1
|
Fort C, Walker BJ, Baert L, Wheeler RJ. Proteins with proximal-distal asymmetries in axoneme localisation control flagellum beat frequency. Nat Commun 2025; 16:3237. [PMID: 40185731 PMCID: PMC11971395 DOI: 10.1038/s41467-025-58405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
The 9 + 2 microtubule-based axoneme within motile flagella is well known for its symmetry. However, examples of asymmetric structures and proteins asymmetrically positioned within the 9 + 2 axoneme architecture have been identified. These occur in multiple different organisms, particularly involving the inner or outer dynein arms. Here, we comprehensively analyse conserved proximal-distal asymmetries in the uniflagellate trypanosomatid eukaryotic parasites. Building on the genome-wide localisation screen in Trypanosoma brucei we identify conserved proteins with an analogous asymmetric localisation in the related parasite Leishmania mexicana. Using deletion mutants, we find which are necessary for normal cell swimming, flagellum beat parameters and axoneme ultrastructure. Using combinatorial endogenous fluorescent tagging and deletion, we map co-dependencies for assembly into their normal asymmetric localisation. This revealed 15 proteins, 9 known and 6 novel, with a conserved proximal or distal axoneme-specific localisation. Most are outer dynein arm associated and show that there are multiple classes of proximal-distal asymmetry - one which is dependent on the docking complex. Many of these proteins are necessary for retaining the normal frequency of the tip-to-base symmetric flagellar waveform. Our comprehensive mapping reveals unexpected contributions of proximal-specific axoneme components to the frequency of waveforms initiated distally.
Collapse
Affiliation(s)
- Cecile Fort
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Diamond Light Source, Didcot, UK
| | - Benjamin J Walker
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Department of Mathematics, University College London, London, UK
| | - Lore Baert
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Richard J Wheeler
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Xia X, Shimogawa MM, Wang H, Liu S, Wijono A, Langousis G, Kassem AM, Wohlschlegel JA, Hill KL, Zhou ZH. Trypanosome doublet microtubule structures reveal flagellum assembly and motility mechanisms. Science 2025; 387:eadr3314. [PMID: 40080582 DOI: 10.1126/science.adr3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 01/06/2025] [Indexed: 03/15/2025]
Abstract
The flagellum of Trypanosoma brucei drives the parasite's characteristic screw-like motion and is essential for its replication, transmission, and pathogenesis. However, the molecular details of this process remain unclear. Here, we present high-resolution (up to 2.8 angstrom) cryo-electron microscopy structures of T. brucei flagellar doublet microtubules (DMTs). Integrated modeling identified 154 different axonemal proteins inside and outside the DMT and, together with genetic and proteomic interrogation, revealed conserved and trypanosome-specific foundations of flagellum assembly and motility. We captured axonemal dynein motors in their pre-power stroke state. Comparing atomic models between pre- and post-power strokes defined how dynein structural changes drive sliding of adjacent DMTs during flagellar beating. This study illuminates structural dynamics underlying flagellar motility and identifies pathogen-specific proteins to consider for therapeutic interventions targeting neglected diseases.
Collapse
Affiliation(s)
- Xian Xia
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Michelle M Shimogawa
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Hui Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Samuel Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Angeline Wijono
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Gerasimos Langousis
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Ahmad M Kassem
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Kent L Hill
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Doran MH, Niu Q, Zeng J, Beneke T, Smith J, Ren P, Fochler S, Coscia A, Höög JL, Meleppattu S, Lishko PV, Wheeler RJ, Gluenz E, Zhang R, Brown A. Evolutionary adaptations of doublet microtubules in trypanosomatid parasites. Science 2025; 387:eadr5507. [PMID: 40080577 DOI: 10.1126/science.adr5507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 12/20/2024] [Indexed: 03/15/2025]
Abstract
The movement and pathogenicity of trypanosomatid species, the causative agents of trypanosomiasis and leishmaniasis, are dependent on a flagellum that contains an axoneme of dynein-bound doublet microtubules (DMTs). In this work, we present cryo-electron microscopy structures of DMTs from two trypanosomatid species, Leishmania tarentolae and Crithidia fasciculata, at resolutions up to 2.7 angstrom. The structures revealed 27 trypanosomatid-specific microtubule inner proteins, a specialized dynein-docking complex, and the presence of paralogous proteins that enable higher-order periodicities or proximal-distal patterning. Leveraging the genetic tractability of trypanosomatid species, we quantified the location and contribution of each structure-identified protein to swimming behavior. Our study shows that proper B-tubule closure is critical for flagellar motility, exemplifying how integrating structural identification with systematic gene deletion can dissect individual protein contributions to flagellar motility.
Collapse
Affiliation(s)
- Matthew H Doran
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Qingwei Niu
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Molecular Cell Biology (MCB) graduate program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jianwei Zeng
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - James Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Peter Ren
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sophia Fochler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Adrian Coscia
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Johanna L Höög
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Shimi Meleppattu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Polina V Lishko
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Richard J Wheeler
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Shimogawa MM, Jonnalagadda K, Hill KL. FAP20 is required for flagellum assembly in Trypanosoma brucei. Mol Biol Cell 2024; 35:br22. [PMID: 39382839 PMCID: PMC11617092 DOI: 10.1091/mbc.e23-12-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethality. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
5
|
Balasubramaniam K, He T, Chen H, Lin Z, He CY. Cytoplasmic preassembly of the flagellar outer dynein arm complex in Trypanosoma brucei. Mol Biol Cell 2024; 35:br16. [PMID: 39024276 PMCID: PMC11449384 DOI: 10.1091/mbc.e24-06-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
The outer dynein arm (ODA) is a large, multimeric protein complex essential for ciliary motility. The composition and assembly of ODA are best characterized in the green algae Chlamydomonas reinhardtii, where individual ODA subunits are synthesized and preassembled into a mature complex in the cytosol prior to ciliary import. The single-cellular parasite Trypanosoma brucei contains a motile flagellum essential for cell locomotion and pathogenesis. Similar to human motile cilia, T. brucei flagellum contains a two-headed ODA complex arranged at 24 nm intervals along the axonemal microtubule doublets. The subunit composition and the preassembly of the ODA complex in T. brucei, however, have not been investigated. In this study, we affinity-purified the ODA complex from T. brucei cytoplasmic extract. Proteomic analyses revealed the presence of two heavy chains (ODAα and ODAβ), two intermediate chains (IC1and IC2) and several light chains. We showed that both heavy chains and both intermediate chains are indispensable for flagellar ODA assembly. Our study also provided biochemical evidence supporting the presence of a cytoplasmic, preassembly pathway for T. brucei ODA.
