1
|
Douglas RG, Moon RW, Frischknecht F. Cytoskeleton Organization in Formation and Motility of Apicomplexan Parasites. Annu Rev Microbiol 2024; 78:311-335. [PMID: 39094056 DOI: 10.1146/annurev-micro-041222-011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.
Collapse
Affiliation(s)
- Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Friedrich Frischknecht
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Parasitology, Center for Integrative Infectious Diseases Research at Heidelberg University, Heidelberg, Germany;
| |
Collapse
|
2
|
Collier S, Pietsch E, Dans M, Ling D, Tavella TA, Lopaticki S, Marapana DS, Shibu MA, Andrew D, Tiash S, McMillan PJ, Gilson P, Tilley L, Dixon MWA. Plasmodium falciparum formins are essential for invasion and sexual stage development. Commun Biol 2023; 6:861. [PMID: 37596377 PMCID: PMC10439200 DOI: 10.1038/s42003-023-05233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
The malaria parasite uses actin-based mechanisms throughout its lifecycle to control a range of biological processes including intracellular trafficking, gene regulation, parasite motility and invasion. In this work we assign functions to the Plasmodium falciparum formins 1 and 2 (FRM1 and FRM2) proteins in asexual and sexual blood stage development. We show that FRM1 is essential for merozoite invasion and FRM2 is required for efficient cell division. We also observed divergent functions for FRM1 and FRM2 in gametocyte development. Conditional deletion of FRM1 leads to a delay in gametocyte stage progression. We show that FRM2 controls the actin and microtubule cytoskeletons in developing gametocytes, with premature removal of the protein resulting in a loss of transmissible stage V gametocytes. Lastly, we show that targeting formin proteins with the small molecule inhibitor of formin homology domain 2 (SMIFH2) leads to a multistage block in asexual and sexual stage parasite development.
Collapse
Affiliation(s)
- Sophie Collier
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma Pietsch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Madeline Dans
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Dawson Ling
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Tatyana A Tavella
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sash Lopaticki
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Danushka S Marapana
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Mohini A Shibu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dean Andrew
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Snigdha Tiash
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul J McMillan
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul Gilson
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew W A Dixon
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Lopez AJ, Andreadaki M, Vahokoski J, Deligianni E, Calder LJ, Camerini S, Freitag A, Bergmann U, Rosenthal PB, Sidén-Kiamos I, Kursula I. Structure and function of Plasmodium actin II in the parasite mosquito stages. PLoS Pathog 2023; 19:e1011174. [PMID: 36877739 PMCID: PMC10019781 DOI: 10.1371/journal.ppat.1011174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/16/2023] [Accepted: 02/03/2023] [Indexed: 03/07/2023] Open
Abstract
Actins are filament-forming, highly-conserved proteins in eukaryotes. They are involved in essential processes in the cytoplasm and also have nuclear functions. Malaria parasites (Plasmodium spp.) have two actin isoforms that differ from each other and from canonical actins in structure and filament-forming properties. Actin I has an essential role in motility and is fairly well characterized. The structure and function of actin II are not as well understood, but mutational analyses have revealed two essential functions in male gametogenesis and in the oocyst. Here, we present expression analysis, high-resolution filament structures, and biochemical characterization of Plasmodium actin II. We confirm expression in male gametocytes and zygotes and show that actin II is associated with the nucleus in both stages in filament-like structures. Unlike actin I, actin II readily forms long filaments in vitro, and near-atomic structures in the presence or absence of jasplakinolide reveal very similar structures. Small but significant differences compared to other actins in the openness and twist, the active site, the D-loop, and the plug region contribute to filament stability. The function of actin II was investigated through mutational analysis, suggesting that long and stable filaments are necessary for male gametogenesis, while a second function in the oocyst stage also requires fine-tuned regulation by methylation of histidine 73. Actin II polymerizes via the classical nucleation-elongation mechanism and has a critical concentration of ~0.1 μM at the steady-state, like actin I and canonical actins. Similarly to actin I, dimers are a stable form of actin II at equilibrium.
