262. [PMID: 32631159 DOI: 10.1146/annurev-virology-021920-115935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses are obligatory intracellular parasites that reprogram host cells upon infection to produce viral progeny. Here, we review recent structural insights into virus-host interactions in bacteria, archaea, and eukaryotes unveiled by cellular electron cryo-tomography (cryoET). This advanced three-dimensional imaging technique of vitreous samples in near-native state has matured over the past two decades and proven powerful in revealing molecular mechanisms underlying viral replication. Initial studies were restricted to cell peripheries and typically focused on early infection steps, analyzing surface proteins and viral entry. Recent developments including cryo-thinning techniques, phase-plate imaging, and correlative approaches have been instrumental in also targeting rare events inside infected cells. When combined with advances in dedicated image analyses and processing methods, details of virus assembly and egress at (sub)nanometer resolution were uncovered. Altogether, we provide a historical and technical perspective and discuss future directions and impacts of cryoET for integrative structural cell biology analyses of viruses.
Collapse
Affiliation(s)
- Emmanuelle R J Quemin
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
| | - Emily A Machala
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Benjamin Vollmer
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Vojtěch Pražák
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daven Vasishtan
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Rene Rosch
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
| | - Michael Grange
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Linda E Franken
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
| | - Lindsay A Baker
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Kay Grünewald
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
5
|
Birzer A, Krawczyk A, Draßner C, Kuhnt C, Mühl-Zürbes P, Heilingloh CS, Steinkasserer A, Popella L. HSV-1 Modulates IL-6 Receptor Expression on Human Dendritic Cells. Front Immunol 2020; 11:1970. [PMID: 32983130 PMCID: PMC7479228 DOI: 10.3389/fimmu.2020.01970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are the guardians of the immune system since they are located in the majority of peripheral tissues. In addition, they are crucial for the induction of an effective immune response based on their unique capacity to stimulate naive T cells. During co-evolution, the human pathogen herpes simplex virus type 1 (HSV-1) has evolved several immune evasion mechanisms in order to subvert the host's immune system especially by targeting DC biology and function. Here we demonstrate that HSV-1 infection influences the IL-6 receptor (IL6R) expression both on protein and mRNA levels in/on human monocyte-derived mature DCs (mDCs). Surprisingly, reduced IL6R expression levels were also observed on uninfected bystander mDCs. Mechanistically, we clearly show that HSV-1-derived non-infectious light (L-) particles are sufficient to trigger IL6R regulation on uninfected bystander mDCs. These L-particles lack the viral DNA-loaded capsid and are predominantly produced during infection of mDCs. Our results show that the deletion of the HSV-1 tegument protein vhs partially rescued the reduced IL6R surface expression levels on/in bystander mDCs. Using a neutralizing antibody, which perturbs the transfer of L-particles to bystander mDCs, was sufficient to rescue the modulation of IL6R surface expression on uninfected bystander mDCs. This study provides evidence that L-particles transfer specific viral proteins to uninfected bystander mDCs, thereby negatively interfering with their IL6R expression levels, however, to a lesser extend compared to H-particles. Due to their immune-modulatory capacity, L-particles represent an elaborated approach of HSV-1-mediated immune evasion.
Collapse
Affiliation(s)
- Alexandra Birzer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christina Draßner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christiane Silke Heilingloh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Linda Popella
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Liu YT, Shivakoti S, Jia F, Tao CL, Zhang B, Xu F, Lau P, Bi GQ, Zhou ZH. Biphasic exocytosis of herpesvirus from hippocampal neurons and mechanistic implication to membrane fusion. Cell Discov 2020; 6:2. [PMID: 31969988 PMCID: PMC6957672 DOI: 10.1038/s41421-019-0134-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 10/09/2019] [Indexed: 11/09/2022] Open
Abstract
Exocytosis is a crucial cellular process involved in the release of neural transmitters or signaling hormones, and disposal of waste or toxic materials. The relationship between structural transition and temporal progression of this process is poorly understood, partly due to lack of adequate tools to resolve such dynamic structures at sufficient resolution in 3D. Exocytosis can be hijacked by some viruses, exemplified by the widely used model α-herpesvirus pseudorabies virus (PRV), which relies on exocytosis for trans-synaptic spread across neurons. Here, we have used cryo electron tomography (cryoET) to capture 199 events of PRV exocytosis from cultured hippocampal neurons. We established cumulative frequency analysis to estimate the relative duration of an exocytosis stage based on the frequency of observed viral particles at that stage. This analysis revealed that PRV exocytosis is biphasic, including a fast, "release phase" driven by fusion proteins and fused membranes, and a slow, "recovery phase" driven by flattening of curved membranes. The biphasic property of exocytosis discovered here appears to be conserved for membrane fusion during viral entry, and our approach of cumulative frequency analysis should have general utility for characterizing other membrane fusion events.