Collapse
Affiliation(s)
- Karthika Balasubramaniam
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Tingting He
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Helen Chen
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Zhewang Lin
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Cynthia Y. He
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
6
|
Shimogawa MM, Jonnalagadda K, Hill KL. FAP20 is required for flagellum assembly in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.19.576295. [PMID: 38293126 PMCID: PMC10827224 DOI: 10.1101/2024.01.19.576295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethal cell division defect. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Calvo-Alvarez E, Ngoune JMT, Sharma P, Cooper A, Camara A, Travaillé C, Crouzols A, MacLeod A, Rotureau B. FLAgellum Member 8 modulates extravascular distribution of African trypanosomes. PLoS Pathog 2023; 19:e1011220. [PMID: 38127941 PMCID: PMC10769064 DOI: 10.1371/journal.ppat.1011220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 01/05/2024] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
In the mammalian host, the biology of tissue-dwelling Trypanosoma brucei parasites is not completely understood, especially the mechanisms involved in their extravascular colonization. The trypanosome flagellum is an essential organelle in multiple aspects of the parasites' development. The flagellar protein termed FLAgellar Member 8 (FLAM8) acts as a docking platform for a pool of cyclic AMP response protein 3 (CARP3) that is involved in signaling. FLAM8 exhibits a stage-specific distribution suggesting specific functions in the mammalian and vector stages of the parasite. Analyses of knockdown and knockout trypanosomes in their mammalian forms demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and stumpy differentiation. Functional investigations in experimental infections showed that FLAM8-deprived trypanosomes can establish and maintain an infection in the blood circulation and differentiate into insect transmissible forms. However, quantitative bioluminescence imaging and gene expression analysis revealed that FLAM8-null parasites exhibit a significantly impaired dissemination in the extravascular compartment, that is restored by the addition of a single rescue copy of FLAM8. In vitro trans-endothelial migration assays revealed significant defects in trypanosomes lacking FLAM8. FLAM8 is the first flagellar component shown to modulate T. brucei distribution in the host tissues, possibly through sensing functions, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches, especially in the skin.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean Marc Tsagmo Ngoune
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Parul Sharma
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, ED515 Complexité du Vivant, Paris, France
| | - Anneli Cooper
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom
| | - Aïssata Camara
- Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| | - Christelle Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
- Photonic BioImaging (UTechS PBI), Institut Pasteur, Université Paris Cité, Paris, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
- Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| |
Collapse
|
8
|
Shimogawa MM, Wijono AS, Wang H, Zhang J, Sha J, Szombathy N, Vadakkan S, Pelayo P, Jonnalagadda K, Wohlschlegel J, Zhou ZH, Hill KL. FAP106 is an interaction hub for assembling microtubule inner proteins at the cilium inner junction. Nat Commun 2023; 14:5225. [PMID: 37633952 PMCID: PMC10460401 DOI: 10.1038/s41467-023-40230-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/14/2023] [Indexed: 08/28/2023] Open
Abstract
Motility of pathogenic protozoa depends on flagella (synonymous with cilia) with axonemes containing nine doublet microtubules (DMTs) and two singlet microtubules. Microtubule inner proteins (MIPs) within DMTs influence axoneme stability and motility and provide lineage-specific adaptations, but individual MIP functions and assembly mechanisms are mostly unknown. Here, we show in the sleeping sickness parasite Trypanosoma brucei, that FAP106, a conserved MIP at the DMT inner junction, is required for trypanosome motility and functions as a critical interaction hub, directing assembly of several conserved and lineage-specific MIPs. We use comparative cryogenic electron tomography (cryoET) and quantitative proteomics to identify MIP candidates. Using RNAi knockdown together with fitting of AlphaFold models into cryoET maps, we demonstrate that one of these candidates, MC8, is a trypanosome-specific MIP required for parasite motility. Our work advances understanding of MIP assembly mechanisms and identifies lineage-specific motility proteins that are attractive targets to consider for therapeutic intervention.
Collapse
Affiliation(s)
- Michelle M Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Angeline S Wijono
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiayan Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Natasha Szombathy
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeeca Vadakkan
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Paula Pelayo
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 2023; 8:533-547. [PMID: 36804636 PMCID: PMC9981465 DOI: 10.1038/s41564-022-01295-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.
Collapse
|
10
|
Sáez Conde J, Dean S. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol 2022; 237:2654-2667. [PMID: 35616248 PMCID: PMC9323424 DOI: 10.1002/jcp.30778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
African trypanosomes are early branching protists that cause human and animal diseases, termed trypanosomiases. They have been under intensive study for more than 100 years and have contributed significantly to our understanding of eukaryotic biology. The combination of conserved and parasite-specific features mean that their flagellum has gained particular attention. Here, we discuss the different structural features of the flagellum and their role in transmission and virulence. We highlight the possibilities of targeting flagellar function to cure trypanosome infections and help in the fight to eliminate trypanosomiases.
Collapse
Affiliation(s)
- Julia Sáez Conde
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
11
|
Oxidative Phosphorylation Is Required for Powering Motility and Development of the Sleeping Sickness Parasite Trypanosoma brucei in the Tsetse Fly Vector. mBio 2022; 13:e0235721. [PMID: 35012336 PMCID: PMC8749461 DOI: 10.1128/mbio.02357-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-celled parasite Trypanosoma brucei is transmitted by hematophagous tsetse flies. Life cycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonizes the glucose-poor insect midgut, ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation (OXPHOS). This process involves respiratory chain complexes and F1Fo-ATP synthase and requires protein subunits of these complexes that are encoded in the parasite's mitochondrial DNA (kDNA). Here, we show that progressive loss of kDNA-encoded functions correlates with a decreasing ability to initiate and complete development in the tsetse. First, parasites with a mutated F1Fo-ATP synthase with reduced capacity for OXPHOS can initiate differentiation from bloodstream to insect form, but they are unable to proliferate in vitro. Unexpectedly, these cells can still colonize the tsetse midgut. However, these parasites exhibit a motility defect and are severely impaired in colonizing or migrating to subsequent tsetse tissues. Second, parasites with a fully disrupted F1Fo-ATP synthase complex that is completely unable to produce ATP by OXPHOS can still differentiate to the first insect stage in vitro but die within a few days and cannot establish a midgut infection in vivo. Third, parasites lacking kDNA entirely can initiate differentiation but die soon after. Together, these scenarios suggest that efficient ATP production via OXPHOS is not essential for initial colonization of the tsetse vector but is required to power trypanosome migration within the fly. IMPORTANCE African trypanosomes cause disease in humans and their livestock and are transmitted by tsetse flies. The insect ingests these parasites with its blood meal, but to be transmitted to another mammal, the trypanosome must undergo complex development within the tsetse fly and migrate from the insect's gut to its salivary glands. Crucially, the parasite must switch from a sugar-based diet while in the mammal to a diet based primarily on amino acids when it develops in the insect. Here, we show that efficient energy production by an organelle called the mitochondrion is critical for the trypanosome's ability to swim and to migrate through the tsetse fly. Surprisingly, trypanosomes with impaired mitochondrial energy production are only mildly compromised in their ability to colonize the tsetse fly midgut. Our study adds a new perspective to the emerging view that infection of tsetse flies by trypanosomes is more complex than previously thought.
Collapse
|
12
|
Structure of the trypanosome paraflagellar rod and insights into non-planar motility of eukaryotic cells. Cell Discov 2021; 7:51. [PMID: 34257277 PMCID: PMC8277818 DOI: 10.1038/s41421-021-00281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic flagella (synonymous with cilia) rely on a microtubule-based axoneme, together with accessory filaments to carryout motility and signaling functions. While axoneme structures are well characterized, 3D ultrastructure of accessory filaments and their axoneme interface are mostly unknown, presenting a critical gap in understanding structural foundations of eukaryotic flagella. In the flagellum of the protozoan parasite Trypanosoma brucei (T. brucei), the axoneme is accompanied by a paraflagellar rod (PFR) that supports non-planar motility and signaling necessary for disease transmission and pathogenesis. Here, we employed cryogenic electron tomography (cryoET) with sub-tomographic averaging, to obtain structures of the PFR, PFR-axoneme connectors (PACs), and the axonemal central pair complex (CPC). The structures resolve how the 8 nm repeat of the axonemal tubulin dimer interfaces with the 54 nm repeat of the PFR, which consist of proximal, intermediate, and distal zones. In the distal zone, stacked "density scissors" connect with one another to form a "scissors stack network (SSN)" plane oriented 45° to the axoneme axis; and ~370 parallel SSN planes are connected by helix-rich wires into a paracrystalline array with ~90% empty space. Connections from these wires to the intermediate zone, then to overlapping layers of the proximal zone and to the PACs, and ultimately to the CPC, point to a contiguous pathway for signal transmission. Together, our findings provide insights into flagellum-driven, non-planar helical motility of T. brucei and have broad implications ranging from cell motility and tensegrity in biology, to engineering principles in bionics.
