1
|
Asare-Baah M, Johnston L, Dominique L, Lauzardo M, Séraphin MN. Timing and predictors of disease incidence among named contacts of reported tuberculosis patients in a low incidence setting. PLoS One 2025; 20:e0313801. [PMID: 40334208 PMCID: PMC12058168 DOI: 10.1371/journal.pone.0313801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Contact investigations are crucial for tuberculosis (TB) control, yet the temporal dynamics of disease progression among exposed contacts remain poorly understood. We conducted a retrospective cohort study of 44,106 contacts linked to 6,243 index TB cases diagnosed between 2009 and 2023. During the 15-year follow-up, 454 contacts developed TB disease, with 43.4% being incident cases. Using time-to-event analysis with left truncation to account for varying follow-up times, and mixed effect Cox models to account for index case and county-level variability, we estimated the median time to TB incidence at 11 (IQR 4-48) months after initiating contact investigation. The risk of TB disease varied markedly by age and immune status. Children aged 0-15 showed over nine times higher risk compared to adults aged 25-44 (aHR = 9.59; 95% CI: 3.17-29.02; p < 0.001). Contacts co-infected with HIV demonstrated a three-fold increased risk of TB (aHR = 2.35; 95% CI: 1.08-5.10; p = 0.031) relative to those without HIV. A history of a previous TB diagnosis conferred a protective effect on the risk of TB incident (aHR = 0.40; 95% CI: 0.20-0.80; p = 0.009). Additionally, individuals who had incomplete therapy for latent TB infection (LTBI) also experienced a protective effect (aHR = 0.32; 95% CI: 0.15-0.71; p = 0.005). These findings highlight a critical window for intervention with follow-up needed for at least 1-4 years after initial contact investigations. The results also emphasize the need for targeted, risk-stratified surveillance and LTBI treatment for children and individuals with HIV who are contacts of confirmed TB cases.
Collapse
Affiliation(s)
- Michael Asare-Baah
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Lori Johnston
- Florida Department of Health, Bureau of Tuberculosis Control, Tallahassee, Florida, United States of America
| | - Lina Dominique
- Florida Department of Health, Bureau of Tuberculosis Control, Tallahassee, Florida, United States of America
| | - Michael Lauzardo
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Marie Nancy Séraphin
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Chang X, Li Z, Khac Thai PV, Minh Ha DT, Thuong Thuong NT, Wee D, Binte Mohamed Subhan AS, Silcocks M, Eng Chee CB, Quynh Nhu NT, Heng CK, Teo YY, Singal A, Oehlers SH, Yuan JM, Koh WP, Caws M, Khor CC, Dorajoo R, Dunstan SJ. Genome-wide association study reveals a novel tuberculosis susceptibility locus in multiple East Asian and European populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.03.14.24304327. [PMID: 40313261 PMCID: PMC12045432 DOI: 10.1101/2024.03.14.24304327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Background Tuberculosis (TB) continues to be a leading cause of morbidity and mortality worldwide. Past genome-wide association studies (GWAS) have explored TB susceptibility across various ethnic groups, yet a significant portion of TB heritability remains unexplained. Methods We conducted GWAS in the Singapore Chinese and Vietnamese, followed by a comprehensive meta-analysis incorporating 4 independent East Asian datasets, resulting in a total of 11,841 cases and 197,373 population controls. Findings We identified a novel susceptibility locus for pulmonary TB (PTB) at 22q12.2 in East Asians [rs6006426, OR (95%Cl) =1.097(1.066, 1.130), P meta =3.31×10 -10 ]. The association was further validated in Europeans [OR (95%Cl) =1.101(1.002, 1.211), P =0.046] and was strengthened in the combined meta-anlaysis including 12,736 PTB cases and 673,864 controls [OR (95%Cl) =1.098(1.068, 1.129), P meta =4.33×10 -11 ]. rs6006426 affected SF3A1 expression in various immune cells ( P from 0.003 to 6.17×10 -18 ) and OSM expression in monocytes post lipopolysaccharide stimulation ( P =5.57×10 -4 ). CRISPR-Cas9 edited zebrafish embryos with osm depletion resulted in decreased burden of Mycobacterium marinum ( M.marinum ) in infected embryos ( P =0.047). Interpretation Our findings offer novel insights into the genetic factors underlying TB and reveals new avenues for understanding its etiology.
Collapse
|
3
|
Mihuta C, Socaci A, Hogea P, Tudorache E, Mihuta MS, Oancea C. Comparative Insights into COVID-19 and Tuberculosis: Clinical Manifestations, Inflammatory Markers, and Outcomes in Pulmonary Versus Extrapulmonary Tuberculosis and SARS-CoV-2 Co-Infection. J Clin Med 2025; 14:2782. [PMID: 40283612 PMCID: PMC12028324 DOI: 10.3390/jcm14082782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Tuberculosis and COVID-19 co-infection poses significant clinical challenges, with pulmonary TB (PTB) and extrapulmonary TB (extraPTB) potentially influencing disease progression and outcomes differently. This study aims to compare the clinical manifestations, inflammatory markers, and outcomes between PTB and extraPTB patients with SARS-CoV-2 co-infection. Methods: A retrospective, cross-sectional study was conducted on 55 hospitalized adults with TB-COVID-19 co-infection from March 2020 to March 2022. Patients were divided into PTB (n = 32) and extraPTB (n = 23) groups. Demographic, clinical, laboratory, and imaging data were collected and analyzed using statistical models, including ANCOVA, LASSO regression, and Random Forest classification, to identify key predictors of hospitalization duration and mortality. Results: PTB patients had significantly lower BMI, worse oxygenation status, and greater lung involvement on CT compared to extraPTB patients. CRP was elevated in PTB, while IL-6 levels were higher in extraPTB. Hospitalization duration was primarily influenced by inflammatory and coagulation markers (IL-6, D-dimer, neutrophil count, systemic inflammatory index), while higher BMI was associated with shorter stays. Mortality risk was strongly correlated with oxygenation impairment (worst SpO2, SpO2 at diagnosis), inflammatory burden (CRP, LDH), and CT severity score, rather than TB localization. Conclusions: TB localization did not independently affect hospitalization duration or mortality risk. Instead, severe lung involvement, systemic inflammation, and hypoxemia were the strongest predictors of poor outcomes. These findings emphasize the importance of early risk stratification based on respiratory and inflammatory markers to optimize patient management. Further research is needed to clarify the long-term impact of TB-COVID-19 co-infection, particularly in extraPTB cases.
Collapse
Affiliation(s)
- Camil Mihuta
- Department of Doctoral Studies, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adriana Socaci
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Department of Biology and Life Sciences, Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Patricia Hogea
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Emanuela Tudorache
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Simina Mihuta
- Department of Pediatrics, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristian Oancea
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Tabsh N, Bilezikian JP. Vitamin D Status as a Risk Factor for Tuberculosis Infection. Adv Nutr 2025; 16:100394. [PMID: 39986573 PMCID: PMC11979928 DOI: 10.1016/j.advnut.2025.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
Vitamin D is a principal regulator of bone and mineral metabolism. Recent data have provided evidence that vitamin D is a polyfunctional hormone with actions that extend beyond its classical role as a nutrient for bone and mineral metabolism. These additional actions include its potential role to prevent infections and autoimmunity. This review will focus on the relationship between vitamin D and infections, specifically on tuberculosis (TB). The literature review was conducted on PubMed using the search terms "Vitamin D" and "Tuberculosis." As one of the most resilient infectious microorganisms on the planet, TB remains a public health concern because of the emergence of resistant strains, the burden, and side effects of treatment. Vitamin D plays an important role in the innate immune system that is the first line of defense against TB infection. Although there appears to be pathophysiological interplay between vitamin D and TB, more research is necessary to determine with certainty the extent of this relationship. Social determinants of health including population density, income, poverty, public assistance, unemployment, and education also play a role in estimating the prevalence of vitamin D deficiency and the burden of TB. This review explores the interplay between vitamin D and TB through factors including the immune system and social determinants of health.
Collapse
Affiliation(s)
- Norah Tabsh
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY, United States; Mailman School of Public Health, Columbia University Medical Center, New York, NY, United States.
| | - John P Bilezikian
- Division of Endocrinology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Genchi ML, Giuffra V, Campana S, Riccomi G. Are endocranial granular impressions pathognomonic of tuberculous meningitis or a marker of tuberculous infection? An investigation on a medieval osteoarcheological assemblage from Italy. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2025; 49:81-92. [PMID: 40138756 DOI: 10.1016/j.ijpp.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/16/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVES In recent paleopathological literature, granular impressions on the endocranial surface are considered pathognomonic of tuberculous meningitis. This study aims to verify the presence of granular impressions and assess their relationship with tuberculosis in an archeological human skeletal assemblage. MATERIALS The study analyzed the endocranial surfaces of 212 skulls (38 non-adults and 174 adults) from the medieval site of Pieve di Pava, Italy. METHODS Macroscopic and stereomicroscopic examination of the endocranial surface was conducted to evaluate the presence, location, and manifestation of granular impressions. RESULTS Granular impressions affected more than half of the individuals, with no statistical difference between males and females. CONCLUSIONS The high frequency of granular impressions challenges their interpretation as pathognomonic of tuberculous meningitis, a rare complication of tuberculosis affecting the central nervous system. Instead, these lesions should be considered indicative of bacteremia, when bacilli reach the central nervous system and form tubercles on the meninges. It cannot be established whether these tubercles were quiescent or had ruptured, leading to tuberculous meningitis. SIGNIFICANCE Based on the pathogenic life cycle of M. tuberculosis, as defined in clinical settings, it seems prudent to consider granular impressions as a marker of tuberculosis infection, rather than of active tuberculosis disease or tuberculous meningitis in paleopathology. LIMITATIONS Research limitations include the smaller number of non-adults compared to adults. SUGGESTIONS FOR FURTHER RESEARCH Screening of granular impressions in other large osteoarcheological assemblages could provide new and more reliable data on the spread of tuberculosis infection across different social contexts, geographical settings, and historical periods.
