1
|
Shi Y, Wan L, Jiao M, Zhong CQ, Cui H, Yuan J. Elevated NAD + drives Sir2A-mediated GCβ deacetylation and OES localization for Plasmodium ookinete gliding and mosquito infection. Nat Commun 2025; 16:2259. [PMID: 40050296 PMCID: PMC11885453 DOI: 10.1038/s41467-025-57517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
cGMP signal-activated ookinete gliding is essential for mosquito midgut infection of Plasmodium in malaria transmission. During ookinete development, cGMP synthesizer GCβ polarizes to a unique localization "ookinete extrados site" (OES) until ookinete maturation and activates cGMP signaling for initiating parasite motility. However, the mechanism underlying GCβ translocation from cytosol to OES remains elusive. Here, we use protein proximity labeling to search the GCβ-interacting proteins in ookinetes of the rodent malaria parasite P. yoelii, and find the top hit Sir2A, a NAD+-dependent sirtuin family deacetylase. Sir2A interacts with GCβ throughout ookinete development. In mature ookinetes, Sir2A co-localizes with GCβ at OES in a mutually dependent manner. Parasites lacking Sir2A lose GCβ localization at OES, ookinete gliding, and mosquito infection, phenocopying GCβ deficiency. GCβ is acetylated at gametocytes but is deacetylated by Sir2A for OES localization at mature ookinetes. We further demonstrate that the level of NAD+, an essential co-substrate for sirtuin, increases during the ookinete development. NAD+ at its maximal level in mature ookinetes promotes Sir2A-catalyzed GCβ deacetylation, ensuring GCβ localization at OES. This study highlights the spatiotemporal coordination of cytosolic NAD+ level and NAD+-dependent Sir2A in regulating GCβ deacetylation and dynamic localization for Plasmodium ookinete gliding.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lin Wan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Mengmeng Jiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Department of Infectious Disease, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Yoo R, Jore MM, Julien J. Targeting Bottlenecks in Malaria Transmission: Antibody-Epitope Descriptions Guide the Design of Next-Generation Biomedical Interventions. Immunol Rev 2025; 330:e70001. [PMID: 39907429 PMCID: PMC11796336 DOI: 10.1111/imr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
Malaria continues to pose a significant burden to global health. Thus, a strong need exists for the development of a diverse panel of intervention strategies and modalities to combat malaria and achieve elimination and eradication goals. Deploying interventions that target bottlenecks in the transmission life cycle of the causative agent of malaria, Plasmodium parasites, is an attractive strategy. The development of highly potent antibody-based biologics, including vaccines, can be greatly facilitated by an in-depth molecular understanding of antibody-epitope interactions. Here, we provide an overview of structurally characterized antibodies targeting lead vaccine candidates expressed during the bottlenecks of the Plasmodium life cycle which include the pre-erythrocytic and sexual stages. The repeat region of the circumsporozoite protein (CSP), domain 1 of Pfs230 and domains 1 and 3 of Pfs48/45 are critical Plasmodium regions targeted by the most potent antibodies at the two bottlenecks of transmission, with other promising targets emerging and requiring further characterization.
Collapse
Affiliation(s)
- Randy Yoo
- Program in Molecular MedicineThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
| | - Matthijs M. Jore
- Department of Medical MicrobiologyRadboudumcNijmegenThe Netherlands
| | - Jean‐Philippe Julien
- Program in Molecular MedicineThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Segovia X, Srivastava B, Serrato-Arroyo S, Guerrero A, Huijben S. Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management. Malar J 2025; 24:65. [PMID: 40025552 PMCID: PMC11871665 DOI: 10.1186/s12936-025-05286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Artemisinin-based combination therapy (ACT) remains a broadly effective anti-malarial drug combination, but the emergence of resistance is threatening its effectiveness. Limiting the spread of these drug-resistant parasites and delaying the emergence of resistance in new areas are of high priority. Understanding the evolution of resistance relies on discerning the fitness costs and benefits associated with resistance mutations. If the cost associated with resistance in an untreated host is sufficiently large relative to the benefit of resistance in a treated host, then the spread of resistance can be mitigated by ensuring sufficient hosts free from that active pharmaceutical ingredient. There is no straightforward way to measure these fitness costs, and each approach that has been used has its limitations. Here, the evidence of fitness costs as measured using field data, animal models, and in vitro models is reviewed for three of the main current or past first-line treatments for malaria: chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artemisinin derivatives (ART). Despite the difficulties of assessing fitness costs, there is a good amount of evidence of fitness costs in drug-resistant Plasmodium falciparum parasites. The most persuasive evidence comes from resistance reversal observed following the cessation of the use of chloroquine. Comparable evidence cannot be obtained for SP- and ART-resistant parasites, due to the absence of complete cessation of these drugs in the field. Data from in vitro and animal models are variable. While fitness costs are often observed, their presence is not universal across all resistant strains. The extent and nature of these fitness costs can vary greatly depending on the specific genetic factors involved and the ecological context in which the parasites evolve. As a result, it is essential to avoid making broad generalizations about the prevalence or impact of fitness costs in drug-resistant malaria parasites. Focusing on fitness costs as a vulnerability in resistant parasites can guide their evolutionary trajectory towards minimizing their fitness. By accurately predicting these costs, efforts to extend the effectiveness of anti-malarials can be enhanced, limiting resistance evolution and advancing malaria control and elimination goals.
Collapse
Affiliation(s)
- Xyonane Segovia
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Sergio Serrato-Arroyo
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ashley Guerrero
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
4
|
Grünebast J, Singhal R, Bromley R, Kanatani S, Watson K, Dumetz F, Pascini TV, Tripathi A, Dunning Hotopp JC, Sinnis P, Llinás M, Serre D. Degradation of ribosomal RNA during Plasmodium falciparum gametocytogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637867. [PMID: 39990385 PMCID: PMC11844502 DOI: 10.1101/2025.02.12.637867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The life cycle of Plasmodium falciparum is characterized by complex regulatory changes that allow adaptation of the parasites to different environmental conditions, which are especially pronounced during transmission between the mammalian host and the insect vector. Previous studies have shown that P. falciparum uses three types of ribosomal RNAs (rRNA A-, S1- and S2-types) at different stages of its life cycle. We used Oxford Nanopore Technologies (ONT) direct RNA sequencing to investigate the dynamics of rRNA usage throughout the parasite's intraerythrocytic development, as well as in salivary gland sporozoites. Our study revealed a preponderance of A-type rRNAs during the intraerythrocytic cycle and gametocytogenesis, while S-type rRNAs slowly increase in abundance in mosquito stages starting three days post infection. Salivary gland sporozoites showed an even proportion of all rRNA types. By examining the length distributions of rRNA molecules, we detected an extensive and specific degradation of rRNAs during gametocytogenesis, starting in stage II gametocytes and continuing until the final stages of gametocyte development. We hypothesize that rRNA degradation may be linked to the global translational repression and metabolic quiescence described in stage V gametocytes, similar to mechanisms observed in bacterial and eukaryotic stress responses.
Collapse
|
5
|
Sreenivasamurthy SK, Baptista CG, West CM, Blader IJ, Dvorin JD. PfFBXO1 is essential for inner membrane complex formation in Plasmodium falciparum during both asexual and transmission stages. Commun Biol 2025; 8:190. [PMID: 39915671 PMCID: PMC11802861 DOI: 10.1038/s42003-025-07619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Plasmodium species replicate via schizogony, which involves asynchronous nuclear divisions followed by semi-synchronous segmentation and cytokinesis. Successful segmentation requires a double-membranous structure known as the inner membrane complex (IMC). Here we demonstrate that PfFBXO1 (PF3D7_0619700) is critical for both asexual segmentation and gametocyte maturation. In Toxoplasma gondii, the FBXO1 homolog, TgFBXO1, is essential for the development of the daughter cell scaffold and a component of the daughter cell IMC. We demonstrate PfFBXO1 forming a similar IMC initiation scaffold near the apical region of developing merozoites and unilaterally positioned in gametocytes of P. falciparum. While PfFBXO1 initially localizes to the apical region of dividing parasites, it displays an IMC-like localization as segmentation progresses. Similarly, PfFBXO1 localizes to the IMC region in gametocytes. Following inducible knockout of PfFBXO1, parasites undergo abnormal segmentation and karyokinesis, generating inviable daughters. PfFBXO1-deficient gametocytes are abnormally shaped and fail to fully mature. Proteomic analysis identified PfSKP1 as one of PfBXO1's stable interacting partners, while other major proteins included multiple IMC pellicle and membrane proteins. We hypothesize that PfFBXO1 is necessary for IMC biogenesis, chromosomal maintenance, vesicular transport, and ubiquitin-mediated translational regulation of proteins in both sexual and asexual stages of P. falciparum.
Collapse
Affiliation(s)
- Sreelakshmi K Sreenivasamurthy
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Carlos Gustavo Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Liu Y, Cheng S, He G, He D, Wang D, Wang S, Chen L, Zhu L, Feng Y, Cui L, Cao Y, Zhu X. An inner membrane complex protein IMC1g in Plasmodium berghei is involved in asexual stage schizogony and parasite transmission. mBio 2025; 16:e0265224. [PMID: 39576115 PMCID: PMC11708024 DOI: 10.1128/mbio.02652-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025] Open
Abstract
The inner membrane complex (IMC), a double-membrane organelle underneath the plasma membrane in apicomplexan parasites, plays a significant role in motility and invasion and confers shape to the cell. We characterized the function of PbIMC1g, a component of the IMC1 family member in Plasmodium berghei. PbIMC1g is recruited to the IMC in late schizonts, activated gametocytes, and ookinetes. Pairwise yeast two-hybrid assays demonstrate that PbIMC1g interacts with IMC1c, a component of the PHIL1 complex, and the core sub-repeat motif "EKI(V)V(I)EVP" in PbIMC1g is essential for this interaction. Localization of PbIMC1g to the IMC was dependent on its IMCp domain, while its C-terminus and palmitoylation sites were required for the full efficiency of proper IMC targeting. PbIMC1g is required for asexual stage development, and its conditional knockdown resulted in a defect in schizogony. Additionally, PbIMC1g was also important for male gametogenesis and ookinete development. As an IMC component that assists in anchoring the glideosome to the subpellicular network, PbIMC1g was also involved in ookinete motility and mosquito midgut invasion. IMC1g from the human parasite Plasmodium vivax could functionally replace PbIMC1g in P. berghei, confirming the evolutionary conservation of IMC1g proteins in Plasmodium spp. Together, this work reveals an essential role of IMC1g in the parasite life cycle and suggests that IMC1 family members likely contribute to parasite gliding and invasion. IMPORTANCE The malaria parasite's inner membrane complex is critical to maintain its structural integrity and motility. Here, we identified the function of the IMC1g protein, a member of the IMC1 family, in invasive and proliferative stages of P. berghei. We found that the IMCp domain of PbIMC1g is critical for proper IMC targeting, and PbIMC1g interacts with PbIMC1c. Conditional knockdown of PbIMC1g expression affects schizogony, gametogenesis, and ookinete conversion. PbIMC1g interacts with IMC1c to firmly anchor the glideosome to the subpellicular network. Additionally, we confirmed that IMC1g is functionally conserved in Plasmodium spp. These data reveal the function of IMC1g protein in anchoring the glideosome, providing further insight into the mechanism of the glideosome function.