Collapse
Affiliation(s)
- Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria Andreadaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Lesley J. Calder
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Anika Freitag
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Inga Sidén-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- * E-mail: (ISK); (IK)
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- * E-mail: (ISK); (IK)
| |
Collapse
|
4
|
Su XZ, Wu J, Xu F, Pattaradilokrat S. Genetic mapping of determinants in drug resistance, virulence, disease susceptibility, and interaction of host-rodent malaria parasites. Parasitol Int 2022; 91:102637. [PMID: 35926693 PMCID: PMC9452477 DOI: 10.1016/j.parint.2022.102637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/31/2022]
Abstract
Genetic mapping has been widely employed to search for genes linked to phenotypes/traits of interest. Because of the ease of maintaining rodent malaria parasites in laboratory mice, many genetic crosses of rodent malaria parasites have been performed to map the parasite genes contributing to malaria parasite development, drug resistance, host immune response, and disease pathogenesis. Drs. Richard Carter, David Walliker, and colleagues at the University of Edinburgh, UK, were the pioneers in developing the systems for genetic mapping of malaria parasite traits, including characterization of genetic markers to follow the inheritance and recombination of parasite chromosomes and performing the first genetic cross using rodent malaria parasites. Additionally, many genetic crosses of inbred mice have been performed to link mouse chromosomal loci to the susceptibility to malaria parasite infections. In this chapter, we review and discuss past and recent advances in genetic marker development, performing genetic crosses, and genetic mapping of both parasite and host genes. Genetic mappings using models of rodent malaria parasites and inbred mice have contributed greatly to our understanding of malaria, including parasite development within their hosts, mechanism of drug resistance, and host-parasite interaction.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Fangzheng Xu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
5
|
Yee M, Walther T, Frischknecht F, Douglas RG. Divergent Plasmodium actin residues are essential for filament localization, mosquito salivary gland invasion and malaria transmission. PLoS Pathog 2022; 18:e1010779. [PMID: 35998188 PMCID: PMC9439217 DOI: 10.1371/journal.ppat.1010779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/02/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Actin is one of the most conserved and ubiquitous proteins in eukaryotes. Its sequence has been highly conserved for its monomers to self-assemble into filaments that mediate essential cell functions such as trafficking, cell shape and motility. The malaria-causing parasite, Plasmodium, expresses a highly sequence divergent actin that is critical for its rapid motility at different stages within its mammalian and mosquito hosts. Each of Plasmodium actin’s four subdomains have divergent regions compared to canonical vertebrate actins. We previously identified subdomains 2 and 3 as providing critical contributions for parasite actin function as these regions could not be replaced by subdomains of vertebrate actins. Here we probed the contributions of individual divergent amino acid residues in these subdomains on parasite motility and progression. Non-lethal changes in these subdomains did not affect parasite development in the mammalian host but strongly affected progression through the mosquito with striking differences in transmission to and through the insect. Live visualization of actin filaments showed that divergent amino acid residues in subdomains 2 and 4 enhanced localization associated with filaments, while those in subdomain 3 negatively affected actin filaments. This suggests that finely tuned actin dynamics are essential for efficient organ entry in the mosquito vector affecting malaria transmission. This work provides residue level insight on the fundamental requirements of actin in highly motile cells. Actin is one of the most abundant and conserved proteins known. Actin monomers can join together to form long filaments. The malaria-causing parasite is transmitted by mosquitoes and needs actin to move very rapidly. An actin from the parasite is different to other actins: its amino acid sequence has relatively high amounts of changes compared to animal species and the actin tends to form only short filaments. We previously identified two large parts of the protein that were critical for the parasite since these large parts could not be exchanged with the equivalent regions of other species. In this study, we focused in on these regions by making more discrete mutations. Most mutations of the actin sequence were tolerated by the parasite in the blood stages. However, these mutants has striking defects in progressing through mosquitoes, especially in invading its salivary glands. We used a new filament labeler to visualize how these mutations affect the actin filaments and found surprisingly different effects. Taken together, small changes to the sequence can have large consequences for the parasite, which ultimately affects its ability to transmit to a new host.