Collapse
Affiliation(s)
- Yun-Tao Liu
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 China
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7227 USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095-7364 USA
| | - Sakar Shivakoti
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 China
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7227 USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095-7364 USA
| | - Fan Jia
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Chang-Lu Tao
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 China
- CAS Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Bin Zhang
- CAS Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Pakming Lau
- CAS Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Guo-Qiang Bi
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 China
- CAS Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Z. Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7227 USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095-7364 USA
| |
Collapse
|
7
|
Diwaker D, Wilson DW. Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous System: The Ins and Outs. Viruses 2019; 11:v11121165. [PMID: 31861082 PMCID: PMC6950448 DOI: 10.3390/v11121165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
The Alphaherpesvirinae include the neurotropic pathogens herpes simplex virus and varicella zoster virus of humans and pseudorabies virus of swine. These viruses establish lifelong latency in the nuclei of peripheral ganglia, but utilize the peripheral tissues those neurons innervate for productive replication, spread, and transmission. Delivery of virions from replicative pools to the sites of latency requires microtubule-directed retrograde axonal transport from the nerve terminus to the cell body of the sensory neuron. As a corollary, during reactivation newly assembled virions must travel along axonal microtubules in the anterograde direction to return to the nerve terminus and infect peripheral tissues, completing the cycle. Neurotropic alphaherpesviruses can therefore exploit neuronal microtubules and motors for long distance axonal transport, and alternate between periods of sustained plus end- and minus end-directed motion at different stages of their infectious cycle. This review summarizes our current understanding of the molecular details by which this is achieved.
Collapse
Affiliation(s)
- Drishya Diwaker
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence: ; Tel.: +1-(718)-430-2305
| |
Collapse
|
8
|
Lv C, Zhang TY, Lin Y, Tang M, Zhai CH, Xia HF, Wang J, Zhang ZL, Xie ZX, Chen G, Pang DW. Transformation of Viral Light Particles into Near-Infrared Fluorescence Quantum Dot-Labeled Active Tumor-Targeting Nanovectors for Drug Delivery. NANO LETTERS 2019; 19:7035-7042. [PMID: 31502461 DOI: 10.1021/acs.nanolett.9b02483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanosized oncolytic viral light particles (L-particles), separated from progeny virions, are composed of envelopes and several tegument proteins of viruses, free of nucleocapsids. The noninfectious L-particles experience the same internalization process as mature oncolytic virions, which exhibits great potential to act as targeted therapeutic platforms. However, the clinical applications of L-particle-based theranostic platforms are rare due to the lack of effective methods to transform L-particles into nanovectors. Herein, a convenient and mild strategy has been developed to transform L-particles into near-infrared (NIR) fluorescence Ag2Se quantum dot (QD)-labeled active tumor-targeting nanovectors for real-time in situ imaging and drug delivery. Utilizing the electroporation technique, L-particles can be labeled with ultrasmall water-dispersible NIR fluorescence Ag2Se QDs with a labeling efficiency of ca. 85% and loaded with antitumor drug with a loading efficiency of ca. 87%. Meanwhile, by harnessing the infection mechanism of viruses, viral L-particles are able to recognize and enter tumor cells without further modification. In sum, a trackable and actively tumor-targeted theranostics nanovector can be obtained efficiently and simultaneously. Such multifunctional nanovectors transformed from viral L-particles have exhibited excellent properties of active tumor-targeting, in vivo tumor imaging, and antitumor efficacy, which opens a new window for the development of natural therapeutic nanoplatforms.