Collapse
Affiliation(s)
- Maria Laura Genchi
- Department of Civilizations and Forms of Knowledge, University of Pisa, Via Pasquale Paoli 15, Pisa 56126, Italy
| | - Valentina Giuffra
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, Pisa 56126, Italy
| | - Stefano Campana
- Department of History and Cultural Heritage, University of Siena, Palazzo San Galgano, via Roma 47, Siena 53100, Italy
| | - Giulia Riccomi
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, Pisa 56126, Italy; Max Planck Institute of Geoanthropology, Jena, Germany.
| |
Collapse
|
6
|
Hao J, Zhang L, Qi J, Yu Y. Regulation of FOXM1 by HDAC3 Inhibition Ameliorates Macrophage Endoplasmic Reticulum stress and Apoptosis in Mycobacterium tuberculosis Infection. Immunobiology 2025; 230:152879. [PMID: 39938455 DOI: 10.1016/j.imbio.2025.152879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/23/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Mycobacterium tuberculosis (Mtb) infection may induce significant damage to the host lung tissues. Endoplasmic reticulum stress (ERS) and apoptosis of macrophages are considered key factors affecting the survival and pathogenicity of intracellular Mtb. Forkhead box M1 (FOXM1) is closely implicated in lung diseases. This study aimed to investigate the role of FOXM1 in Mtb infection and the involvement of histone deacetylase 3 (HDAC3) in this process. An in vitro Mtb infection model was established by infecting RAW264.7 macrophages with Mtb H37Ra. The results showed that RAW264.7 macrophages subjected to Mtb infection showed upregulated expressions of ERS markers and FOXM1. FOXM1 overexpression further elevated the levels of ERS and apoptosis markers, pro-inflammatory cytokines, and reactive oxygen species in Mtb-infected macrophages. FOXM1 could bind to the promoter of TXNIP and activate its transcription. Knockdown of TXNIP suppressed the effects of Mtb infection on macrophages, while upregulation of FOXM1 completely abolished the effects of TXNIP knockdown. HDAC3 inhibitor effectively diminished the effects of FOXM1 upregulation on Mtb-infected macrophages. In conclusion, inhibition of HDAC3 may reduce ERS and apoptosis of Mtb-infected macrophages by regulating the FOXM1/TXNIP axis.
Collapse
Affiliation(s)
- Jinqi Hao
- School of Public Health, Baotou Medical College, Baotou City, 014030, Inner Mongolia Autonomous Region, China
| | - Lan Zhang
- School of Public Health, Baotou Medical College, Baotou City, 014030, Inner Mongolia Autonomous Region, China
| | - Jiafu Qi
- School of Public Health, Baotou Medical College, Baotou City, 014030, Inner Mongolia Autonomous Region, China
| | - Yanqin Yu
- School of Public Health, Baotou Medical College, Baotou City, 014030, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
7
|
Ibargüen-Mondragón E, Otero-Espinar MV, Gómez MC. A within-host model on the interaction dynamics between innate immune cells and Mycobacterium tuberculosis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:511-527. [PMID: 40083280 DOI: 10.3934/mbe.2025019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Tuberculosis is the leading cause of death worldwide from a single infectious agent; it has also been declared a threat to humanity by the World Health Organization. New insights indicate that the innate immune response plays a crucial role in determining the outcome of the infection. In this study, we assessed the role of macrophages in the innate immune response through a simple mathematical model. Our results confirm that macrophages provide the primary protective response against Mycobacterium tuberculosis. However, they also highlight the importance of other innate cells in the outcome of infection. Specifically, our findings suggest that, in addition to macrophage activity, the involvement of other innate immune cells is essential for eliminating or controlling bacterial progression, ultimately leading to an adaptive immune response.
Collapse
Affiliation(s)
- Eduardo Ibargüen-Mondragón
- Departamento de Matemáticas y Estadística, Universidad de Nariño, Pasto 520002, Colombia
- Grupo de Investigación en Biología Matemática y Matemática Aplicada (GIBIMMA), Universidad de Nariño, C.U. Torobajo, Pasto 520002, Colombia
| | - M Victoria Otero-Espinar
- Statistics, Mathematical Analysis and Optimisation Department, Faculty of Mathematics, University of Santiago de Compostela (USC), and Galician Center for Mathematical Research and Technology (CITMAga), Santiago de Compostela 15782, Spain
| | - Miller Cerón Gómez
- Departamento de Matemáticas y Estadística, Universidad de Nariño, Pasto 520002, Colombia
- Grupo de Investigación en Biología Matemática y Matemática Aplicada (GIBIMMA), Universidad de Nariño, C.U. Torobajo, Pasto 520002, Colombia
| |
Collapse
|
8
|
Yang X, Chen Y, Pu B, Yuan X, Wang J, Chen C. YY1 Contributes to the Inflammatory Responses of Mycobacterium tuberculosis-Infected Macrophages Through Transcription Activation-Mediated Upregulation TLR4. Mol Biotechnol 2025; 67:778-789. [PMID: 38492118 DOI: 10.1007/s12033-024-01093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/26/2024] [Indexed: 03/18/2024]
Abstract
Tuberculosis (TB) is a chronic respiratory infectious disease and is induced by Mycobacterium tuberculosis (M.tb) infection. Macrophages serve as the cellular home in immunoreaction against M.tb infection, which is tightly regulated through Toll-like receptor 4 (TLR4) expression. Therefore, this study is designed to explore the role and mechanism of TLR4 in mycobacterial injury in human macrophages (THP-1 cells) after M.tb infection. Cell proliferation and apoptosis were assessed using MTT, EdU, and flow cytometry assays. ELISA kits were utilized to assess the levels of Interleukin-6 (IL-6), IL-1β, and tumor necrosis factor α (TNF-α). The binding between Yin-Yang-1 (YY1) and TLR4 promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. M.tb infection might repress THP-1 cell proliferation, and induce cell apoptosis and inflammatory response in a multiplicity of infection (MOI)-dependent manner. Moreover, M.tb infection increased the expression of TLR4 in HTP-1 cells in an MOI-dependent way, and its downregulation might overturn M.tb infection-mediated HTP-1 cell damage and inflammatory response. At the molecular level, YY1 was a transcription factor of TLR4 and promoted TLR4 transcription via binding to its promoter region. Besides, YY1 might activate the NF-kB signaling pathway via regulating TLR4. Meanwhile, TLR4 inhibitor BAY11-7082 might overturn the repression effect of TLR4 on M.tb-infected HTP-1 cell damage. YY1-activated TLR4 might aggravate mycobacterial injury in human macrophages after M.tb infection by the NF-kB pathway, providing a promising therapeutic target for TB treatment.
Collapse
Affiliation(s)
- Xing Yang
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China.
| | - Yu Chen
- Department of Health Management Division, Ren Huai People's Hospital, Zunyi, 564500, Guizhou, China
| | - Bingshuang Pu
- Department of Infectious Diseases, Ren Huai People's Hospital, Zunyi, 564500, Guizhou, China
| | - Xuan Yuan
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| | - Jiaojiao Wang
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| | - Chun Chen
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| |
Collapse
|
9
|
Nongkhlaw R, Nongrum R, Arunachalam J, Kalia NP, Agnivesh PK, Nongkhlaw R. Drug-loaded liposomes for macrophage targeting in Mycobacterium tuberculosis: development, characterization and macrophage infection study. 3 Biotech 2025; 15:52. [PMID: 39898235 PMCID: PMC11782762 DOI: 10.1007/s13205-025-04208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
This study investigates drug-loaded liposomes targeting macrophages as a promising strategy to enhance Tuberculosis (TB) treatment. The focus is on optimizing liposomal formulations for encapsulating OX-23, a previously identified anti-mycobacterial agent with a minimum inhibitory concentration (MIC) of 1.56 µg/ml, and assessing their efficacy in macrophage infection models. Liposomal formulations were characterized for particle size, polydispersity index (PDI), and zeta potential using dynamic light scattering (DLS), with morphology analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Macrophage infection assays, including those with the THP-1 macrophage cell line, were performed to evaluate the targeting efficiency and therapeutic potential of the formulations. Results showed that OX-23 could be successfully encapsulated in liposomes with various charges, achieving high encapsulation efficiency, optimal particle size, and acceptable PDI values. In-vitro studies with the THP-1 cell line demonstrated sustained release of the drug from the liposomes, with morphological analysis confirming that the liposomes were spherical and non-aggregated. The formulations exhibited significant penetration into infected macrophages and effectively inhibited the growth of intracellular Mycobacterium tuberculosis at the tested concentrations. These findings support the potential of liposomal OX-23 in targeting both extracellular and intracellular M. tuberculosis, offering a promising approach to TB treatment.
Collapse
Affiliation(s)
- Ridahunlang Nongkhlaw
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong, India
| | | | | | - Nitin Pal Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Puja Kumari Agnivesh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Rishanlang Nongkhlaw
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong, India
| |
Collapse
|
10
|
Cornejo-Báez AA, Zenteno-Cuevas R, Luna-Herrera J. Association Between Diabetes Mellitus-Tuberculosis and the Generation of Drug Resistance. Microorganisms 2024; 12:2649. [PMID: 39770852 PMCID: PMC11728438 DOI: 10.3390/microorganisms12122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the leading infectious causes of death globally, with drug resistance presenting a significant challenge to control efforts. The interplay between type 2 diabetes mellitus (T2DM) and TB introduces additional complexity, as T2DM triples the risk of active TB and exacerbates drug resistance development. This review explores how T2DM-induced metabolic and immune dysregulation fosters the survival of Mtb, promoting persistence and the emergence of multidrug-resistant strains. Mechanisms such as efflux pump activation and the subtherapeutic levels of isoniazid and rifampicin in T2DM patients are highlighted as key contributors to resistance. We discuss the dual syndemics of T2DM-TB, emphasizing the role of glycemic control and innovative therapeutic strategies, including efflux pump inhibitors and host-directed therapies like metformin. This review underscores the need for integrated diagnostic, treatment, and management approaches to address the global impact of T2DM-TB comorbidity and drug resistance.
