1
|
Xia A, Li X, Zhao C, Meng X, Kari G, Wang Y. For Better or Worse: Type I Interferon Responses in Bacterial Infection. Pathogens 2025; 14:229. [PMID: 40137714 PMCID: PMC11945191 DOI: 10.3390/pathogens14030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Type I interferons (IFNs) are pleiotropic cytokines, primarily comprising IFN-α and IFN-β, and their effect in host defense against viral infection has been extensively studied and well-established. However, in bacterial infection, the role of type I IFNs is more complex, exhibiting multifaceted effects that depend on several factors, such as the pathogen species, the specific cell populations, and the routes of infection. In this review, we summarize research progress on host type I interferon responses triggered by specific bacteria and their immune regulation function in order to better understand the role of type I IFNs in bacterial infection and provide insights for adjuvant therapies tailored to treat specific bacterial infections.
Collapse
Affiliation(s)
- Aihong Xia
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (A.X.); (C.Z.)
| | - Xin Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China;
| | - Changjing Zhao
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (A.X.); (C.Z.)
| | - Xiaojing Meng
- College of Agricultural Economics and Engineering, Kizilsu Vocational Technical College, Kizilsu Kirgiz Autonomous Prefecture 845350, China;
| | - Gulmela Kari
- College of Agricultural Economics and Engineering, Kizilsu Vocational Technical College, Kizilsu Kirgiz Autonomous Prefecture 845350, China;
| | - Yongjuan Wang
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (A.X.); (C.Z.)
| |
Collapse
|
2
|
Ngoo A, Semchenko EA, Atack A, Thomas PB, Seib KL, Vela I, Williams ED. Could Neisseria gonorrhoeae have carcinogenic potential? A critical review of current evidence. Crit Rev Microbiol 2025:1-12. [PMID: 39773285 DOI: 10.1080/1040841x.2024.2448166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/21/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
There is growing evidence that microbial dysbiosis is intimately related to carcinogenesis across several types of human cancer. Neisseria gonorrhoeae is best known for causing acute exudative genitourinary infection in males. N. gonorrhoeae can also cause chronic, asymptomatic infection of the female genitourinary tract along with the oropharynx and rectum of both sexes. Epidemiological studies suggest that N. gonorrhoeae is an independent risk factor for cancer of the anus, bladder, cervix, prostate, and oropharynx. It is not clear however if this association is causal. The purpose of this review is to appraise epidemiological, experimental, and clinical data in order to understand the possible carcinogenic potential of this sexually transmitted bacterium.
Collapse
Affiliation(s)
- Alexander Ngoo
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Department of Urology, Ipswich Hospital, Ipswich, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
| | - Evgeny A Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Anthony Atack
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
| | - Patrick B Thomas
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ian Vela
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
- Department of Urology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Elizabeth D Williams
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
| |
Collapse
|
3
|
Resta SC, Guerra F, Talà A, Bucci C, Alifano P. Beyond Inflammation: Role of Pyroptosis Pathway Activation by Gram-Negative Bacteria and Their Outer Membrane Vesicles (OMVs) in the Interaction with the Host Cell. Cells 2024; 13:1758. [PMID: 39513865 PMCID: PMC11545737 DOI: 10.3390/cells13211758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pyroptosis is a gasdermin-mediated pro-inflammatory programmed cell death that, during microbial infections, aims to restrict the spreading of bacteria. Nevertheless, excessive pyroptosis activation leads to inflammation levels that are detrimental to the host. Pathogen-associated molecular patterns (PAMPs) present in bacteria and outer membrane vesicles (OMVs) can trigger pyroptosis pathways in different cell types with different outcomes. Moreover, some pathogens have evolved virulence factors that directly interfere with pyroptosis pathways, like Yersinia pestis YopM and Shigella flexneri IpaH7.8. Other virulence factors, such as those of Neisseria meningitidis, Neisseria gonorrhoeae, Salmonella enterica, and Helicobacter pylori affect pyroptosis pathways indirectly with important differences between pathogenic and commensal species of the same family. These pathogens deserve special attention because of the increasing antimicrobial resistance of S. flexneri and N. gonorrhoeae, the high prevalence of S. enterica and H. pylori, and the life-threatening diseases caused by N. meningitidis and Y. pestis. While inflammation due to macrophage pyroptosis has been extensively addressed, the effects of activation of pyroptosis pathways on modulation of cell cytoskeleton and cell-cell junctions in epithelia and endothelia and on the bacterial crossing of epithelial and endothelial barriers have only been partly investigated. Another important point is the diverse consequences of pyroptosis pathways on calcium influx, like activation of calcium-dependent enzymes and mitochondria dysregulation. This review will discuss the pyroptotic pathways activated by Gram-negative bacteria and their OMVs, analyzing the differences between pathogens and commensal bacteria. Particular attention will also be paid to the experimental models adopted and the main results obtained in the different models. Finally, strategies adopted by pathogens to modulate these pathways will be discussed with a perspective on the use of pyroptosis inhibitors as adjuvants in the treatment of infections.
Collapse
Affiliation(s)
- Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Cecilia Bucci
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| |
Collapse
|
4
|
Adamczyk-Popławska M, Golec P, Piekarowicz A, Kwiatek A. The potential for bacteriophages and prophage elements in fighting and preventing the gonorrhea. Crit Rev Microbiol 2024; 50:769-784. [PMID: 37897236 DOI: 10.1080/1040841x.2023.2274849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
Bacteriophages are the most numerous entities on earth and are found everywhere their bacterial hosts live. As natural bacteria killers, phages are extensively investigated as a potential cure for bacterial infections. Neisseria gonorrhoeae (the gonococcus) is the etiologic agent of a sexually transmitted disease: gonorrhea. The rapid increase of resistance of N. gonorrhoeae to antibiotics urges scientists to look for alternative treatments to combat gonococcal infections. Phage therapy has not been tested as an anti-gonococcal therapy so far. To date, no lytic phage has been discovered against N. gonorrhoeae. Nevertheless, gonococcal genomes contain both dsDNA and ssDNA prophages, and viral particle induction has been documented. In this review, we consider literature data about the attempts of hunting for a bacteriophage specific for gonococci - the gonophage. We also discuss the potential application of prophage elements in the fight against N. gonorrhoeae. Temperate phages may be useful in preventing and treating gonorrhea as a scaffold for anti-gonococcal vaccine development and as a source of lytic enzymes with anti-gonococcal activity.
Collapse
Affiliation(s)
- Monika Adamczyk-Popławska
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Andrzej Piekarowicz
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Ravindranath BS, Ananya G, Hema Kumar C, Ramirez DC, Gomez Mejiba SE. Computational prediction of crucial genes involved in gonorrhea infection and neoplastic cell transformation: A multiomics approach. Microb Pathog 2024; 193:106770. [PMID: 38960215 PMCID: PMC11558249 DOI: 10.1016/j.micpath.2024.106770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/24/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Neisseria gonorrheae, the causative agent of genitourinary infections, has been associated with asymptomatic or recurrent infections and has the potential to form biofilms and induce inflammation and cell transformation. Herein, we aimed to use computational analysis to predict novel associations between chronic inflammation caused by gonorrhea infection and neoplastic transformation. Prioritization and gene enrichment strategies based on virulence and resistance genes utilizing essential genes from the DEG and PANTHER databases, respectively, were performed. Using the STRING database, protein‒protein interaction networks were constructed with 55 nodes of bacterial proteins and 72 nodes of proteins involved in the host immune response. MCODE and cytoHubba were used to identify 12 bacterial hub proteins (murA, murB, murC, murD, murE, purN, purL, thyA, uvrB, kdsB, lpxC, and ftsH) and 19 human hub proteins, of which TNF, STAT3 and AKT1 had high significance. The PPI networks are based on the connectivity degree (K), betweenness centrality (BC), and closeness centrality (CC) values. Hub genes are vital for cell survival and growth, and their significance as potential drug targets is discussed. This computational study provides a comprehensive understanding of inflammation and carcinogenesis pathways that are activated during gonorrhea infection.