Collapse
Affiliation(s)
- Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shitong Cheng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dawei He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Duo Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Sicong Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Rios KT, McGee JP, Sebastian A, Gedara SA, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Widespread release of translational repression across Plasmodium's host-to-vector transmission event. PLoS Pathog 2025; 21:e1012823. [PMID: 39777415 PMCID: PMC11750109 DOI: 10.1371/journal.ppat.1012823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/21/2025] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Malaria parasites must respond quickly to environmental changes, including during their transmission between mammalian and mosquito hosts. Therefore, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. While the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, changes in the spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that ~200 transcripts are released for translation soon after fertilization, including those encoding essential functions. Moreover, we identified that many transcripts remain repressed beyond this point. TurboID-based proximity proteomics of the DOZI/CITH/ALBA regulatory complex revealed substantial spatial and/or compositional changes across this transmission event, which are consistent with recent, paradigm-shifting models of translational control. Together, these data provide a model for the essential translational control mechanisms that promote Plasmodium's efficient transmission from mammalian host to mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sanjaya Aththawala Gedara
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
8
|
Dao F, Niangaly A, Sogore F, Wague M, Dabitao D, Goita S, Hadara AS, Diakite O, Maiga M, Maiga FO, Cazevieille C, Cassan C, Talman AM, Djimde AA, Marin-Menendez A, Dembélé L. Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion. PLoS Negl Trop Dis 2025; 19:e0012790. [PMID: 39761327 PMCID: PMC11735006 DOI: 10.1371/journal.pntd.0012790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 01/15/2025] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species. In this study, we embarked on an investigation of P. malariae, including exploring its clinical disease characteristics, molecular aspects of red blood cell (RBC) invasion, and host-cell preferences. We conducted our research using parasites collected from infected individuals in Mali. Our findings revealed anaemia in most of P. malariae infected participants presented, in both symptomatic and asymptomatic cases. Regarding RBC invasion, quantified by an adapted flow cytometry based method, our study indicated that none of the seven antibodies tested, against receptors known for their role in P. falciparum invasion, had any impact on the ability of P. malariae to penetrate the host cells. However, when RBCs were pre-treated with various enzymes (neuraminidase, trypsin, and chymotrypsin), we observed a significant reduction in P. malariae invasion, albeit not a complete blockade. Furthermore, in a subset of P. malariae samples, we observed the parasite's capability to invade reticulocytes. These results suggest that P. malariae employs alternative pathways to enter RBCs of different maturities, which may differ from those used by P. falciparum.
Collapse
Affiliation(s)
- Francois Dao
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Amadou Niangaly
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fanta Sogore
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mamadou Wague
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Djeneba Dabitao
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Siaka Goita
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Aboubacrin S. Hadara
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Ousmaila Diakite
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mohamed Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fatoumata O. Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Cecile Cassan
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Arthur M. Talman
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Laurent Dembélé
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| |
Collapse
|
9
|
Kehrer J, Pietsch E, Ricken D, Strauss L, Heinze JM, Gilberger T, Frischknecht F. APEX-based proximity labeling in Plasmodium identifies a membrane protein with dual functions during mosquito infection. PLoS Pathog 2024; 20:e1012788. [PMID: 39693377 DOI: 10.1371/journal.ppat.1012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/02/2025] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Transmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito. To identify new transmission blocking vaccine candidates, we aimed to define the microneme content from ookinetes of the rodent model organism Plasmodium berghei using APEX2-mediated rapid proximity-dependent biotinylation. Besides known proteins of ookinete micronemes, this identified over 50 novel candidates and sharpened the list of a previous survey based on subcellular fractionation. Functional analysis of a first candidate uncovered a dual role for this membrane protein in male gametogenesis and ookinete midgut traversal. Mutation of a putative trafficking motif in the C-terminus affected ookinete to oocyst transition but not gamete formation. This suggests the existence of distinct functional and transport requirements for Plasmodium proteins in different parasite stages.
Collapse
Affiliation(s)
- Jessica Kehrer
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| | - Emma Pietsch
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dominik Ricken
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Léanne Strauss
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M Heinze
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Tim Gilberger
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Friedrich Frischknecht
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Calit J, Prajapati SK, Benavente ED, Araújo JE, Deng B, Miura K, Annunciato Y, Moura IMR, Usui M, Medeiros JF, Andrade CH, Silva-Mendonça S, Simeonov A, Eastman RT, Long CA, da Silva Araujo M, Williamson KC, Aguiar ACC, Bargieri DY. Pyrimidine Azepine Targets the Plasmodium bc 1 Complex and Displays Multistage Antimalarial Activity. JACS AU 2024; 4:3942-3952. [PMID: 39483245 PMCID: PMC11522906 DOI: 10.1021/jacsau.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
Malaria control and elimination efforts would benefit from the identification and validation of new malaria chemotherapeutics. Recently, a transgenic Plasmodium berghei line was used to perform a series of high-throughput in vitro screens for new antimalarials acting against the parasite sexual stages. The screens identified pyrimidine azepine chemotypes with potent activity. Here, we validate the activity of PyAz90, the most potent pyrimidine azepine chemotype identified, against P. falciparum and P. vivax in the asexual and sexual stages. PyAz90 blocked parasite transmission to the mosquito vector at nanomolar concentrations and inhibited in vitro asexual parasite multiplication with a fast-action profile. Through the generation of P. falciparum PyAz90-resistant parasites and in vitro assays of mitochondrial activity, we identified cytochrome b as a molecular target of PyAz90. This work characterizes a promising chemotype that can be explored for the future development of new antimalarials targeting the Plasmodium cytochrome bc 1 complex.
Collapse
Affiliation(s)
- Juliana Calit
- Department
of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Surendra K. Prajapati
- Department
of Microbiology and Immunology, Uniformed
Services University of the Health Sciences, Bethesda, Maryland 20814-4712, United
States
| | - Ernest D. Benavente
- Laboratory
of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CS, The Netherlands
| | - Jessica E. Araújo
- Plataforma
de Produção e Infecção de Vetores da Malária−PIVEM, Laboratório de Entomologia, Fundação
Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil
- Programa
de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil
| | - Bingbing Deng
- Laboratory
of Malaria and Vector Research, National
Institute of Allergy and Infectious Diseases, National Institutes
of Health, Rockville, Maryland 20852, United States
| | - Kazutoyo Miura
- Laboratory
of Malaria and Vector Research, National
Institute of Allergy and Infectious Diseases, National Institutes
of Health, Rockville, Maryland 20852, United States
| | - Yasmin Annunciato
- Department
of Bioscience, Federal University of São
Paulo, São Paulo, SP 04021-001, Brazil
| | - Igor M. R. Moura
- Institute
of Physics of São Carlos, University
of São Paulo, São
Carlos, SP 13566-590, Brazil
| | - Miho Usui
- Department
of Microbiology and Immunology, Uniformed
Services University of the Health Sciences, Bethesda, Maryland 20814-4712, United
States
| | - Jansen F. Medeiros
- Plataforma
de Produção e Infecção de Vetores da Malária−PIVEM, Laboratório de Entomologia, Fundação
Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil
- Programa
de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil
| | - Carolina H. Andrade
- LabMol−Laboratory
for Molecular Modeling and Drug Design−Faculty of Pharmacy, Federal University of Goias, Goiania, GO 74605-220, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiania, GO 74605-170, Brazil
| | - Sabrina Silva-Mendonça
- LabMol−Laboratory
for Molecular Modeling and Drug Design−Faculty of Pharmacy, Federal University of Goias, Goiania, GO 74605-220, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiania, GO 74605-170, Brazil
| | - Anton Simeonov
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Richard T. Eastman
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Carole A. Long
- Laboratory
of Malaria and Vector Research, National
Institute of Allergy and Infectious Diseases, National Institutes
of Health, Rockville, Maryland 20852, United States
| | - Maisa da Silva Araujo
- Plataforma
de Produção e Infecção de Vetores da Malária−PIVEM, Laboratório de Entomologia, Fundação
Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil
| | - Kim C. Williamson
- Department
of Microbiology and Immunology, Uniformed
Services University of the Health Sciences, Bethesda, Maryland 20814-4712, United
States
| | - Anna Caroline C. Aguiar
- Department
of Bioscience, Federal University of São
Paulo, São Paulo, SP 04021-001, Brazil
- Department
of Microbiology, Immunology, and Parasitology.