Collapse
Affiliation(s)
- Axhell Aleid Cornejo-Báez
- Laboratorio de Inmunoquímica II, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, Mexico City C.P. 11340, Mexico;
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa C.P. 91190, Veracruz, Mexico
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa C.P. 91190, Veracruz, Mexico
| | - Julieta Luna-Herrera
- Laboratorio de Inmunoquímica II, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, Mexico City C.P. 11340, Mexico;
| |
Collapse
|
11
|
Mihuta C, Socaci A, Hogea P, Tudorache E, Mihuta MS, Oancea C. Colliding Challenges Part 2: An Analysis of SARS-CoV-2 Infection in Patients with Extrapulmonary Tuberculosis Versus SARS-CoV-2 Infection Alone. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2071. [PMID: 39768950 PMCID: PMC11677740 DOI: 10.3390/medicina60122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Coinfection with SARS-CoV-2 and extrapulmonary tuberculosis (extraPTB) presents unique clinical challenges due to dual inflammatory responses and potential differences in patient profiles compared to those with SARS-CoV-2 infection alone. This study uniquely contributes to the underexplored interaction between extraPTB and SARS-CoV-2, focusing on systemic inflammation as a critical determinant of outcomes. Materials and Methods: This retrospective, cross-sectional study included 123 patients aged 19-91 years, hospitalized at Victor Babeș Hospital in Timișoara from March 2020 to March 2022. We compared 23 extraPTB and SARS-CoV-2 coinfected patients with 100 age-matched SARS-CoV-2-only patients. Clinical records were examined for demographic, clinical, and laboratory data. Results: The coinfected group was younger, with 65% under 40 years, and presented significantly higher IL-6, PCT, and transaminase levels. Coexisting COPD and type 2 diabetes were independent predictors of coinfection. A higher SpO2 at diagnosis was positively associated with coinfection likelihood (OR = 5.37), while CT scores indicated less pulmonary involvement in coinfected patients. Non-fatal outcomes were more frequent in the coinfection group (95.7% sensitivity), and only one coinfected patient had a fatal outcome versus 17 in the SARS-CoV-2-only group. Low SpO2 and elevated IL-6 were significant predictors of mortality, with severe symptoms tripling fatality odds. Conclusions: Coinfection with extraPTB and SARS-CoV-2 is associated with younger age, heightened systemic inflammation, and longer hospital stays but does not significantly increase mortality risk compared to SARS-CoV-2 alone. These findings underscore the importance of monitoring systemic inflammatory markers and developing tailored management strategies to improve long-term care outcomes for coinfected patients, especially in resource-limited settings.
Collapse
Affiliation(s)
- Camil Mihuta
- Department of Doctoral Studies, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
| | - Adriana Socaci
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Department of Biology and Life Sciences, Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Patricia Hogea
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Emanuela Tudorache
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Simina Mihuta
- Department of Pediatrics, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristian Oancea
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Wang X, Qin Y, Li J, Huang P, Li Y, Huang J, Wang Q, Yang H. Vitamin B5 supplementation enhances intestinal development and alters microbes in weaned piglets. Anim Biotechnol 2024; 35:2335340. [PMID: 38587818 DOI: 10.1080/10495398.2024.2335340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
This study explored the effects of different vitamin B5 (VB5) levels on intestinal growth and function of weaned piglets. Twenty-one piglets (7.20 ± 1.11 kg) were included in a 28-day feeding trial with three treatments, including 0 mg/kg (L-VB5), 10 mg/kg (Control) and 50 mg/kg (H-VB5) of VB5 supplement. The results showed that: Large intestine weight/body weight was the highest in H-VB5 group, Control and H-VB5 groups had significantly higher villus height and villus height/crypt depth than the L-VB5 in the ileum (p < .05). Goblet cells (ileal crypt) and endocrine cells (ileal villus) significantly increased in Control and H-VB5 (p < .05). The H-VB5 group exhibited significantly higher levels of ki67 and crypt depth in the cecum and colon, colonic goblet cells and endocrine cells were both rising considerably (p < .05). Isobutyric acid and isovaleric acid were significantly reduced in the H-VB5 group (p < .05), and there was a decreasing trend in butyric acid (p = .073). At the genus level, the relative abundance of harmful bacteria such as Clostridium_Sensu_Structo_1 Strecto_1, Terrisporbacter and Streptococcus decreased significantly and the relative abundance of beneficial bacteria Turicibacter increased significantly in H-VB5 group (p < .05). Overall, the addition of 50 mg/kg VB5 primarily enhanced the morphological structure, cell proliferation and differentiation of the ileum, cecum and colon. It also had a significant impact on the gut microbiota and short-chain fatty acids.
Collapse
Affiliation(s)
- Xin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yan Qin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Pengfei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
13
|
Yang Y, Zhang F, Shi H, Zhu Z, Zhou Y, Zhou Y. Differential diagnostic value of simultaneous detection of CD69 and HLA-DR on host T and NK cells in QFT-TB assay for identifying active tuberculosis. Tuberculosis (Edinb) 2024; 148:102537. [PMID: 38954896 DOI: 10.1016/j.tube.2024.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Interferon-gamma release assay (IGRA) for tuberculosis (TB) remains limited in its ability to discriminate between active TB (ATB) and latent TB infection (LTBI). Activation markers on host T and NK cells are currently considered to be promising markers in the diagnosis of ATB. METHODS This prospective observational study enrolled 213 participants and the participants were divided into ATB, LTBI, other lung-related diseases (ORD), and health control (HC) groups. CD69 and HLA-DR on T and NK cells were detected in QFT-TB assay, and a composite scoring system (TB-Flow) was created for the diagnosis of ATB. RESULTS The expression of activation markers (CD69 and HLA-DR) were significantly increased in ATB. HLA-DR on NK cells, CD69 on T cells, and QFT-TB in the differential diagnosis of ATB and HC were all of good diagnostic value (AUC>0.90). In addition, the TB-Flow greatly improved the efficiency of differential diagnosis between ATB and LTBI (AUC=0.90, 95%CI: 0.84-0.96), with sensitivity and specificity of 79.17 % (95%CI: 64.60%-89.04 %) and 88.68 % (95%CI: 76.28%-95.31 %). CONCLUSIONS CD69 and HLA-DR on host T and NK cells are promising markers in distinguishing different TB infection status. Our blood-based TB-Flow scoring system can distinguish ATB from LTBI with good diagnostic efficacy.
Collapse
Affiliation(s)
- Yiqi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China; School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Fujie Zhang
- Qian Xi Nan Hospital of Traditional Chinese Medicine, Qian Xi Nan Buyei, and Miao Autonomous Prefecture 562499, China.
| | - Hanlu Shi
- Clinical Research Center, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 360000, China.
| | - Zhongliang Zhu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Yonglie Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
14
|
Jiang Q, Hu R, Liu F, Huang F, Zhang L, Zhang H. Characterization of a Novel Oxidative Stress Responsive Transcription Regulator in Mycobacterium bovis. Biomedicines 2024; 12:1872. [PMID: 39200336 PMCID: PMC11351531 DOI: 10.3390/biomedicines12081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The antioxidant defense is critical for the survival of intracellular pathogens such as Mycobacterium tuberculosis complex (MTBC) species, including Mycobacterium bovis, which are often exposed to an oxidative environment caused by reactive oxygen species (ROS) in hosts. However, the signaling pathway in mycobacteria for sensing and responding to oxidative stress remains largely unclear. In this study, we characterize a TetR-type transcription regulator BCG_3893c, designated AotM, as a novel redox sensor in Mycobacterium bovis that increases mycobacterial tolerance to oxidative stress. AotM is required for the growth of M. bovis in the presence of 1 mM hydrogen peroxide. Loss of the aotM gene leads to altered transcriptional profiles with 352 genes significantly up-regulated and 25 genes significantly down-regulated. AotM recognizes a 14-bp palindrome sequence motif and negatively regulates the expression of a FAD-dependent oxidoreductase encoded by bcg_3892c. Overexpression of BCG_3892c increases intracellular ROS production and reduces the growth of M. bovis. In summary, we propose that AotM enhances the mycobacterial resistance against oxidative stress probably by inhibiting intracellular ROS production. Our findings reveal a novel underlying regulatory mechanism behind mycobacterial oxidative stress adaptation.
Collapse
Affiliation(s)
- Qiang Jiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Rong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Feng Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Feng Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Lei Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| |
Collapse
|
15
|
Pan J, Chang Z, Zhang X, Dong Q, Zhao H, Shi J, Wang G. Research progress of single-cell sequencing in tuberculosis. Front Immunol 2023; 14:1276194. [PMID: 37901241 PMCID: PMC10611525 DOI: 10.3389/fimmu.2023.1276194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Tuberculosis is a major infectious disease caused by Mycobacterium tuberculosis infection. The pathogenesis and immune mechanism of tuberculosis are not clear, and it is urgent to find new drugs, diagnosis, and treatment targets. A useful tool in the quest to reveal the enigmas related to Mycobacterium tuberculosis infection and disease is the single-cell sequencing technique. By clarifying cell heterogeneity, identifying pathogenic cell groups, and finding key gene targets, the map at the single cell level enables people to better understand the cell diversity of complex organisms and the immune state of hosts during infection. Here, we briefly reviewed the development of single-cell sequencing, and emphasized the different applications and limitations of various technologies. Single-cell sequencing has been widely used in the study of the pathogenesis and immune response of tuberculosis. We review these works summarizing the most influential findings. Combined with the multi-molecular level and multi-dimensional analysis, we aim to deeply understand the blank and potential future development of the research on Mycobacterium tuberculosis infection using single-cell sequencing technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwei Shi
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
16
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
17
|
Shleider Carnero Canales C, Marquez Cazorla J, Furtado Torres AH, Monteiro Filardi ET, Di Filippo LD, Costa PI, Roque-Borda CA, Pavan FR. Advances in Diagnostics and Drug Discovery against Resistant and Latent Tuberculosis Infection. Pharmaceutics 2023; 15:2409. [PMID: 37896169 PMCID: PMC10610444 DOI: 10.3390/pharmaceutics15102409] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Latent tuberculosis infection (LTBI) represents a subclinical, asymptomatic mycobacterial state affecting approximately 25% of the global population. The substantial prevalence of LTBI, combined with the risk of progressing to active tuberculosis, underscores its central role in the increasing incidence of tuberculosis (TB). Accurate identification and timely treatment are vital to contain and reduce the spread of the disease, forming a critical component of the global strategy known as "End TB." This review aims to examine and highlight the most recent scientific evidence related to new diagnostic approaches and emerging therapeutic treatments for LTBI. While prevalent diagnostic methods include the tuberculin skin test (TST) and interferon gamma release assay (IGRA), WHO's approval of two specific IGRAs for Mycobacterium tuberculosis (MTB) marked a significant advancement. However, the need for a specific test with global application viability has propelled research into diagnostic tests based on molecular diagnostics, pulmonary immunity, epigenetics, metabolomics, and a current focus on next-generation MTB antigen-based skin test (TBST). It is within these emerging methods that the potential for accurate distinction between LTBI and active TB has been demonstrated. Therapeutically, in addition to traditional first-line therapies, anti-LTBI drugs, anti-resistant TB drugs, and innovative candidates in preclinical and clinical stages are being explored. Although the advancements are promising, it is crucial to recognize that further research and clinical evidence are needed to solidify the effectiveness and safety of these new approaches, in addition to ensuring access to new drugs and diagnostic methods across all health centers. The fight against TB is evolving with the development of more precise diagnostic tools that differentiate the various stages of the infection and with more effective and targeted treatments. Once consolidated, current advancements have the potential to transform the prevention and treatment landscape of TB, reinforcing the global mission to eradicate this disease.