Collapse
Affiliation(s)
- Cheng Lv
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Tian-Yu Zhang
- College of Life Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Cai-Hua Zhai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Hou-Fu Xia
- Key Laboratory of Oral Biomedicine (Ministry of Education) and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Ji Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Zhi-Xiong Xie
- College of Life Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Gang Chen
- Key Laboratory of Oral Biomedicine (Ministry of Education) and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| |
Collapse
|
9
|
Yu FL, Miao H, Xia J, Jia F, Wang H, Xu F, Guo L. Proteomics Analysis Identifies IRSp53 and Fascin as Critical for PRV Egress and Direct Cell-Cell Transmission. Proteomics 2019; 19:e1900009. [PMID: 31531927 DOI: 10.1002/pmic.201900009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Pseudorabies virus (PRV) has been widely used as a live trans-synaptic tracer for mapping neuronal circuits. Systematically identifying mature PRV virion proteomes and defining co-purified host proteins are necessary to fully understand the detailed mechanism underlying PRV transmission processes. Here, a PRV virion purification strategy based on sorting with flow cytometry is developed and the mature extracellular and intracellular PRV virion proteomes using LC coupled with MS/MS are characterized. In addition to viral proteins, a large number of host proteins are also identified, including proteins related to actin cytoskeletal dynamics and membrane protrusion. How many of these host proteins are true virion components are unknown and the majority of these may not be. Through functional analysis, it is found that IRSp53 and fascin are critical for the egress process and play a role in direct cell-cell transmission. Moreover, it is shown that CDC42 and Rac1 are also involved in the production of mature extracellular virions. The results suggest that the formation of the filopodia-like cytoskeleton and the rearrangement of the membrane, which are both associated with IRSp53 and fascin, may be important for the transmission of viruses used in neuronal tracing.
Collapse
Affiliation(s)
- Fei-Long Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huan Miao
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jinjin Xia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Fan Jia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Huadong Wang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Fuqiang Xu
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Center for Excellence in Brian Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Hernández Durán A, Greco TM, Vollmer B, Cristea IM, Grünewald K, Topf M. Protein interactions and consensus clustering analysis uncover insights into herpesvirus virion structure and function relationships. PLoS Biol 2019; 17:e3000316. [PMID: 31199794 PMCID: PMC6594648 DOI: 10.1371/journal.pbio.3000316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/26/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
Infections with human herpesviruses are ubiquitous and a public health concern worldwide. Current treatments reduce the severity of some symptoms associated to herpetic infections but neither remove the viral reservoir from the infected host nor protect from the recurrent symptom outbreaks that characterise herpetic infections. The difficulty in therapeutically tackling these viral systems stems in part from their remarkably large proteomes and the complex networks of physical and functional associations that they tailor. This study presents our efforts to unravel the complexity of the interactome of herpes simplex virus type 1 (HSV1), the prototypical herpesvirus species. Inspired by our previous work, we present an improved and more integrative computational pipeline for the protein–protein interaction (PPI) network reconstruction in HSV1, together with a newly developed consensus clustering framework, which allowed us to extend the analysis beyond binary physical interactions and revealed a system-level layout of higher-order functional associations in the virion proteome. Additionally, the analysis provided new functional annotation for the currently undercharacterised protein pUS10. In-depth bioinformatics sequence analysis unravelled structural features in pUS10 reminiscent of those observed in some capsid-associated proteins in tailed bacteriophages, with which herpesviruses are believed to share a common ancestry. Using immunoaffinity purification (IP)–mass spectrometry (MS), we obtained additional support for our bioinformatically predicted interaction between pUS10 and the inner tegument protein pUL37, which binds cytosolic capsids, contributing to initial tegumentation and eventually virion maturation. In summary, this study unveils new, to our knowledge, insights at both the system and molecular levels that can help us better understand the complexity behind herpesvirus infections. Consensus clustering of protein-protein interaction networks provides insights into the assembly mechanism of herpes simplex virus type 1 (HSV1) virions and structure-function relationships underlying herpesvirus infection.
Collapse
Affiliation(s)
- Anna Hernández Durán
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Benjamin Vollmer
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Heinrich Pette Institute, Leibnitz Institute of Experimental Virology, University of Hamburg, Hamburg, Germany
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Heinrich Pette Institute, Leibnitz Institute of Experimental Virology, University of Hamburg, Hamburg, Germany
- * E-mail: (MT); (KG)
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- * E-mail: (MT); (KG)
| |
Collapse
|
11
|
Abstract
The Herpesviridae are structurally complex DNA viruses whose capsids undergo primary envelopment at the inner nuclear membrane and secondary envelopment at organelles in the cytoplasm. In both locations, there is evidence that envelope formation and scission involve the participation of multiple viral proteins and also the cellular ESCRT apparatus. It nevertheless appears that the best-understood viral strategies for ESCRT recruitment, those adopted by the retroviruses and many other families of enveloped RNA viruses, are not utilized by the Herpesviridae, at least during envelopment in the cytoplasm. Thus, although a large number of herpesvirus proteins have been assigned roles in envelopment, there is a dearth of candidates for the acquisition of the ESCRT complex and the control of envelope scission. This review summarizes our current understanding of ESCRT association by enveloped viruses, examines what is known of herpesvirus ESCRT utilization in the nucleus and cytoplasm, and identifies candidate cellular and viral proteins that could link enveloping herpesviruses to cellular ESCRT components.