Federal University of São Paulo, São Paulo, SP 13563-120, Brazil
| | - Daniel Y. Bargieri
- Department
of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
11
|
Liu B, Liu C, Li Z, Liu W, Cui H, Yuan J. A subpellicular microtubule dynein transport machinery regulates ookinete morphogenesis for mosquito transmission of Plasmodium yoelii. Nat Commun 2024; 15:8590. [PMID: 39366980 PMCID: PMC11452633 DOI: 10.1038/s41467-024-52970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
The cortical cytoskeleton of subpellicular microtubules (SPMTs) supports the Plasmodium ookinete morphogenesis during mosquito transmission of malaria. SPMTs are hypothesized to function as the cytoskeletal tracks in motor-driven cargo transport for apical organelle and structure assembly in ookinetes. However, the SPMT-based transport motor has not been identified in the Plasmodium. The cytoplasmic dynein is the motor moving towards the minus end of microtubules (MTs) and likely be responsible for cargo transport to the apical part in ookinetes. Here we screen 7 putative dynein heavy chain (DHC) proteins in the P. yoelii and identify DHC3 showing peripheral localization in ookinetes. DHC3 is localized at SPMTs throughout ookinete morphogenesis. We also identify five other dynein subunits localizing at SPMTs. DHC3 disruption impairs ookinete development, shape, and gliding, leading to failure in mosquito infection of Plasmodium. The DHC3-deficient ookinetes display defective formation or localization of apical organelles and structures. Rab11A and Rab11B interact with DHC3 at SPMTs in a DHC3-dependent manner, likely functioning as the receptors for the cargoes driven by SPMT-dynein. Disturbing Rab11A or Rab11B phenocopies DHC3 deficiency in ookinete morphogenesis. Our study reveals an SPMT-based dynein motor driving the transport of Rab11A- and Rab11B-labeled cargoes in the ookinete morphogenesis of Plasmodium.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cong Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenjia Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview. Vet Med Sci 2024; 10:e1580. [PMID: 39171609 PMCID: PMC11339650 DOI: 10.1002/vms3.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| | - Mustapha Touray
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| |
Collapse
|
13
|
Arif M, Rasheed SB, Ullah H, Shah TA, Rehman FU, Dawoud TM. Feeding Behavior and Plasmodium Detection in Anopheles stephensi, a Malaria Vector in District Khyber, Khyber Pakhtunkhwa, Pakistan. IRANIAN JOURNAL OF PARASITOLOGY 2024; 19:333-340. [PMID: 39318824 PMCID: PMC11417983 DOI: 10.18502/ijpa.v19i3.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/14/2024] [Indexed: 09/26/2024]
Abstract
Background Anopheles stephensi is a significant malaria vector in Pakistan, and understanding its feeding behavior is necessary to control the spread of malaria. However, limited information is available on the host preferences of A. stephensi in Pakistan. Therefore, we aimed to explore the feeding behavior of A. stephensi, a malaria vector, in the District Khyber, Khyber Pakhtunkhwa, Pakistan. Methods A total of 7462 mosquitoes were collected between March and September 2021, with 1674 (22.4%) identified as A. stephensi (952 female and 722 male). Among the female A. stephensi, 495 (52%) were blood-fed. DNA was extracted from the blood-fed female A. stephensi mosquitoes using the Ammonium Acetate Precipitation Method followed by PCR analysis, blood meal sources were identified. Nested PCR on 191 pooled samples was used to detect Plasmodium falciparum and Plasmodium vivax. Results Cattle blood meals were predominant (73%), followed by human (20%) and chicken (7%), with no dog blood meals detected. All individual mosquito samples were negative for Plasmodium falciparum, while two pooled samples (out of 191) tested positive for P. vivax. Conclusion A. stephensi in Khyber District primarily displayed anthropophagic feeding behavior, with a small portion of the population infected with P. vivax. The results underscore the importance of targeted vector control strategies, environmental management, community engagement and continuous monitoring to suppress malaria transmission.
Collapse
Affiliation(s)
- Mahnoor Arif
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Syed Basit Rasheed
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Habib Ullah
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Faiz Ur Rehman
- Department of Zoology, Government Superior Science College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Guan J, Wu P, Mo X, Zhang X, Liang W, Zhang X, Jiang L, Li J, Cui H, Yuan J. An axonemal intron splicing program sustains Plasmodium male development. Nat Commun 2024; 15:4697. [PMID: 38824128 PMCID: PMC11144265 DOI: 10.1038/s41467-024-49002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/15/2024] [Indexed: 06/03/2024] Open
Abstract
Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.
Collapse
Affiliation(s)
- Jiepeng Guan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Peijia Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoli Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaolong Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Wenqi Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoming Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lubin Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Department of Infectious Disease, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
15
|
van Schuijlenburg R, Azargoshasb S, de Korne CM, Sijtsma JC, Bezemer S, van der Ham AJ, Baalbergen E, Geurten F, de Bes-Roeleveld LM, Chevalley-Maurel SC, van Oosterom MN, van Leeuwen FWB, Franke-Fayard B, Roestenberg M. Ageing of Plasmodium falciparum malaria sporozoites alters their motility, infectivity and reduces immune activation in vitro. Malar J 2024; 23:111. [PMID: 38641838 PMCID: PMC11027264 DOI: 10.1186/s12936-024-04946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Sporozoites (SPZ), the infective form of Plasmodium falciparum malaria, can be inoculated into the human host skin by Anopheline mosquitoes. These SPZ migrate at approximately 1 µm/s to find a blood vessel and travel to the liver where they infect hepatocytes and multiply. In the skin they are still low in number (50-100 SPZ) and vulnerable to immune attack by antibodies and skin macrophages. This is why whole SPZ and SPZ proteins are used as the basis for most malaria vaccines currently deployed and undergoing late clinical testing. Mosquitoes typically inoculate SPZ into a human host between 14 and 25 days after their previous infective blood meal. However, it is unknown whether residing time within the mosquito affects SPZ condition, infectivity or immunogenicity. This study aimed to unravel how the age of P. falciparum SPZ in salivary glands (14, 17, or 20 days post blood meal) affects their infectivity and the ensuing immune responses. METHODS SPZ numbers, viability by live/dead staining, motility using dedicated sporozoite motility orienting and organizing tool software (SMOOT), and infectivity of HC-04.j7 liver cells at 14, 17 and 20 days after mosquito feeding have been investigated. In vitro co-culture assays with SPZ stimulated monocyte-derived macrophages (MoMɸ) and CD8+ T-cells, analysed by flow cytometry, were used to investigate immune responses. RESULTS SPZ age did not result in different SPZ numbers or viability. However, a markedly different motility pattern, whereby motility decreased from 89% at day 14 to 80% at day 17 and 71% at day 20 was observed (p ≤ 0.0001). Similarly, infectivity of day 20 SPZ dropped to ~ 50% compared with day 14 SPZ (p = 0.004). MoMɸ were better able to take up day 14 SPZ than day 20 SPZ (from 7.6% to 4.1%, p = 0.03) and displayed an increased expression of pro-inflammatory CD80, IL-6 (p = 0.005), regulatory markers PDL1 (p = 0.02), IL-10 (p = 0.009) and cytokines upon phagocytosis of younger SPZ. Interestingly, co-culture of these cells with CD8+ T-cells revealed a decreased expression of activation marker CD137 and cytokine IFNγ compared to their day 20 counterparts. These findings suggest that older (day 17-20) P. falciparum SPZ are less infectious and have decreased immune regulatory potential. CONCLUSION Overall, this data is a first step in enhancing the understanding of how mosquito residing time affects P. falciparum SPZ and could impact the understanding of the P. falciparum infectious reservoir and the potency of whole SPZ vaccines.
Collapse
Affiliation(s)
- Roos van Schuijlenburg
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Samaneh Azargoshasb
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Clarize M de Korne
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen C Sijtsma
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Sascha Bezemer
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Alwin J van der Ham
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Els Baalbergen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Fiona Geurten
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Laura M de Bes-Roeleveld
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Severine C Chevalley-Maurel
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Blandine Franke-Fayard
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
16
|
Rios KT, McGee JP, Sebastian A, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Global Release of Translational Repression Across Plasmodium's Host-to-Vector Transmission Event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577866. [PMID: 38352447 PMCID: PMC10862809 DOI: 10.1101/2024.02.01.577866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Malaria parasites must be able to respond quickly to changes in their environment, including during their transmission between mammalian hosts and mosquito vectors. Therefore, before transmission, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. This essential regulatory control requires the orthologues of DDX6 (DOZI), LSM14a (CITH), and ALBA proteins to form a translationally repressive complex in female gametocytes that associates with many of the affected mRNAs. However, while the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, the changes in spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that nearly 200 transcripts are released for translation soon after fertilization, including those with essential functions for the zygote. However, we also observed that some transcripts remain repressed beyond this point. In addition, we have used TurboID-based proximity proteomics to interrogate the spatial and compositional changes in the DOZI/CITH/ALBA complex across this transmission event. Consistent with recent models of translational control, proteins that associate with either the 5' or 3' end of mRNAs are in close proximity to one another during translational repression in female gametocytes and then dissociate upon release of repression in zygotes. This observation is cross-validated for several protein colocalizations in female gametocytes via ultrastructure expansion microscopy and structured illumination microscopy. Moreover, DOZI exchanges its interaction from NOT1-G in female gametocytes to the canonical NOT1 in zygotes, providing a model for a trigger for the release of mRNAs from DOZI. Finally, unenriched phosphoproteomics revealed the modification of key translational control proteins in the zygote. Together, these data provide a model for the essential translational control mechanisms used by malaria parasites to promote their efficient transmission from their mammalian host to their mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | | | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
17
|
Dey S, Mohapatra S, Khokhar M, Hassan S, Pandey RK. Extracellular Vesicles in Malaria: Shedding Light on Pathogenic Depths. ACS Infect Dis 2024; 10:827-844. [PMID: 38320272 PMCID: PMC10928723 DOI: 10.1021/acsinfecdis.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Malaria, a life-threatening infectious disease caused by Plasmodium falciparum, remains a significant global health challenge, particularly in tropical and subtropical regions. The epidemiological data for 2021 revealed a staggering toll, with 247 million reported cases and 619,000 fatalities attributed to the disease. This formidable global health challenge continues to perplex researchers seeking a comprehensive understanding of its pathogenesis. Recent investigations have unveiled the pivotal role of extracellular vesicles (EVs) in this intricate landscape. These tiny, membrane-bound vesicles, secreted by diverse cells, emerge as pivotal communicators in malaria's pathogenic orchestra. This Review delves into the multifaceted roles of EVs in malaria pathogenesis, elucidating their impact on disease progression and immune modulation. Insights into EV involvement offer potential therapeutic and diagnostic strategies. Integrating this information identifies targets to mitigate malaria's global impact. Moreover, this Review explores the potential of EVs as diagnostic biomarkers and therapeutic targets in malaria. By deciphering the intricate dialogue facilitated by these vesicles, new avenues for intervention and novel strategies for disease management may emerge.