Collapse
Affiliation(s)
- Christian Shleider Carnero Canales
- Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (C.S.C.C.)
| | - Jessica Marquez Cazorla
- Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (C.S.C.C.)
| | | | | | | | - Paulo Inácio Costa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
| | - Cesar Augusto Roque-Borda
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
| |
Collapse
|
18
|
Booysen P, Wilkinson KA, Sheerin D, Waters R, Coussens AK, Wilkinson RJ. Immune interaction between SARS-CoV-2 and Mycobacterium tuberculosis. Front Immunol 2023; 14:1254206. [PMID: 37841282 PMCID: PMC10569495 DOI: 10.3389/fimmu.2023.1254206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
SARS-CoV-2 and Mycobacterium tuberculosis (Mtb) are major infectious causes of death, with meta-analyses and population-based studies finding increased mortality in co-infected patients simultaneously diagnosed with COVID-19 and tuberculosis (TB). There is a need to understand the immune interaction between SARS-CoV-2 and Mtb which impacts poor outcomes for those co-infected. We performed a PubMed and preprint search using keywords [SARS-CoV-2] AND [tuberculosis] AND [Immune response], including publications after January 2020, excluding reviews or opinions. Abstracts were evaluated by authors for inclusion of data specifically investigating the innate and/or acquired immune responses to SARS-CoV-2 and Mtb in humans and animal models, immunopathological responses in co-infection and both trials and investigations of potential protection against SARS-CoV-2 by Bacille Calmette Guérin (BCG). Of the 248 articles identified, 39 were included. Incidence of co-infection is discussed, considering in areas with a high burden of TB, where reported co-infection is likely underestimated. We evaluated evidence of the clinical association between COVID-19 and TB, discuss differences and similarities in immune responses in humans and in murine studies, and the implications of co-infection. SARS-CoV-2 and Mtb have both been shown to modulate immune responses, particularly of monocytes, macrophages, neutrophils, and T cells. Co-infection may result in impaired immunity to SARS-CoV-2, with an exacerbated inflammatory response, while T cell responses to Mtb may be modulated by SARS-CoV-2. Furthermore, there has been no proven potential COVID-19 clinical benefit of BCG despite numerous large-scale clinical trials.
Collapse
Affiliation(s)
- Petro Booysen
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Katalin A. Wilkinson
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Dylan Sheerin
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Robyn Waters
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna K. Coussens
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Robert J. Wilkinson
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College, London, United Kingdom
| |
Collapse
|
19
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
20
|
Chin KL, Fonte L, Lim BH, Sarmiento ME, Acosta A. Immunomodulation resulting of helminth infection could be an opportunity for immunization against tuberculosis and mucosal pathogens. Front Immunol 2023; 14:1091352. [PMID: 37020538 PMCID: PMC10067736 DOI: 10.3389/fimmu.2023.1091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Kai Ling Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- *Correspondence: Kai Ling Chin, ; Luis Fonte, ; Armando Acosta,
| | - Luis Fonte
- Department of Parasitology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba
- *Correspondence: Kai Ling Chin, ; Luis Fonte, ; Armando Acosta,
| | - Boon Huat Lim
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Kai Ling Chin, ; Luis Fonte, ; Armando Acosta,
| |
Collapse
|
21
|
Amaral EP, Foreman TW, Namasivayam S, Hilligan KL, Kauffman KD, Barbosa Bomfim CC, Costa DL, Barreto-Duarte B, Gurgel-Rocha C, Santana MF, Cordeiro-Santos M, Du Bruyn E, Riou C, Aberman K, Wilkinson RJ, Barber DL, Mayer-Barber KD, Andrade BB, Sher A. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med 2022; 219:e20220504. [PMID: 36069923 PMCID: PMC9458471 DOI: 10.1084/jem.20220504] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 01/15/2023] Open
Abstract
Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis.
Collapse
Affiliation(s)
- Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Taylor W. Foreman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Kerry L. Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Keith D. Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Caio Cesar Barbosa Bomfim
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Diego L. Costa
- Departmento de Bioquímica e Imunologia, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Beatriz Barreto-Duarte
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Laureate Universities, Salvador, Brazil
| | - Clarissa Gurgel-Rocha
- Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
- Center for Biotechnology and Cell Therapy, D’Or Institute for Research and Education, Sao Rafael Hospital, Salvador, Bahia, Brazil
| | - Monique Freire Santana
- Departmento de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Estado do Amazonas, Manaus, Brazil
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marcelo Cordeiro-Santos
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Faculdade de Medicina, Universidade Nilton Lins, Manaus, Brazil
| | - Elsa Du Bruyn
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate Aberman
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Robert John Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, Northwick Park Hospital, Harrow, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bruno B. Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Laureate Universities, Salvador, Brazil
- Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Universidade Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| |
Collapse
|
22
|
Singh S, Maurya SK, Aqdas M, Bashir H, Arora A, Bhalla V, Agrewala JN. Mycobacterium tuberculosis exploits MPT64 to generate myeloid-derived suppressor cells to evade the immune system. Cell Mol Life Sci 2022; 79:567. [PMID: 36283989 PMCID: PMC11803053 DOI: 10.1007/s00018-022-04596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a smart and successful pathogen since it can persist in the intimidating environment of the host by taming and tuning the immune system. Mtb releases MPT64 (Rv1980c) protein in high amounts in patients with active tuberculosis (TB). Consequently, we were curious to decipher the role of MPT64 on the differentiating dendritic cells (DCs) and its relation to evading the immune system. We observed that pre-exposure of differentiating DCs to MPT64 (DCMPT64) transformed them into a phenotype of myeloid-derived suppressor cells (MDSCs). DCMPT64 expressed a high level of immunosuppressive molecules PD-L1, TIM-3, nitric oxide (NO), arginase 1, IDO-1, IL-10 and TGF-β, but inhibited the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-12. DCMPT64 chemotaxis function was diminished due to the reduced expression of CCR7. DCMPT64 promoted the generation of regulatory T cells (Tregs) but inhibited the differentiation of Th1 cells and Th17 cells. Further, high lipid and methylglyoxal content, and reduced glucose consumption by DCMPT64, rendered them metabolically quiescent and consequently, reduced DCMPT64 ability to phagocytose Mtb and provided a safer shelter for the intracellular survival of the mycobacterium. The mechanism identified in impairing the function of DCMPT64 was through the increased production and accumulation of methylglyoxal. Hence, for the first time, we demonstrate the novel role of MPT64 in promoting the generation of MDSCs to favor Mtb survival and escape its destruction by the immune system.
Collapse
Affiliation(s)
- Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Sudeep K Maurya
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Ashish Arora
- Department of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vijayender Bhalla
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
- Biosensor Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India.
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
23
|
Geng X, Wu X, Yang Q, Xin H, Zhang B, Wang D, Liu L, Liu S, Chen Q, Liu Z, Zhang M, Pan S, Zhang X, Gao L, Jin Q. Whole transcriptome sequencing reveals neutrophils’ transcriptional landscape associated with active tuberculosis. Front Immunol 2022; 13:954221. [PMID: 36059536 PMCID: PMC9436479 DOI: 10.3389/fimmu.2022.954221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophils have been recognized to play an important role in the pathogenesis of tuberculosis in recent years. Interferon-induced blood transcriptional signatures in ATB are predominantly driven by neutrophils. In this study, we performed global RNA-seq on peripheral blood neutrophils from active tuberculosis patients (ATB, n=15); latent tuberculosis infections (LTBI, n=22); and healthy controls (HC, n=21). The results showed that greater perturbations of gene expression patterns happened in neutrophils from ATB individuals than HC or those with LTBI, and a total of 344 differentially expressed genes (DEGs) were observed. Functional enrichment analysis showed that besides the interferon signaling pathway, multiple pattern recognition receptor pathways were significantly activated in ATB, such as NOD-like receptors and Toll-like receptors. Meanwhile, we also observed that the expression of genes related to endocytosis, secretory granules, and neutrophils degranulation were downregulated. Our data also showed that the NF-κB signaling pathway might be inhibited in patients with ATB, which could increase Mycobacterium tuberculosis survival and lead to active tuberculosis status. Furthermore, we validated the accuracy of some differentially expressed genes in an independent cohort using quantitative PCR, and obtained three novel genes (RBM3, CSRNP1, SRSF5) with the ability to discriminate active tuberculosis from LTBI and HC.