Collapse
Affiliation(s)
- Michelle Yee
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Tobias Walther
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Centre for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
- * E-mail: (FF); (RGD)
| | - Ross G. Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- * E-mail: (FF); (RGD)
| |
Collapse
|
6
|
Deligianni E, Kiamos IS. Gene editing in Plasmodium berghei made easy: Development of a CRISPR/Cas9 protocol using linear donor template and ribozymes for sgRNA generation. Mol Biochem Parasitol 2021; 246:111415. [PMID: 34537287 DOI: 10.1016/j.molbiopara.2021.111415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Efficient reverse genetics approaches are critical for the study of many organisms. The CRISPR/Cas9 gene editing system has led to a plethora of new tools for geneticists. Here, we successfully established a simplified CRISPR/Cas9 system for the malaria model parasite Plasmodium berghei. The homologous directed repair (HDR) template is provided as a linear template with homologous arms of 600-700bp while the CRISPR elements sgRNA and Cas9 are encoded from a single plasmid utilizing the Ribozyme-Guide-Ribozyme (RGR) expression strategy. Our approach eliminates the need for negative selection markers since the plasmid cannot be incorporated into the genome. As a test case we inserted the FLAG encoding sequence into the ACT2 locus using this new approach. We showed that the genetic modification of this locus had no adverse effects on the completion of the P. berghei life cycle, including transmission through the mosquito.
Collapse
Affiliation(s)
- Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.
| | - Inga Siden Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
7
|
Howick VM, Russell AJC, Andrews T, Heaton H, Reid AJ, Natarajan K, Butungi H, Metcalf T, Verzier LH, Rayner JC, Berriman M, Herren JK, Billker O, Hemberg M, Talman AM, Lawniczak MKN. The Malaria Cell Atlas: Single parasite transcriptomes across the complete Plasmodium life cycle. Science 2019; 365:eaaw2619. [PMID: 31439762 PMCID: PMC7056351 DOI: 10.1126/science.aaw2619] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022]
Abstract
Malaria parasites adopt a remarkable variety of morphological life stages as they transition through multiple mammalian host and mosquito vector environments. We profiled the single-cell transcriptomes of thousands of individual parasites, deriving the first high-resolution transcriptional atlas of the entire Plasmodium berghei life cycle. We then used our atlas to precisely define developmental stages of single cells from three different human malaria parasite species, including parasites isolated directly from infected individuals. The Malaria Cell Atlas provides both a comprehensive view of gene usage in a eukaryotic parasite and an open-access reference dataset for the study of malaria parasites.
Collapse
Affiliation(s)
- Virginia M Howick
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Andrew J C Russell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tallulah Andrews
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Haynes Heaton
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Adam J Reid
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Kedar Natarajan
- Danish Institute of Advanced Study (D-IAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Tom Metcalf
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Lisa H Verzier
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Oliver Billker
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Arthur M Talman
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Mara K N Lawniczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.
| |
Collapse
|
8
|
Actin from the apicomplexan Neospora caninum (NcACT) has different isoforms in 2D electrophoresis. Parasitology 2018; 146:33-41. [PMID: 29871709 DOI: 10.1017/s0031182018000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Apicomplexan parasites have unconventional actins that play a central role in important cellular processes such as apicoplast replication, motility of dense granules, endocytic trafficking and force generation for motility and host cell invasion. In this study, we investigated the actin of the apicomplexan Neospora caninum - a parasite associated with infectious abortion and neonatal mortality in livestock. Neospora caninum actin was detected and identified in two bands by one-dimensional (1D) western blot and in nine spots by the 2D technique. The mass spectrometry data indicated that N. caninum has at least nine different actin isoforms, possibly caused by post-translational modifications. In addition, the C4 pan-actin antibody detected specifically actin in N. caninum cellular extract. Extracellular N. caninum tachyzoites were treated with toxins that act on actin, jasplakinolide and cytochalasin D. Both substances altered the peripheric cytoplasmic localization of actin on tachyzoites. Our findings add complexity to the study of the apicomplexan actin in cellular processes, since the multiple functions of this important protein might be regulated by mechanisms involving post-translational modifications.