Collapse
Affiliation(s)
- Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru 560066, Karnataka, India
| | - Salini Mohapatra
- Department
of Biotechnology, Chandigarh University, Punjab 140413, India
| | - Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences Jodhpur, Rajasthan 342005, India
| | - Sana Hassan
- Department
of Life Sciences, Manipal Academy of Higher
Education, Dubai 345050, United Arab Emirates
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
18
|
Pietsch E, Niedermüller K, Andrews M, Meyer BS, Lenz TL, Wilson DW, Gilberger TW, Burda PC. Disruption of a Plasmodium falciparum patatin-like phospholipase delays male gametocyte exflagellation. Mol Microbiol 2024; 121:529-542. [PMID: 38131156 DOI: 10.1111/mmi.15211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
An essential process in transmission of the malaria parasite to the Anopheles vector is the conversion of mature gametocytes into gametes within the mosquito gut, where they egress from the red blood cell (RBC). During egress, male gametocytes undergo exflagellation, leading to the formation of eight haploid motile microgametes, while female gametes retain their spherical shape. Gametocyte egress depends on sequential disruption of the parasitophorous vacuole membrane and the host cell membrane. In other life cycle stages of the malaria parasite, phospholipases have been implicated in membrane disruption processes during egress, however their importance for gametocyte egress is relatively unknown. Here, we performed comprehensive functional analyses of six putative phospholipases for their role during development and egress of Plasmodium falciparum gametocytes. We localize two of them, the prodrug activation and resistance esterase (PF3D7_0709700) and the lysophospholipase 1 (PF3D7_1476700), to the parasite plasma membrane. Subsequently, we show that disruption of most of the studied phospholipase genes does neither affect gametocyte development nor egress. The exception is the putative patatin-like phospholipase 3 (PF3D7_0924000), whose gene deletion leads to a delay in male gametocyte exflagellation, indicating an important, albeit not essential, role of this enzyme in male gametogenesis.
Collapse
Affiliation(s)
- Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Korbinian Niedermüller
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Mia Andrews
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Britta S Meyer
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
19
|
Jennison C, Armstrong JM, Dankwa DA, Hertoghs N, Kumar S, Abatiyow BA, Naung M, Minkah NK, Swearingen KE, Moritz R, Barry AE, Kappe SHI, Vaughan AM. Plasmodium GPI-anchored micronemal antigen is essential for parasite transmission through the mosquito host. Mol Microbiol 2024; 121:394-412. [PMID: 37314965 PMCID: PMC11076100 DOI: 10.1111/mmi.15078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.
Collapse
Affiliation(s)
- Charlie Jennison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Janna M. Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Dorender A. Dankwa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Myo Naung
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Victoria, Carlton, Australia
- Department of Global Health, University of Washington, Washington, Seattle, USA
| | - Nana K. Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Kristian E. Swearingen
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Victoria, Geelong, Australia
| | - Robert Moritz
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Victoria, Geelong, Australia
| | - Alyssa E. Barry
- Department of Global Health, University of Washington, Washington, Seattle, USA
- Institute for Systems Biology, Washington, Seattle, USA
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
- Burnet Institute, Victoria, Melbourne, Australia
- Department of Pediatrics, University of Washington, Washington, Seattle, USA
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
- Burnet Institute, Victoria, Melbourne, Australia
- Department of Pediatrics, University of Washington, Washington, Seattle, USA
| |
Collapse
|
20
|
Farrukh A, Musabyimana JP, Distler U, Mahlich VJ, Mueller J, Bick F, Tenzer S, Pradel G, Ngwa CJ. The Plasmodium falciparum CCCH zinc finger protein MD3 regulates male gametocytogenesis through its interaction with RNA-binding proteins. Mol Microbiol 2024; 121:543-564. [PMID: 38148574 DOI: 10.1111/mmi.15215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The transmission of malaria parasites to mosquitoes is dependent on the formation of gametocytes. Once fully matured, gametocytes are able to transform into gametes in the mosquito's midgut, a process accompanied with their egress from the enveloping erythrocyte. Gametocyte maturation and gametogenesis require a well-coordinated gene expression program that involves a wide spectrum of regulatory proteins, ranging from histone modifiers to transcription factors to RNA-binding proteins. Here, we investigated the role of the CCCH zinc finger protein MD3 in Plasmodium falciparum gametocytogenesis. MD3 was originally identified as an epigenetically regulated protein of immature gametocytes and recently shown to be involved in male development in a barcode-based screen in P. berghei. We report that MD3 is mainly present in the cytoplasm of immature male P. falciparum gametocytes. Parasites deficient of MD3 are impaired in gametocyte maturation and male gametocytogenesis. BioID analysis in combination with co-immunoprecipitation assays unveiled an interaction network of MD3 with RNA-binding proteins like PABP1 and ALBA3, with translational initiators, regulators and repressors like elF4G, PUF1, NOT1 and CITH, and with further regulators of gametocytogenesis, including ZNF4, MD1 and GD1. We conclude that MD3 is part of a regulator complex crucial for post-transcriptional fine-tuning of male gametocytogenesis.
Collapse
Affiliation(s)
- Afia Farrukh
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Jean Pierre Musabyimana
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Vanessa Jil Mahlich
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Julius Mueller
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Fabian Bick
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
21
|
Sassmannshausen J, Bennink S, Distler U, Küchenhoff J, Minns AM, Lindner SE, Burda PC, Tenzer S, Gilberger TW, Pradel G. Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells. Mol Microbiol 2024; 121:431-452. [PMID: 37492994 DOI: 10.1111/mmi.15125] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Transmission of malaria parasites to the mosquito is mediated by sexual precursor cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress from the enveloping erythrocyte while passing through gametogenesis. Egress follows an inside-out mode during which the membrane of the parasitophorous vacuole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies (OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and BioID methods to study the two egress vesicle types in Plasmodium falciparum gametocytes. We show that OB exocytosis precedes discharge of the P-EVs and that exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types exhibit distinct proteomes with the majority of proteins located in the OBs. In addition to known egress-related proteins, we identified novel components of OBs and P-EVs, including vesicle-trafficking proteins. Our data provide insight into the immense molecular machinery required for the inside-out egress of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Juliane Küchenhoff
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
22
|
Hussein HE, Johnson WC, Taus NS, Ueti MW. Expression of sex-specific molecular markers by Babesia bovis gametes. Parasit Vectors 2024; 17:75. [PMID: 38374075 PMCID: PMC10877833 DOI: 10.1186/s13071-024-06185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Bovine babesiosis caused by Babesia bovis is one of the most important tick-borne diseases of cattle in tropical and subtropical regions. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. In the tick midgut, extracellular Babesia parasites transform into gametes that fuse to form zygotes. To date, little is known about genes and proteins expressed by male gametes. METHODS AND RESULTS We developed a method to separate male gametes from in vitro induced B. bovis culture. Separation enabled the validation of sex-specific markers. Collected male gametocytes were observed by Giemsa-stained smear and live-cell fluorescence microscopy. Babesia male gametes were used to confirm sex-specific markers by quantitative real-time PCR. Some genes were found to be male gamete specific genes including pka, hap2, α-tubulin II and znfp2. However, α-tubulin I and ABC transporter, trap2-4 and ccp1-3 genes were found to be upregulated in culture depleted of male gametes (female-enriched). Live immunofluorescence analysis using polyclonal antibodies confirmed surface expression of HAP2 by male and TRAP2-4 by female gametes. These results revealed strong markers to distinguish between B. bovis male and female gametes. CONCLUSIONS Herein, we describe the identification of sex-specific molecular markers essential for B. bovis sexual reproduction. These tools will enhance our understanding of the biology of sexual stages and, consequently, the development of additional strategies to control bovine babesiosis.
Collapse
Affiliation(s)
- Hala E Hussein
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.
- Department of Biology, College of Arts and Sciences, Gonzaga University, Spokane, WA, USA.
| | - Wendell C Johnson
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Naomi S Taus
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
- The U.S. Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA
| | - Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
- The U.S. Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA
| |
Collapse
|
23
|
Bennink S, Pradel G. The Multiple Roles of LCCL Domain-Containing Proteins for Malaria Parasite Transmission. Microorganisms 2024; 12:279. [PMID: 38399683 PMCID: PMC10892792 DOI: 10.3390/microorganisms12020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Multi-protein complexes are crucial for various essential biological processes of the malaria parasite Plasmodium, such as protein synthesis, host cell invasion and adhesion. Especially during the sexual phase of the parasite, which takes place in the midgut of the mosquito vector, protein complexes are required for fertilization, sporulation and ultimately for the successful transmission of the parasite. Among the most noticeable protein complexes of the transmission stages are the ones formed by the LCCL domain-containing protein family that play critical roles in the generation of infective sporozoites. The six members of this protein family are characterized by numerous adhesive modules and domains typically found in secreted proteins. This review summarizes the findings of expression and functional studies on the LCCL domain-containing proteins of the human pathogenic P. falciparum and the rodent-infecting P. berghei and discusses the common features and differences of the homologous proteins.
Collapse
Affiliation(s)
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany;
| |
Collapse
|
24
|
Arora G, Tang X, Cui Y, Yang J, Chuang YM, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. mosGILT controls innate immunity and germ cell development in Anopheles gambiae. BMC Genomics 2024; 25:42. [PMID: 38191283 PMCID: PMC10775533 DOI: 10.1186/s12864-023-09887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
Gene-edited mosquitoes lacking a gamma-interferon-inducible lysosomal thiol reductase-like protein, namely (mosGILTnull) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILTnull Anopheles gambiae was therefore compared to wild type (WT) mosquitoes by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILTnull A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg, an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILTnull mosquitoes. These results provide a crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
- Current Affiliation: Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06510, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
25
|
Hernandez-Caballero I, Hellgren O, Garcia-Longoria Batanete L. Genomic advances in the study of the mosquito vector during avian malaria infection. Parasitology 2023; 150:1330-1339. [PMID: 37614176 PMCID: PMC10941221 DOI: 10.1017/s0031182023000756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Invertebrate host–parasite associations are one of the keystones in order to understand vector-borne diseases. The study of these specific interactions provides information not only about how the vector is affected by the parasite at the gene-expression level, but might also reveal mosquito strategies for blocking the transmission of the parasites. A very well-known vector for human malaria is Anopheles gambiae. This mosquito species has been the main focus for genomics studies determining essential key genes and pathways over the course of a malaria infection. However, to-date there is an important knowledge gap concerning other non-mammophilic mosquito species, for example some species from the Culex genera which may transmit avian malaria but also zoonotic pathogens such as West Nile virus. From an evolutionary perspective, these 2 mosquito genera diverged 170 million years ago, hence allowing studies in both species determining evolutionary conserved genes essential during malaria infections, which in turn might help to find key genes for blocking malaria cycle inside the mosquito. Here, we extensively review the current knowledge on key genes and pathways expressed in Anopheles over the course of malaria infections and highlight the importance of conducting genomic investigations for detecting pathways in Culex mosquitoes linked to infection of avian malaria. By pooling this information, we underline the need to increase genomic studies in mosquito–parasite associations, such as the one in Culex–Plasmodium, that can provide a better understanding of the infection dynamics in wildlife and reduce the negative impact on ecosystems.