Collapse
Affiliation(s)
- B S Ravindranath
- Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
| | - G Ananya
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - C Hema Kumar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bangalore, 560111, Karnataka, India
| | - D C Ramirez
- Laboratory of Experimental and Translational Medicine, CCT-San Luis-National University of San Luis, San Luis, 5700, San Luis, Argentina.
| | - S E Gomez Mejiba
- Laboratory of Nutrition and Experimental Therapeutics, CCT-San Luis-National University of San Luis, San Luis, 5700, San Luis, Argentina.
| |
Collapse
|
6
|
Jones RA, Jerse AE, Tang CM. Gonococcal PorB: a multifaceted modulator of host immune responses. Trends Microbiol 2024; 32:355-364. [PMID: 37891023 PMCID: PMC11876096 DOI: 10.1016/j.tim.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Neisseria gonorrhoeae is a human-specific pathogen responsible for the sexually transmitted infection, gonorrhoea. N. gonorrhoeae promotes its survival by manipulating both innate and adaptive immune responses. The most abundant gonococcal outer-membrane protein is PorB, an essential porin that facilitates ion exchange. Importantly, gonococcal PorB has several immunomodulatory properties. To subvert the innate immune response, PorB suppresses killing mechanisms of macrophages and neutrophils, and recruits negative regulators of complement to the gonococcal cell surface. For manipulation of adaptive immune responses, gonococcal PorB suppresses the capability of dendritic cells to stimulate proliferation of T cells. As gonococcal PorB is highly abundant in outer-membrane vesicles, consideration of the immunomodulatory properties of this porin is critical when designing gonococcal vaccines.
Collapse
Affiliation(s)
- Rebekah A Jones
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
7
|
Vacca F, Cardamone D, Andreano E, Medini D, Rappuoli R, Sala C. Deep-learning image analysis for high-throughput screening of opsono-phagocytosis-promoting monoclonal antibodies against Neisseria gonorrhoeae. Sci Rep 2024; 14:4807. [PMID: 38413727 PMCID: PMC10899611 DOI: 10.1038/s41598-024-55606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is nowadays a global health concern as bacterial pathogens are increasingly developing resistance to antibiotics. Monoclonal antibodies (mAbs) represent a powerful tool for addressing AMR thanks to their high specificity for pathogenic bacteria which allows sparing the microbiota, kill bacteria through complement deposition, enhance phagocytosis or inhibit bacterial adhesion to epithelial cells. Here we describe a visual opsono-phagocytosis assay which relies on confocal microscopy to measure the impact of mAbs on phagocytosis of the bacterium Neisseria gonorrhoeae by macrophages. With respect to traditional CFU-based assays, generated images can be automatically analysed by convolutional neural networks. Our results demonstrate that confocal microscopy and deep learning-based analysis allow screening for phagocytosis-promoting mAbs against N. gonorrhoeae, even when mAbs are not purified and are expressed at low concentration. Ultimately, the flexibility of the staining protocol and of the deep-learning approach make the assay suitable for other bacterial species and cell lines where mAb activity needs to be investigated.
Collapse
Affiliation(s)
- Fabiola Vacca
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Dario Cardamone
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
- Data Science for Health Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
- University of Turin, Turin, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Duccio Medini
- Data Science for Health Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy.
| |
Collapse
|
8
|
Potter AD, Criss AK. Dinner date: Neisseria gonorrhoeae central carbon metabolism and pathogenesis. Emerg Top Life Sci 2024; 8:15-28. [PMID: 37144661 PMCID: PMC10625648 DOI: 10.1042/etls20220111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, is a human-adapted pathogen that does not productively infect other organisms. The ongoing relationship between N. gonorrhoeae and the human host is facilitated by the exchange of nutrient resources that allow for N. gonorrhoeae growth in the human genital tract. What N. gonorrhoeae 'eats' and the pathways used to consume these nutrients have been a topic of investigation over the last 50 years. More recent investigations are uncovering the impact of N. gonorrhoeae metabolism on infection and inflammatory responses, the environmental influences driving N. gonorrhoeae metabolism, and the metabolic adaptations enabling antimicrobial resistance. This mini-review is an introduction to the field of N. gonorrhoeae central carbon metabolism in the context of pathogenesis. It summarizes the foundational work used to characterize N. gonorrhoeae central metabolic pathways and the effects of these pathways on disease outcomes, and highlights some of the most recent advances and themes under current investigation. This review ends with a brief description of the current outlook and technologies under development to increase understanding of how the pathogenic potential of N. gonorrhoeae is enabled by metabolic adaptation.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
9
|
Juárez Rodríguez MD, Marquette M, Youngblood R, Dhungel N, Escobar AT, Ivanov S, Dragoi AM. Characterization of Neisseria gonorrhoeae colonization of macrophages under distinct polarization states and nutrients environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579566. [PMID: 38370795 PMCID: PMC10871323 DOI: 10.1101/2024.02.08.579566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neisseria gonorrhoeae (Ng) is a uniquely adapted human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. Ng has developed numerous mechanisms to avoid and actively suppress innate and adaptive immune responses. Ng successfully colonizes and establishes topologically distinct colonies in human macrophages and avoids phagocytic killing. During colonization, Ng manipulates the actin cytoskeleton to invade and create an intracellular niche supportive of bacterial replication. The cellular reservoir(s) supporting bacterial replication and persistence in gonorrhea infections are poorly defined. The manner in which gonococci colonize macrophages points to this innate immune phagocyte as a strong candidate for a cellular niche during natural infection. Here we investigate whether nutrients availability and immunological polarization alter macrophage colonization by Ng . Differentiation of macrophages in pro-inflammatory (M1-like) and tolerogenic (M2-like) phenotypes prior to infection reveals that Ng can invade macrophages in all activation states, albeit with lower efficiency in M1-like macrophages. These results suggest that during natural infection, bacteria could invade and grow within macrophages regardless of the nutrients availability and the macrophage immune activation status.
Collapse
|
10
|
Bishi MA, Kaur P, Vyas M, Sharma S. Ameliorating Gonorrhea: Recent Therapeutic Adaptations and Scope to Improve its Prevailing Condition. Infect Disord Drug Targets 2024; 24:e180124225807. [PMID: 38243969 DOI: 10.2174/0118715265258305231124105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Gonorrhea is a sexually transmitted infection (STI) caused by the bacteria Neisseria gonorrhoeae. According to recent research, the prevalence of gonorrhea has been increasing in many parts of the world, with some areas reporting high rates of antibiotic resistance. In the United States, the Centers for Disease Control and Prevention (CDC) reported that the number of reported gonorrhea cases increased by 56% between 2015 and 2019. Globally, the World Health Organization (WHO) estimated that there were 87 million new cases of gonorrhea in 2016, with the highest burden of infection in low- and middle-income countries. Research has also shown that gonorrhea is becoming increasingly resistant to conventional antibiotics, increasing the prevalence of gonorrhea. This raises concerns and challenges in disease management. OBJECTIVES The present review gives updated insight on the current state of the disease, challenges, and shortcomings of existing approaches along with the modern and alternative direction like vaccine development, its challenges, and scope to confront the existing state of drug resistance and increased rate of incidence. Alternative strategies like immunotherapy and phage therapy along with recent antibiotics researched for the treatment of gonorrhea. CONCLUSION The review provides a thorough insight into the current state of the disease and various available methods used currently and recommended by WHO. To overcome disease prevalence, various alternate therapies are coming into the limelight. However, scientists and researchers show a lack of interest in the drug development and research of gonorrhea, due to less commercial scope, lack of funding, and limited scope in the scientific scenario. These hurdles need to be overcome to meet the WHO vision of reducing gonorrhea by 90% by 2030. So, there is a need to optimize the drug therapy (optimizing dosing schedule, and precision monitoring) to reduce the chance of drug resistance. Also, there is a wide scope for drug and therapeutic system development.
Collapse
Affiliation(s)
- Munyaradzi Amon Bishi
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India
| | - Palwinder Kaur
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India
| | - Manish Vyas
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab 144401, India
| |
Collapse
|
11
|
Belcher T, Rollier CS, Dold C, Ross JDC, MacLennan CA. Immune responses to Neisseria gonorrhoeae and implications for vaccine development. Front Immunol 2023; 14:1248613. [PMID: 37662926 PMCID: PMC10470030 DOI: 10.3389/fimmu.2023.1248613] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Neisseria gonorrheoae is the causative agent of gonorrhea, a sexually transmitted infection responsible for a major burden of disease with a high global prevalence. Protective immunity to infection is often not observed in humans, possible due to high variability of key antigens, induction of blocking antibodies, or a large number of infections being relatively superficial and not inducing a strong immune response. N. gonorrhoeae is a strictly human pathogen, however, studies using mouse models provide useful insights into the immune response to gonorrhea. In mice, N. gonorrhoea appears to avoid a protective Th1 response by inducing a less protective Th17 response. In mouse models, candidate vaccines which provoke a Th1 response can accelerate the clearance of gonococcus from the mouse female genital tract. Human studies indicate that natural infection often induces a limited immune response, with modest antibody responses, which may correlate with the clinical severity of gonococcal disease. Studies of cytokine responses to gonococcal infection in humans provide conflicting evidence as to whether infection induces an IL-17 response. However, there is evidence for limited induction of protective immunity from a study of female sex workers in Kenya. A controlled human infection model (CHIM) has been used to examine the immune response to gonococcal infection in male volunteers, but has not to date demonstrated protection against re-infection. Correlates of protection for gonorrhea are lacking, which has hampered the progress towards developing a successful vaccine. However, the finding that the Neisseria meningitidis serogroup B vaccines, elicit cross-protection against gonorrhea has invigorated the gonococcal vaccine field. More studies of infection in humans, either natural infection or CHIM studies, are needed to understand better gonococcal protective immunity.