Collapse
|
13
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
14
|
Calvo-Álvarez E, Bonnefoy S, Salles A, Benson FE, McKean PG, Bastin P, Rotureau B. Redistribution of FLAgellar Member 8 during the trypanosome life cycle: Consequences for cell fate prediction. Cell Microbiol 2021; 23:e13347. [PMID: 33896083 PMCID: PMC8459223 DOI: 10.1111/cmi.13347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
The single flagellum of African trypanosomes is essential in multiple aspects of the parasites' development. The FLAgellar Member 8 protein (FLAM8), localised to the tip of the flagellum in cultured insect forms of Trypanosoma brucei, was identified as a marker of the locking event that controls flagellum length. Here, we investigated whether FLAM8 could also reflect the flagellum maturation state in other parasite cycle stages. We observed that FLAM8 distribution extended along the entire flagellar cytoskeleton in mammalian‐infective forms. Then, a rapid FLAM8 concentration to the distal tip occurs during differentiation into early insect forms, illustrating the remodelling of an existing flagellum. In the tsetse cardia, FLAM8 further localises to the entire length of the new flagellum during an asymmetric division. Strikingly, in parasites dividing in the tsetse midgut and in the salivary glands, the amount and distribution of FLAM8 in the new flagellum were seen to predict the daughter cell fate. We propose and discuss how FLAM8 could be considered a meta‐marker of the flagellum stage and maturation state in trypanosomes.
Collapse
Affiliation(s)
- Estefanía Calvo-Álvarez
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.,Trypanosome Transmission Group, Institut Pasteur, Paris, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Audrey Salles
- Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Institut Pasteur, Paris, France
| | - Fiona E Benson
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Paul G McKean
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.,Trypanosome Transmission Group, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma brucei. mSphere 2021; 6:6/1/e01090-20. [PMID: 33568455 PMCID: PMC8141408 DOI: 10.1128/msphere.01090-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Trypanosoma brucei is the protozoan parasite responsible for sleeping sickness, a lethal vector-borne disease. T. brucei has a single flagellum (cilium) that plays critical roles in transmission and pathogenesis. An emerging concept is that the flagellum is organized into subdomains, each having specialized composition and function. The overall flagellum proteome has been well studied, but a critical knowledge gap is the protein composition of individual subdomains. We have tested whether APEX-based proximity proteomics could be used to examine the protein composition of T. brucei flagellum subdomains. As APEX-based labeling has not previously been described in T. brucei, we first fused APEX2 to the DRC1 subunit of the nexin-dynein regulatory complex, a well-characterized axonemal complex. We found that DRC1-APEX2 directs flagellum-specific biotinylation, and purification of biotinylated proteins yields a DRC1 “proximity proteome” having good overlap with published proteomes obtained from purified axonemes. Having validated the use of APEX2 in T. brucei, we next attempted to distinguish flagellar subdomains by fusing APEX2 to a flagellar membrane protein that is restricted to the flagellum tip, AC1, and another one that is excluded from the tip, FS179. Fluorescence microscopy demonstrated subdomain-specific biotinylation, and principal-component analysis showed distinct profiles between AC1-APEX2 and FS179-APEX2. Comparing these two profiles allowed us to identify an AC1 proximity proteome that is enriched for tip proteins, including proteins involved in signaling. Our results demonstrate that APEX2-based proximity proteomics is effective in T. brucei and can be used to resolve the proteome composition of flagellum subdomains that cannot themselves be readily purified. IMPORTANCE Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Given the essential and multifunctional role of the T. brucei flagellum, there is need for approaches that enable proteomic analysis of individual subdomains. Our work establishes that APEX2 proximity labeling can, indeed, be implemented in the biochemical environment of T. brucei and has allowed identification of proximity proteomes for different flagellar subdomains that cannot be purified. This capacity opens the possibility to study the composition and function of other compartments. We expect this approach may be extended to other eukaryotic pathogens and will enhance the utility of T. brucei as a model organism to study ciliopathies, heritable human diseases in which cilium function is impaired.
Collapse
|
16
|
Motility patterns of Trypanosoma cruzi trypomastigotes correlate with the efficiency of parasite invasion in vitro. Sci Rep 2020; 10:15894. [PMID: 32985548 PMCID: PMC7522242 DOI: 10.1038/s41598-020-72604-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/25/2020] [Indexed: 11/08/2022] Open
Abstract
Numerous works have demonstrated that trypanosomatid motility is relevant for parasite replication and sensitivity. Nonetheless, although some findings indirectly suggest that motility also plays an important role during infection, this has not been extensively investigated. This work is aimed at partially filling this void for the case of Trypanosoma cruzi. After recording swimming T. cruzi trypomastigotes (CL Brener strain) and recovering their individual trajectories, we statistically analyzed parasite motility patterns. We did this with parasites that swim alone or above monolayer cultures of different cell lines. Our results indicate that T. cruzi trypomastigotes change their motility patterns when they are in the presence of mammalian cells, in a cell-line dependent manner. We further performed infection experiments in which each of the mammalian cell cultures were incubated for 2 h together with trypomastigotes, and measured the corresponding invasion efficiency. Not only this parameter varied from cell line to cell line, but it resulted to be positively correlated with the corresponding intensity of the motility pattern changes. Together, these results suggest that T. cruzi trypomastigotes are capable of sensing the presence of mammalian cells and of changing their motility patterns accordingly, and that this might increase their invasion efficiency.