Collapse
Affiliation(s)
- Irene Hernandez-Caballero
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, E-06071 Badajoz, Spain
| | - Olof Hellgren
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-22362, Sweden
| | | |
Collapse
|
26
|
N'Guessan R, Camara S, Rowland M, Ahoua Alou LP, Wolie RZ, Zoh MG, N'Guessan B, Tia IZ, Oumbouke WA, Thomas MB, Koffi AA. Attractive targeted sugar bait: the pyrrole insecticide chlorfenapyr and the anti-malarial pharmaceutical artemether-lumefantrine arrest Plasmodium falciparum development inside wild pyrethroid-resistant Anopheles gambiae s.s. mosquitoes. Malar J 2023; 22:344. [PMID: 37946208 PMCID: PMC10636997 DOI: 10.1186/s12936-023-04758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Attractive targeted sugar bait (ATSB) is a novel approach to vector control, offering an alternative mode of insecticide delivery via the insect alimentary canal, with potential to deliver a variety of compounds new to medical entomology and malaria control. Its potential to control mosquitoes was recently demonstrated in major field trials in Africa. The pyrrole chlorfenapyr is an insecticide new to malaria vector control, and through its unique mode of action-disruption of ATP mediated energy transfer in mitochondria-it may have direct action on energy transfer in the flight muscle cells of mosquitoes. It may also have potential to disrupt mitochondrial function in malarial parasites co-existing within the infected mosquito. However, little is known about the impact of such compounds on vector competence in mosquitoes responsible for malaria transmission. METHODS In this study, ATSBs containing chlorfenapyr insecticide and, as a positive control, the anti-malarial drugs artemether/lumefantrine (A/L) were compared for their effect on Plasmodium falciparum development in wild pyrethroid-resistant Anopheles gambiae sensu stricto (s.s.) and for their capacity to reduce vector competence. Female mosquitoes were exposed to ATSB containing either sublethal dose of chlorfenapyr (CFP: 0.025%) or concentrations of A/L ranging from 0.4/2.4 mg/ml to 2.4/14.4 mg/ml, either shortly before or after taking infective blood meals. The impact of their component compounds on the prevalence and intensity of P. falciparum infection were compared between treatments. RESULTS Both the prevalence and intensity of infection were significantly reduced in mosquitoes exposed to either A/L or chlorfenapyr, compared to unexposed negative control mosquitoes. The A/L dose (2.4/14.4 mg/ml) totally erased P. falciparum parasites: 0% prevalence of infection in female mosquitoes exposed compared to 62% of infection in negative controls (df = 1, χ2 = 31.23 p < 0.001). The dose of chlorfenapyr (0.025%) that killed < 20% females in ATSB showed a reduction in oocyte density of 95% per midgut (0.18/3.43 per midgut). CONCLUSION These results are evidence that chlorfenapyr, in addition to its direct killing effect on the vector, has the capacity to block Plasmodium transmission by interfering with oocyte development inside pyrethroid-resistant mosquitoes, and through this dual action may potentiate its impact under field conditions.
Collapse
Affiliation(s)
- Raphael N'Guessan
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire. Raphael.N'
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire. Raphael.N'
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK. Raphael.N'
| | - Soromane Camara
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire.
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Rosine Z Wolie
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
- Université Nangui Abrogoua, UFR Des Sciences de la Nature, Abidjan, Côte d'Ivoire
| | - Marius G Zoh
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Brou N'Guessan
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Innocent Z Tia
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Welbeck A Oumbouke
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
- Innovative Vector Control Consortium, IVCC, Liverpool, UK
| | - Matthew B Thomas
- Department of Entomology & Nematology, The University of Florida, Gainesville, FL, USA
| | - Alphonsine A Koffi
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| |
Collapse
|
27
|
Balta VA, Stiffler D, Sayeed A, Tripathi AK, Elahi R, Mlambo G, Bakshi RP, Dziedzic AG, Jedlicka AE, Nenortas E, Romero-Rodriguez K, Canonizado MA, Mann A, Owen A, Sullivan DJ, Prigge ST, Sinnis P, Shapiro TA. Clinically relevant atovaquone-resistant human malaria parasites fail to transmit by mosquito. Nat Commun 2023; 14:6415. [PMID: 37828012 PMCID: PMC10570281 DOI: 10.1038/s41467-023-42030-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Long-acting injectable medications, such as atovaquone, offer the prospect of a "chemical vaccine" for malaria, combining drug efficacy with vaccine durability. However, selection and transmission of drug-resistant parasites is of concern. Laboratory studies have indicated that atovaquone resistance disadvantages parasites in mosquitoes, but lack of data on clinically relevant Plasmodium falciparum has hampered integration of these variable findings into drug development decisions. Here we generate atovaquone-resistant parasites that differ from wild type parent by only a Y268S mutation in cytochrome b, a modification associated with atovaquone treatment failure in humans. Relative to wild type, Y268S parasites evidence multiple defects, most marked in their development in mosquitoes, whether from Southeast Asia (Anopheles stephensi) or Africa (An. gambiae). Growth of asexual Y268S P. falciparum in human red cells is impaired, but parasite loss in the mosquito is progressive, from reduced gametocyte exflagellation, to smaller number and size of oocysts, and finally to absence of sporozoites. The Y268S mutant fails to transmit from mosquitoes to mice engrafted with human liver cells and erythrocytes. The severe-to-lethal fitness cost of clinically relevant atovaquone resistance to P. falciparum in the mosquito substantially lessens the likelihood of its transmission in the field.
Collapse
Affiliation(s)
- Victoria A Balta
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Deborah Stiffler
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Abeer Sayeed
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Abhai K Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Rubayet Elahi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Rahul P Bakshi
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Amanda G Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Anne E Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Elizabeth Nenortas
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Keyla Romero-Rodriguez
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Matthew A Canonizado
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Alexis Mann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L69 3BX, UK
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Sean T Prigge
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Photini Sinnis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Theresa A Shapiro
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA.
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA.
| |
Collapse
|
28
|
Riske BF, Luckhart S, Riehle MA. Starving the Beast: Limiting Coenzyme A Biosynthesis to Prevent Disease and Transmission in Malaria. Int J Mol Sci 2023; 24:13915. [PMID: 37762222 PMCID: PMC10530615 DOI: 10.3390/ijms241813915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Malaria parasites must acquire all necessary nutrients from the vertebrate and mosquito hosts to successfully complete their life cycle. Failure to acquire these nutrients can limit or even block parasite development and presents a novel target for malaria control. One such essential nutrient is pantothenate, also known as vitamin B5, which the parasite cannot synthesize de novo and is required for the synthesis of coenzyme A (CoA) in the parasite. This review examines pantothenate and the CoA biosynthesis pathway in the human-mosquito-malaria parasite triad and explores possible approaches to leverage the CoA biosynthesis pathway to limit malaria parasite development in both human and mosquito hosts. This includes a discussion of sources for pantothenate for the mosquito, human, and parasite, examining the diverse strategies used by the parasite to acquire substrates for CoA synthesis across life stages and host resource pools and a discussion of drugs and alternative approaches being studied to disrupt CoA biosynthesis in the parasite. The latter includes antimalarial pantothenate analogs, known as pantothenamides, that have been developed to target this pathway during the human erythrocytic stages. In addition to these parasite-targeted drugs, we review studies of mosquito-targeted allosteric enzymatic regulators known as pantazines as an approach to limit pantothenate availability in the mosquito and subsequently deprive the parasite of this essential nutrient.
Collapse
Affiliation(s)
- Brendan F. Riske
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
29
|
Arora G, Tang X, Cui Y, Yang J, Chuang YM, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. Anopheles gambiae mosGILT regulates innate immune genes and zpg expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551536. [PMID: 37577703 PMCID: PMC10418185 DOI: 10.1101/2023.08.01.551536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gene-edited mosquitoes lacking a g amma-interferon-inducible lysosomal thiol reductase-like protein, namely ( mosGILT null ) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILT null A. gambiae was therefore compared to wild type (WT) by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILT null A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg , an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILT null mosquitoes. These results provide the crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.
Collapse
|
30
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
31
|
Kuehnel RM, Ganga E, Balestra AC, Suarez C, Wyss M, Klages N, Brusini L, Maco B, Brancucci N, Voss TS, Soldati D, Brochet M. A Plasmodium membrane receptor platform integrates cues for egress and invasion in blood forms and activation of transmission stages. SCIENCE ADVANCES 2023; 9:eadf2161. [PMID: 37327340 PMCID: PMC10275601 DOI: 10.1126/sciadv.adf2161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.
Collapse
Affiliation(s)
- Ronja Marie Kuehnel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Emma Ganga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Aurélia C. Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Catherine Suarez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Nicolas Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Dominique Soldati
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| |
Collapse
|
32
|
Xia M, Vago F, Han L, Huang P, Nguyen L, Boons GJ, Klassen JS, Jiang W, Tan M. The αTSR Domain of Plasmodium Circumsporozoite Protein Bound Heparan Sulfates and Elicited High Titers of Sporozoite Binding Antibody After Displayed by Nanoparticles. Int J Nanomedicine 2023; 18:3087-3107. [PMID: 37312932 PMCID: PMC10259582 DOI: 10.2147/ijn.s406314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Malaria is a devastating infectious illness caused by protozoan Plasmodium parasites. The circumsporozoite protein (CSP) on Plasmodium sporozoites binds heparan sulfate proteoglycan (HSPG) receptors for liver invasion, a critical step for prophylactic and therapeutic interventions. Methods In this study, we characterized the αTSR domain that covers region III and the thrombospondin type-I repeat (TSR) of the CSP using various biochemical, glycobiological, bioengineering, and immunological approaches. Results We found for the first time that the αTSR bound heparan sulfate (HS) glycans through support by a fused protein, indicating that the αTSR is a key functional domain and thus a vaccine target. When the αTSR was fused to the S domain of norovirus VP1, the fusion protein self-assembled into uniform S60-αTSR nanoparticles. Three-dimensional structure reconstruction revealed that each nanoparticle consists of an S60 nanoparticle core and 60 surface displayed αTSR antigens. The nanoparticle displayed αTSRs retained the binding function to HS glycans, indicating that they maintained authentic conformations. Both tagged and tag-free S60-αTSR nanoparticles were produced via the Escherichia coli system at high yield by scalable approaches. They are highly immunogenic in mice, eliciting high titers of αTSR-specific antibody that bound specifically to the CSPs of Plasmodium falciparum sporozoites at high titer. Discussion and Conclusion Our data demonstrated that the αTSR is an important functional domain of the CSP. The S60-αTSR nanoparticle displaying multiple αTSR antigens is a promising vaccine candidate potentially against attachment and infection of Plasmodium parasites.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Frank Vago
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Linh Nguyen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
33
|
Pires CV, Chawla J, Simmons C, Gibbons J, Adams JH. Heat-shock responses: systemic and essential ways of malaria parasite survival. Curr Opin Microbiol 2023; 73:102322. [PMID: 37130502 PMCID: PMC10247345 DOI: 10.1016/j.mib.2023.102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
Fever is a part of the human innate immune response that contributes to limiting microbial growth and development in many infectious diseases. For the parasite Plasmodium falciparum, survival of febrile temperatures is crucial for its successful propagation in human populations as well as a fundamental aspect of malaria pathogenesis. This review discusses recent insights into the biological complexity of the malaria parasite's heat-shock response, which involves many cellular compartments and essential metabolic processes to alleviate oxidative stress and accumulation of damaged and unfolded proteins. We highlight the overlap between heat-shock and artemisinin resistance responses, while also explaining how the malaria parasite adapts its fever response to fight artemisinin treatment. Additionally, we discuss how this systemic and essential fight for survival can also contribute to parasite transmission to mosquitoes.