Collapse
|
12
|
Qualitative Differences in Capsidless L-Particles Released as a By-Product of Bovine Herpesvirus 1 and Herpes Simplex Virus 1 Infections. J Virol 2018; 92:JVI.01259-18. [PMID: 30185590 PMCID: PMC6206470 DOI: 10.1128/jvi.01259-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2018] [Indexed: 01/25/2023] Open
Abstract
The alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis. Despite differences in the pathogenesis and host range of alphaherpesviruses, many stages of their morphogenesis are thought to be conserved. Here, an ultrastructural study of bovine herpesvirus 1 (BoHV-1) envelopment revealed profiles similar to those previously found for herpes simplex virus 1 (HSV-1), with BoHV-1 capsids associating with endocytic tubules. Consistent with the similarity of their genomes and envelopment strategies, the proteomic compositions of BoHV-1 and HSV-1 virions were also comparable. However, BoHV-1 morphogenesis exhibited a diversity in envelopment events. First, heterogeneous primary envelopment profiles were readily detectable at the inner nuclear membrane of BoHV-1-infected cells. Second, the BoHV-1 progeny comprised not just full virions but also an abundance of capsidless, noninfectious light particles (L-particles) that were released from the infected cells in numbers similar to those of virions and in the absence of DNA replication. Proteomic analysis of BoHV-1 L-particles and the much less abundant HSV-1 L-particles revealed that they contained the same complement of envelope proteins as virions but showed variations in tegument content. In the case of HSV-1, the UL46 tegument protein was reproducibly found to be >6-fold enriched in HSV-1 L-particles. More strikingly, the tegument proteins UL36, UL37, UL21, and UL16 were depleted in BoHV-1 but not HSV-1 L-particles. We propose that these combined differences reflect the presence of truly segregated “inner” and “outer” teguments in BoHV-1, making it a critical system for studying the structure and process of tegumentation and envelopment. IMPORTANCE The alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis.
Collapse
|
13
|
Cyrklaff M, Frischknecht F, Kudryashev M. Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbiol Rev 2018; 41:828-853. [PMID: 28962014 DOI: 10.1093/femsre/fux041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023] Open
Abstract
In recent years, novel imaging approaches revolutionised our understanding of the cellular and molecular biology of microorganisms. These include advances in fluorescent probes, dynamic live cell imaging, superresolution light and electron microscopy. Currently, a major transition in the experimental approach shifts electron microscopy studies from a complementary technique to a method of choice for structural and functional analysis. Here we review functional insights into the molecular architecture of viruses, bacteria and parasites as well as interactions with their respective host cells gained from studies using cryogenic electron tomography and related methodologies.
Collapse
Affiliation(s)
- Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Strasse 17, 60438 Frankfurt, Germany
| |
Collapse
|
14
|
Heilingloh CS, Krawczyk A. Role of L-Particles during Herpes Simplex Virus Infection. Front Microbiol 2017; 8:2565. [PMID: 29312245 PMCID: PMC5742154 DOI: 10.3389/fmicb.2017.02565] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022] Open
Abstract
Infection of eukaryotic cells with α-herpesviruses results in the formation and secretion of infectious heavy particles (virions; H-particles) and non-infectious light particles (L-particles). Herpes simplex virus type 1 (HSV-1) H-particles consist of a genome-containing capsid surrounded by tegument proteins and a glycoprotein-rich lipid bilayer. Non-infectious L-particles are composed mainly of envelope and tegument proteins and are devoid of capsids and viral DNA. L-particles were first described in the early nineties and from then on investigated for their formation and role during virus infection. The development and secretion of L-particles occur simultaneously to the assembly of complete viral particles. HSV-1 L-particles are assembled by budding of condensed tegument into Golgi-delivered vesicles and are capable of delivering their functional content to non-infected cells. Thereby, HSV-1 L-particles contribute to viral pathogenesis within the infected host by enhancing virion infectivity and providing immune evasion functions. In this review we discuss the emergence of HSV-1 L-particles during virus replication and their biological functions described thus far.