Collapse
Affiliation(s)
- Thomas Belcher
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Christina Dold
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Jonathan D. C. Ross
- Sexual Health and HIV, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Calman A. MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
13
|
Streptococcus agalactiae npx Is Required for Survival in Human Placental Macrophages and Full Virulence in a Model of Ascending Vaginal Infection during Pregnancy. mBio 2022; 13:e0287022. [PMID: 36409087 PMCID: PMC9765263 DOI: 10.1128/mbio.02870-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a Gram-positive encapsulated bacterium that colonizes the gastrointestinal tract of 30 to 50% of humans. GBS causes invasive infection during pregnancy that can lead to chorioamnionitis, funisitis, preterm prelabor rupture of membranes (PPROM), preterm birth, neonatal sepsis, and maternal and fetal demise. Upon infecting the host, GBS encounters sentinel innate immune cells, such as macrophages, within reproductive tissues. Once phagocytosed by macrophages, GBS upregulates the expression of the gene npx, which encodes an NADH peroxidase. GBS mutants with an npx deletion (Δnpx) are exquisitely sensitive to reactive oxygen stress. Furthermore, we have shown that npx is required for GBS survival in both THP-1 and placental macrophages. In an in vivo murine model of ascending GBS vaginal infection during pregnancy, npx is required for invading reproductive tissues and is critical for inducing disease progression, including PPROM and preterm birth. Reproductive tissue cytokine production was also significantly diminished in Δnpx mutant-infected animals compared to that in animals infected with wild-type (WT) GBS. Complementation in trans reversed this phenotype, indicating that npx is critical for GBS survival and the initiation of proinflammatory signaling in the gravid host. IMPORTANCE This study sheds new light on the way that group B Streptococcus (GBS) defends itself against oxidative stress in the infected host. The enzyme encoded by the GBS gene npx is an NADH peroxidase that, our study reveals, provides defense against macrophage-derived reactive oxygen stress and facilitates infections of the uterus during pregnancy. This enzyme could represent a tractable target for future treatment strategies against invasive GBS infections.
Collapse
|
14
|
Hassell-Hart S, Speranzini E, Srikwanjai S, Hossack E, Roe SM, Fearon D, Akinbosede D, Hare S, Spencer J. Synthesis of a Thiazole Library via an Iridium-Catalyzed Sulfur Ylide Insertion Reaction. Org Lett 2022; 24:7924-7927. [PMID: 36265082 PMCID: PMC9641659 DOI: 10.1021/acs.orglett.2c02996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Indexed: 11/29/2022]
Abstract
A library of thiazoles and selenothiazoles were synthesized via Ir-catalyzed ylide insertion chemistry. This process is a functional group, particularly heterocycle-substituent tolerant. This was applied to the synthesis of fanetizole, an anti-inflammatory drug, and a thiazole-containing drug fragment that binds to the peptidyl-tRNA hydrolase (Pth) in Neisseria gonorrheae bacteria.
Collapse
Affiliation(s)
- Storm Hassell-Hart
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Elisa Speranzini
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Sirihathai Srikwanjai
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Euan Hossack
- Department
of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K.
| | - S. Mark Roe
- Department
of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K.
| | - Daren Fearon
- Diamond
LightSource (DLS), Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Daniel Akinbosede
- Department
of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K.
| | - Stephen Hare
- Department
of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K.
| | - John Spencer
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| |
Collapse
|
15
|
Korir ML, Doster RS, Lu J, Guevara MA, Spicer SK, Moore RE, Francis JD, Rogers LM, Haley KP, Blackman A, Noble KN, Eastman AJ, Williams JA, Damo SM, Boyd KL, Townsend SD, Henrique Serezani C, Aronoff DM, Manning SD, Gaddy JA. Streptococcus agalactiae cadD alleviates metal stress and promotes intracellular survival in macrophages and ascending infection during pregnancy. Nat Commun 2022; 13:5392. [PMID: 36104331 PMCID: PMC9474517 DOI: 10.1038/s41467-022-32916-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/24/2022] [Indexed: 01/17/2023] Open
Abstract
Perinatal infection with Streptococcus agalactiae, or Group B Streptococcus (GBS), is associated with preterm birth, neonatal sepsis, and stillbirth. Here, we study the interactions of GBS with macrophages, essential sentinel immune cells that defend the gravid reproductive tract. Transcriptional analyses of GBS-macrophage co-cultures reveal enhanced expression of a gene encoding a putative metal resistance determinant, cadD. Deletion of cadD reduces GBS survival in macrophages, metal efflux, and resistance to metal toxicity. In a mouse model of ascending infection during pregnancy, the ΔcadD strain displays attenuated bacterial burden, inflammation, and cytokine production in gestational tissues. Furthermore, depletion of host macrophages alters cytokine expression and decreases GBS invasion in a cadD-dependent fashion. Our results indicate that GBS cadD plays an important role in metal detoxification, which promotes immune evasion and bacterial proliferation in the pregnant host.
Collapse
Affiliation(s)
- Michelle L Korir
- Michigan State University, Department of Microbiology and Molecular Genetics, East Lansing, MI, USA
- Aurora University, Department of Biology, Aurora, IL, USA
| | - Ryan S Doster
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Miriam A Guevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabrina K Spicer
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Rebecca E Moore
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Jamisha D Francis
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa M Rogers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathryn P Haley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
| | - Amondrea Blackman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristen N Noble
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alison J Eastman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Janice A Williams
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, USA
- Department of Biochemistry and Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - C Henrique Serezani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Aronoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shannon D Manning
- Michigan State University, Department of Microbiology and Molecular Genetics, East Lansing, MI, USA.
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, TN, USA.
| |
Collapse
|
16
|
Branch AH, Stoudenmire JL, Seib KL, Cornelissen CN. Acclimation to Nutritional Immunity and Metal Intoxication Requires Zinc, Manganese, and Copper Homeostasis in the Pathogenic Neisseriae. Front Cell Infect Microbiol 2022; 12:909888. [PMID: 35846739 PMCID: PMC9280163 DOI: 10.3389/fcimb.2022.909888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are human-specific pathogens in the Neisseriaceae family that can cause devastating diseases. Although both species inhabit mucosal surfaces, they cause dramatically different diseases. Despite this, they have evolved similar mechanisms to survive and thrive in a metal-restricted host. The human host restricts, or overloads, the bacterial metal nutrient supply within host cell niches to limit pathogenesis and disease progression. Thus, the pathogenic Neisseria require appropriate metal homeostasis mechanisms to acclimate to such a hostile and ever-changing host environment. This review discusses the mechanisms by which the host allocates and alters zinc, manganese, and copper levels and the ability of the pathogenic Neisseria to sense and respond to such alterations. This review will also discuss integrated metal homeostasis in N. gonorrhoeae and the significance of investigating metal interplay.
Collapse
Affiliation(s)
- Alexis Hope Branch
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Julie L. Stoudenmire
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
17
|
Stein RA, Bianchini EC. Bacterial-Viral Interactions: A Factor That Facilitates Transmission Heterogeneities. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The transmission of infectious diseases is characterized by heterogeneities that are shaped by the host, the pathogen, and the environment. Extreme forms of these heterogeneities are called super-spreading events. Transmission heterogeneities are usually identified retrospectively, but their contribution to the dynamics of outbreaks makes the ability to predict them valuable for science, medicine, and public health. Previous studies identified several factors that facilitate super-spreading; one of them is the interaction between bacteria and viruses within a host. The heightened dispersal of bacteria colonizing the nasal cavity during an upper respiratory viral infection, and the increased shedding of HIV-1 from the urogenital tract during a sexually transmitted bacterial infection, are among the most extensively studied examples of transmission heterogeneities that result from bacterial-viral interactions. Interrogating these transmission heterogeneities, and elucidating the underlying cellular and molecular mechanisms, are part of much-needed efforts to guide public health interventions, in areas that range from predicting or controlling the population transmission of respiratory pathogens, to limiting the spread of sexually transmitted infections, and tailoring vaccination initiatives with live attenuated vaccines.