Collapse
Affiliation(s)
- Camilla V Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Jyotsna Chawla
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Caroline Simmons
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Justin Gibbons
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
34
|
Fikadu M, Ashenafi E. Malaria: An Overview. Infect Drug Resist 2023; 16:3339-3347. [PMID: 37274361 PMCID: PMC10237628 DOI: 10.2147/idr.s405668] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Malaria is a global public health burden with an estimated 229 million cases reported worldwide in 2019. About 94% of the reported cases were recorded in the African region. About 200 different species of protozoa have been identified so far and among them, at least 13 species are known to be pathogenic to humans. The life cycle of the malaria parasite is a complex process comprising an Anopheles mosquito and a vertebrate host. Its pathophysiology is characterized by fever secondary to the rupture of erythrocytes, macrophage ingestion of merozoites, and/or the presence of antigen-presenting trophozoites in the circulation or spleen which mediates the release of tumor necrosis factor α (TNF-α). Malaria can be diagnosed through clinical observation of the signs and symptoms of the disease. Other diagnostic techniques used to diagnose malaria are the microscopic detection of parasites from blood smears and antigen-based rapid diagnostic tests. The management of malaria involves preventive and/or curative approaches. Since untreated uncomplicated malaria can progress to severe malaria. To prevent or delay the spread of antimalarial drug resistance, WHO recommends the use of combination therapy for all episodes of malaria with at least two effective antimalarial agents having a different mechanism of action. The Centers for Disease Control (CDC) emphasizes that there is no prophylactic agent that can prevent malaria 100%. Therefore, prophylaxis shall be augmented with the use of personal protective measures.
Collapse
Affiliation(s)
- Muluemebet Fikadu
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Ashenafi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
35
|
Parres-Mercader M, Pance A, Gómez-Díaz E. Novel systems to study vector-pathogen interactions in malaria. Front Cell Infect Microbiol 2023; 13:1146030. [PMID: 37305421 PMCID: PMC10253182 DOI: 10.3389/fcimb.2023.1146030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/13/2023] Open
Abstract
Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the Plasmodium lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "de novo" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review in vivo and in vitro systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible ex vivo systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.
Collapse
Affiliation(s)
- Marina Parres-Mercader
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| | - Alena Pance
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| |
Collapse
|
36
|
Yang S, Cai M, Huang J, Zhang S, Mo X, Jiang K, Cui H, Yuan J. EB1 decoration of microtubule lattice facilitates spindle-kinetochore lateral attachment in Plasmodium male gametogenesis. Nat Commun 2023; 14:2864. [PMID: 37208365 DOI: 10.1038/s41467-023-38516-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Faithful chromosome segregation of 8 duplicated haploid genomes into 8 daughter gametes is essential for male gametogenesis and mosquito transmission of Plasmodium. Plasmodium undergoes endomitosis in this multinucleated cell division, which is highly reliant on proper spindle-kinetochore attachment. However, the mechanisms underlying the spindle-kinetochore attachment remain elusive. End-binding proteins (EBs) are conserved microtubule (MT) plus-end binding proteins and play an important role in regulating MT plus-end dynamics. Here, we report that the Plasmodium EB1 is an orthologue distinct from the canonical eukaryotic EB1. Both in vitro and in vivo assays reveal that the Plasmodium EB1 losses MT plus-end tracking but possesses MT-lattice affinity. This MT-binding feature of Plasmodium EB1 is contributed by both CH domain and linker region. EB1-deficient parasites produce male gametocytes that develop to the anucleated male gametes, leading to defective mosquito transmission. EB1 is localized at the nucleoplasm of male gametocytes. During the gametogenesis, EB1 decorates the full-length of spindle MTs and regulates spindle structure. The kinetochores attach to spindle MTs laterally throughout endomitosis and this attachment is EB1-dependent. Consequently, impaired spindle-kinetochore attachment is observed in EB1-deficient parasites. These results indicate that a parasite-specific EB1 with MT-lattice binding affinity fulfills the spindle-kinetochore lateral attachment in male gametogenesis.
Collapse
Affiliation(s)
- Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Mengya Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Junjie Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shengnan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xiaoli Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
37
|
Behl A, Shoaib R, De Leon F, Kumari G, Saini M, Madan E, Kumar V, Singh H, Kumari J, Maurya P, Garg S, Chandra Mishra P, Arenz C, Singh S. Targeting an essential Plasmodium cold shock protein to block growth and transmission of malaria parasite. iScience 2023; 26:106637. [PMID: 37192974 PMCID: PMC10182332 DOI: 10.1016/j.isci.2023.106637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 05/18/2023] Open
Abstract
Cold shock proteins are characterized by the presence of one or more cold shock domains that bestow them with nucleic acid binding ability. Although cold shock proteins are well characterized in bacteria, plants and humans, there is no information on their existence and role in malaria parasite. Here, we have identified and delineated the function of a cold shock protein of Plasmodium falciparum (Pf) 'PfCoSP'. We demonstrate that PfCoSP exhibits nucleic acid binding properties and regulates gene expression. PfCoSP promotes microtubule assembly by interacting with Pf α/β tubulin. We identified a human cold shock protein LIN28A inhibitor 'LI71' as a binding partner of PfCoSP which inhibited PfCoSP-DNA and α/β tubulin interactions and, also inhibited the development of asexual blood stages and gametocyte stage of malaria parasite. Because PfCoSP is essential for parasite survival, characterization of its interacting partners may form the basis for development of future anti-malarials.
Collapse
Affiliation(s)
- Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha Shoaib
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vikash Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Harshita Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Kumari
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Christoph Arenz
- Institute for Chemistry, Humboldt University, Berlin, Germany
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Corresponding author
| |
Collapse
|
38
|
Yoshinaga M, Niu G, Yoshinaga-Sakurai K, Nadar VS, Wang X, Rosen BP, Li J. Arsinothricin Inhibits Plasmodium falciparum Proliferation in Blood and Blocks Parasite Transmission to Mosquitoes. Microorganisms 2023; 11:1195. [PMID: 37317169 PMCID: PMC10222646 DOI: 10.3390/microorganisms11051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Malaria, caused by Plasmodium protozoal parasites, remains a leading cause of morbidity and mortality. The Plasmodium parasite has a complex life cycle, with asexual and sexual forms in humans and Anopheles mosquitoes. Most antimalarials target only the symptomatic asexual blood stage. However, to ensure malaria eradication, new drugs with efficacy at multiple stages of the life cycle are necessary. We previously demonstrated that arsinothricin (AST), a newly discovered organoarsenical natural product, is a potent broad-spectrum antibiotic that inhibits the growth of various prokaryotic pathogens. Here, we report that AST is an effective multi-stage antimalarial. AST is a nonproteinogenic amino acid analog of glutamate that inhibits prokaryotic glutamine synthetase (GS). Phylogenetic analysis shows that Plasmodium GS, which is expressed throughout all stages of the parasite life cycle, is more closely related to prokaryotic GS than eukaryotic GS. AST potently inhibits Plasmodium GS, while it is less effective on human GS. Notably, AST effectively inhibits both Plasmodium erythrocytic proliferation and parasite transmission to mosquitoes. In contrast, AST is relatively nontoxic to a number of human cell lines, suggesting that AST is selective against malaria pathogens, with little negative effect on the human host. We propose that AST is a promising lead compound for developing a new class of multi-stage antimalarials.
Collapse
Affiliation(s)
- Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Guodong Niu
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Venkadesh S. Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Xiaohong Wang
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jun Li
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
39
|
Calit J, Araújo JE, Deng B, Miura K, Gaitán XA, Araújo MDS, Medeiros JF, Long CA, Simeonov A, Eastman RT, Bargieri DY. Novel Transmission-Blocking Antimalarials Identified by High-Throughput Screening of Plasmodium berghei Ookluc. Antimicrob Agents Chemother 2023; 67:e0146522. [PMID: 36856421 PMCID: PMC10112123 DOI: 10.1128/aac.01465-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Safe and effective malaria transmission-blocking chemotherapeutics would allow a community-level approach to malaria control and eradication efforts by targeting the mosquito sexual stage of the parasite life cycle. However, only a single drug, primaquine, is currently approved for use in reducing transmission, and drug toxicity limits its widespread implementation. To address this limitation in antimalarial chemotherapeutics, we used a recently developed transgenic Plasmodium berghei line, Ookluc, to perform a series of high-throughput in vitro screens for compounds that inhibit parasite fertilization, the initial step of parasite development within the mosquito. Screens of antimalarial compounds, approved drug collections, and drug-like molecule libraries identified 185 compounds that inhibit parasite maturation to the zygote form. Seven compounds were further characterized to block gametocyte activation or to be cytotoxic to formed zygotes. These were further validated in mosquito membrane-feeding assays using Plasmodium falciparum and P. vivax. This work demonstrates that high-throughput screens using the Ookluc line can identify compounds that are active against the two most relevant human Plasmodium species and provides a list of compounds that can be explored for the development of new antimalarials to block transmission.