Collapse
Affiliation(s)
- Xingzhu Geng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolin Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianting Yang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Henan Xin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Dakuan Wang
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chen
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Zisen Liu
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Mingxia Zhang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Shouguo Pan
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Xiaobing Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Qi Jin, ; Xiaobing Zhang, ; Lei Gao,
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Qi Jin, ; Xiaobing Zhang, ; Lei Gao,
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Qi Jin, ; Xiaobing Zhang, ; Lei Gao,
| |
Collapse
|
24
|
Yao Q, Xie Y, Xu D, Qu Z, Wu J, Zhou Y, Wei Y, Xiong H, Zhang XL. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cell Mol Immunol 2022; 19:883-897. [PMID: 35637281 PMCID: PMC9149337 DOI: 10.1038/s41423-022-00878-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of intracellular pathogens. However, the role and mechanism of the important lncRNAs in Mycobacterium tuberculosis (M.tb) infection remain largely unexplored. Recently, we found that a secreted M.tb Rv1579c (an early secreted target with a molecular weight of 12 kDa, named EST12) protein activates NLRP3-gasdermin D (GSDMD)-mediated pyroptosis and plays a pivotal role in M.tb-induced immunity. In the present study, M.tb and the EST12 protein negatively regulated the expression of a key lncRNA (named lnc-EST12) in mouse macrophages by activating the JAK2-STAT5a signaling pathway. Lnc-EST12, with a size of 1583 bp, is mainly expressed in immune-related organs (liver, lung and spleen). Lnc-EST12 not only reduces the expression of the proinflammatory cytokines IL-1β, IL-6, and CCL5/8 but also suppresses the NLRP3 inflammasome and GSDMD pyroptosis-IL-1β immune pathway through its interaction with the transcription factor far upstream element-binding protein 3 (FUBP3). The KH3 and KH4 domains of FUBP3 are the critical sites for binding to lnc-EST12. Deficiency of mouse lnc-EST12 or FUBP3 in macrophages increased M.tb clearance and inflammation in mouse macrophages or mice. In conclusion, we report a new immunoregulatory mechanism in which mouse lnc-EST12 negatively regulates anti-M.tb innate immunity through FUBP3.
Collapse
Affiliation(s)
- Qili Yao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Dandan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Zilu Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Jian Wu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuanyuan Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuying Wei
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Huan Xiong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
25
|
Posada-Reyes AB, Balderas-Martínez YI, Ávila-Ríos S, Vinuesa P, Fonseca-Coronado S. An Epistatic Network Describes oppA and glgB as Relevant Genes for Mycobacterium tuberculosis. Front Mol Biosci 2022; 9:856212. [PMID: 35712352 PMCID: PMC9194097 DOI: 10.3389/fmolb.2022.856212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis is an acid-fast bacterium that causes tuberculosis worldwide. The role of epistatic interactions among different loci of the M. tuberculosis genome under selective pressure may be crucial for understanding the disease and the molecular basis of antibiotic resistance acquisition. Here, we analyzed polymorphic loci interactions by applying a model-free method for epistasis detection, SpydrPick, on a pan–genome-wide alignment created from a set of 254 complete reference genomes. By means of the analysis of an epistatic network created with the detected epistatic interactions, we found that glgB (α-1,4-glucan branching enzyme) and oppA (oligopeptide-binding protein) are putative targets of co-selection in M. tuberculosis as they were associated in the network with M. tuberculosis genes related to virulence, pathogenesis, transport system modulators of the immune response, and antibiotic resistance. In addition, our work unveiled potential pharmacological applications for genotypic antibiotic resistance inherent to the mutations of glgB and oppA as they epistatically interact with fprA and embC, two genes recently included as antibiotic-resistant genes in the catalog of the World Health Organization. Our findings showed that this approach allows the identification of relevant epistatic interactions that may lead to a better understanding of M. tuberculosis by deciphering the complex interactions of molecules involved in its metabolism, virulence, and pathogenesis and that may be applied to different bacterial populations.
Collapse
Affiliation(s)
- Ali-Berenice Posada-Reyes
- Posgrado en Ciencias Biológicas, UNAM, Mexico, Mexico
- Facultad de Estudios Superiores Cuautitlán, UNAM, Estado de Mexico, Mexico
- *Correspondence: Ali-Berenice Posada-Reyes, ; Salvador Fonseca-Coronado,
| | | | - Santiago Ávila-Ríos
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Ciudad de Mexico, Mexico
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, UNAM, Cuernavaca, Mexico
| | - Salvador Fonseca-Coronado
- Facultad de Estudios Superiores Cuautitlán, UNAM, Estado de Mexico, Mexico
- *Correspondence: Ali-Berenice Posada-Reyes, ; Salvador Fonseca-Coronado,
| |
Collapse
|
26
|
Matteucci KC, Correa AAS, Costa DL. Recent Advances in Host-Directed Therapies for Tuberculosis and Malaria. Front Cell Infect Microbiol 2022; 12:905278. [PMID: 35669122 PMCID: PMC9163498 DOI: 10.3389/fcimb.2022.905278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, and malaria, caused by parasites from the Plasmodium genus, are two of the major causes of death due to infectious diseases in the world. Both diseases are treatable with drugs that have microbicidal properties against each of the etiologic agents. However, problems related to treatment compliance by patients and emergence of drug resistant microorganisms have been a major problem for combating TB and malaria. This factor is further complicated by the absence of highly effective vaccines that can prevent the infection with either M. tuberculosis or Plasmodium. However, certain host biological processes have been found to play a role in the promotion of infection or in the pathogenesis of each disease. These processes can be targeted by host-directed therapies (HDTs), which can be administered in conjunction with the standard drug treatments for each pathogen, aiming to accelerate their elimination or to minimize detrimental side effects resulting from exacerbated inflammation. In this review we discuss potential new targets for the development of HDTs revealed by recent advances in the knowledge of host-pathogen interaction biology, and present an overview of strategies that have been tested in vivo, either in experimental models or in patients.
Collapse
Affiliation(s)
- Kely C. Matteucci
- Plataforma de Medicina Translacional Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André A. S. Correa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Diego L. Costa,
| |
Collapse
|
27
|
dos Santos Macêdo DC, Cavalcanti IDL, de Fátima Ramos dos Santos Medeiros SM, de Souza JB, de Britto Lira Nogueira MC, Cavalcanti IMF. Nanotechnology and tuberculosis: An old disease with new treatment strategies. Tuberculosis (Edinb) 2022; 135:102208. [DOI: 10.1016/j.tube.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
|
28
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
29
|
Perez-Malagon CD, Barrera-Rodriguez R, Lopez-Gonzalez MA, Alva-Lopez LF. Diagnostic and Neurological Overview of Brain Tuberculomas: A Review of Literature. Cureus 2021; 13:e20133. [PMID: 34900500 PMCID: PMC8648135 DOI: 10.7759/cureus.20133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 11/05/2022] Open
Abstract
Tuberculosis is a disease caused by a bacteria named Mycobacterium tuberculosis (M. tb). It is estimated by World Health Organization (WHO) that nearly a quarter of the world's population is infected. Tuberculoma of the brain is one of the most severe extrapulmonary forms that affects patients younger than 40 years of age. Brain parenchymal tuberculoma develops in nearly one of 300 non-treated cases of pulmonary tuberculosis cases. In endemic regions, tuberculomas account for as many as 50% of all intracranial masses. Tuberculoma results in a hematogenous spread of M. tb from an extracranial source. Tuberculomas can mimic a variety of diseases and can present themselves in a subacute or chronic course, from asymptomatic to severe intracranial hypertension. Diagnosis is based on computed tomography (CT) scan and magnetic resonance imaging (MRI) studies with a similar ring-enhancing lesion. Treatment is primarily medical, and the duration for brain tuberculoma can vary from six to 36 months. In certain cases, surgery is recommended.
Collapse
Affiliation(s)
| | - Raul Barrera-Rodriguez
- Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City, MEX
| | | | | |
Collapse
|
30
|
A differential DNA methylome signature of pulmonary immune cells from individuals converting to latent tuberculosis infection. Sci Rep 2021; 11:19418. [PMID: 34593857 PMCID: PMC8484443 DOI: 10.1038/s41598-021-98542-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, spreads via aerosols and the first encounter with the immune system is with the pulmonary-resident immune cells. The role of epigenetic regulations in the immune cells is emerging and we have previously shown that macrophages capacity to kill M. tuberculosis is reflected in the DNA methylome. The aim of this study was to investigate epigenetic modifications in alveolar macrophages and T cells in a cohort of medical students with an increased risk of TB exposure, longitudinally. DNA methylome analysis revealed that a unique DNA methylation profile was present in healthy subjects who later developed latent TB during the study. The profile was reflected in a different overall DNA methylation distribution as well as a distinct set of differentially methylated genes (DMGs). The DMGs were over-represented in pathways related to metabolic reprogramming of macrophages and T cell migration and IFN-γ production, pathways previously reported important in TB control. In conclusion, we identified a unique DNA methylation signature in individuals, with no peripheral immune response to M. tuberculosis antigen who later developed latent TB. Together the study suggests that the DNA methylation status of pulmonary immune cells can reveal who will develop latent TB infection.
Collapse
|
31
|
Yan Z, Wang H, Mu L, Hu ZD, Zheng WQ. Regulatory roles of extracellular vesicles in immune responses against Mycobacterium tuberculosis infection. World J Clin Cases 2021; 9:7311-7318. [PMID: 34616797 PMCID: PMC8464473 DOI: 10.12998/wjcc.v9.i25.7311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/19/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are cystic vesicles naturally released by most mammalian cells and bacteria. EV contents include proteins, lipids, and nucleic acids. EVs can act as messengers to transmit a variety of molecules to recipient cells and thus play important regulatory roles in intercellular signal transduction. EVs, released by either a host cell or a pathogen, can carry pathogen-associated antigens and thus act as modulators of immune responses. EVs derived from Mycobacterium tuberculosis (Mtb)-infected cells can regulate the innate immune response through various pathways, such as regulating the release of inflammatory cytokines. In addition, EVs can mediate antigen presentation and regulate the adaptive immune response by transmitting immunoregulatory molecules to T helper cells. In this review, we summarize the regulatory roles of EVs in the immune response against Mtb.
Collapse
Affiliation(s)
- Zhi Yan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Hua Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Lan Mu
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
32
|
Mvubu NE, Chiliza TE. Exploring the Use of Medicinal Plants and Their Bioactive Derivatives as Alveolar NLRP3 Inflammasome Regulators during Mycobacterium tuberculosis Infection. Int J Mol Sci 2021; 22:ijms22179497. [PMID: 34502407 PMCID: PMC8431520 DOI: 10.3390/ijms22179497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology.