Collapse
|
17
|
Jentzsch J, Sabri A, Speckner K, Lallinger-Kube G, Weiss M, Ersfeld K. Microtubule polyglutamylation is important for regulating cytoskeletal architecture and motility in Trypanosoma brucei. J Cell Sci 2020; 133:jcs248047. [PMID: 32843576 DOI: 10.1242/jcs.248047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
The shape of kinetoplastids, such as Trypanosoma brucei, is precisely defined during the stages of the life cycle and governed by a stable subpellicular microtubule cytoskeleton. During the cell cycle and transitions between life cycle stages, this stability has to transiently give way to a dynamic behaviour to enable cell division and morphological rearrangements. How these opposing requirements of the cytoskeleton are regulated is poorly understood. Two possible levels of regulation are activities of cytoskeleton-associated proteins and microtubule post-translational modifications (PTMs). Here, we investigate the functions of two putative tubulin polyglutamylases in T. brucei, TTLL6A and TTLL12B. Depletion of both proteins leads to a reduction in tubulin polyglutamylation in situ and is associated with disintegration of the posterior cell pole, loss of the microtubule plus-end-binding protein EB1 and alterations of microtubule dynamics. We also observe a reduced polyglutamylation of the flagellar axoneme. Quantitative motility analysis reveals that the PTM imbalance correlates with a transition from directional to diffusive cell movement. These data show that microtubule polyglutamylation has an important role in regulating cytoskeletal architecture and motility in the parasite T. bruceiThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jana Jentzsch
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Adal Sabri
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Konstantin Speckner
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Gertrud Lallinger-Kube
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Klaus Ersfeld
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
18
|
Lemos M, Mallet A, Bertiaux E, Imbert A, Rotureau B, Bastin P. Timing and original features of flagellum assembly in trypanosomes during development in the tsetse fly. Parasit Vectors 2020; 13:169. [PMID: 32248844 PMCID: PMC7132888 DOI: 10.1186/s13071-020-04026-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Trypanosoma brucei exhibits a complex life-cycle alternating between tsetse flies and mammalian hosts. When parasites infect the fly, cells differentiate to adapt to life in various tissues, which is accompanied by drastic morphological and biochemical modifications especially in the proventriculus. This key step represents a bottleneck for salivary gland infection. Methods Here, we monitored flagellum assembly in trypanosomes during differentiation from the trypomastigote to the epimastigote stage, i.e. when the nucleus migrates to the posterior end of the cell, by using three-dimensional electron microscopy (focused ion beam scanning electron microscopy, FIB-SEM) and immunofluorescence assays. Results The combination of light and electron microscopy approaches provided structural and molecular evidence that the new flagellum is assembled while the nucleus migrates towards the posterior region of the body. Two major differences with well-known procyclic cells are reported. First, growth of the new flagellum begins when the associated basal body is found in a posterior position relative to the mature flagellum. Secondly, the new flagellum acquires its own flagellar pocket before rotating on the left side of the anterior-posterior axis. FIB-SEM revealed the presence of a structure connecting the new and mature flagellum and serial sectioning confirmed morphological similarities with the flagella connector of procyclic cells. We discuss the potential function of the flagella connector in trypanosomes from the proventriculus. Conclusions These findings show that T. brucei finely modulates its cytoskeletal components to generate highly variable morphologies.![]()
Collapse
Affiliation(s)
- Moara Lemos
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France
| | - Adeline Mallet
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France.,UtechS Ultrastructural Bioimaging (Ultrapole), C2RT, Institut Pasteur, 75015, Paris, France.,Sorbonne Université école doctorale Complexité du Vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252, Paris Cedex 05, France
| | - Eloïse Bertiaux
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France.,Sorbonne Université école doctorale Complexité du Vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252, Paris Cedex 05, France
| | | | - Brice Rotureau
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
19
|
Imhof S, Zhang J, Wang H, Bui KH, Nguyen H, Atanasov I, Hui WH, Yang SK, Zhou ZH, Hill KL. Cryo electron tomography with volta phase plate reveals novel structural foundations of the 96-nm axonemal repeat in the pathogen Trypanosoma brucei. eLife 2019; 8:e52058. [PMID: 31710293 PMCID: PMC6974359 DOI: 10.7554/elife.52058] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
The 96-nm axonemal repeat includes dynein motors and accessory structures as the foundation for motility of eukaryotic flagella and cilia. However, high-resolution 3D axoneme structures are unavailable for organisms among the Excavates, which include pathogens of medical and economic importance. Here we report cryo electron tomography structures of the 96-nm repeat from Trypanosoma brucei, a protozoan parasite in the Excavate lineage that causes African trypanosomiasis. We examined bloodstream and procyclic life cycle stages, and a knockdown lacking DRC11/CMF22 of the nexin dynein regulatory complex (NDRC). Sub-tomogram averaging yields a resolution of 21.8 Å for the 96-nm repeat. We discovered several lineage-specific structures, including novel inter-doublet linkages and microtubule inner proteins (MIPs). We establish that DRC11/CMF22 is required for the NDRC proximal lobe that binds the adjacent doublet microtubule. We propose that lineage-specific elaboration of axoneme structure in T. brucei reflects adaptations to support unique motility needs in diverse host environments.
Collapse
Affiliation(s)
- Simon Imhof
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Jiayan Zhang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesUnited States
| | - Khanh Huy Bui
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealUnited States
| | - Hoangkim Nguyen
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Ivo Atanasov
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Wong H Hui
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Shun Kai Yang
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealUnited States
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesUnited States
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
20
|
Bastin P. The trypanosome journey in the tsetse fly. C R Biol 2019. [DOI: 10.1016/j.crvi.2019.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Walker BJ, Wheeler RJ. High-speed multifocal plane fluorescence microscopy for three-dimensional visualisation of beating flagella. J Cell Sci 2019; 132:jcs231795. [PMID: 31371486 PMCID: PMC6737910 DOI: 10.1242/jcs.231795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023] Open
Abstract
Analysis of flagellum and cilium beating in three dimensions (3D) is important for understanding cell motility, and using fluorescence microscopy to do so would be extremely powerful. Here, high-speed multifocal plane fluorescence microscopy, where the light path is split to visualise multiple focal planes simultaneously, was used to reconstruct Trypanosoma brucei and Leishmania mexicana movement in 3D. These species are uniflagellate unicellular parasites for which motility is vital. It was possible to use either a fluorescent stain or a genetically-encoded fluorescent protein to visualise flagellum and cell movement at 200 Hz frame rates. This addressed two open questions regarding Trypanosoma and Leishmania flagellum beating, which contributes to their swimming behaviours: 1) how planar is the L. mexicana flagellum beat, and 2) what is the nature of flagellum beating during T. brucei 'tumbling'? We showed that L. mexicana has notable deviations from a planar flagellum beat, and that during tumbling the T. brucei flagellum bends the cell and beats only in the distal portion to achieve cell reorientation. This demonstrates high-speed multifocal plane fluorescence microscopy as a powerful tool for the analysis of beating flagella.