Collapse
Affiliation(s)
- Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jessica E. Araújo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Xiomara A. Gaitán
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maisa da Silva Araújo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Jansen F. Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Richard T. Eastman
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Daniel Y. Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Jeninga MD, Tang J, Selvarajah SA, Maier AG, Duffy MF, Petter M. Plasmodium falciparum gametocytes display global chromatin remodelling during sexual differentiation. BMC Biol 2023; 21:65. [PMID: 37013531 PMCID: PMC10071754 DOI: 10.1186/s12915-023-01568-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The protozoan malaria parasite Plasmodium falciparum has a complex life cycle during which it needs to differentiate into multiple morphologically distinct life forms. A key process for transmission of the disease is the development of male and female gametocytes in the human blood, yet the mechanisms determining sexual dimorphism in these haploid, genetically identical sexual precursor cells remain largely unknown. To understand the epigenetic program underlying the differentiation of male and female gametocytes, we separated the two sexual forms by flow cytometry and performed RNAseq as well as comprehensive ChIPseq profiling of several histone variants and modifications. RESULTS We show that in female gametocytes the chromatin landscape is globally remodelled with respect to genome-wide patterns and combinatorial usage of histone variants and histone modifications. We identified sex specific differences in heterochromatin distribution, implicating exported proteins and ncRNAs in sex determination. Specifically in female gametocytes, the histone variants H2A.Z/H2B.Z were highly enriched in H3K9me3-associated heterochromatin. H3K27ac occupancy correlated with stage-specific gene expression, but in contrast to asexual parasites this was unlinked to H3K4me3 co-occupancy at promoters in female gametocytes. CONCLUSIONS Collectively, we defined novel combinatorial chromatin states differentially organising the genome in gametocytes and asexual parasites and unravelled fundamental, sex-specific differences in the epigenetic code. Our chromatin maps represent an important resource for future understanding of the mechanisms driving sexual differentiation in P. falciparum.
Collapse
Affiliation(s)
- Myriam D Jeninga
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jingyi Tang
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Shamista A Selvarajah
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Alexander G Maier
- The Australian National University, Research School of Biology, 134 Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
- Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Michaela Petter
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
41
|
Mohammed M, Dziedziech A, Sekar V, Ernest M, Alves E Silva TL, Balan B, Emami SN, Biryukova I, Friedländer MR, Jex A, Jacobs-Lorena M, Henriksson J, Vega-Rodriguez J, Ankarklev J. Single-Cell Transcriptomics To Define Plasmodium falciparum Stage Transition in the Mosquito Midgut. Microbiol Spectr 2023; 11:e0367122. [PMID: 36847501 PMCID: PMC10100735 DOI: 10.1128/spectrum.03671-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Malaria inflicts the highest rate of morbidity and mortality among the vector-borne diseases. The dramatic bottleneck of parasite numbers that occurs in the gut of the obligatory mosquito vector provides a promising target for novel control strategies. Using single-cell transcriptomics, we analyzed Plasmodium falciparum development in the mosquito gut, from unfertilized female gametes through the first 20 h after blood feeding, including the zygote and ookinete stages. This study revealed the temporal gene expression of the ApiAP2 family of transcription factors and of parasite stress genes in response to the harsh environment of the mosquito midgut. Further, employing structural protein prediction analyses, we found several upregulated genes predicted to encode intrinsically disordered proteins (IDPs), a category of proteins known for their importance in regulation of transcription, translation, and protein-protein interactions. IDPs are known for their antigenic properties and may serve as suitable targets for antibody- or peptide-based transmission suppression strategies. In total, this study uncovers the P. falciparum transcriptome from early to late parasite development in the mosquito midgut, inside its natural vector, which provides an important resource for future malaria transmission-blocking initiatives. IMPORTANCE The malaria parasite Plasmodium falciparum causes more than half a million deaths per year. The current treatment regimen targets the symptom-causing blood stage inside the human host. However, recent incentives in the field call for novel interventions to block parasite transmission from humans to the mosquito vector. Therefore, we need to better understand the parasite biology during its development inside the mosquito, including a deeper understanding of the expression of genes controlling parasite progression during these stages. Here, we have generated single-cell transcriptome data, covering P. falciparum's development, from gamete to ookinete inside the mosquito midgut, uncovering previously untapped parasite biology, including a repertoire of novel biomarkers to be explored in future transmission-blocking efforts. We anticipate that our study provides an important resource, which can be further explored to improve our understanding of the parasite biology as well as aid in guiding future malaria intervention strategies.
Collapse
Affiliation(s)
- Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vaishnovi Sekar
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Medard Ernest
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Thiago Luiz Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - S. Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R. Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Aaron Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Johan Henriksson
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Microbial Single Cell Genomics, Department of Cell and Molecular Biology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Balta VA, Stiffler D, Sayeed A, Tripathi AK, Elahi R, Mlambo G, Bakshi RP, Dziedzic AG, Jedlicka AE, Nenortas E, Romero-Rodriguez K, Canonizado MA, Mann A, Owen A, Sullivan DJ, Prigge ST, Sinnis P, Shapiro TA. Transmissibility of clinically relevant atovaquone-resistant Plasmodium falciparum by anopheline mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527535. [PMID: 36798298 PMCID: PMC9934642 DOI: 10.1101/2023.02.07.527535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Rising numbers of malaria cases and deaths underscore the need for new interventions. Long-acting injectable medications, such as those now in use for HIV prophylaxis, offer the prospect of a malaria "chemical vaccine", combining the efficacy of a drug (like atovaquone) with the durability of a biological vaccine. Of concern, however, is the possible selection and transmission of drug-resistant parasites. We addressed this question by generating clinically relevant, highly atovaquone-resistant, Plasmodium falciparum mutants competent to infect mosquitoes. Isogenic paired strains, that differ only by a single Y268S mutation in cytochrome b, were evaluated in parallel in southeast Asian (Anopheles stephensi) or African (Anopheles gambiae) mosquitoes, and thence in humanized mice. Fitness costs of the mutation were evident along the lifecycle, in asexual parasite growth in vitro and in a progressive loss of parasites in the mosquito. In numerous independent experiments, microscopic exam of salivary glands from hundreds of mosquitoes failed to detect even one Y268S sporozoite, a defect not rescued by coinfection with wild type parasites. Furthermore, despite uniformly successful transmission of wild type parasites from An. stephensi to FRG NOD huHep mice bearing human hepatocytes and erythrocytes, multiple attempts with Y268S-fed mosquitoes failed: there was no evidence of parasites in mouse tissues by microscopy, in vitro culture, or PCR. These studies confirm a severe-to-lethal fitness cost of clinically relevant atovaquone-resistant P. falciparum in the mosquito, and they significantly lessen the likelihood of their transmission in the field.
Collapse
Affiliation(s)
- Victoria A. Balta
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Deborah Stiffler
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Abeer Sayeed
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Abhai K. Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Rubayet Elahi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Rahul P. Bakshi
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Amanda G. Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
| | - Anne E. Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
| | - Elizabeth Nenortas
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Keyla Romero-Rodriguez
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Matthew A. Canonizado
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Alexis Mann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3BX, UK
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Sean T. Prigge
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Photini Sinnis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Theresa A. Shapiro
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| |
Collapse
|
43
|
Zhu C, Liang X, Chen X, Liang M, Zheng J, Wan B, Luo S. Characterizing the Specific Recognition of Xanthurenic Acid by GEP1 and GEP1-GCα Interactions in cGMP Signaling Pathway in Gametogenesis of Malaria Parasites. Int J Mol Sci 2023; 24:ijms24032561. [PMID: 36768882 PMCID: PMC9916804 DOI: 10.3390/ijms24032561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Gametogenesis is an essential step for malaria parasite transmission and is activated in mosquito by signals including temperature drop, pH change, and mosquito-derived xanthurenic acid (XA). Recently, a membrane protein gametogenesis essential protein 1 (GEP1) was found to be responsible for sensing these signals and interacting with a giant guanylate cyclase α (GCα) to activate the cGMP-PKG-Ca2+ signaling pathway for malaria parasite gametogenesis. However, the molecular mechanisms for this process remain unclear. In this study, we used AlphaFold2 to predict the structure of GEP1 and found that it consists of a conserved N-terminal helical domain and a transmembrane domain that adopts a structure similar to that of cationic amino acid transporters. Molecular docking results showed that XA binds to GEP1 via a pocket similar to the ligand binding sites of known amino acid transporters. In addition, truncations of this N-terminal sequence significantly enhanced the expression, solubility, and stability of GEP1. In addition, we found that GEP1 interacts with GCα via its C-terminal region, which is interrupted by mutations of a few conserved residues. These findings provide further insights into the molecular mechanism for the XA recognition by GEP1 and the activation of the gametogenesis of malaria parasites through GEP1-GCα interaction.