Collapse
Affiliation(s)
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Bykov YS, Cortese M, Briggs JAG, Bartenschlager R. Correlative light and electron microscopy methods for the study of virus-cell interactions. FEBS Lett 2016; 590:1877-95. [PMID: 27008928 DOI: 10.1002/1873-3468.12153] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Electron microscopy (EM) is an invaluable tool to study the interactions of viruses with cells, and the ultrastructural changes induced in host cells by virus infection. Light microscopy (LM) is a complementary tool with the potential to locate rare events, label specific components, and obtain dynamic information. The combination of LM and EM in correlative light and electron microscopy (CLEM) is particularly powerful. It can be used to complement a static EM image with dynamic data from live imaging, identify the ultrastructure observed in LM, or, conversely, provide molecular specificity data for a known ultrastructure. Here, we describe methods and strategies for CLEM, discuss their advantages and limitations, and review applications of CLEM to study virus-host interactions.
Collapse
Affiliation(s)
- Yury S Bykov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Germany
| |
Collapse
|
16
|
Heilingloh CS, Kummer M, Mühl-Zürbes P, Drassner C, Daniel C, Klewer M, Steinkasserer A. L Particles Transmit Viral Proteins from Herpes Simplex Virus 1-Infected Mature Dendritic Cells to Uninfected Bystander Cells, Inducing CD83 Downmodulation. J Virol 2015; 89:11046-55. [PMID: 26311871 PMCID: PMC4621140 DOI: 10.1128/jvi.01517-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/19/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Mature dendritic cells (mDCs) are known as the most potent antigen-presenting cells (APCs) since they are also able to prime/induce naive T cells. Thus, mDCs play a pivotal role during the induction of antiviral immune responses. Remarkably, the cell surface molecule CD83, which was shown to have costimulatory properties, is targeted by herpes simplex virus 1 (HSV-1) for viral immune escape. Infection of mDCs with HSV-1 results in downmodulation of CD83, resulting in reduced T cell stimulation. In this study, we report that not only infected mDCs but also uninfected bystander cells in an infected culture show a significant CD83 reduction. We demonstrate that this effect is independent of phagocytosis and transmissible from infected to uninfected mDCs. The presence of specific viral proteins found in these uninfected bystander cells led to the hypothesis that viral proteins are transferred from infected to uninfected cells via L particles. These L particles are generated during lytic replication in parallel with full virions, called H particles. L particles contain viral proteins but lack the viral capsid and DNA. Therefore, these particles are not infectious but are able to transfer several viral proteins. Incubation of mDCs with L particles indeed reduced CD83 expression on uninfected bystander DCs, providing for the first time evidence that functional viral proteins are transmitted via L particles from infected mDCs to uninfected bystander cells, thereby inducing CD83 downmodulation. IMPORTANCE HSV-1 has evolved a number of strategies to evade the host's immune system. Among others, HSV-1 infection of mDCs results in an inhibited T cell activation caused by degradation of CD83. Interestingly, CD83 is lost not only from HSV-1-infected mDCs but also from uninfected bystander cells. The release of so-called L particles, which contain several viral proteins but lack capsid and DNA, during infection is a common phenomenon observed among several viruses, such as human cytomegalovirus (HCMV), Epstein-Barr virus, and HSV-1. However, the detailed function of these particles is poorly understood. Here, we provide for the first time evidence that functional viral proteins can be transferred to uninfected bystander mDCs via L particles, revealing important biological functions of these particles during lytic replication. Therefore, the transfer of viral proteins by L particles to modulate uninfected bystander cells may represent an additional strategy for viral immune escape.
Collapse
Affiliation(s)
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Christina Drassner
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Daniel
- Department of Pathology, Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Monika Klewer
- Department of Pathology, Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
17
|
Owen DJ, Crump CM, Graham SC. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses. Viruses 2015; 7:5084-114. [PMID: 26393641 PMCID: PMC4584305 DOI: 10.3390/v7092861] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called "tegument" that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei.