Collapse
Affiliation(s)
- Benjamin J Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
22
|
Beneke T, Demay F, Hookway E, Ashman N, Jeffery H, Smith J, Valli J, Becvar T, Myskova J, Lestinova T, Shafiq S, Sadlova J, Volf P, Wheeler RJ, Gluenz E. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog 2019; 15:e1007828. [PMID: 31242261 PMCID: PMC6615630 DOI: 10.1371/journal.ppat.1007828] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/09/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
The protozoan parasite Leishmania possesses a single flagellum, which is remodelled during the parasite’s life cycle from a long motile flagellum in promastigote forms in the sand fly to a short immotile flagellum in amastigotes residing in mammalian phagocytes. This study examined the protein composition and in vivo function of the promastigote flagellum. Protein mass spectrometry and label free protein enrichment testing of isolated flagella and deflagellated cell bodies defined a flagellar proteome for L. mexicana promastigote forms (available via ProteomeXchange with identifier PXD011057). This information was used to generate a CRISPR-Cas9 knockout library of 100 mutants to screen for flagellar defects. This first large-scale knockout screen in a Leishmania sp. identified 56 mutants with altered swimming speed (52 reduced and 4 increased) and defined distinct mutant categories (faster swimmers, slower swimmers, slow uncoordinated swimmers and paralysed cells, including aflagellate promastigotes and cells with curled flagella and disruptions of the paraflagellar rod). Each mutant was tagged with a unique 17-nt barcode, providing a simple barcode sequencing (bar-seq) method for measuring the relative fitness of L. mexicana mutants in vivo. In mixed infections of the permissive sand fly vector Lutzomyia longipalpis, paralysed promastigotes and uncoordinated swimmers were severely diminished in the fly after defecation of the bloodmeal. Subsequent examination of flies infected with a single paralysed mutant lacking the central pair protein PF16 or an uncoordinated swimmer lacking the axonemal protein MBO2 showed that these promastigotes did not reach anterior regions of the fly alimentary tract. These data show that L. mexicana need directional motility for successful colonisation of sand flies. Leishmania are protozoan parasites, transmitted between mammals by the bite of phlebotomine sand flies. Promastigote forms in the sand fly have a long flagellum, which is motile and used for anchoring the parasites to prevent clearance with the digested blood meal remnants. To dissect flagellar functions and their importance in life cycle progression, we generated here a comprehensive list of >300 flagellar proteins and produced a CRISPR-Cas9 gene knockout library of 100 mutant Leishmania. We studied their behaviour in vitro before examining their fate in the sand fly Lutzomyia longipalpis. Measuring mutant swimming speeds showed that about half behaved differently compared to the wild type: a few swam faster, many slower and some were completely paralysed. We also found a group of uncoordinated swimmers. To test whether flagellar motility is required for parasite migration from the fly midgut to the foregut from where they reach the next host, we infected sand flies with a mixed mutant population. Each mutant carried a unique tag and tracking these tags up to nine days after infection showed that paralysed and uncoordinated Leishmania were rapidly lost from flies. These data indicate that directional swimming is important for successful colonisation of sand flies.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - François Demay
- University of Lille 1, Cité Scientifique, Villeneuve d’Ascq, France
| | - Edward Hookway
- Research Department of Pathology, University College London, London, United Kingdom
| | - Nicole Ashman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Heather Jeffery
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - James Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jessica Valli
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Tomas Becvar
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Myskova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shahaan Shafiq
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, United Kingdom
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Wachter S, Jung J, Shafiq S, Basquin J, Fort C, Bastin P, Lorentzen E. Binding of IFT22 to the intraflagellar transport complex is essential for flagellum assembly. EMBO J 2019; 38:e101251. [PMID: 30940671 PMCID: PMC6484408 DOI: 10.15252/embj.2018101251] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Intraflagellar transport (IFT) relies on motor proteins and the IFT complex to construct cilia and flagella. The IFT complex subunit IFT22/RabL5 has sequence similarity with small GTPases although the nucleotide specificity is unclear because of non-conserved G4/G5 motifs. We show that IFT22 specifically associates with G-nucleotides and present crystal structures of IFT22 in complex with GDP, GTP, and with IFT74/81. Our structural analysis unravels an unusual GTP/GDP-binding mode of IFT22 bypassing the classical G4 motif. The GTPase switch regions of IFT22 become ordered upon complex formation with IFT74/81 and mediate most of the IFT22-74/81 interactions. Structure-based mutagenesis reveals that association of IFT22 with the IFT complex is essential for flagellum construction in Trypanosoma brucei although IFT22 GTP-loading is not strictly required.
Collapse
Affiliation(s)
- Stefanie Wachter
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jamin Jung
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Shahaan Shafiq
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Jerome Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Cécile Fort
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
24
|
Shaw S, DeMarco SF, Rehmann R, Wenzler T, Florini F, Roditi I, Hill KL. Flagellar cAMP signaling controls trypanosome progression through host tissues. Nat Commun 2019; 10:803. [PMID: 30778051 PMCID: PMC6379439 DOI: 10.1038/s41467-019-08696-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
The unicellular parasite Trypanosoma brucei is transmitted between mammals by tsetse flies. Following the discovery that flagellar phosphodiesterase PDEB1 is required for trypanosomes to move in response to signals in vitro (social motility), we investigated its role in tsetse flies. Here we show that PDEB1 knockout parasites exhibit subtle changes in movement, reminiscent of bacterial chemotaxis mutants. Infecting flies with the knockout, followed by live confocal microscopy of fluorescent parasites within dual-labelled insect tissues, shows that PDEB1 is important for traversal of the peritrophic matrix, which separates the midgut lumen from the ectoperitrophic space. Without PDEB1, parasites are trapped in the lumen and cannot progress through the cycle. This demonstrates that the peritrophic matrix is a barrier that must be actively overcome and that the parasite’s flagellar cAMP signaling pathway facilitates this. Migration may depend on perception of chemotactic cues, which could stem from co-infecting parasites and/or the insect host. Trypanosoma brucei probably relies on chemotactic signals for movement through tsetse fly tissues, but the molecular basis is unknown. Here, the authors show that flagellar cAMP signaling is required for traversal of the peritrophic matrix and that, without it, parasites are trapped in the midgut lumen.
Collapse
Affiliation(s)
- Sebastian Shaw
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Stephanie F DeMarco
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | - Tanja Wenzler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | - Francesca Florini
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.
| | - Kent L Hill
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Krüger T, Schuster S, Engstler M. Beyond Blood: African Trypanosomes on the Move. Trends Parasitol 2018; 34:1056-1067. [DOI: 10.1016/j.pt.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
|
26
|
Calvo-Alvarez E, Cren-Travaillé C, Crouzols A, Rotureau B. A new chimeric triple reporter fusion protein as a tool for in vitro and in vivo multimodal imaging to monitor the development of African trypanosomes and Leishmania parasites. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:391-403. [PMID: 29339220 DOI: 10.1016/j.meegid.2018.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
Abstract
Trypanosomiases and leishmaniases, caused by a group of related protist parasites, are Neglected Tropical Diseases currently threatening >500 million people worldwide. Reporter proteins have revolutionised the research on infectious diseases and have opened up new advances in the understanding of trypanosomatid-borne diseases in terms of both biology, pathogenesis and drug development. Here, we describe the generation and some applications of a new chimeric triple reporter fusion protein combining the red-shifted firefly luciferase PpyREH9 and the tdTomato red fluorescent protein, fused by the TY1 tag. Expressed in both Trypanosoma brucei brucei and Leishmania major transgenic parasites, this construct was successfully assessed on different state-of-the-art imaging technologies, at different scales ranging from whole organism to cellular level, both in vitro and in vivo in murine models. For T. b. brucei, the usefulness of this triple marker to monitor the entire parasite cycle in both tsetse flies and mice was further demonstrated. This stable reporter allows to qualitatively and quantitatively scrutinize in real-time several crucial aspects of the parasite's development, including the development of African trypanosomes in the dermis of the mammalian host. We briefly discuss developments in bio-imaging technologies and highlight how we could improve our understanding of parasitism by combining the genetic engineering of parasites to the one of the hosting organisms in which they complete their developmental program.
Collapse
Affiliation(s)
- Estefania Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.
| | - Christelle Cren-Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| |
Collapse
|
27
|
Parasite motility is critical for virulence of African trypanosomes. Sci Rep 2018; 8:9122. [PMID: 29904094 PMCID: PMC6002391 DOI: 10.1038/s41598-018-27228-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
African trypanosomes, Trypanosoma brucei spp., are lethal pathogens that cause substantial human suffering and limit economic development in some of the world's most impoverished regions. The name Trypanosoma ("auger cell") derives from the parasite's distinctive motility, which is driven by a single flagellum. However, despite decades of study, a requirement for trypanosome motility in mammalian host infection has not been established. LC1 is a conserved dynein subunit required for flagellar motility. Prior studies with a conditional RNAi-based LC1 mutant, RNAi-K/R, revealed that parasites with defective motility could infect mice. However, RNAi-K/R retained residual expression of wild-type LC1 and residual motility, thus precluding definitive interpretation. To overcome these limitations, here we generate constitutive mutants in which both LC1 alleles are replaced with mutant versions. These double knock-in mutants show reduced motility compared to RNAi-K/R and are viable in culture, but are unable to maintain bloodstream infection in mice. The virulence defect is independent of infection route but dependent on an intact host immune system. By comparing different mutants, we also reveal a critical dependence on the LC1 N-terminus for motility and virulence. Our findings demonstrate that trypanosome motility is critical for establishment and maintenance of bloodstream infection, implicating dynein-dependent flagellar motility as a potential drug target.