Collapse
|
33
|
Dewangan RP, Singh M, Ilic S, Tam B, Akabayov B. Cell-penetrating peptide conjugates of indole-3-acetic acid-based DNA primase/Gyrase inhibitors as potent anti-tubercular agents against planktonic and biofilm culture of Mycobacterium smegmatis. Chem Biol Drug Des 2021; 98:722-732. [PMID: 34265158 DOI: 10.1111/cbdd.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/27/2021] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium that caused 1.5 million fatalities globally in 2018. New strains of Mtb resistant to all known classes of antibiotics pose a global healthcare problem. In this work, we have conjugated novel indole-3-acetic acid-based DNA primase/gyrase inhibitor with cell-penetrating peptide via cleavable and non-cleavable bonds. For non-cleavable linkage, inhibitor was conjugated with peptide via an amide bond to the N-terminus, whereas a cleavable linkage was obtained by conjugating the inhibitor through a disulfide bond. We performed the conjugation of the inhibitor either directly on a solid surface or by using solution-phase chemistry. M. smegmatis (non-pathogenic model of Mtb) was used to determine the minimal inhibitory concentration (MIC) of the synthetic conjugates. Conjugates were found more active as compared to free inhibitor molecules. Strikingly, the conjugate also impairs the development of biofilm, showing a therapeutic potential against infections caused by both planktonic and sessile forms of mycobacterium species.
Collapse
Affiliation(s)
| | - Meenakshi Singh
- Department of Chemistry, Ben-Gurion University of Negev, Beer-Sheva, Israel
| | - Stefan Ilic
- Department of Chemistry, Ben-Gurion University of Negev, Beer-Sheva, Israel
| | - Benjamin Tam
- Department of Chemistry, Ben-Gurion University of Negev, Beer-Sheva, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of Negev, Beer-Sheva, Israel
| |
Collapse
|
34
|
Kathamuthu GR, Moideen K, Sridhar R, Baskaran D, Babu S. Reduced neutrophil granular proteins and post-treatment modulation in tuberculous lymphadenitis. PLoS One 2021; 16:e0253534. [PMID: 34153068 PMCID: PMC8216526 DOI: 10.1371/journal.pone.0253534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Background Neutrophils are important for host innate immune defense and mediate inflammatory responses. Pulmonary tuberculosis (PTB) is associated with increased neutrophil granular protein (NGP) levels in the circulation. However, the systemic levels of neutrophil granular proteins were not examined in tuberculous lymphadenitis (TBL) disease. Methods We measured the systemic levels of NGP (myeloperoxidase [MPO], elastase and proteinase 3 [PRTN3]) in TBL and compared them to latent tuberculosis (LTB) and healthy control (HC) individuals. We also measured the pre-treatment (Pre-T) and post-treatment (Post-T) systemic levels of neutrophil granular proteins in TBL individuals upon anti-tuberculosis treatment (ATT) completion. In addition, we studied the correlation and discriminatory ability of NGPs using receiver operating characteristic (ROC) analysis. Results Our data suggests that systemic levels of NGPs (MPO, PRTN3, elastase) were significantly reduced in TBL individuals compared to LTB and HC individuals. Similarly, after ATT, the plasma levels of MPO and elastase but not PRTN3 were significantly elevated compared to pre-treatment levels. NGPs (except PRTN3) were positively correlated with absolute neutrophil count of TBL, LTB and HC individuals. Further, NGPs were able to significantly discriminate TBL from LTB and HC individuals. Conclusion Hence, we conclude reduced neutrophil granular protein levels might be associated with disease pathogenesis in TBL.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
- * E-mail:
| | - Kadar Moideen
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | - Dhanaraj Baskaran
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
35
|
Li P, Shi J, Zhou L, Wang B, Zhang LJ, Duan L, Hu Q, Zhou X, Yuan Y, Li D, Chen H, Zhao Q, Peng X, Chen W. Pleural Fluid GSDMD Is a Novel Biomarker for the Early Differential Diagnosis of Pleural Effusion. Front Microbiol 2021; 12:620322. [PMID: 34163438 PMCID: PMC8215111 DOI: 10.3389/fmicb.2021.620322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Gasdermin D (GSDMD), controlling pyroptosis in cells, has multiple physiological functions. The diagnostic role of GSDMD in pleural effusion (PE) remains unknown. METHODS Sandwich ELISA kits that we developed were applied to measure the level of GSDMD for 335 patients with a definite cause of PE, including transudative PE, tuberculous pleural effusion (TPE), parapneumonic pleural effusion (PPE), and malignant pleural effusion (MPE). The diagnostic accuracy of Light's criteria vs. the new marker GSDMD was performed. Clinical follow-up of 40 cases of PPE was conducted and divided into efficacy and non-efficacy groups according to the therapeutic outcome. Nucleated cells (NCs) in PE were isolated and further infected with bacteria to verify the cell source of GSDMD. RESULTS The diagnostic accuracy of GSDMD for the diagnosis of PE were 96% (sensitivity) and 94% (specificity). The receiver operating characteristic (ROC) curve indicated that GSDMD can be an efficient biomarker for the differential diagnosis of transudative PE and other groups (all AUC > 0.973). Noteworthily, the highest AUC belonged to tuberculosis diagnosis of 0.990, and the cut-off value was 18.40 ng/mL. Moreover, the same cut-off value of PPE and MPE was 9.35 ng/mL. The combination of GSDMD, adenosine deaminase (ADA), and lactate dehydrogenase (LDH) will further improve the diagnostic efficiency especially between TPE and PPE (AUC = 0.968). The AUC of GSDMD change at day 4, which could predict the therapeutic effect at an early stage, was 0.945 (P < 0.0001). Interestingly, bacterial infection experiments further confirm that the pleural fluid GSDMD was expressed and secreted mainly by the NCs. CONCLUSION GSDMD and its combination are candidates as a potentially novel biomarker not only to separate PEs early and effectively, but also monitor disease progression.
Collapse
Affiliation(s)
- Pu Li
- Department of Laboratory Medicine, The Second Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Shi
- Department of Laboratory Medicine, The First Hospital of Chongqing Medical University, Chongqing, China
| | - Lijing Zhou
- Department of Laboratory Medicine, The Second Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jun Zhang
- Department of Laboratory Medicine, The Second Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolan Zhou
- Department of Medical Record Management, The Second Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Yuan
- Laboratory Medical College, Chongqing Medical University, Chongqing, China
| | - Dandan Li
- Department of Laboratory Medicine, The Second Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Laboratory Medicine, The Second Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhao
- Department of Laboratory Medicine, The Second Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Peng
- Department of Neurology, Chongqing People’s Hospital, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Ostrik AA, Azhikina TL, Salina EG. Small Noncoding RNAs and Their Role in the Pathogenesis of Mycobacterium tuberculosis Infection. BIOCHEMISTRY (MOSCOW) 2021; 86:S109-S119. [PMID: 33827403 PMCID: PMC7905965 DOI: 10.1134/s000629792114008x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis possesses a significant arsenal of strategies to combat immune defense of the host organism. Small noncoding RNAs, which constitute the largest group of regulatory RNAs, play an important role in the host–pathogen interactions and represent one of the levels of the regulation of interactions of microbial cells with their environment. The regulatory role of small RNAs in pathogenic bacteria is essential when rapid adaptation to the changing environmental conditions with further synchronization of metabolic reactions are required to ensure microbial survival and infection progression. During the past few years, eight small RNAs from M. tuberculosis have been functionally characterized, and targets for four of them have been identified. Small RNAs from M. tuberculosis and other pathogenic microorganisms were found to be one of the most important functional factors in the adaptive response to changing environmental conditions.
Collapse
Affiliation(s)
- Albina A Ostrik
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Elena G Salina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
37
|
Abstract
Mycobacterium tuberculosis infections claim more than a million lives each year, and better treatments or vaccines are required. A crucial pathogenicity factor is translocation from phagolysosomes to the cytosol upon phagocytosis by macrophages. Translocation from the phagolysosome to the cytosol is an ESX-1-dependent process, as previously shown in vitro Here, we show that in vivo, mycobacteria also translocate to the cytosol but mainly when host immunity is compromised. We observed only low numbers of cytosolic bacilli in mice, armadillos, zebrafish, and patient material infected with M. tuberculosis, M. marinum, or M. leprae In contrast, when innate or adaptive immunity was compromised, as in severe combined immunodeficiency (SCID) or interleukin-1 receptor 1 (IL-1R1)-deficient mice, significant numbers of cytosolic M. tuberculosis bacilli were detected in the lungs of infected mice. Taken together, in vivo, translocation to the cytosol of M. tuberculosis is controlled by adaptive immune responses as well as IL-1R1-mediated signals.IMPORTANCE For decades, Mycobacterium tuberculosis has been one of the deadliest pathogens known. Despite infecting approximately one-third of the human population, no effective treatment or vaccine is available. A crucial pathogenicity factor is subcellular localization, as M. tuberculosis can translocate from phagolysosome to the cytosol in macrophages. The situation in vivo is more complicated. In this study, we establish that high-level cytosolic escape of mycobacteria can indeed occur in vivo but mainly when host resistance is compromised. The IL-1 pathway is crucial for the control of the number of cytosolic mycobacteria. The establishment that immune signals result in the clearance of cells containing cytosolic mycobacteria connects two important fields, cell biology and immunology, which is vital for the understanding of the pathology of M. tuberculosis.