Collapse
Affiliation(s)
- Richard A Stein
- NYU Tandon School of Engineering Department of Chemical and Biomolecular Engineering 6 MetroTech Center Brooklyn , NY 11201 USA
| | - Emilia Claire Bianchini
- NYU Tandon School of Engineering Department of Chemical and Biomolecular Engineering 6 MetroTech Center Brooklyn , NY 11201 USA
| |
Collapse
|
18
|
Vashishtha S, Singh J, Kundu B. Antimicrobial‐resistant
Neisseria gonorrhoeae
can be targeted using inhibitors against evolutionary conserved
l
‐asparaginase. J Cell Biochem 2022; 123:1171-1182. [DOI: 10.1002/jcb.30271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Shubham Vashishtha
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi Delhi India
| | - Jasdeep Singh
- Department of Biotechnology and Biochemical Engineering Indian Institute of Technology Delhi Delhi India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi Delhi India
| |
Collapse
|
19
|
Maina A, Mureithi M, Kiiru J, Revathi G. Systemic and Mucosal Concentrations of Nine Cytokines Among Individuals with Neisseria gonorrhoeae infection in Nairobi Kenya. AAS Open Res 2022; 5:12. [PMID: 38323170 PMCID: PMC10839855 DOI: 10.12688/aasopenres.13351.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 02/08/2024] Open
Abstract
Introduction: The human-restricted sexually transmitted Neisseria gonorrhoeae (NG) has been shown to modulate the immune response against it and consequently the cytokines produced. The levels of cytokines in NG infection in the African population have not been well described. We aimed to quantify the systemic and mucosal cytokines in NG infection. Methods: This was a comparative cross-sectional study. Levels of nine cytokines (IL-1β, IL-2, IL-4, 1L-6, 1L-10, 1L-12p70, IL-17A, TNF-α and INF-γ) were measured from plasma and genital samples (urethral swabs in men and cervicovaginal lavage in women) from 61 Neisseria gonorrhoeae infected individuals seeking treatment for sexually transmitted infections (STIs) at Casino Health Centre in Nairobi, Kenya. A comparative group of 61 NG-uninfected individuals, seeking treatment at the same facility but with laboratory-confirmed negative Neisseria gonorrhoeae, Chlamydia trachomatis (CT), Mycoplasma genitalium (MG) and Trichomonas vaginalis(TV) was also included. The Mann-Whitney U test was used to compare the cytokine levels between NG-infected and uninfected individuals. Data was analyzed using STATA ver. 15.1. Results: Overall, systemic IL-6, TNF-α and IL-10 were elevated while genital IL-10 and TNF-α were lower in NG positive participants. On subgroup analysis by sex, the levels of genital IL-1β and IL-6 and systemic IL-6 were elevated in NG-infected men. None of the genital cytokines were elevated in NG-infected women, while all systemic cytokines, except INF-γ, were elevated in NG-infected women. Conclusions: Neisseria gonorrhoeae induced the production of different cytokines in men and women, with men having a pro-inflammatory genital response. These differences should be taken into consideration during development of various interventions e.g. vaccine development.
Collapse
Affiliation(s)
- Anne Maina
- Microbiology, University of Nairobi, NAIROBI, 00202, Kenya
| | | | | | | |
Collapse
|
20
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
21
|
Heydarian M, Rühl E, Rawal R, Kozjak-Pavlovic V. Tissue Models for Neisseria gonorrhoeae Research—From 2D to 3D. Front Cell Infect Microbiol 2022; 12:840122. [PMID: 35223556 PMCID: PMC8873371 DOI: 10.3389/fcimb.2022.840122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea, the second most common sexually transmitted infection worldwide. Disease progression, drug discovery, and basic host-pathogen interactions are studied using different approaches, which rely on models ranging from 2D cell culture to complex 3D tissues and animals. In this review, we discuss the models used in N. gonorrhoeae research. We address both in vivo (animal) and in vitro cell culture models, discussing the pros and cons of each and outlining the recent advancements in the field of three-dimensional tissue models. From simple 2D monoculture to complex advanced 3D tissue models, we provide an overview of the relevant methodology and its application. Finally, we discuss future directions in the exciting field of 3D tissue models and how they can be applied for studying the interaction of N. gonorrhoeae with host cells under conditions closely resembling those found at the native sites of infection.
Collapse
|
22
|
Ivanov SS, Castore R, Juarez Rodriguez MD, Circu M, Dragoi AM. Neisseria gonorrhoeae subverts formin-dependent actin polymerization to colonize human macrophages. PLoS Pathog 2021; 17:e1010184. [PMID: 34962968 PMCID: PMC8746766 DOI: 10.1371/journal.ppat.1010184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/10/2022] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Dynamic reorganization of the actin cytoskeleton dictates plasma membrane morphogenesis and is frequently subverted by bacterial pathogens for entry and colonization of host cells. The human-adapted bacterial pathogen Neisseria gonorrhoeae can colonize and replicate when cultured with human macrophages, however the basic understanding of how this process occurs is incomplete. N. gonorrhoeae is the etiological agent of the sexually transmitted disease gonorrhea and tissue resident macrophages are present in the urogenital mucosa, which is colonized by the bacteria. We uncovered that when gonococci colonize macrophages, they can establish an intracellular or a cell surface-associated niche that support bacterial replication independently. Unlike other intracellular bacterial pathogens, which enter host cells as single bacterium, establish an intracellular niche and then replicate, gonococci invade human macrophages as a colony. Individual diplococci are rapidly phagocytosed by macrophages and transported to lysosomes for degradation. However, we found that surface-associated gonococcal colonies of various sizes can invade macrophages by triggering actin skeleton rearrangement resulting in plasma membrane invaginations that slowly engulf the colony. The resulting intracellular membrane-bound organelle supports robust bacterial replication. The gonococci-occupied vacuoles evaded fusion with the endosomal compartment and were enveloped by a network of actin filaments. We demonstrate that gonococcal colonies invade macrophages via a process mechanistically distinct from phagocytosis that is regulated by the actin nucleating factor FMNL3 and is independent of the Arp2/3 complex. Our work provides insights into the gonococci life-cycle in association with human macrophages and defines key host determinants for macrophage colonization. During infection, the human-adapted bacterial pathogen Neisseria gonorrhoeae and causative agent of gonorrhea can invade the submucosa of the urogenital tract where it encounters tissue-resident innate immune sentinels, such as macrophages and neutrophils. Instead of eliminating gonococci, macrophages support robust bacterial replication. Here, we detail the life cycle of N. gonorrhoeae in association with macrophages and define key regulators that govern the colonization processes. We uncovered that N. gonorrhoeae establishes two distinct subcellular niches that support bacterial replication autonomously–one niche was on the macrophage surface and another one was intracellular. Gonococci subverted the host actin cytoskeleton through the actin nucleating factor FMNL3 to invade colonized macrophages and occupy a membrane-bound intracellular organelle. We propose that N. gonorrhoeae ability to occupy distinct subcellular niches when colonizing macrophages likely confers broad protection against multiple host defense responses.
Collapse
Affiliation(s)
- Stanimir S. Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- * E-mail: (SSI); (AMD)
| | - Reneau Castore
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Maria Dolores Juarez Rodriguez
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Magdalena Circu
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- * E-mail: (SSI); (AMD)
| |
Collapse
|
23
|
Transcriptional and Translational Responsiveness of the Neisseria gonorrhoeae Type IV Secretion System to Conditions of Host Infections. Infect Immun 2021; 89:e0051921. [PMID: 34581604 DOI: 10.1128/iai.00519-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The type IV secretion system of Neisseria gonorrhoeae translocates single-stranded DNA into the extracellular space, facilitating horizontal gene transfer and initiating biofilm formation. Expression of this system has been observed to be low under laboratory conditions, and multiple levels of regulation have been identified. We used a translational fusion of lacZ to traD, the gene for the type IV secretion system coupling protein, to screen for increased type IV secretion system expression. We identified several physiologically relevant conditions, including surface adherence, decreased manganese or iron, and increased zinc or copper, which increase gonococcal type IV secretion system protein levels through transcriptional and/or translational mechanisms. These metal treatments are reminiscent of the conditions in the macrophage phagosome. The ferric uptake regulator, Fur, was found to repress traD transcript levels but to also have a second role, acting to allow TraD protein levels to increase only in the absence of iron. To better understand type IV secretion system regulation during infection, we examined transcriptomic data from active urethral infection samples from five men. The data demonstrated differential expression of 20 of 21 type IV secretion system genes during infection, indicating upregulation of genes necessary for DNA secretion during host infection.
Collapse
|
24
|
Callan T, Woodcock S, Huston WM. Ascension of Chlamydia is moderated by uterine peristalsis and the neutrophil response to infection. PLoS Comput Biol 2021; 17:e1009365. [PMID: 34492008 PMCID: PMC8448331 DOI: 10.1371/journal.pcbi.1009365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/17/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022] Open
Abstract
Chlamydia trachomatis is a common sexually transmitted infection that is associated with a range of serious reproductive tract sequelae including in women Pelvic Inflammatory Disease (PID), tubal factor infertility, and ectopic pregnancy. Ascension of the pathogen beyond the cervix and into the upper reproductive tract is thought to be necessary for these pathologies. However, Chlamydia trachomatis does not encode a mechanism for movement on its genome, and so the processes that facilitate ascension have not been elucidated. Here, we evaluate the factors that may influence chlamydial ascension in women. We constructed a mathematical model based on a set of stochastic dynamics to elucidate the moderating factors that might influence ascension of infections in the first month of an infection. In the simulations conducted from the stochastic model, 36% of infections ascended, but only 9% had more than 1000 bacteria ascend. The results of the simulations indicated that infectious load and the peristaltic contractions moderate ascension and are inter-related in impact. Smaller initial loads were much more likely to ascend. Ascension was found to be dependent on the neutrophil response. Overall, our results indicate that infectious load, menstrual cycle timing, and the neutrophil response are critical factors in chlamydial ascension in women.