Collapse
|
9
|
Liu T, Hu Y, Guo S, Tan L, Zhan Y, Yang L, Liu W, Wang N, Li Y, Zhang Y, Liu C, Yang Y, Adelstein RS, Wang A. Identification and characterization of MYH9 locus for high efficient gene knock-in and stable expression in mouse embryonic stem cells. PLoS One 2018; 13:e0192641. [PMID: 29438440 PMCID: PMC5811019 DOI: 10.1371/journal.pone.0192641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/26/2018] [Indexed: 01/22/2023] Open
Abstract
Targeted integration of exogenous genes into so-called safe harbors/friend sites, offers the advantages of expressing normal levels of target genes and preventing potentially adverse effects on endogenous genes. However, the ideal genomic loci for this purpose remain limited. Additionally, due to the inherent and unresolved issues with the current genome editing tools, traditional embryonic stem (ES) cell-based targeted transgenesis technology is still preferred in practical applications. Here, we report that a high and repeatable homologous recombination (HR) frequency (>95%) is achieved when an approximate 6kb DNA sequence flanking the MYH9 gene exon 2 site is used to create the homology arms for the knockout/knock-in of diverse nonmuscle myosin II (NM II) isoforms in mouse ES cells. The easily obtained ES clones greatly facilitated the generation of multiple NM II genetic replacement mouse models, as characterized previously. Further investigation demonstrated that though the targeted integration site for exogenous genes is shifted to MYH9 intron 2 (about 500bp downstream exon 2), the high HR efficiency and the endogenous MYH9 gene integrity are not only preserved, but the expected expression of the inserted gene(s) is observed in a pre-designed set of experiments conducted in mouse ES cells. Importantly, we confirmed that the expression and normal function of the endogenous MYH9 gene is not affected by the insertion of the exogenous gene in these cases. Therefore, these findings suggest that like the commonly used ROSA26 site, the MYH9 gene locus may be considered a new safe harbor for high-efficiency targeted transgenesis and for biomedical applications.
Collapse
Affiliation(s)
- Tanbin Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yi Hu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Shiyin Guo
- College of Food Science and Technology, HUNAU, Changsha, Hunan, China
| | - Lei Tan
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yang Zhan
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Lingchen Yang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Wei Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Naidong Wang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Yalan Li
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yingfan Zhang
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Chengyu Liu
- Transgenic Core, NHLBI/ NIH, Bethesda, MD, United States of America
| | - Yi Yang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Robert S. Adelstein
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
10
|
Mobegi FM, Zomer A, de Jonge MI, van Hijum SAFT. Advances and perspectives in computational prediction of microbial gene essentiality. Brief Funct Genomics 2017; 16:70-79. [PMID: 26857942 DOI: 10.1093/bfgp/elv063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The minimal subset of genes required for cellular growth, survival and viability of an organism are classified as essential genes. Knowledge of essential genes gives insight into the core structure and functioning of a cell. This might lead to more efficient antimicrobial drug discovery, to elucidation of the correlations between genotype and phenotype, and a better understanding of the minimal requirements for a (synthetic) cell. Traditionally, constructing a catalog of essential genes for a given microbe involved costly and time-consuming laboratory experiments. While experimental methods have produced abundant gene essentiality data for model organisms like Escherichia coli and Bacillus subtilis, the knowledge generated cannot automatically be extrapolated to predict essential genes in all bacteria. In addition, essential genes identified in the laboratory are by definition 'conditionally essential', as they are essential under the specified experimental conditions: these might not resemble conditions in the microorganisms' natural habitat(s). Also, large-scale experimental assaying for essential genes is not always feasible because of the time investment required to setup these assays. The ability to rapidly and precisely identify essential genes in silico is therefore important and has great potential for applications in medicine, biotechnology and basic biological research. Here, we review the advances made in the use of computational methods to predict microbial gene essentiality, perspectives for the future of these techniques and the possible practical applications of essential genes.
Collapse
Affiliation(s)
- Fredrick M Mobegi
- Laboratory of Pediatric Infectious Diseases and Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Aldert Zomer
- Radboud university medical center, Laboratory of Pediatric Infectious Diseases, Nijmegen, The Netherlands.,Radboud university medical center, Bacterial Genomics Group; Center for Molecular and Biomolecular Informatics, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Sacha A F T van Hijum
- Radboud Institute for Molecular Life Sciences, Laboratory of Paediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Near-atomic structure of jasplakinolide-stabilized malaria parasite F-actin reveals the structural basis of filament instability. Proc Natl Acad Sci U S A 2017; 114:10636-10641. [PMID: 28923924 DOI: 10.1073/pnas.1707506114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During their life cycle, apicomplexan parasites, such as the malaria parasite Plasmodium falciparum, use actomyosin-driven gliding motility to move and invade host cells. For this process, actin filament length and stability are temporally and spatially controlled. In contrast to canonical actin, P. falciparum actin 1 (PfAct1) does not readily polymerize into long, stable filaments. The structural basis of filament instability, which plays a pivotal role in host cell invasion, and thus infectivity, is poorly understood, largely because high-resolution structures of PfAct1 filaments were missing. Here, we report the near-atomic structure of jasplakinolide (JAS)-stabilized PfAct1 filaments determined by electron cryomicroscopy. The general filament architecture is similar to that of mammalian F-actin. The high resolution of the structure allowed us to identify small but important differences at inter- and intrastrand contact sites, explaining the inherent instability of apicomplexan actin filaments. JAS binds at regular intervals inside the filament to three adjacent actin subunits, reinforcing filament stability by hydrophobic interactions. Our study reveals the high-resolution structure of a small molecule bound to F-actin, highlighting the potential of electron cryomicroscopy for structure-based drug design. Furthermore, our work serves as a strong foundation for understanding the structural design and evolution of actin filaments and their function in motility and host cell invasion of apicomplexan parasites.