Collapse
Affiliation(s)
- Danielle J Owen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
18
|
Diefenbach RJ. Conserved tegument protein complexes: Essential components in the assembly of herpesviruses. Virus Res 2015; 210:308-17. [PMID: 26365681 DOI: 10.1016/j.virusres.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
Abstract
One of the structural components of herpesviruses is a protein layer called the tegument. Several of the tegument proteins are highly conserved across the herpesvirus family and serve as a logical focus for defining critical interactions required for viral assembly. A number of studies have helped to elucidate a role for conserved tegument proteins in the process of secondary envelopment during the course of herpesviral assembly. This review highlights how these tegument proteins directly contribute to bridging the nucleocapsid and envelope of virions during secondary envelopment.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
19
|
Taylor MP, Enquist LW. Axonal spread of neuroinvasive viral infections. Trends Microbiol 2015; 23:283-8. [PMID: 25639651 DOI: 10.1016/j.tim.2015.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/31/2014] [Accepted: 01/07/2015] [Indexed: 02/05/2023]
Abstract
Neuroinvasive viral infections invade the nervous system, often eliciting serious disease and death. Members of four viral families are both neuroinvasive and capable of transmitting progeny virions or virion components within the long neuronal extensions known as axons. Axons provide physical structures that enable viral infection to spread within the host while avoiding extracellular immune responses. Technological advances in the analysis of in vivo neural circuits, neuronal culturing, and live imaging of fluorescent fusion proteins have enabled an unprecedented view into the steps of virion assembly, transport, and egress involved in axonal spread. In this review we summarize the literature supporting anterograde (axon to cell) spread of viral infection, describe the various strategies of virion transport, and discuss the effects of spread on populations of neuroinvasive viruses.
Collapse
Affiliation(s)
- Matthew P Taylor
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718, USA.
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
20
|
Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: Life cycle and development of inhibitors. BIOCHEMISTRY (MOSCOW) 2015; 79:1635-52. [DOI: 10.1134/s0006297914130124] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Pedrazzi M, Nash B, Meucci O, Brandimarti R. Molecular features contributing to virus-independent intracellular localization and dynamic behavior of the herpesvirus transport protein US9. PLoS One 2014; 9:e104634. [PMID: 25133647 PMCID: PMC4136771 DOI: 10.1371/journal.pone.0104634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Reaching the right destination is of vital importance for molecules, proteins, organelles, and cargoes. Thus, intracellular traffic is continuously controlled and regulated by several proteins taking part in the process. Viruses exploit this machinery, and viral proteins regulating intracellular transport have been identified as they represent valuable tools to understand and possibly direct molecules targeting and delivery. Deciphering the molecular features of viral proteins contributing to (or determining) this dynamic phenotype can eventually lead to a virus-independent approach to control cellular transport and delivery. From this virus-independent perspective we looked at US9, a virion component of Herpes Simplex Virus involved in anterograde transport of the virus inside neurons of the infected host. As the natural cargo of US9-related vesicles is the virus (or its parts), defining its autonomous, virus-independent role in vesicles transport represents a prerequisite to make US9 a valuable molecular tool to study and possibly direct cellular transport. To assess the extent of this autonomous role in vesicles transport, we analyzed US9 behavior in the absence of viral infection. Based on our studies, Us9 behavior appears similar in different cell types; however, as expected, the data we obtained in neurons best represent the virus-independent properties of US9. In these primary cells, transfected US9 mostly recapitulates the behavior of US9 expressed from the viral genome. Additionally, ablation of two major phosphorylation sites (i.e. Y32Y33 and S34ES36) have no effect on protein incorporation on vesicles and on its localization on both proximal and distal regions of the cells. These results support the idea that, while US9 post-translational modification may be important to regulate cargo loading and, consequently, virion export and delivery, no additional viral functions are required for US9 role in intracellular transport.
Collapse
Affiliation(s)
- Manuela Pedrazzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (OM); (RB)
| | - Renato Brandimarti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (OM); (RB)
| |
Collapse
|
22
|
Heider S, Metzner C. Quantitative real-time single particle analysis of virions. Virology 2014; 462-463:199-206. [PMID: 24999044 PMCID: PMC4139191 DOI: 10.1016/j.virol.2014.06.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/05/2014] [Accepted: 06/04/2014] [Indexed: 11/14/2022]
Abstract
Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed—or adapted from other fields, such as nanotechnology—to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. We introduce four methods for virus particle-based quantification of viruses. They allow for quantification of a wide range of samples in under an hour time. The additional measurement of size and zeta potential is possible for some.