Collapse
Affiliation(s)
- Torrington Callan
- Faculty of Science, School of Mathematical and Physical Sciences University of Technology Sydney, Sydney, Australia
| | - Stephen Woodcock
- Faculty of Science, School of Mathematical and Physical Sciences University of Technology Sydney, Sydney, Australia
| | - Wilhelmina May Huston
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
25
|
Haese EC, Thai VC, Kahler CM. Vaccine Candidates for the Control and Prevention of the Sexually Transmitted Disease Gonorrhea. Vaccines (Basel) 2021; 9:vaccines9070804. [PMID: 34358218 PMCID: PMC8310131 DOI: 10.3390/vaccines9070804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022] Open
Abstract
The World Health Organization (WHO) has placed N. gonorrhoeae on the global priority list of antimicrobial resistant pathogens and is urgently seeking the development of new intervention strategies. N. gonorrhoeae causes 86.9 million cases globally per annum. The effects of gonococcal disease are seen predominantly in women and children and especially in the Australian Indigenous community. While economic modelling suggests that this infection alone may directly cost the USA health care system USD 11.0–20.6 billion, indirect costs associated with adverse disease and pregnancy outcomes, disease prevention, and productivity loss, mean that the overall effect of the disease is far greater still. In this review, we summate the current progress towards the development of a gonorrhea vaccine and describe the clinical trials being undertaken in Australia to assess the efficacy of the current formulation of Bexsero® in controlling disease.
Collapse
|
26
|
Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol 2020; 10:601072. [PMID: 33344265 PMCID: PMC7746538 DOI: 10.3389/fcimb.2020.601072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are the first encounters of invading bacteria and are responsible for engulfing and digesting pathogens through phagocytosis leading to initiation of the innate inflammatory response. Intracellular digestion occurs through a close relationship between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes, such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal compartment permits direct interaction with and killing of bacteria, and may contribute to processing of bacterial antigens for presentation, an event necessary for the induction of antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can control the expression and proteolytic activity of cathepsins, including their inhibitors – cystatins, to favor their own intracellular survival in macrophages. In this review, we summarize recent developments in defining the role of cathepsins in bacteria-macrophage interaction and describe important strategies engaged by bacteria to manipulate cathepsin expression and activity in macrophages. Particularly, we focus on specific bacterial species due to their clinical relevance to humans and animal health, i.e., Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella, Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
27
|
Repurposing Fenamic Acid Drugs To Combat Multidrug-Resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 2020; 64:AAC.02206-19. [PMID: 32393483 DOI: 10.1128/aac.02206-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
The rise of extensively drug-resistant and multidrug-resistant strains of Neisseria gonorrhoeae has occurred in parallel with the increasing demand for new drugs. However, the current methods of drug discovery are burdened with rigorous assessments and require more time than can be spared until gonococcal infections become difficult to control. To address this urgency, we utilized a drug-repurposing strategy and identified three clinically approved anthranilic acid drugs (tolfenamic acid, flufenamic acid, and meclofenamic acid) with potent antigonococcal activity, inhibiting 50% of the strains (MIC50) from 4 to 16 μg/ml. Furthermore, tolfenamic acid showed indifferent activity with antibiotics of choice for gonococcal infections, azithromycin and ceftriaxone, in checkerboard assays with a fractional inhibitory concentration index ranging from 0.75 to 1.5. Fenamic acids reduced a high inoculum of N. gonorrhoeae below the limit of detection within 12 h and exhibited a low frequency of resistance. Interestingly, the fenamic acids did not inhibit the growth of commensal Lactobacillus spp. that comprise the healthy female genital microbiota. Fenamic acids were also superior to ceftriaxone in reducing the burden of intracellular N. gonorrhoeae within infected endocervical cells by 99%. Furthermore, all three fenamic acids significantly reduced the expression of proinflammatory cytokines by infected endocervical cells. Finally, fenamic acids and other structurally related anthranilic acid derivatives were evaluated to ascertain a more in-depth structure-activity relationship (SAR) that revealed N-phenylanthranilic acid as a novel antigonorrheal scaffold. This SAR study will pave the road to repositioning more potent fenamic acids analogues against N. gonorrhoeae.
Collapse
|
28
|
Use of Human Monocyte-Derived Macrophages to Study Neisseria gonorrhoeae Infection. Methods Mol Biol 2020. [PMID: 31119631 DOI: 10.1007/978-1-4939-9496-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Macrophages are critical cells in the innate immune response to microorganisms sensed in the tissues. During infections, the interaction between pathogens and macrophages leads to a macrophage response that includes cytokine production, antigen processing and presentation in the context of MHC molecules, expression of T cell costimulatory molecules and recruitment of innate defense effectors, which results in clearance of infection. However, Neisseria gonorrhoeae can suppress the protective immune response at this level, avoiding its detection and elimination. Studies addressed to develop the interactions between macrophages and Neisseria gonorrhoeae allow us to find potential targets to be exploited with vaccines and therapeutic drugs. In this chapter, we describe protocols to generate human monocyte-derived macrophages and assess their response to infection with Neisseria gonorrhoeae.
Collapse
|
29
|
Russell MW, Jerse AE, Gray-Owen SD. Progress Toward a Gonococcal Vaccine: The Way Forward. Front Immunol 2019; 10:2417. [PMID: 31681305 PMCID: PMC6803597 DOI: 10.3389/fimmu.2019.02417] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
The concept of immunizing against gonorrhea has received renewed interest because of the recent emergence of strains of Neisseria gonorrhoeae that are resistant to most currently available antibiotics, an occurrence that threatens to render gonorrhea untreatable. However, despite efforts over many decades, no vaccine has yet been successfully developed for human use, leading to pessimism over whether this goal was actually attainable. Several factors have contributed to this situation, including extensive variation of the expression and specificity of many of the gonococcal surface antigens, and the ability of N. gonorrhoeae to resist destruction by complement and other innate immune defense mechanisms. The natural host restriction of N. gonorrhoeae for humans, coupled with the absence of any definable state of immunity arising from an episode of gonorrhea, have also complicated efforts to study gonococcal pathogenesis and the host's immune responses. However, recent findings have elucidated how the gonococcus exploits and manipulates the host's immune system for its own benefit, utilizing human-specific receptors for attachment to and invasion of tissues, and subverting adaptive immune responses that might otherwise be capable of eliminating it. While no single experimental model is capable of providing all the answers, experiments utilizing human cells and tissues in vitro, various in vivo animal models, including genetically modified strains of mice, and both experimental and observational human clinical studies, have combined to yield important new insight into the immuno-pathogenesis of gonococcal infection. In turn, these have now led to novel approaches for the development of a gonococcal vaccine. Ongoing investigations utilizing all available tools are now poised to make the development of an effective human vaccine against gonorrhea an achievable goal within a foreseeable time-frame.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
PacBio Amplicon Sequencing Method To Measure Pilin Antigenic Variation Frequencies of Neisseria gonorrhoeae. mSphere 2019; 4:4/5/e00562-19. [PMID: 31578246 PMCID: PMC6796969 DOI: 10.1128/msphere.00562-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene diversification is a common mechanism pathogens use to alter surface structures to aid in immune avoidance. Neisseria gonorrhoeae uses a gene conversion-based diversification system to alter the primary sequence of the gene encoding the major subunit of the pilus, pilE Antigenic variation occurs when one of the nonexpressed 19 silent copies donates part of its DNA sequence to pilE We have developed a method using Pacific Biosciences (PacBio) amplicon sequencing and custom software to determine pilin antigenic variation frequencies. The program analyzes 37 variable regions across the strain FA1090 1-81-S2 pilE gene and can be modified to determine sequence variation from other starting pilE sequences or other diversity generation systems. Using this method, we measured pilin antigenic variation frequencies for various derivatives of strain FA1090 and showed we can also analyze pilin antigenic variation frequencies during macrophage infection.IMPORTANCE Diversity generation systems are used by many unicellular organism to provide subpopulations of cell with different properties that are available when needed. We have developed a method using the PacBio DNA sequencing technology and a custom computer program to analyze the pilin antigenic variation system of the organism that is the sole cause of the sexually transmitted infection, gonorrhea.