Collapse
|
12
|
Curra C, McMillan PJ, Spanos L, Mollard V, Deligianni E, McFadden G, Tilley L, Siden-Kiamos I. Structured illumination microscopy reveals actin I localization in discreet foci in Plasmodium berghei gametocytes. Exp Parasitol 2017; 181:82-87. [PMID: 28803903 DOI: 10.1016/j.exppara.2017.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 11/26/2022]
Abstract
Actin has important roles in Plasmodium parasites but its exact function in different life stages is not yet fully elucidated. Here we report the localization of ubiquitous actin I in gametocytes of the rodent model parasite P. berghei. Using an antibody specifically recognizing F-actin and deconvolution microscopy we detected actin I in a punctate pattern in gametocytes. 3D-Structured Illumination Microscopy which allows sub-diffraction limit imaging resolved the signal into structures of less than 130 nm length. A portion of actin I was soluble, but the protein was also found complexed in a stabilized form which could only be completely solubilized by treatment with SDS. An additional population of actin was pelleted at 100 000 × g, consistent with F-actin. Our results suggest that actin in this non-motile form of the parasite is present in short filaments cross-linked to other structures in a cytoskeleton.
Collapse
Affiliation(s)
- Chiara Curra
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Paul J McMillan
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, 3051 VIC, Australia; Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, 3051 VIC, Australia
| | - Lefteris Spanos
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Vanessa Mollard
- School of BioSciences, The University of Melbourne, Melbourne, 3051 VIC, Australia
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Geoffrey McFadden
- School of BioSciences, The University of Melbourne, Melbourne, 3051 VIC, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, 3051 VIC, Australia
| | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece.
| |
Collapse
|
13
|
González-López L, Carballar-Lejarazú R, Arrevillaga Boni G, Cortés-Martínez L, Cázares-Raga FE, Trujillo-Ocampo A, Rodríguez MH, James AA, Hernández-Hernández FDLC. Lys48 ubiquitination during the intraerythrocytic cycle of the rodent malaria parasite, Plasmodium chabaudi. PLoS One 2017; 12:e0176533. [PMID: 28604779 PMCID: PMC5467854 DOI: 10.1371/journal.pone.0176533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/12/2017] [Indexed: 12/26/2022] Open
Abstract
Ubiquitination tags proteins for different functions within the cell. One of the most abundant and studied ubiquitin modification is the Lys48 polyubiquitin chain that modifies proteins for their destruction by proteasome. In Plasmodium is proposed that post-translational regulation is fundamental for parasite development during its complex life-cycle; thus, the objective of this work was to analyze the ubiquitination during Plasmodium chabaudi intraerythrocytic stages. Ubiquitinated proteins were detected during intraerythrocytic stages of Plasmodium chabaudi by immunofluorescent microscopy, bidimensional electrophoresis (2-DE) combined with immunoblotting and mass spectrometry. All the studied stages presented protein ubiquitination and Lys48 polyubiquitination with more abundance during the schizont stage. Three ubiquitinated proteins were identified for rings, five for trophozoites and twenty for schizonts. Only proteins detected with a specific anti- Lys48 polyubiquitin antibody were selected for Mass Spectrometry analysis and two of these identified proteins were selected in order to detect the specific amino acid residues where ubiquitin is placed. Ubiquitinated proteins during the ring and trophozoite stages were related with the invasion process and in schizont proteins were related with nucleic acid metabolism, glycolysis and protein biosynthesis. Most of the ubiquitin detection was during the schizont stage and the Lys48 polyubiquitination during this stage was related to proteins that are expected to be abundant during the trophozoite stage. The evidence that these Lys48 polyubiquitinated proteins are tagged for destruction by the proteasome complex suggests that this type of post-translational modification is important in the regulation of protein abundance during the life-cycle and may also contribute to the parasite cell-cycle progression.