Collapse
|
28
|
Abstract
Trypanosoma brucei is a highly invasive pathogen capable of penetrating deeply into host tissues. To understand how flagellar motility facilitates cell penetration, we used cryo-electron tomography (cryo-ET) to visualize two genetically anucleate mutants with different flagellar motility behaviors. We found that the T. brucei cell body is highly deformable as defined by changes in cytoskeletal twist and spacing, in response to flagellar beating and environmental conditions. Based on the cryo-ET models, we proposed a mechanism of how flagellum motility is coupled to cell shape changes, which may facilitate penetration through size-limiting barriers. In the unicellular parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, complex swimming behavior is driven by a flagellum laterally attached to the long and slender cell body. Using microfluidic assays, we demonstrated that T. brucei can penetrate through an orifice smaller than its maximum diameter. Efficient motility and penetration depend on active flagellar beating. To understand how active beating of the flagellum affects the cell body, we genetically engineered T. brucei to produce anucleate cytoplasts (zoids and minis) with different flagellar attachment configurations and different swimming behaviors. We used cryo-electron tomography (cryo-ET) to visualize zoids and minis vitrified in different motility states. We showed that flagellar wave patterns reflective of their motility states are coupled to cytoskeleton deformation. Based on these observations, we propose a mechanism for how flagellum beating can deform the cell body via a flexible connection between the flagellar axoneme and the cell body. This mechanism may be critical for T. brucei to disseminate in its host through size-limiting barriers.
Collapse
|
29
|
Microfluidics-Based Approaches to the Isolation of African Trypanosomes. Pathogens 2017; 6:pathogens6040047. [PMID: 28981471 PMCID: PMC5750571 DOI: 10.3390/pathogens6040047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
African trypanosomes are responsible for significant levels of disease in both humans and animals. The protozoan parasites are free-living flagellates, usually transmitted by arthropod vectors, including the tsetse fly. In the mammalian host they live in the bloodstream and, in the case of human-infectious species, later invade the central nervous system. Diagnosis of the disease requires the positive identification of parasites in the bloodstream. This can be particularly challenging where parasite numbers are low, as is often the case in peripheral blood. Enriching parasites from body fluids is an important part of the diagnostic pathway. As more is learned about the physicochemical properties of trypanosomes, this information can be exploited through use of different microfluidic-based approaches to isolate the parasites from blood or other fluids. Here, we discuss recent advances in the use of microfluidics to separate trypanosomes from blood and to isolate single trypanosomes for analyses including drug screening.
Collapse
|
30
|
Schuster S, Krüger T, Subota I, Thusek S, Rotureau B, Beilhack A, Engstler M. Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system. eLife 2017; 6. [PMID: 28807106 PMCID: PMC5570225 DOI: 10.7554/elife.27656] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment.
Collapse
Affiliation(s)
- Sarah Schuster
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Ines Subota
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Sina Thusek
- Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Andreas Beilhack
- Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Wheeler RJ. Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput Biol 2017; 13:e1005353. [PMID: 28141804 PMCID: PMC5308837 DOI: 10.1371/journal.pcbi.1005353] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/14/2017] [Accepted: 01/10/2017] [Indexed: 11/23/2022] Open
Abstract
Swimming cells typically move along a helical path or undergo longitudinal rotation as they swim, arising from chiral asymmetry in hydrodynamic drag or propulsion bending the swimming path into a helix. Helical paths are beneficial for some forms of chemotaxis, but why asymmetric shape is so prevalent when a symmetric shape would also allow highly directional swimming is unclear. Here, I analyse the swimming of the insect life cycle stages of two human parasites; Trypanosoma brucei and Leishmania mexicana. This showed quantitatively how chirality in T. brucei cell shape confers highly directional swimming. High speed videomicrographs showed that T. brucei, L. mexicana and a T. brucei RNAi morphology mutant have a range of shape asymmetries, from wild-type T. brucei (highly chiral) to L. mexicana (near-axial symmetry). The chiral cells underwent longitudinal rotation while swimming, with more rapid longitudinal rotation correlating with swimming path directionality. Simulation indicated hydrodynamic drag on the chiral cell shape caused rotation, and the predicted geometry of the resulting swimming path matched the directionality of the observed swimming paths. This simulation of swimming path geometry showed that highly chiral cell shape is a robust mechanism through which microscale swimmers can achieve highly directional swimming at low Reynolds number. It is insensitive to random variation in shape or propulsion (biological noise). Highly symmetric cell shape can give highly directional swimming but is at risk of giving futile circular swimming paths in the presence of biological noise. This suggests the chiral T. brucei cell shape (associated with the lateral attachment of the flagellum) may be an adaptation associated with the bloodstream-inhabiting lifestyle of this parasite for robust highly directional swimming. It also provides a plausible general explanation for why swimming cells tend to have strong asymmetries in cell shape or propulsion. Swimming cells often follow a helical swimming path, however the advantage of helical paths over a simple straight line path is not clear. To analyse this phenomenon, I analysed the swimming of the human parasites Trypanosoma brucei (which causes sleeping sickness/trypanosomiasis) and Leishmania mexicana (which causes leishmaniasis). Using new computational methods to determine the three dimensional shape of swimming cells I showed that T. brucei have a helical shape which causes rotation as the cell swims, and the geometry of the resulting swimming path makes the cell movement highly directional. In contrast, L. mexicana are symmetrical, do not rotate, and their swimming paths are curved and have low directionality. Using a T. brucei mutant I showed that the cell structure responsible for the helical shape while swimming is the flagellum attachment zone. This explains a key function of this structure. Finally, simulations showed the phenomenon of rotation while swimming is a way cells can ensure highly directional swimming along a controlled helical path, overcoming random variation in cell shape or propulsion. This provides a general explanation for why swimming cells are often asymmetric and tend to follow helical paths.
Collapse
Affiliation(s)
- Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
32
|
Matetovici I, Caljon G, Van Den Abbeele J. Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland. BMC Genomics 2016; 17:971. [PMID: 27884110 PMCID: PMC5123318 DOI: 10.1186/s12864-016-3283-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/09/2016] [Indexed: 12/03/2022] Open
Abstract
Background For their transmission, African trypanosomes rely on their blood feeding insect vector, the tsetse fly (Glossina sp.). The ingested Trypanosoma brucei parasites have to overcome a series of barriers in the tsetse fly alimentary tract to finally develop into the infective metacyclic forms in the salivary glands that are transmitted to a mammalian host by the tsetse bite. The parasite population in the salivary gland is dense with a significant number of trypanosomes tightly attached to the epithelial cells. Our current knowledge on the impact of the infection on the salivary gland functioning is very limited. Therefore, this study aimed to gain a deeper insight into the global gene expression changes in the salivary glands of Glossina morsitans morsitans in response to an infection with the T. brucei parasite. A detailed whole transcriptome comparison of midgut-infected tsetse with and without a mature salivary gland infection was performed to study the impact of a trypanosome infection on different aspects of the salivary gland functioning and the mechanisms that are induced in this tissue to tolerate the infection i.e. to control the negative impact of the parasite presence. Moreover, a transcriptome comparison with age-matched uninfected flies was done to see whether gene expression in the salivary glands is already affected by a trypanosome infection in the tsetse midgut. Results By a RNA-sequencing (RNA-seq) approach we compared the whole transcriptomes of flies with a T. brucei salivary gland/midgut infection versus flies with only a midgut infection or versus non-infected flies, all with the same age and feeding history. More than 7500 salivary gland transcripts were detected from which a core group of 1214 differentially expressed genes (768 up- and 446 down-regulated) were shared between the two transcriptional comparisons. Gene Ontology enrichment analysis and detailed gene expression comparisons showed a diverse impact at the gene transcript level. Increased expression was observed for transcripts encoding for proteins involved in immunity (like several genes of the Imd-signaling pathway, serine proteases, serpins and thioester-containing proteins), detoxification of reactive species, cell death, cytoskeleton organization, cell junction and repair. Decreased expression was observed for transcripts encoding the major secreted proteins such as 5′-nucleotidases, adenosine deaminases and the nucleic acid binding proteins Tsals. Moreover, expression of some gene categories in the salivary glands were found to be already affected by a trypanosome midgut infection, before the parasite reaches the salivary glands. Conclusions This study reveals that the T. brucei population in the tsetse salivary gland has a negative impact on its functioning and on the integrity of the gland epithelium. Our RNA-seq data suggest induction of a strong local tissue response in order to control the epithelial cell damage, the ROS intoxication of the cellular environment and the parasite infection, resulting in the fly tolerance to the infection. The modified expression of some gene categories in the tsetse salivary glands by a trypanosome infection at the midgut level indicate a putative anticipatory response in the salivary glands, before the parasite reaches this tissue. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irina Matetovici
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Guy Caljon
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.,Present address: Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.