Collapse
Affiliation(s)
- Cheng Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xiaoge Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xu Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Miaomiao Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jianting Zheng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Shukun Luo
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
44
|
Cruz Camacho A, Kiper E, Oren S, Zaharoni N, Nir N, Soffer N, Noy Y, Ben David B, Rivkin A, Rotkopf R, Michael D, Carvalho TG, Regev-Rudzki N. High-throughput analysis of the transcriptional patterns of sexual genes in malaria. Parasit Vectors 2023; 16:14. [PMID: 36639683 PMCID: PMC9838061 DOI: 10.1186/s13071-022-05624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism. METHODS We developed a high-throughput quantitative Reverse-Transcription PCR (RT-qPCR) platform to robustly monitor Pf transcriptional patterns, in particular, systematically profiling the transcriptional pattern of a large panel of gametocyte-related genes (GRG). Initially, we evaluated the technical performance of the systematic RT-qPCR platform to ensure it complies with the accepted quality standards for: (i) RNA extraction, (ii) cDNA synthesis and (iii) evaluation of gene expression through RT-qPCR. We then used this approach to monitor alterations in gene expression of a panel of GRG upon treatment with gametocytogenesis regulators. RESULTS We thoroughly elucidated GRG expression profiles under treatment with the antimalarial drug dihydroartemisinin (DHA) or the metabolite choline over the course of a Pf blood cycle (48 h). We demonstrate that both significantly alter the expression pattern of PfAP2-G, the gametocytogenesis master regulator. However, they also markedly modify the developmental rate of the parasites and thus might bias the mRNA expression. Additionally, we screened the effect of the metabolites lactate and kynurenic acid, abundant in severe malaria, as potential regulators of gametocytogenesis. CONCLUSIONS Our data demonstrate that the high-throughput RT-qPCR method enables studying the immediate transcriptional response initiating gametocytogenesis of the parasites from a very low volume of malaria-infected RBC samples. The obtained data expand the current knowledge of the initial alterations in mRNA profiles of GRG upon treatment with reported regulators. In addition, using this method emphasizes that asexual parasite stage composition is a crucial element that must be considered when interpreting changes in GRG expression by RT-qPCR, specifically when screening for novel compounds that could regulate Pf sexual differentiation.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Edo Kiper
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sonia Oren
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nir Zaharoni
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Netta Nir
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Noam Soffer
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yael Noy
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Bar Ben David
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Anna Rivkin
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ron Rotkopf
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dan Michael
- grid.13992.300000 0004 0604 7563Feinberg Graduate School, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Teresa G. Carvalho
- grid.1018.80000 0001 2342 0938Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086 Australia
| | - Neta Regev-Rudzki
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
45
|
Qian P, Wang X, Guan C, Fang X, Cai M, Zhong CQ, Cui Y, Li Y, Yao L, Cui H, Jiang K, Yuan J. Apical anchorage and stabilization of subpellicular microtubules by apical polar ring ensures Plasmodium ookinete infection in mosquito. Nat Commun 2022; 13:7465. [PMID: 36463257 PMCID: PMC9719560 DOI: 10.1038/s41467-022-35270-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
Morphogenesis of many protozoans depends on a polarized establishment of cortical cytoskeleton containing the subpellicular microtubules (SPMTs), which are apically nucleated and anchored by the apical polar ring (APR). In malaria parasite Plasmodium, APR emerges in the host-invading stages, including the ookinete for mosquito infection. So far, the fine structure and molecular components of APR as well as the underlying mechanism of APR-mediated apical positioning of SPMTs are largely unknown. Here, we resolve an unprecedented APR structure composed of a top ring plus approximate 60 radiating spines. We report an APR-localizing and SPMT-binding protein APR2. APR2 disruption impairs ookinete morphogenesis and gliding motility, leading to Plasmodium transmission failure in mosquitoes. The APR2-deficient ookinetes display defective apical anchorage of APR and SPMT due to the impaired integrity of APR. Using protein proximity labeling, we obtain a Plasmodium ookinete APR proteome and validate ten undescribed APR proteins. Among them, APRp2 and APRp4 directly interact with APR2 and also mediate the apical anchorage of SPMTs. This study sheds light on the molecular basis of APR in the organization of Plasmodium ookinete SPMTs.
Collapse
Affiliation(s)
- Pengge Qian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xu Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Cuirong Guan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xin Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mengya Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yanbin Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
46
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
47
|
Dynamics of DNA Replication during Male Gametogenesis in the Malaria Parasite Plasmodium Falciparum. Cell Microbiol 2022. [DOI: 10.1155/2022/2701868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malaria parasites undergo a single phase of sexual reproduction in their complex lifecycle. It involves specialised, sexually committed cells called gametocytes, which develop rapidly into mature gametes and mate upon entering the mosquito midgut. Gamete development is unique, involving unprecedentedly fast replication to produce male gametes. Within ~15 minutes a male gametocyte replicates its ~23 Mb genome three times to produce 8 genomes, segregates these into newly-assembled flagellated gametes and releases them to seek female gametes. Here, for the first time, we use fluorescent labelling of de novo DNA synthesis to follow this process at the whole-cell and single-molecule levels. We make several novel observations, including characterising the origin recognition complex protein Orc1 for the first time in gametocytes, finding that cytokinesis is uncoupled from DNA replication (implying a lack of cell cycle checkpoints), and that the single-molecule dynamics of DNA replication are entirely different from the dynamics in asexual schizogony.
Collapse
|
48
|
Ferreira FC, Videvall E, Seidl CM, Wagner NE, Kilpatrick AM, Fleischer RC, Fonseca DM. Transcriptional response of individual Hawaiian Culex quinquefasciatus mosquitoes to the avian malaria parasite Plasmodium relictum. Malar J 2022; 21:249. [PMID: 36038897 PMCID: PMC9422152 DOI: 10.1186/s12936-022-04271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium parasites that cause bird malaria occur in all continents except Antarctica and are primarily transmitted by mosquitoes in the genus Culex. Culex quinquefasciatus, the mosquito vector of avian malaria in Hawaiʻi, became established in the islands in the 1820s. While the deadly effects of malaria on endemic bird species have been documented for many decades, vector-parasite interactions in avian malaria systems are relatively understudied. Methods To evaluate the gene expression response of mosquitoes exposed to a Plasmodium infection intensity known to occur naturally in Hawaiʻi, offspring of wild-collected Hawaiian Cx. quinquefasciatus were fed on a domestic canary infected with a fresh isolate of Plasmodium relictum GRW4 from a wild-caught Hawaiian honeycreeper. Control mosquitoes were fed on an uninfected canary. Transcriptomes of five infected and three uninfected individual mosquitoes were sequenced at each of three stages of the parasite life cycle: 24 h post feeding (hpf) during ookinete invasion; 5 days post feeding (dpf) when oocysts are developing; 10 dpf when sporozoites are released and invade the salivary glands. Results Differential gene expression analyses showed that during ookinete invasion (24 hpf), genes related to oxidoreductase activity and galactose catabolism had lower expression levels in infected mosquitoes compared to controls. Oocyst development (5 dpf) was associated with reduced expression of a gene with a predicted innate immune function. At 10 dpf, infected mosquitoes had reduced expression levels of a serine protease inhibitor, and further studies should assess its role as a Plasmodium agonist in C. quinquefasciatus. Overall, the differential gene expression response of Hawaiian Culex exposed to a Plasmodium infection intensity known to occur naturally in Hawaiʻi was low, but more pronounced during ookinete invasion. Conclusions This is the first analysis of the transcriptional responses of vectors to malaria parasites in non-mammalian systems. Interestingly, few similarities were found between the response of Culex infected with a bird Plasmodium and those reported in Anopheles infected with human Plasmodium. The relatively small transcriptional changes observed in mosquito genes related to immune response and nutrient metabolism support conclusions of low fitness costs often documented in experimental challenges of Culex with avian Plasmodium. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04271-x.
Collapse
Affiliation(s)
- Francisco C Ferreira
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA. .,Center for Vector Biology, Entomology Department, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Elin Videvall
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA.,Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, USA.,Institute at Brown for Environment and Society, Brown University, Providence, RI, USA.,Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Christa M Seidl
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Nicole E Wagner
- Center for Vector Biology, Entomology Department, Rutgers University, New Brunswick, NJ, 08901, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Dina M Fonseca
- Center for Vector Biology, Entomology Department, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
49
|
Roling L, Flammersfeld A, Pradel G, Bennink S. The WD40-Protein PfWLP1 Ensures Stability of the PfCCp-Based Adhesion Protein Complex in Plasmodium falciparum Gametocytes. Front Cell Infect Microbiol 2022; 12:942364. [PMID: 35923798 PMCID: PMC9339629 DOI: 10.3389/fcimb.2022.942364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the WD40-repeat protein family can be found in all eukaryotic proteomes where they usually serve as interaction platforms for the assembly of large protein complexes and are therefore essential for the integrity of these complexes. In the malaria parasite Plasmodium falciparum, the WD40-repeat protein PfWLP1 has been shown to interact with members of distinct adhesion protein complexes in the asexual blood stages and gametocyte stages. In this study, we demonstrate that the presence of PfWLP1 is crucial for both the stability of these gametocyte-specific adhesion complexes as well as for gametocyte maturation and gametogenesis. Using reverse genetics, we generated a PfWLP1-knockdown parasite line for functional characterization of the protein. Knockdown of PfWLP1 resulted in a slight reduction of gametocyte numbers and significantly the impaired ability of the gametocytes to exflagellate. PfWLP1-knockdown further led to reduced protein levels of the Limulus coagulation factor C-like (LCCL)-domain proteins PfCCp1 and PfCCp2, which are key components of the adhesion complexes. These findings suggest that the interaction of PfWLP1 with members of the PfCCp-based adhesion complex ensures complex stability and thereby contributes to gametocyte viability and exflagellation.
Collapse
|
50
|
Moreno M, Torres K, Tong C, García Castillo SS, Carrasco-Escobar G, Guedez G, Torres L, Herrera-Varela M, Guerra L, Guzman-Guzman M, Wong D, Ramirez R, Llanos-Cuentas A, Conn JE, Gamboa D, Vinetz JM. Insights into Plasmodium vivax Asymptomatic Malaria Infections and Direct Skin-Feeding Assays to Assess Onward Malaria Transmission in the Amazon. Am J Trop Med Hyg 2022; 107:154-161. [PMID: 35895359 PMCID: PMC9294676 DOI: 10.4269/ajtmh.21-1217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/24/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding the reservoir and infectivity of Plasmodium gametocytes to vector mosquitoes is crucial to align strategies aimed at malaria transmission elimination. Yet, experimental information is scarce regarding the infectivity of Plasmodium vivax for mosquitoes in diverse epidemiological settings where the proportion of asymptomatically infected individuals varies at a microgeographic scale. We measured the transmissibility of clinical and subclinical P. vivax malaria parasite carriers to the major mosquito vector in the Amazon Basin, Nyssorhynchus darlingi (formerly Anopheles). A total of 105 participants with natural P. vivax malaria infection were recruited from a cohort study in Loreto Department, Peruvian Amazon. Four of 18 asymptomatic individuals with P. vivax positivity by blood smear infected colony-grown Ny. darlingi (22%), with 2.6% (19 of 728) mosquitoes infected. In contrast, 77% (44/57) of symptomatic participants were infectious to mosquitoes with 51% (890 of 1,753) mosquitoes infected. Infection intensity was greater in symptomatic infections (mean, 17.8 oocysts/mosquito) compared with asymptomatic infections (mean, 0.28 oocysts/mosquito), attributed to parasitemia/gametocytemia level. Paired experiments (N = 27) using direct skin-feeding assays and direct membrane mosquito-feeding assays showed that infectivity to mosquitoes was similar for both methods. Longitudinal studies with longer follow-up of symptomatic and asymptomatic parasite infections are needed to determine the natural variations of disease transmissibility.
Collapse
Affiliation(s)
- Marta Moreno
- Department of Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Katherine Torres
- Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
- Address correspondence to Katherine Torres, Malaria Laboratory, Laboratorios de Investigación y Desarrollo, Faculty of Science and Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, 15102, Lima, Perú. E-mail:
| | - Carlos Tong
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stefano S. García Castillo
- Laboratorio de Malaria, Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gerson Guedez
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lutecio Torres
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manuela Herrera-Varela
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Layné Guerra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mitchel Guzman-Guzman
- Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Daniel Wong
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Roberson Ramirez
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, New York
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Dionicia Gamboa
- Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria, Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
- S Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|