Collapse
Affiliation(s)
- Lorena González-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México
| | - Rebeca Carballar-Lejarazú
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México
- Departments of Molecular Biology & Biochemistry and Microbiology & Molecular Genetics, University of California, Irvine, California, United States of America
| | - Gerardo Arrevillaga Boni
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México
| | - Leticia Cortés-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México
| | - Febe Elena Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México
| | - Abel Trujillo-Ocampo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México
| | - Mario H. Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Anthony A. James
- Departments of Molecular Biology & Biochemistry and Microbiology & Molecular Genetics, University of California, Irvine, California, United States of America
| | - Fidel de la Cruz Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México
- * E-mail:
| |
Collapse
|
14
|
Bennink S, Kiesow MJ, Pradel G. The development of malaria parasites in the mosquito midgut. Cell Microbiol 2016; 18:905-18. [PMID: 27111866 PMCID: PMC5089571 DOI: 10.1111/cmi.12604] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023]
Abstract
The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take-up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co-adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote-to-ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Meike J Kiesow
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
15
|
Sato Y, Hliscs M, Dunst J, Goosmann C, Brinkmann V, Montagna GN, Matuschewski K. Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin. Mol Biol Cell 2016; 27:2234-44. [PMID: 27226484 PMCID: PMC4945141 DOI: 10.1091/mbc.e15-10-0734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/16/2016] [Indexed: 12/27/2022] Open
Abstract
The roles of vital genes, such as those of G-actin–binding proteins, in malaria parasites are underexplored. Overexpression of Plasmodium profilin perturbs actin dynamics only in sporozoites. Strict actin regulation is particularly important for malaria transmission. Mapping of phenotypes can be done by comparative Plasmodium gene overexpression. Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1–3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin–binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping.
Collapse
Affiliation(s)
- Yuko Sato
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany Infectious Diseases Interdisciplinary Research Group, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, 138602 Singapore
| | - Marion Hliscs
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Josefine Dunst
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christian Goosmann
- Imaging Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Volker Brinkmann
- Imaging Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Georgina N Montagna
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany Departamento de Microbiologia, Immunologia e Parasitologia, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany Institute of Biology, Humboldt University, 10117 Berlin, Germany
| |
Collapse
|
16
|
Andreadaki M, Deligianni E, Nika F, Siden-Kiamos I. Expression of the Plasmodium berghei actin II gene is controlled by elements in a long genomic region. Parasitol Res 2016; 115:3261-5. [PMID: 27225004 DOI: 10.1007/s00436-016-5133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Plasmodium parasites have two actin isoforms. Actin I is ubiquitously expressed, while the second actin isoform is expressed in the sexual stages and ookinetes. Reverse genetic analysis revealed two phenotypes in parasites lacking the protein: a block in male gametogenesis (exflagellation) and a second phenotype in oocyst development, dependent upon the expression of the gene in female gametocytes. Here, we report that the genetic complementation of two independent mutants lacking actin II does not fully restore wild-type function. Constructs were integrated in the c-rrna locus, previously used for expression of transgenes, in order to determine the dependence of expression on actin II flanking genomic regions. Partial restoration of male gametogenesis was achieved when the transgene contained, in addition to the coding region, 1.2 kb upstream of the actin II open reading frame. Another transgene, which comprised 2.7 kb of actin II 5' flanking regions and the cognate 3' downstream sequence, fully restored exflagellation. However, in both complemented strains, oocyst development was severely impaired compared to the WT. These data suggest that male gametocyte expression of actin II is dependent upon extensive flanking regions, while female expression requires even longer genomic sequences for correct expression of the gene.
Collapse
Affiliation(s)
- Maria Andreadaki
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, Vassilika Vouton, Heraklion, GR-700 13, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, Vassilika Vouton, Heraklion, GR-700 13, Greece
| | - Frantzeska Nika
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, Vassilika Vouton, Heraklion, GR-700 13, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, Vassilika Vouton, Heraklion, GR-700 13, Greece.
| |
Collapse
|
17
|
Silva PAGC, Guerreiro A, Santos JM, Braks JAM, Janse CJ, Mair GR. Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites. PLoS One 2016; 11:e0147940. [PMID: 26808677 PMCID: PMC4726560 DOI: 10.1371/journal.pone.0147940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.