| |
Collapse
|
33
|
Caljon G, De Muylder G, Durnez L, Jennes W, Vanaerschot M, Dujardin JC. Alice in microbes' land: adaptations and counter-adaptations of vector-borne parasitic protozoa and their hosts. FEMS Microbiol Rev 2016; 40:664-85. [PMID: 27400870 DOI: 10.1093/femsre/fuw018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/24/2022] Open
Abstract
In the present review, we aim to provide a general introduction to different facets of the arms race between pathogens and their hosts/environment, emphasizing its evolutionary aspects. We focus on vector-borne parasitic protozoa, which have to adapt to both invertebrate and vertebrate hosts. Using Leishmania, Trypanosoma and Plasmodium as main models, we review successively (i) the adaptations and counter-adaptations of parasites and their invertebrate host, (ii) the adaptations and counter-adaptations of parasites and their vertebrate host and (iii) the impact of human interventions (chemotherapy, vaccination, vector control and environmental changes) on these adaptations. We conclude by discussing the practical impact this knowledge can have on translational research and public health.
Collapse
Affiliation(s)
- Guy Caljon
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Health, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Géraldine De Muylder
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium
| | - Lies Durnez
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium
| | - Wim Jennes
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium
| | - Manu Vanaerschot
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium Columbia University, College of Physicians and Surgeons, Department of Microbiology and Immunology, Fidock Lab, New York, NY 10032, USA
| | - Jean-Claude Dujardin
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Health, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
34
|
Hochstetter A, Pfohl T. Motility, Force Generation, and Energy Consumption of Unicellular Parasites. Trends Parasitol 2016; 32:531-541. [PMID: 27157805 DOI: 10.1016/j.pt.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022]
Abstract
Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them.
Collapse
Affiliation(s)
- Axel Hochstetter
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Thomas Pfohl
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.
| |
Collapse
|
35
|
Wilson CS, Chang AJ, Greene R, Machado S, Parsons MW, Takats TA, Zambetti LJ, Springer AL. Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment. PLoS One 2015; 10:e0139579. [PMID: 26555902 PMCID: PMC4640498 DOI: 10.1371/journal.pone.0139579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Motility in the protozoan parasite Trypanosoma brucei is conferred by a single flagellum, attached alongside the cell, which moves the cell forward using a beat that is generated from tip-to-base. We are interested in characterizing components that regulate flagellar beating, in this study we extend the characterization of TbIC138, the ortholog of a dynein intermediate chain that regulates axonemal inner arm dynein f/I1. TbIC138 was tagged In situ-and shown to fractionate with the inner arm components of the flagellum. RNAi knockdown of TbIC138 resulted in significantly reduced protein levels, mild growth defect and significant motility defects. These cells tended to cluster, exhibited slow and abnormal motility and some cells had partially or fully detached flagella. Slight but significant increases were observed in the incidence of mis-localized or missing kinetoplasts. To document development of the TbIC138 knockdown phenotype over time, we performed a detailed analysis of flagellar detachment and motility changes over 108 hours following induction of RNAi. Abnormal motility, such as slow twitching or irregular beating, was observed early, and became progressively more severe such that by 72 hours-post-induction, approximately 80% of the cells were immotile. Progressively more cells exhibited flagellar detachment over time, but this phenotype was not as prevalent as immotility, affecting less than 60% of the population. Detached flagella had abnormal beating, but abnormal beating was also observed in cells with no flagellar detachment, suggesting that TbIC138 has a direct, or primary, effect on the flagellar beat, whereas detachment is a secondary phenotype of TbIC138 knockdown. Our results are consistent with the role of TbIC138 as a regulator of motility, and has a phenotype amenable to more extensive structure-function analyses to further elucidate its role in the control of flagellar beat in T. brucei.
Collapse
Affiliation(s)
- Corinne S. Wilson
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Alex J. Chang
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Rebecca Greene
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sulynn Machado
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Matthew W. Parsons
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Taylor A. Takats
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Luke J. Zambetti
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Amy L. Springer
- Department of Biology, Siena College, Loudonville, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Krüger T, Engstler M. Flagellar motility in eukaryotic human parasites. Semin Cell Dev Biol 2015; 46:113-27. [DOI: 10.1016/j.semcdb.2015.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
37
|
Ooi CP, Rotureau B, Gribaldo S, Georgikou C, Julkowska D, Blisnick T, Perrot S, Subota I, Bastin P. The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies. PLoS One 2015. [PMID: 26218532 PMCID: PMC4517888 DOI: 10.1371/journal.pone.0133676] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
African trypanosomes are flagellated parasites that cause sleeping sickness. Parasites are transmitted from one mammalian host to another by the bite of a tsetse fly. Trypanosoma brucei possesses three different genes for arginine kinase (AK) including one (AK3) that encodes a protein localised to the flagellum. AK3 is characterised by the presence of a unique amino-terminal insertion that specifies flagellar targeting. We show here a phylogenetic analysis revealing that flagellar AK arose in two independent duplication events in T. brucei and T. congolense, the two species of African trypanosomes that infect the tsetse midgut. In T. brucei, AK3 is detected in all stages of parasite development in the fly (in the midgut and in the salivary glands) as well as in bloodstream cells, but with predominance at insect stages. Genetic knockout leads to a slight reduction in motility and impairs parasite infectivity towards tsetse flies in single and competition experiments, both phenotypes being reverted upon expression of an epitope-tagged version of AK3. We speculate that this flagellar arginine kinase is important for T. brucei infection of tsetse, especially in the context of mixed infections and that its flagellar targeting relies on a system equivalent to that discovered for calflagins, a family of trypanosome flagellum calcium binding proteins.
Collapse
Affiliation(s)
- Cher-Pheng Ooi
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Simonetta Gribaldo
- Molecular Biology of Gene in Extremophiles Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France
| | - Christina Georgikou
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Daria Julkowska
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Sylvie Perrot
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Ines Subota
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Iron Homeostasis and Trypanosoma brucei Associated Immunopathogenicity Development: A Battle/Quest for Iron. BIOMED RESEARCH INTERNATIONAL 2015; 2015:819389. [PMID: 26090446 PMCID: PMC4450282 DOI: 10.1155/2015/819389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 12/24/2022]
Abstract
African trypanosomosis is a chronic debilitating disease affecting the health and economic well-being of developing countries. The immune response during African trypanosome infection consisting of a strong proinflammatory M1-type activation of the myeloid phagocyte system (MYPS) results in iron deprivation for these extracellular parasites. Yet, the persistence of M1-type MYPS activation causes the development of anemia (anemia of chronic disease, ACD) as a most prominent pathological parameter in the mammalian host, due to enhanced erythrophagocytosis and retention of iron within the MYPS thereby depriving iron for erythropoiesis. In this review we give an overview of how parasites acquire iron from the host and how iron modulation of the host MYPS affects trypanosomosis-associated anemia development. Finally, we also discuss different strategies at the level of both the host and the parasite that can/might be used to modulate iron availability during African trypanosome infections.