Collapse
Affiliation(s)
- Susanne Heider
- Institute of Virology, University of Veterinary Medicine Vienna, Building AC, 3rd Floor, Veterinärplatz 1, 1210 Vienna, Austria
| | - Christoph Metzner
- Institute of Virology, University of Veterinary Medicine Vienna, Building AC, 3rd Floor, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
23
|
Harapin J, Eibauer M, Medalia O. Structural analysis of supramolecular assemblies by cryo-electron tomography. Structure 2014; 21:1522-30. [PMID: 24010711 DOI: 10.1016/j.str.2013.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/29/2022]
Abstract
Structural analysis of macromolecular assemblies in their physiological environment is a challenging task that is instrumental in answering fundamental questions in cellular and molecular structural biology. The continuous development of computational and analytical tools for cryo-electron tomography (cryo-ET) enables the study of these assemblies at a resolution of a few nanometers. Through the implementation of thinning procedures, cryo-ET can now be applied to the reconstruction of macromolecular structures located inside thick regions of vitrified cells and tissues, thus becoming a central tool for structural determinations in various biological disciplines. Here, we focus on the successful in situ applications of cryo-ET to reveal structures of macromolecular complexes within eukaryotic cells.
Collapse
Affiliation(s)
- Jan Harapin
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
24
|
Abstract
Electron cryo tomography (cryoET) is an ideal technique to study virus-host interactions at molecular resolution. Imaging of biological specimens in a frozen-hydrated state assures a close to native environment. Various virus-host cell interactions have been analysed in this way, with the herpesvirus 'life' cycle being the most comprehensively studied. The data obtained were further integrated with fluorescence and soft X-ray cryo microscopy data applied on experimental systems covering a wide range of biological complexity. This hybrid approach combines dynamic with static imaging and spans a resolution range from micrometres to angstroms. Along selected aspects of the herpesvirus replication cycle, we describe dedicated combinations of approaches and how subsequent data integration enables insights towards a functional understanding of the underlying processes.
Collapse
|
25
|
Bigley NJ. Complexity of Interferon-γ Interactions with HSV-1. Front Immunol 2014; 5:15. [PMID: 24567732 PMCID: PMC3915238 DOI: 10.3389/fimmu.2014.00015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022] Open
Abstract
The intricacies involving the role of interferon-gamma (IFN-γ) in herpesvirus infection and persistence are complex. Herpes simplex virus type 1 (HSV-1) uses a variety of receptors to enter cells and is transported to and from the host cell nucleus over the microtubule railroad via retrograde and anterograde transport. IFN-γ exerts dual but conflicting effects on microtubule organization. IFN-γ stimulates production of suppressors of cytokine signaling 1 and 3 (SOCS1 and SOCS3), which are involved in microtubule stability and are negative regulators of IFN-γ signaling when overexpressed. IFN-γ also interferes with the correct assembly of microtubules causing them to undergo severe bundling, contributing to its anti-viral effect. Factors leading to the decision for a replicative virus lytic cycle or latency in the trigeminal ganglion (TG) occur on histone 3 (H3), involve IFN-γ produced by natural killer cells and non-cytolytic CD8+T cells, SOCS1, SOCS3, and M2 anti-inflammatory microglia/macrophages maintained by inhibitory interleukin 10 (IL-10). Both M2 microglia and CD4+CD25+Foxp3+ Treg cells produce IL-10. Histone deacetylases (HDACs) are epigenetic regulators maintaining chromatin in an inactive state necessary for transcription of IFN-γ-activated genes and their anti-viral effect. Following inhibition of HDACs by stressors such as ultraviolet light, SOCS1 and SOCS3 are acetylated, and chromatin is relaxed and available for virus replication. SOCS1 prevents expression of MHC class 1 molecules on neuronal cells and SOCS3 attenuates cytokine-induced inflammation in the area. A model is presented to unify the effects of IFN-γ, SOCS1, SOCS3, and HSV-1 on H3 and chromatin structure in virus latency or reactivation. HSV-1 latency in the TG is viewed as an active ongoing process involving maintenance of microglia in an M2 anti-inflammatory state by IL-10. IL-10 is produced in an autocrine manner by the M2 microglia/macrophages and by virus-specific CD4+Foxp3+ Treg cells interacting with virus-specific non-cytolytic CD8+ T cells.
Collapse
Affiliation(s)
- Nancy J Bigley
- Microbiology and Immunology Program, Department of Neuroscience, Cell Biology and Physiology, Wright State University , Dayton, OH , USA
| |
Collapse
|