Collapse
|
38
|
Shariq M, Quadir N, Sharma N, Singh J, Sheikh JA, Khubaib M, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis RipA Dampens TLR4-Mediated Host Protective Response Using a Multi-Pronged Approach Involving Autophagy, Apoptosis, Metabolic Repurposing, and Immune Modulation. Front Immunol 2021; 12:636644. [PMID: 33746976 PMCID: PMC7969667 DOI: 10.3389/fimmu.2021.636644] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Reductive evolution has endowed Mycobacterium tuberculosis (M. tb) with moonlighting in protein functions. We demonstrate that RipA (Rv1477), a peptidoglycan hydrolase, activates the NFκB signaling pathway and elicits the production of pro-inflammatory cytokines, TNF-α, IL-6, and IL-12, through the activation of an innate immune-receptor, toll-like receptor (TLR)4. RipA also induces an enhanced expression of macrophage activation markers MHC-II, CD80, and CD86, suggestive of M1 polarization. RipA harbors LC3 (Microtubule-associated protein 1A/1B-light chain 3) motifs known to be involved in autophagy regulation and indeed alters the levels of autophagy markers LC3BII and P62/SQSTM1 (Sequestosome-1), along with an increase in the ratio of P62/Beclin1, a hallmark of autophagy inhibition. The use of pharmacological agents, rapamycin and bafilomycin A1, reveals that RipA activates PI3K-AKT-mTORC1 signaling cascade that ultimately culminates in the inhibition of autophagy initiating kinase ULK1 (Unc-51 like autophagy activating kinase). This inhibition of autophagy translates into efficient intracellular survival, within macrophages, of recombinant Mycobacterium smegmatis expressing M. tb RipA. RipA, which also localizes into mitochondria, inhibits the production of oxidative phosphorylation enzymes to promote a Warburg-like phenotype in macrophages that favors bacterial replication. Furthermore, RipA also inhibited caspase-dependent programed cell death in macrophages, thus hindering an efficient innate antibacterial response. Collectively, our results highlight the role of an endopeptidase to create a permissive replication niche in host cells by inducing the repression of autophagy and apoptosis, along with metabolic reprogramming, and pointing to the role of RipA in disease pathogenesis.
Collapse
Affiliation(s)
- Mohd Shariq
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India
| | - Neha Quadir
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India.,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Neha Sharma
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India.,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasdeep Singh
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Khubaib
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Seyed E Hasnain
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D) Hauz Khas, New Delhi, India
| | - Nasreen Z Ehtesham
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India
| |
Collapse
|
39
|
Lei Y, Cao X, Xu W, Yang B, Xu Y, Zhou W, Dong S, Wu Q, Rahman K, Tyagi R, Zhao S, Chen X, Cao G. Rv3722c Promotes Mycobacterium tuberculosis Survival in Macrophages by Interacting With TRAF3. Front Cell Infect Microbiol 2021; 11:627798. [PMID: 33718275 PMCID: PMC7947218 DOI: 10.3389/fcimb.2021.627798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) secretes numerous proteins to interfere with host immune response for its long-term survival. As one of the top abundant M.tb secreted proteins, Rv3722c was found to be essential for bacilli growth. However, it remains elusive how this protein interferes with the host immune response and regulates M.tb survival. Here, we confirmed that Rv3722c interacted with host TRAF3 to promote M.tb replication in macrophages. Knock-down of TRAF3 attenuated the effect of Rv3722c on the intracellular M.tb survival. The interaction between Rv3722c and TRAF3 hampered MAPK and NF-κB pathways, resulting in a significant increase of IFN-β expression and decrease of IL-1β, IL-6, IL-12p40, and TNF-α expression. Our study revealed that Rv3722c interacted with TRAF3 and interrupted its downstream pathways to promote M.tb survival in macrophages. These findings facilitate further understanding of the mechanism of M.tb secreted proteins in regulating the host cell immune response and promoting its intracellular survival.
Collapse
Affiliation(s)
- Yingying Lei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weize Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yangyang Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuang Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qijun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khaista Rahman
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rohit Tyagi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Bio-Medical Center, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
40
|
Staphylococcus aureus Internalization in Osteoblast Cells: Mechanisms, Interactions and Biochemical Processes. What Did We Learn from Experimental Models? Pathogens 2021; 10:pathogens10020239. [PMID: 33669789 PMCID: PMC7922271 DOI: 10.3390/pathogens10020239] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial internalization is a strategy that non-intracellular microorganisms use to escape the host immune system and survive inside the human body. Among bacterial species, Staphylococcus aureus showed the ability to interact with and infect osteoblasts, causing osteomyelitis as well as bone and joint infection, while also becoming increasingly resistant to antibiotic therapy and a reservoir of bacteria that can make the infection difficult to cure. Despite being a serious issue in orthopedic surgery, little is known about the mechanisms that allow bacteria to enter and survive inside the osteoblasts, due to the lack of consistent experimental models. In this review, we describe the current knowledge about S. aureus internalization mechanisms and various aspects of the interaction between bacteria and osteoblasts (e.g., best experimental conditions, bacteria-induced damages and immune system response), focusing on studies performed using the MG-63 osteoblastic cell line, the best traditional (2D) model for the study of this phenomenon to date. At the same time, as it has been widely demonstrated that 2D culture systems are not completely indicative of the dynamic environment in vivo, and more recent 3D models—representative of bone infection—have also been investigated.
Collapse
|
41
|
Kanabalan RD, Lee LJ, Lee TY, Chong PP, Hassan L, Ismail R, Chin VK. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol Res 2021; 246:126674. [PMID: 33549960 DOI: 10.1016/j.micres.2020.126674] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis complex (MTBC) refers to a group of mycobacteria encompassing nine members of closely related species that causes tuberculosis in animals and humans. Among the nine members, Mycobacterium tuberculosis (M. tuberculosis) remains the main causative agent for human tuberculosis that results in high mortality and morbidity globally. In general, MTBC species are low in diversity but exhibit distinctive biological differences and phenotypes among different MTBC lineages. MTBC species are likely to have evolved from a common ancestor through insertions/deletions processes resulting in species speciation with different degrees of pathogenicity. The pathogenesis of human tuberculosis is complex and remains poorly understood. It involves multi-interactions or evolutionary co-options between host factors and bacterial determinants for survival of the MTBC. Granuloma formation as a protection or survival mechanism in hosts by MTBC remains controversial. Additionally, MTBC species are capable of modulating host immune response and have adopted several mechanisms to evade from host immune attack in order to survive in humans. On the other hand, current diagnostic tools for human tuberculosis are inadequate and have several shortcomings. Numerous studies have suggested the potential of host biomarkers in early diagnosis of tuberculosis, in disease differentiation and in treatment monitoring. "Multi-omics" approaches provide holistic views to dissect the association of MTBC species with humans and offer great advantages in host biomarkers discovery. Thus, in this review, we seek to understand how the genetic variations in MTBC lead to species speciation with different pathogenicity. Furthermore, we also discuss how the host and bacterial players contribute to the pathogenesis of human tuberculosis. Lastly, we provide an overview of the journey of "omics" approaches in host biomarkers discovery in human tuberculosis and provide some interesting insights on the challenges and directions of "omics" approaches in host biomarkers innovation and clinical implementation.
Collapse
Affiliation(s)
- Renuga Devi Kanabalan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Le Jie Lee
- Prima Nexus Sdn. Bhd., Menara CIMB, Jalan Stesen Sentral 2, Kuala Lumpur, Malaysia
| | - Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Rosnah Ismail
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia.
| | - Voon Kin Chin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor, 42300, Malaysia.
| |
Collapse
|
42
|
MicroRNA-20a-3p regulates the host immune response to facilitate the mycobacterium tuberculosis infection by targeting IKKβ/NF-κB pathway. Int Immunopharmacol 2020; 91:107286. [PMID: 33385712 DOI: 10.1016/j.intimp.2020.107286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (M.tb) has evolved to utilize different mechanisms to evade the host immune response. Several microRNAs (miRNAs) have been found to regulate innate immune response in M.tb replication and infection, but the roles and detailed molecular mechanisms of miRNAs in M.tb infection remain to be clarified. METHODS Previously published dataset GSE94007 from GEO database was used for screening differential-expressed miRNAs, and a significant up-regulated miR-20a-3p was chosen for further investigation. Cells were transfected with miR-20a-3p mimics, inhibitors, IKKβ siRNA, or their controls to verify the role of miR-20a-3p and IKKβ in M.tb infection and host immune response. IL-β, IL-6 and TNF-α contents in supernatant were measured by ELISA kits. The expression level of IKKβ/NF-κB pathway were also detected by western blot. RESULTS We found that miR-20a-3p was dose-and time-dependently increased during M.tb infection. Subsequently, our results demonstrated that upregulation of miR-20a-3p promoted intracellular growth of bacterial, and suppressed the release of proinflammatory cytokines in both M.tb-infected RAW264.7 and BMDM cells, while downregulation of miR-20a-3p had an opposite effect. Moreover, miR-20a-3p suppressed the activity of NF-κB pathway by directly targeting IKKβ, resulting in the suppression of pro-inflammatory cytokines, attenuation of immune response and promotion of M.tb survival. CONCLUSION Our findings uncover a role of miR-20a-3p and its target IKKβ in regulating M.tb induced immune responses and provide a better understanding of pathogenesis of M.tb infection.
Collapse
|
43
|
Tan W, Zhang L, Wang S, Jiang P. A circRNA-miRNA-mRNA regulatory network associated with the treatment response to tuberculosis. Microb Pathog 2020; 150:104672. [PMID: 33301855 DOI: 10.1016/j.micpath.2020.104672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/23/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The high morbidity and mortality of tuberculosis (TB) have severe socio-economic consequences, and there is an urgent need to explore the mechanisms driving TB development and progression. The aim of this study was to analyze the regulatory RNAs and target genes involved in TB, in order to identify key genetic biomarkers for diagnosing and treating TB. METHODS Circular RNAs (circRNAs), microRNAs (miRNAs) and messenger RNA (mRNAs) expression profiles of TB patients and healthy controls were downloaded from the GEO database. A circRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network was constructed using the differentially expressed circRNAs (DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs). The DEmRNAs in this network were functionally annotated using GO and KEGG analyses, and ordinal regression analysis was used to identify the genes correlated to the treatment response in TB patients. RESULTS We identified 133 DEmRNAs, 37 DEcircRNAs and 173 DEmiRNAs between the TB and healthy controls, from which 30 DECircRNAs, 27 DEmiRNAs and 35 DEmRNAs were used to construct the ceRNA network. CACNA1I, IGF2BP3, LPCAT2, SPOCK2 and IRF2 were significantly correlated with the anti-TB therapeutic response (P < 0.05). CONCLUSION A TB-associated DEcircRNA-miRNA-mRNA ceRNA network was constructed, of which some DEmRNAs potentially influence the treatment response.