Collapse
|
39
|
Gluenz E, Wheeler RJ, Hughes L, Vaughan S. Scanning and three-dimensional electron microscopy methods for the study of Trypanosoma brucei and Leishmania mexicana flagella. Methods Cell Biol 2015; 127:509-42. [PMID: 25837406 PMCID: PMC4419368 DOI: 10.1016/bs.mcb.2014.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three-dimensional electron microscopy tools have revolutionized our understanding of cell structure and molecular complexes in biology. Here, we describe methods for studying flagellar ultrastructure and biogenesis in two unicellular parasites-Trypanosoma brucei and Leishmania mexicana. We describe methods for the preparation of these parasites for scanning electron microscopy cellular electron tomography, and serial block face scanning electron microscopy (SBFSEM). These parasites have a highly ordered cell shape and form, with a defined positioning of internal cytoskeletal structures and organelles. We show how knowledge of these can be used to dissect cell cycles in both parasites and identify the old flagellum from the new in T. brucei. Finally, we demonstrate the use of SBFSEM three-dimensional models for analysis of individual whole cells, demonstrating the excellent potential this technique has for future studies of mutant cell lines.
Collapse
Affiliation(s)
- Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Louise Hughes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
40
|
Bastin P, Rotureau B. Social motility in African trypanosomes: fact or model? Trends Parasitol 2015; 31:37-8. [DOI: 10.1016/j.pt.2014.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/17/2014] [Indexed: 11/24/2022]
|
41
|
Alizadehrad D, Krüger T, Engstler M, Stark H. Simulating the complex cell design of Trypanosoma brucei and its motility. PLoS Comput Biol 2015; 11:e1003967. [PMID: 25569823 PMCID: PMC4288712 DOI: 10.1371/journal.pcbi.1003967] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022] Open
Abstract
The flagellate Trypanosoma brucei, which causes the sleeping sickness when infecting a mammalian host, goes through an intricate life cycle. It has a rather complex propulsion mechanism and swims in diverse microenvironments. These continuously exert selective pressure, to which the trypanosome adjusts with its architecture and behavior. As a result, the trypanosome assumes a diversity of complex morphotypes during its life cycle. However, although cell biology has detailed form and function of most of them, experimental data on the dynamic behavior and development of most morphotypes is lacking. Here we show that simulation science can predict intermediate cell designs by conducting specific and controlled modifications of an accurate, nature-inspired cell model, which we developed using information from live cell analyses. The cell models account for several important characteristics of the real trypanosomal morphotypes, such as the geometry and elastic properties of the cell body, and their swimming mechanism using an eukaryotic flagellum. We introduce an elastic network model for the cell body, including bending rigidity and simulate swimming in a fluid environment, using the mesoscale simulation technique called multi-particle collision dynamics. The in silico trypanosome of the bloodstream form displays the characteristic in vivo rotational and translational motility pattern that is crucial for survival and virulence in the vertebrate host. Moreover, our model accurately simulates the trypanosome's tumbling and backward motion. We show that the distinctive course of the attached flagellum around the cell body is one important aspect to produce the observed swimming behavior in a viscous fluid, and also required to reach the maximal swimming velocity. Changing details of the flagellar attachment generates less efficient swimmers. We also simulate different morphotypes that occur during the parasite's development in the tsetse fly, and predict a flagellar course we have not been able to measure in experiments so far. Typanosoma brucei is a uni-cellular parasite that causes the sleeping sickness, a deadly disease for humans that also occurs in livestock. Injected into the mammalian host by the tsetse fly, the trypanosome travels through the blood stream, where it proliferates, and ultimately can be taken up again by a fly during a bloodmeal. In the tsetse fly, it continues its development with several morphological changes to the cell body plan. During its life cycle, the trypanosome meets different microenvironments, such as the mammalian's bloodstream and the tsetse fly's midgut, proventriculus, foregut, and salivary gland. The cell body of the trypanosome has the shape of a spindle along which an eukaryotic flagellum is attached. We have developed an accurate, in silico model trypanosome using information from live cell analyses. Performing computer simulations, we are able to reproduce all motility patterns of the blood-stream form in typical cell culture medium. Modifying the cell design, we show that the helical course of the flagellar attachment optimizes the trypanosome's swimming speed. We also design trypanosomal morphotypes that occur in the tsetse fly. Simulation science thereby provides an investigative tool to systematically explore the morphologcial diversity during the trypanosome's life cycle even beyond experimental capabilities.
Collapse
Affiliation(s)
- Davod Alizadehrad
- Institute of Theoretical Physics, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Holger Stark
- Institute of Theoretical Physics, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
42
|
Triacylglycerol Storage in Lipid Droplets in Procyclic Trypanosoma brucei. PLoS One 2014; 9:e114628. [PMID: 25493940 PMCID: PMC4262433 DOI: 10.1371/journal.pone.0114628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
Abstract
Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG) content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. β-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFEα1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFEα1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFEα1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Δtfeα1/Δtfeα1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Δtfeα1/Δtfeα1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse.
Collapse
|
43
|
Brown RWB, Collingridge PW, Gull K, Rigden DJ, Ginger ML. Evidence for loss of a partial flagellar glycolytic pathway during trypanosomatid evolution. PLoS One 2014; 9:e103026. [PMID: 25050549 PMCID: PMC4106842 DOI: 10.1371/journal.pone.0103026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael L. Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Abstract
Trypanosoma brucei is a pathogenic unicellular eukaryote that infects humans and other mammals in sub-Saharan Africa. A central feature of trypanosome biology is the single flagellum of the parasite, which is an essential and multifunctional organelle that facilitates cell propulsion, controls cell morphogenesis and directs cytokinesis. Moreover, the flagellar membrane is a specialized subdomain of the cell surface that mediates attachment to host tissues and harbours multiple virulence factors. In this Review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interactions.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
45
|
Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei Flagellar membrane. EUKARYOTIC CELL 2014; 13:1064-76. [PMID: 24879126 DOI: 10.1128/ec.00019-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.
Collapse
|
46
|
Subota I, Julkowska D, Vincensini L, Reeg N, Buisson J, Blisnick T, Huet D, Perrot S, Santi-Rocca J, Duchateau M, Hourdel V, Rousselle JC, Cayet N, Namane A, Chamot-Rooke J, Bastin P. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Mol Cell Proteomics 2014; 13:1769-86. [PMID: 24741115 DOI: 10.1074/mcp.m113.033357] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity.
Collapse
Affiliation(s)
- Ines Subota
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Daria Julkowska
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | | | - Nele Reeg
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Johanna Buisson
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Thierry Blisnick
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Diego Huet
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Sylvie Perrot
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Julien Santi-Rocca
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Magalie Duchateau
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | - Véronique Hourdel
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | | | - Nadège Cayet
- ‖Imagopole Platform, Institut Pasteur, Paris, France
| | | | - Julia Chamot-Rooke
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | - Philippe Bastin
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581,
| |
Collapse
|