Collapse
|
31
|
Gulati S, Beurskens FJ, de Kreuk BJ, Roza M, Zheng B, DeOliveira RB, Shaughnessy J, Nowak NA, Taylor RP, Botto M, He X, Ingalls RR, Woodruff TM, Song WC, Schuurman J, Rice PA, Ram S. Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody. PLoS Biol 2019; 17:e3000323. [PMID: 31216278 PMCID: PMC6602280 DOI: 10.1371/journal.pbio.3000323] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/01/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Multidrug-resistant Neisseria gonorrhoeae is a global health problem. Monoclonal antibody (mAb) 2C7 recognizes a gonococcal lipooligosaccharide epitope that is expressed by >95% of clinical isolates and hastens gonococcal vaginal clearance in mice. Chimeric mAb 2C7 (human immunoglobulin G1 [IgG1]) with an E430G Fc modification that enhances Fc:Fc interactions and hexamerization following surface-target binding and increases complement activation (HexaBody technology) showed significantly greater C1q engagement and C4 and C3 deposition compared to mAb 2C7 with wild-type Fc. Greater complement activation by 2C7-E430G Fc translated to increased bactericidal activity in vitro and, consequently, enhanced efficacy in mice, compared with “Fc-unmodified” chimeric 2C7. Gonococci bind the complement inhibitors factor H (FH) and C4b-binding protein (C4BP) in a human-specific manner, which dampens antibody (Ab)-mediated complement-dependent killing. The variant 2C7-E430G Fc overcame the barrier posed by these inhibitors in human FH/C4BP transgenic mice, for which a single 1 μg intravenous dose cleared established infection. Chlamydia frequently coexists with and exacerbates gonorrhea; 2C7-E430G Fc also proved effective against gonorrhea in gonorrhea/chlamydia-coinfected mice. Complement activation alone was necessary and sufficient for 2C7 function, evidenced by the fact that (1) “complement-inactive” Fc modifications that engaged Fc gamma receptor (FcγR) rendered 2C7 ineffective, nonetheless; (2) 2C7 was nonfunctional in C1q−/− mice, when C5 function was blocked, or in C9−/− mice; and (3) 2C7 remained effective in neutrophil-depleted mice and in mice treated with PMX205, a C5a receptor (C5aR1) inhibitor. We highlight the importance of complement activation for antigonococcal Ab function in the genital tract. Elucidating the correlates of protection against gonorrhea will inform the development of Ab-based gonococcal vaccines and immunotherapeutics. A chimeric antibody that contains a "complement-enhancing" mutation in Fc (so-called HexaBody technology) shows increased bactericidal activity compared to antibody bearing wild-type Fc and may represent a promising immunotherapeutic approach against multidrug-resistant gonorrhea.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | | | | | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rosane B. DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nancy A. Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronald P. Taylor
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Marina Botto
- Center for Complement and Inflammation Research, Imperial College, London, United Kingdom
| | - Xianbao He
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Robin R. Ingalls
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Brisbane, Australia
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SR); (FJB)
| |
Collapse
|
32
|
Jayasundara P, Regan DG, Seib KL, Jayasundara D, Wood JG. Modelling the in-host dynamics of Neisseria gonorrhoeae infection. Pathog Dis 2019; 77:5320890. [PMID: 30770529 DOI: 10.1093/femspd/ftz008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
The bacterial species Neisseria gonorrhoeae (NG) has evolved to replicate effectively and exclusively in human epithelia, with its survival dependent on complex interactions between bacteria, host cells and antimicrobial agents. A better understanding of these interactions is needed to inform development of new approaches to gonorrhoea treatment and prevention but empirical studies have proven difficult, suggesting a role for mathematical modelling. Here, we describe an in-host model of progression of untreated male symptomatic urethral infection, including NG growth and interactions with epithelial cells and neutrophils, informed by in vivo and in vitro studies. The model reproduces key observations on bacterial load and clearance and we use multivariate sensitivity analysis to refine plausible ranges for model parameters. Model variants are also shown to describe mouse infection dynamics with altered parameter ranges that correspond to observed differences between human and mouse infection. Our results highlight the importance of NG internalisation, particularly within neutrophils, in sustaining infection in the human model, with ∼80% of the total NG population internalised from day 25 on. This new mechanistic model of in-host NG infection dynamics should also provide a platform for future studies relating to antimicrobial treatment and resistance and infection at other anatomical sites.
Collapse
Affiliation(s)
- Pavithra Jayasundara
- Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Samuels Avenue, Kensington, NSW 2052, Australia
| | - David G Regan
- The Kirby Institute, UNSW Sydney, High Street, Kensington, NSW 2052, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast campus, Parklands Dr, Southport, QLD 4222, Australia
| | - Duleepa Jayasundara
- Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Samuels Avenue, Kensington, NSW 2052, Australia
| | - James G Wood
- Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Samuels Avenue, Kensington, NSW 2052, Australia
| |
Collapse
|
33
|
Pramudya M, Wahyuningsih SPA. Immunomodulatory potential of polysaccharides from Coriolus versicolor against intracellular bacteria Neisseria gonorrhoeae. Vet World 2019; 12:735-739. [PMID: 31439986 PMCID: PMC6661474 DOI: 10.14202/vetworld.2019.735-739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/09/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: For many years, people use natural products from the plant and fungal to improve immune response against microorganism. This study aimed to investigate the immunomodulatory properties of polysaccharides (PS) from Coriolus versicolor in mice infected by intracellular bacteria Neisseria gonorrhoeae. Materials and Methods: Thirty-six female BALB/C mice were divided into six groups: Normal control, negative control, positive control, P1 (PS before infection), P2 (PS after infection), and P3 (PS before and after infection). PS were administrated for 10 days. N. gonorrhoeae was infected twice with 2 weeks gap from the first to second exposure with a dose of 106 cells. 1 week after the end of treatment, level of oxidants, innate immune responses, and adaptive immune responses were measured. Results: This study showed that PS administration could restore the number of leukocytes as normal but could not enhance the number of phagocytes and its activity. PS administration also showed immunosuppression activity by lowering nitric oxide levels in P2 and P3 groups (p<0.05). This result showed that PS prevent over-expression of pro-inflammatory cytokines by decreasing phagocytic activity. Contrast with innate immune response result; PS administration could significantly increase interferon-gamma level in P1, P2, and P3 groups (p<0.05). Level of antibodies was significantly increased in the P3 group (p<0.05). PS administration also showed an increased level of tumor necrosis factor-α, but the difference was not significant (p>0.05). Conclusion: PS enhance adaptive immunity due to the capability of N. gonorrhoeae that able to survive and replicate in phagocytes. Thus, PS from C. versicolor could be potentially be used as a natural immunomodulator against intracellular bacteria.
Collapse
Affiliation(s)
- Manikya Pramudya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
34
|
Abstract
The obligate human pathogen Neisseria gonorrhoeae colonizes primarily the mucosal columnar epithelium of the male urethra and the female endocervix. In addition, gonococci can infect the anorectal, pharyngeal, and gingival mucosae and epithelial cells of the conjunctiva. More rarely, the organism can disseminate through the bloodstream, which can involve interactions with other host cell types, including blood vessel endothelial cells and innate immune cells such as dendritic cells, macrophages, and neutrophils. "Disseminated gonococcal infection" is a serious condition with various manifestations resulting from the seeding of organs and tissues with the pathogen. The host response to gonococcal infection is inflammatory. Knowledge of the biology of gonococcal interactions has been served well through the use of a wide variety of ex vivo models using host tissues and eukaryotic cell monocultures. These models have helped identify bacterial surface adhesins and invasins and the corresponding cell surface receptors that play roles in gonococcal pathogenesis. Furthermore, they have been useful for understanding virulence mechanisms as well as innate and adaptive immune responses. In this chapter, readers are provided with protocols for examining the basic interactions between gonococci and a representative human cell line.
Collapse
|
35
|
Escobar A, Rodas PI, Acuña-Castillo C. Macrophage- Neisseria gonorrhoeae Interactions: A Better Understanding of Pathogen Mechanisms of Immunomodulation. Front Immunol 2018; 9:3044. [PMID: 30627130 PMCID: PMC6309159 DOI: 10.3389/fimmu.2018.03044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Neisseria gonorrhoeae is a significant health problem worldwide due to multi-drug resistance issues and absence of an effective vaccine. Patients infected with N. gonorrhoeae have not shown a better immune response in successive infections. This might be explained by the fact that N. gonorrhoeae possesses several mechanisms to evade the innate and adaptative immune responses at different levels. Macrophages are a key cellular component in the innate immune response against microorganisms. The current information suggests that gonococcus can hijack the host response by mechanisms that involve the control of macrophages activity. In this mini review, we intend to condense the recent knowledge on the macrophage–N. gonorrhoeae interactions with a focus on strategies developed by gonococcus to evade or to exploit immune response to establish a successful infection. Finally, we discuss the opportunities and challenges of therapeutics for controlling immune manipulation by N. gonorrhoeae.