Collapse
Affiliation(s)
- Wei Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanmei Wang
- Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Li Z, Zheng C, Terreni M, Tanzi L, Sollogoub M, Zhang Y. Novel Vaccine Candidates against Tuberculosis. Curr Med Chem 2020; 27:5095-5118. [PMID: 30474525 DOI: 10.2174/0929867326666181126112124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Ranking above AIDS, Tuberculosis (TB) is the ninth leading cause of death affecting and
killing many individuals every year. Drugs’ efficacy is limited by a series of problems such as Multi-
Drug Resistance (MDR) and Extensively-Drug Resistance (XDR). Meanwhile, the only licensed vaccine
BCG (Bacillus Calmette-Guérin) existing for over 90 years is not effective enough. Consequently,
it is essential to develop novel vaccines for TB prevention and immunotherapy. This paper
provides an overall review of the TB prevalence, immune system response against TB and recent
progress of TB vaccine research and development. Several vaccines in clinical trials are described as
well as LAM-based candidates.
Collapse
Affiliation(s)
- Zhihao Li
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Lisa Tanzi
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
45
|
Ganguli G, Pattanaik KP, Jagadeb M, Sonawane A. Mycobacterium tuberculosis Rv3034c regulates mTORC1 and PPAR-γ dependant pexophagy mechanism to control redox levels in macrophages. Cell Microbiol 2020; 22:e13214. [PMID: 32388919 DOI: 10.1111/cmi.13214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis survives inside the macrophages by employing several host immune evasion strategies. Here, we reported a novel mechanism in which M. tuberculosis acetyltransferase, encoded by Rv3034c, induces peroxisome homeostasis to regulate host oxidative stress levels to facilitate intracellular mycobacterial infection. Presence of M. tuberculosis Rv3034c induces the expression of peroxisome biogenesis and proliferation factors such as Pex3, Pex5, Pex19, Pex11b, Fis-1 and DLP-1; while depletion of Rv3034c decreased the expression of these molecules, thereby selective degradation of peroxisomes via pexophagy. Further studies revealed that M. tuberculosis Rv3034c inhibit induction of pexophagy mechanism by down-regulating the expression of pexophagy associated proteins (p-AMPKα, p-ULK-1, Atg5, Atg7, Beclin-1, LC3-II, TFEB and Keap-1) and adaptor molecules (NBR1 and p62). Inhibition was found to be dependent on the phosphorylation of mTORC1 and activation of peroxisome proliferator activated receptor-γ. In order to maintain intracellular homeostasis during oxidative stress, M. tuberculosis Rv3034c was found to induce degradation of dysfunctional and damaged peroxisomes through activation of Pex14 in infected macrophages. In conclusion, this is the first report which demonstrated that M. tuberculosis acetyltransferase regulate peroxisome homeostasis in response to intracellular redox levels to favour mycobacterial infection in macrophage.
Collapse
Affiliation(s)
- Geetanjali Ganguli
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India
| | | | - Manaswini Jagadeb
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India.,Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, India
| |
Collapse
|
46
|
Lerner TR, Queval CJ, Lai RP, Russell MR, Fearns A, Greenwood DJ, Collinson L, Wilkinson RJ, Gutierrez MG. Mycobacterium tuberculosis cords within lymphatic endothelial cells to evade host immunity. JCI Insight 2020; 5:136937. [PMID: 32369443 PMCID: PMC7259532 DOI: 10.1172/jci.insight.136937] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
The ability of Mycobacterium tuberculosis to form serpentine cords is intrinsically related to its virulence, but specifically how M. tuberculosis cording contributes to pathogenesis remains obscure. Here, we show that several M. tuberculosis clinical isolates form intracellular cords in primary human lymphatic endothelial cells (hLECs) in vitro and in the lymph nodes of patients with tuberculosis. We identified via RNA-Seq a transcriptional program that activated, in infected-hLECs, cell survival and cytosolic surveillance of pathogens pathways. Consistent with this, cytosolic access was required for intracellular M. tuberculosis cording. Mycobacteria lacking ESX-1 type VII secretion system or phthiocerol dimycocerosates expression, which failed to access the cytosol, were indeed unable to form cords within hLECs. Finally, we show that M. tuberculosis cording is a size-dependent mechanism used by the pathogen to avoid its recognition by cytosolic sensors and evade either resting or IFN-γ-induced hLEC immunity. These results explain the long-standing association between M. tuberculosis cording and virulence and how virulent mycobacteria use intracellular cording as strategy to successfully adapt and persist in the lymphatic tracts.
Collapse
Affiliation(s)
| | | | | | - Matthew R.G. Russell
- Electron Microscopy Scientific Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Antony Fearns
- Host-pathogen interactions in tuberculosis laboratory
| | | | - Lucy Collinson
- Electron Microscopy Scientific Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Robert J. Wilkinson
- Tuberculosis laboratory, and,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, Republic of South Africa.,Department of Medicine, Imperial College London, London, United Kingdom
| | | |
Collapse
|
47
|
Kang GY, Rhyu HJ, Choi HH, Shin SJ, Hyun YM. 3D Imaging of the Transparent Mycobacterium tuberculosis-Infected Lung Verifies the Localization of Innate Immune Cells With Granuloma. Front Cell Infect Microbiol 2020; 10:226. [PMID: 32500041 PMCID: PMC7243706 DOI: 10.3389/fcimb.2020.00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Using a novel tissue-clearing method, we aimed to visualize the three-dimensional (3D) distribution of immune cells within Mycobacterium tuberculosis (Mtb)-infected mice lungs. Ethyl cinnamate-based tissue clearing of Mtb-infected mice lungs was performed to obtain transparent lung samples, which were then imaged using a light sheet fluorescence microscope. Using the 3D images, we performed quantitative analysis of the immune cell population within multiple granulomas. In addition, to compare the data from the tissue clearing method, we performed histopathological and immunofluorescence analyses, and flow cytometry. We then created 3D images of the Mtb-infected lung that successfully demonstrated the distribution of blood vessels, immune cells, and granulomas. Since the immune cells within a granuloma could be separately selected and counted, the immune cell population within a specific lesion could be quantified. In addition, macroscopic analysis, e.g., the size or shape of a granuloma, as well as microscopic analysis could be performed as intact lung samples were used. The use of the tissue clearing method in infected lungs could be a novel modality for understanding the role of the immune system in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Gyeong-Yi Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyeong-Jun Rhyu
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
48
|
Lavalett L, Ortega H, Barrera LF. Infection of Monocytes From Tuberculosis Patients With Two Virulent Clinical Isolates of Mycobacterium tuberculosis Induces Alterations in Myeloid Effector Functions. Front Cell Infect Microbiol 2020; 10:163. [PMID: 32391286 PMCID: PMC7190864 DOI: 10.3389/fcimb.2020.00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Monocytes play a critical role during infection with Mycobacterium tuberculosis (Mtb). They are recruited to the lung, where they participate in the control of infection during active tuberculosis (TB). Alternatively, inflammatory monocytes may participate in inflammation or serve as niches for Mtb infection. Monocytes response to infection may vary depending on the particularities of the clinical isolate of Mtb from which they are infected. In this pilot study, we have examined the baseline mRNA profiles of circulating human monocytes from patients with active TB (MoTB) compared with monocytes from healthy individuals (MoCT). Circulating MoTB displayed a pro-inflammatory transcriptome characterized by increased gene expression of genes associated with cytokines, monocytopoiesis, and down-regulation of MHC class II gene expression. In response to in vitro infection with two clinical isolates of the LAM family of Mtb (UT127 and UT205), MoTB displayed an attenuated inflammatory mRNA profile associated with down-regulation the TREM1 signaling pathway. Furthermore, the gene expression signature induced by Mtb UT205 clinical strain was characterized by the enrichment of genes in pathways and biological processes mainly associated with a signature of IFN-inducible genes and the inhibition of cell death mechanisms compared to MoTB-127, which could favor the establishment and survival of Mtb within the monocytes. These results suggest that circulating MoTB have an altered transcriptome that upon infection with Mtb may help to maintain chronic inflammation and infection. Moreover, this functional abnormality of monocytes may also depend on potential differences in virulence of circulating clinical strains of Mtb.
Collapse
Affiliation(s)
- Lelia Lavalett
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Hector Ortega
- Clínica Cardiovascular Santa María, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
49
|
Mycobacterium tuberculosis YrbE3A Promotes Host Innate Immune Response by Targeting NF-κB/JNK Signaling. Microorganisms 2020; 8:microorganisms8040584. [PMID: 32316659 PMCID: PMC7232258 DOI: 10.3390/microorganisms8040584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis is considered a successful pathogen with multiple strategies to undermine host immunity. The YrbE3A is encoded by Rv1964 within the RD15 region present in the genome of Mtb, but missing in M. bovis, M. bovis BCG (Pasteur) strain, and M. smegmatis (Ms). However, little is known about its function. In this study, the YrbE3A gene was cloned into pMV261 and expressed in Ms and BCG, while the strains with the vector served as the controls. The YrbE3A was expressed on the mycobacterial membrane, and the purified protein could stimulate RAW264.7 cells to produce IL-6. Furthermore, the effect of the recombinant strains on cytokine secretion by RAW264.7 was confirmed, which varied with the host strains. Ms_YrbE3A increased significantly higher levels of TNF-α and IL-6 than did Ms_vec, while BCG_YrbE3A enhanced higher TNF-α than BCG_vec. The pathways associated with NF-κB p65 and MAPK p38/JNK, other than Erk1/2, regulated this process. In addition, mice were infected with Ms_YrbE3A and Ms-vec and were kinetically examined. Compared to Ms-vec, Ms_YrbE3A induced more serious inflammatory damage, higher levels of TNF-α and IL-6, higher numbers of lymphocytes, neutrophils, and monocytes in a time-dependent way, but lower lung bacterial load in lung. These findings may contribute to a better understanding of Mtb pathogenesis.
Collapse
|
50
|
Abstract
Traditional tuberculosis (TB) infection control focuses on the known patient with TB, usually on appropriate treatment. A refocused, intensified TB infection control approach is presented. Combined with active case finding and rapid molecular diagnostics, an approach called FAST is described as a convenient way to call attention to the untreated patient. Natural ventilation is the mainstay of air disinfection in much of the world. Germicidal ultraviolet technology is the most sustainable approach to air disinfection under resource-limited conditions. Testing and treatment of latent TB infection works to prevent reactivation but requires greater risk targeting in both low- and high-risk settings.
Collapse
Affiliation(s)
- Edward A Nardell
- Division of Global Health Equity, Harvard Medical School, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|