Collapse
Affiliation(s)
- Patrícia A. G. C. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Jorge M. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | | | | | - Gunnar R. Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
18
|
Kumpula EP, Kursula I. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies? Acta Crystallogr F Struct Biol Commun 2015; 71:500-13. [PMID: 25945702 PMCID: PMC4427158 DOI: 10.1107/s2053230x1500391x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/25/2015] [Indexed: 11/10/2022] Open
Abstract
Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world's population. These parasites share a common form of gliding motility which relies on an actin-myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin-myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.
Collapse
Affiliation(s)
- Esa-Pekka Kumpula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
19
|
Matz JM, Kooij TWA. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei. Pathog Glob Health 2015; 109:46-60. [PMID: 25789828 DOI: 10.1179/2047773215y.0000000006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods.
Collapse
|
20
|
Hliscs M, Millet C, Dixon MW, Siden-Kiamos I, McMillan P, Tilley L. Organization and function of an actin cytoskeleton inPlasmodium falciparumgametocytes. Cell Microbiol 2014; 17:207-25. [DOI: 10.1111/cmi.12359] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Marion Hliscs
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Vic. 3010 Australia
- Australian Research Council Centre of Excellence for Coherent X-ray Science; The University of Melbourne; Melbourne Vic. 3010 Australia
- School of Botany; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Coralie Millet
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Vic. 3010 Australia
- Australian Research Council Centre of Excellence for Coherent X-ray Science; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Matthew W. Dixon
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Vic. 3010 Australia
- Australian Research Council Centre of Excellence for Coherent X-ray Science; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology; Hellas, 700 13 Heraklion Crete Greece
| | - Paul McMillan
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Vic. 3010 Australia
- The Biological Optical Microscopy Platform; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Vic. 3010 Australia
- Australian Research Council Centre of Excellence for Coherent X-ray Science; The University of Melbourne; Melbourne Vic. 3010 Australia
| |
Collapse
|
21
|
Vahokoski J, Bhargav SP, Desfosses A, Andreadaki M, Kumpula EP, Martinez SM, Ignatev A, Lepper S, Frischknecht F, Sidén-Kiamos I, Sachse C, Kursula I. Structural differences explain diverse functions of Plasmodium actins. PLoS Pathog 2014; 10:e1004091. [PMID: 24743229 PMCID: PMC3990709 DOI: 10.1371/journal.ppat.1004091] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/11/2014] [Indexed: 11/18/2022] Open
Abstract
Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties. Malaria parasites have two actin isoforms, which are among the most divergent within the actin family that comprises highly conserved proteins, essential in all eukaryotic cells. In Plasmodium, actin is indispensable for motility and, thus, the infectivity of the deadly parasite. Yet, actin filaments have not been observed in vivo in these pathogens. Here, we show that the two Plasmodium actins differ from each other in both monomeric and filamentous form and that actin I cannot replace actin II during male gametogenesis. Whereas the major isoform actin I cannot form stable filaments alone, the mosquito-stage-specific actin II readily forms long filaments that have dimensions similar to canonical actins. A chimeric actin I mutant that forms long filaments in vitro also rescues gametogenesis in parasites lacking actin II. Both Plasmodium actins rapidly hydrolyze ATP and form short oligomers in the presence of ADP, which is a fundamental difference to all other actins characterized to date. Structural and functional differences in the two Plasmodium actin isoforms compared both to each other and to canonical actins reveal how the polymerization properties of eukaryotic actins have evolved along different avenues.
Collapse
Affiliation(s)
- Juha Vahokoski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Ambroise Desfosses
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Maria Andreadaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
| | - Esa-Pekka Kumpula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology; Helmholtz Centre for Infection Research and German Electron Synchrotron, Hamburg, Germany
| | | | - Alexander Ignatev
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Simone Lepper
- Parasitology – Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Parasitology – Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Inga Sidén-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
| | - Carsten Sachse
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology; Helmholtz Centre for Infection Research and German Electron Synchrotron, Hamburg, Germany
- * E-mail:
| |
Collapse
|