Collapse
Affiliation(s)
- Alejandro Escobar
- Laboratorio Biología Celular y Molecular, Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Paula I Rodas
- Laboratorio de Microbiología Médica y Patogénesis, Facultad de Medicina, Universidad Andrés Bello, Concepción, Chile
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
36
|
Agarwal A, Rana M, Qiu E, AlBunni H, Bui AD, Henkel R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia 2018; 50:e13126. [DOI: 10.1111/and.13126] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/08/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
| | - Mohit Rana
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
| | - Emily Qiu
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
| | - Hashem AlBunni
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
| | - Albert D. Bui
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
- Ohio University Heritage College of Osteopathic Medicine; Athens Ohio
| | - Ralf Henkel
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
- Department of Medical Biosciences; University of the Western Cape; Bellville South Africa
| |
Collapse
|
37
|
Lenz JD, Dillard JP. Pathogenesis of Neisseria gonorrhoeae and the Host Defense in Ascending Infections of Human Fallopian Tube. Front Immunol 2018; 9:2710. [PMID: 30524442 PMCID: PMC6258741 DOI: 10.3389/fimmu.2018.02710] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that causes mucosal surface infections of male and female reproductive tracts, pharynx, rectum, and conjunctiva. Asymptomatic or unnoticed infections in the lower reproductive tract of women can lead to serious, long-term consequences if these infections ascend into the fallopian tube. The damage caused by gonococcal infection and the subsequent inflammatory response produce the condition known as pelvic inflammatory disease (PID). Infection can lead to tubal scarring, occlusion of the oviduct, and loss of critical ciliated cells. Consequences of the damage sustained on the fallopian tube epithelium include increased risk of ectopic pregnancy and tubal-factor infertility. Additionally, the resolution of infection can produce new adhesions between internal tissues, which can tear and reform, producing chronic pelvic pain. As a bacterium adapted to life in a human host, the gonococcus presents a challenge to the development of model systems for probing host-microbe interactions. Advances in small-animal models have yielded previously unattainable data on systemic immune responses, but the specificity of N. gonorrhoeae for many known (and unknown) host targets remains a constant hurdle. Infections of human volunteers are possible, though they present ethical and logistical challenges, and are necessarily limited to males due to the risk of severe complications in women. It is routine, however, that normal, healthy fallopian tubes are removed in the course of different gynecological surgeries (namely hysterectomy), making the very tissue most consequentially damaged during ascending gonococcal infection available for laboratory research. The study of fallopian tube organ cultures has allowed the opportunity to observe gonococcal biology and immune responses in a complex, multi-layered tissue from a natural host. Forty-five years since the first published example of human fallopian tube being infected ex vivo with N. gonorrhoeae, we review what modeling infections in human tissue explants has taught us about the gonococcus, what we have learned about the defenses mounted by the human host in the upper female reproductive tract, what other fields have taught us about ciliated and non-ciliated cell development, and ultimately offer suggestions regarding the next generation of model systems to help expand our ability to study gonococcal pathogenesis.
Collapse
Affiliation(s)
- Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
38
|
Antibiotic Targets in Gonococcal Cell Wall Metabolism. Antibiotics (Basel) 2018; 7:antibiotics7030064. [PMID: 30037076 PMCID: PMC6164560 DOI: 10.3390/antibiotics7030064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
The peptidoglycan cell wall that encloses the bacterial cell and provides structural support and protection is remodeled by multiple enzymes that synthesize and cleave the polymer during growth. This essential and dynamic structure has been targeted by multiple antibiotics to treat gonococcal infections. Up until now, antibiotics have been used against the biosynthetic machinery and the therapeutic potential of inhibiting enzymatic activities involved in peptidoglycan breakdown has not been explored. Given the major antibiotic resistance problems we currently face, it is crucial to identify other possible targets that are key to maintaining cell integrity and contribute to disease development. This article reviews peptidoglycan as an antibiotic target, how N. gonorrhoeae has developed resistance to currently available antibiotics, and the potential of continuing to target this essential structure to combat gonococcal infections by attacking alternative enzymatic activities involved in cell wall modification and metabolism.
Collapse
|
39
|
Pathogenesis of Neisseria gonorrhoeae in the female reproductive tract: neutrophilic host response, sustained infection, and clinical sequelae. Curr Opin Hematol 2018; 25:13-21. [PMID: 29016383 DOI: 10.1097/moh.0000000000000394] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Gonorrhea is a major global health concern, caused by the bacterium Neisseria gonorrhoeae. The main clinical feature of acute gonorrhea is neutrophilic influx that is unable to clear infection. Women of reproductive age are predominantly at risk for serious sequelae of gonorrhea, including pelvic inflammatory disease, ectopic pregnancy, and infertility. This review will highlight how neutrophils are recruited to the female reproductive tract (FRT) in response to N. gonorrhoeae, how N. gonorrhoeae resists killing by neutrophils, and the connection between neutrophilic inflammation and cellular damage. RECENT FINDINGS Epithelial cells and immune cells of the FRT recognize and respond to N. gonorrhoeae lipid A and heptose bisphosphate of lipooligosaccharide, porin, lipoproteins, and peptidoglycan fragments. N. gonorrhoeae skews the resulting immune response toward a neutrophilic, Th17-like response. N. gonorrhoeae has multiple, nonredundant mechanisms to survive inside neutrophils and in neutrophil extracellular traps. Infection that ascends to the upper FRT induces the further release of inflammatory cytokines and matrix metalloproteinases, which cause epithelial damage. SUMMARY N. gonorrhoeae is remarkable in its ability to recruit neutrophils, yet survive in their midst. New models being developed for FRT infection with N. gonorrhoeae will be useful to reveal the mechanisms underlying these observations.
Collapse
|
40
|
Deo P, Chow SH, Hay ID, Kleifeld O, Costin A, Elgass KD, Jiang JH, Ramm G, Gabriel K, Dougan G, Lithgow T, Heinz E, Naderer T. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog 2018; 14:e1006945. [PMID: 29601598 PMCID: PMC5877877 DOI: 10.1371/journal.ppat.1006945] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/21/2018] [Indexed: 01/31/2023] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea by evading innate immunity. Colonizing the mucosa of the reproductive tract depends on the bacterial outer membrane porin, PorB, which is essential for ion and nutrient uptake. PorB is also targeted to host mitochondria and regulates apoptosis pathways to promote infections. How PorB traffics from the outer membrane of N. gonorrhoeae to mitochondria and whether it modulates innate immune cells, such as macrophages, remains unclear. Here, we show that N. gonorrhoeae secretes PorB via outer membrane vesicles (OMVs). Purified OMVs contained primarily outer membrane proteins including oligomeric PorB. The porin was targeted to mitochondria of macrophages after exposure to purified OMVs and wild type N. gonorrhoeae. This was associated with loss of mitochondrial membrane potential, release of cytochrome c, activation of apoptotic caspases and cell death in a time-dependent manner. Consistent with this, OMV-induced macrophage death was prevented with the pan-caspase inhibitor, Q-VD-PH. This shows that N. gonorrhoeae utilizes OMVs to target PorB to mitochondria and to induce apoptosis in macrophages, thus affecting innate immunity. Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea in more than 100 million people worldwide every year. The bacteria replicate in the reproductive tract by evading innate and adaptive immunity. In the absence of effective vaccines and the rise of antibiotic resistance, understanding the molecular interactions between innate immune cells and N. gonorrhoeae may lead to new strategies to combat bacterial growth and the symptoms of gonorrhoea. It has long been known that the N. gonorrhoeae porin, PorB, promotes bacterial survival but also targets host mitochondria in infections. The mechanism by which PorB traffics form the bacterial outer membrane to host mitochondria remains unclear. Here, we utilized proteomics and super-resolution microscopy to show that N. gonorrhoeae secretes PorB via outer membrane vesicles. These vesicles are taken up by macrophages and deliver PorB to mitochondria. Macrophages treated with N. gonorrhoeae vesicles contained damaged mitochondria and active caspase-3. A caspase inhibitor prevented apoptosis of macrophages treated with N. gonorrhoeae vesicles. This suggests that N. gonorrhoeae secretes membrane vesicles, which are readily detectable in gonorrhoea patients, to target macrophages and to promote infections.
Collapse
Affiliation(s)
- Pankaj Deo
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Seong H Chow
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Iain D Hay
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Oded Kleifeld
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Adam Costin
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Jhih-Hang Jiang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia.,Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Kipros Gabriel
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gordon Dougan
- Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Trevor Lithgow
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Eva Heinz
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.,Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Thomas Naderer
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
41
|
Abstract
The host-adapted human pathogen Neisseria gonorrhoeae is the causative agent of gonorrhoea. Consistent with its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are common in commensals, but it has also developed unique features that are crucial to its pathogenesis. The continued worldwide incidence of gonorrhoeal infection, coupled with the rising resistance to antimicrobials and the difficulties in controlling the disease in developing countries, highlights the need to better understand the molecular basis of N. gonorrhoeae infection. This knowledge will facilitate disease prevention, surveillance and control, improve diagnostics and may help to facilitate the development of effective vaccines or new therapeutics. In this Review, we discuss sex-related symptomatic gonorrhoeal disease and provide an overview of the bacterial factors that are important for the different stages of pathogenesis, including transmission, colonization and immune evasion, and we discuss the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Sarah Jane Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
42
|
Ritter JL, Genco CA. Neisseria gonorrhoeae-Induced Inflammatory Pyroptosis in Human Macrophages is Dependent on Intracellular Gonococci and Lipooligosaccharide. J Cell Death 2018; 11:1179066017750902. [PMID: 29434478 PMCID: PMC5805002 DOI: 10.1177/1179066017750902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022] Open
Abstract
Neisseria gonorrhoeae, the human obligate pathogen responsible for the sexually transmitted disease gonorrhea, has evolved several mechanisms to evade the host immune response. One such mechanism is the modulation of host cell death pathways. In this study, we defined cell death pathways induced by N gonorrhoeae in human monocyte-derived macrophages (MDMs). In a dose-dependent manner, N gonorrhoeae stimulation of MDMs resulted in caspase 1 and 4-dependent cell deaths, indicative of canonical and noncanonical pyroptosis, respectively. Internalization of bacteria or stimulation with lipooligosaccharide (LOS) specifically induced pyroptosis in MDMs and increased secretion of IL-1β. Collectively, our results demonstrate that N gonorrhoeae induces inflammatory pyroptosis in human macrophages due in part to intracellular LOS. We propose that this in turn may exacerbate inflammatory outcomes observed during mucosal infection.
Collapse
Affiliation(s)
- Jessica Leigh Ritter
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
43
|
Gangaiah D, Raterman EL, Wu H, Fortney KR, Gao H, Liu Y, Jerse AE, Spinola SM. Both MisR (CpxR) and MisS (CpxA) Are Required for Neisseria gonorrhoeae Infection in a Murine Model of Lower Genital Tract Infection. Infect Immun 2017; 85:e00307-17. [PMID: 28652307 PMCID: PMC5563589 DOI: 10.1128/iai.00307-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/17/2017] [Indexed: 12/29/2022] Open
Abstract
During infection, Neisseria gonorrhoeae senses and responds to stress; such responses may be modulated by MisRS (NGO0177 and NGO0176), a two-component system that is a homolog of CpxRA. In Escherichia coli, CpxRA senses and responds to envelope stress; CpxA is a sensor kinase/phosphatase for CpxR, a response regulator. When a cpxA mutant is grown in medium containing glucose, CpxR is phosphorylated by acetyl phosphate but cannot be dephosphorylated, resulting in constitutive activation. Kandler and coworkers (J. L. Kandler, C. L. Holley, J. L. Reimche, V. Dhulipala, J. T. Balthazar, A. Muszyński, R. W. Carlson, and W. M. Shafer, Antimicrob Agents Chemother 60:4690-4700, 2016, https://doi.org/10.1128/AAC.00823-16) showed that MisR (CpxR) is required for the maintenance of membrane integrity and resistance to antimicrobial peptides, suggesting a role in gonococcal survival in vivo Here, we evaluated the contributions of MisR and MisS (CpxA) to gonococcal infection in a murine model of cervicovaginal colonization and identified MisR-regulated genes using RNA sequencing (RNA-Seq). The deletion of misR or misS severely reduced the capacity of N. gonorrhoeae to colonize mice or maintain infection over a 7-day period and reduced microbial fitness after exposure to heat shock. Compared to the wild type (WT), the inactivation of misR identified 157 differentially regulated genes, most of which encoded putative envelope proteins. The inactivation of misS identified 17 differentially regulated genes compared to the WT and 139 differentially regulated genes compared to the misR mutant, 111 of which overlapped those differentially expressed in the comparison of the WT versus the misR mutant. These data indicate that an intact MisRS system is required for gonococcal infection of mice. Provided the MisR is constitutively phosphorylated in the misS mutant, the data suggest that controlled but not constitutive activation is required for gonococcal infection in mice.
Collapse
Affiliation(s)
- Dharanesh Gangaiah
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erica L Raterman
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Hong Wu
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Kate R Fortney
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Stanley M Spinola
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
44
|
Marinho FV, Benmerzoug S, Oliveira SC, Ryffel B, Quesniaux VFJ. The Emerging Roles of STING in Bacterial Infections. Trends Microbiol 2017. [PMID: 28625530 DOI: 10.1016/j.tim.2017.05.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The STING (Stimulator of Interferon Genes) protein connects microorganism cytosolic sensing with effector functions of the host cell by sensing directly cyclic dinucleotides (CDNs), originating from pathogens or from the host upon DNA recognition. Although STING activation favors effective immune responses against viral infections, its role during bacterial diseases is controversial, ranging from protective to detrimental effects for the host. In this review, we summarize important features of the STING activation pathway and recent highlights about the role of STING in bacterial infections by Chlamydia, Listeria, Francisella, Brucella, Shigella, Salmonella, Streptococcus, and Neisseria genera, with a special focus on mycobacteria.
Collapse
Affiliation(s)
- Fabio V Marinho
- CNRS, UMR7355, Orleans, France; Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sulayman Benmerzoug
- CNRS, UMR7355, Orleans, France; Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orleans, France
| | - V F J Quesniaux
- CNRS, UMR7355, Orleans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orleans, France.
| |
Collapse
|
45
|
Andrade WA, Agarwal S, Mo S, Shaffer SA, Dillard JP, Schmidt T, Hornung V, Fitzgerald KA, Kurt-Jones EA, Golenbock DT. Type I Interferon Induction by Neisseria gonorrhoeae: Dual Requirement of Cyclic GMP-AMP Synthase and Toll-like Receptor 4. Cell Rep 2016; 15:2438-48. [PMID: 27264171 PMCID: PMC5401638 DOI: 10.1016/j.celrep.2016.05.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/28/2016] [Accepted: 05/05/2016] [Indexed: 12/29/2022] Open
Abstract
The innate immune system is the first line of defense against Neisseria gonorrhoeae (GC). Exposure of cells to GC lipooligosaccharides induces a strong immune response, leading to type I interferon (IFN) production via TLR4/MD-2. In addition to living freely in the extracellular space, GC can invade the cytoplasm to evade detection and elimination. Double-stranded DNA introduced into the cytosol binds and activates the enzyme cyclic-GMP-AMP synthase (cGAS), which produces 2'3'-cGAMP and triggers STING/TBK-1/IRF3 activation, resulting in type I IFN expression. Here, we reveal a cytosolic response to GC DNA that also contributes to type I IFN induction. We demonstrate that complete IFN-β induction by live GC depends on both cGAS and TLR4. Type I IFN is detrimental to the host, and dysregulation of iron homeostasis genes may explain lower bacteria survival in cGAS(-/-) and TLR4(-/-) cells. Collectively, these observations reveal cooperation between TLRs and cGAS in immunity to GC infection.
Collapse
Affiliation(s)
- Warrison A Andrade
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarika Agarwal
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shunyan Mo
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tobias Schmidt
- Institute of Molecular Medicine, Universitätsklinikum Bonn, Bonn 53127, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, Universitätsklinikum Bonn, Bonn 53127, Germany
| | - Katherine A Fitzgerald
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Evelyn A Kurt-Jones
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Douglas T Golenbock
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG 30190-002, Brazil.
| |
Collapse
|
46
|
Chow SH, Deo P, Naderer T. Macrophage cell death in microbial infections. Cell Microbiol 2016; 18:466-74. [PMID: 26833712 DOI: 10.1111/cmi.12573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
Abstract
Macrophages can respond to microbial infections with programmed cell death. The major cell death pathways of apoptosis, pyroptosis and necroptosis are tightly regulated to ensure adequate immune reactions to virulent and persistent invaders. Macrophage death eliminates the replicative niche of intracellular pathogens and induces immune attack. Not surprisingly, successful pathogens have evolved strategies to modulate macrophage cell death pathways to enable microbial survival and replication. Uncontrolled macrophage death can also lead to tissue damage, which may augment bacterial dissemination and pathology. In this review, we highlight how pathogens hijack macrophage cell death signals to promote microbial survival and immune evasion.
Collapse
Affiliation(s)
- Seong H Chow
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Pankaj Deo
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| |
Collapse
|