1
|
Zhao X, Qiu Y, Liang L, Fu X. Interkingdom signaling between gastrointestinal hormones and the gut microbiome. Gut Microbes 2025; 17:2456592. [PMID: 39851261 PMCID: PMC11776477 DOI: 10.1080/19490976.2025.2456592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition. The distributions of the gut microbiota and gastrointestinal hormones are anatomically intertwined, and close interactions between the gut microbiota and gastrointestinal hormones are crucial for maintaining gastrointestinal homeostasis. Interventions leveraging the interplay between the gut microbiota and gastrointestinal hormones have been employed in the clinical management of metabolic diseases and inflammatory bowel diseases, such as bariatric surgery and fecal microbiota transplantation, offering promising targets for the treatment of dysbiosis-related diseases.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ye Qiu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Lei P, Yu H, Jiang T, Ma J, Du J, Fang Y, Wang H, Chen R, Yang Q, Cheng Y, Wu W, Sun D. Development of a sodium hyaluronate-enriched therapeutic formulation with stevia glycoside and mogroside V for the comprehensive management of diabetes and its complications. Int J Biol Macromol 2025; 293:139487. [PMID: 39756763 DOI: 10.1016/j.ijbiomac.2025.139487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Diabetes prevalence continues to increase as a result of people's increasing sugar intake. Diabetes mellitus and its complications (dry skin, constipation, depression, and dental caries), as well as the prohibition of sweets ingestion, seriously affect patients' physical and mental health. Therefore, it is crucial to develop a long-term food for special medical purposes (FSMP) that aids in managing diabetes and its complications. To ensure effective biomedical function and taste, we developed a FSMP beverage formulation containing stevia glycoside, mogroside V, and sodium hyaluronate (SMH-B), each at a concentration of 0.1 mg/mL. Meanwhile, this study verified that SMH-B is an environmentally friendly and biocompatible formulation. Furthermore, both in vivo and in vitro studies have demonstrated that SMH-B significantly lowers blood glucose and lipid levels, enhances skin moisture and elasticity, prevents dental caries, alleviates constipation, reduces oxidative stress, and mitigates depressive symptoms. Notably, the SMH-B compound formula exhibits a more effective adjuvant therapeutic effect compared to single-ingredient formulation composed of stevia glycosides, mogroside V, and sodium hyaluronate. Moreover, SMH-B provides the sweetness desired by diabetic patients without affecting blood glucose levels, while also offering an auxiliary therapeutic role, making it a potential FSMP for diabetes management.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Tao Jiang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yongwei Cheng
- National Engineering Research Center of Cell Growth Factor Drugs and Protein Biologics, Wenzhou Medical University, Wenzhou 325000, China; MedTech (Wenzhou) Health Innovation Achievement Transformation Institute, Wenzhou Institute of Industry & Science, Wenzhou 325000, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Xie C, Qi C, Zhang J, Wang W, Meng X, Aikepaer A, Lin Y, Su C, Liu Y, Feng X, Gao H. When short-chain fatty acids meet type 2 diabetes mellitus: Revealing mechanisms, envisioning therapies. Biochem Pharmacol 2025; 233:116791. [PMID: 39894305 DOI: 10.1016/j.bcp.2025.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Evidence is accumulating that short-chain fatty acids (SCFAs) produced by the gut microbiota play pivotal roles in host metabolism. They contribute to the metabolic regulation and energy homeostasis of the host not only by preserving intestinal health and serving as energy substrates but also by entering the systemic circulation as signaling molecules, affecting the gut-brain axis and neuroendocrine-immune network. This review critically summarizes the current knowledge regarding the effects of SCFAs in the fine-tuning of the pathogenesis of type 2 diabetes mellitus (T2DM) and insulin resistance, with an emphasis on the complex relationships among diet, microbiota-derived metabolites, T2DM inflammation, glucose metabolism, and the underlying mechanisms involved. We hold an optimistic view that elucidating how diet can influence gut bacterial composition and activity, SCFA production, and metabolic functions in the host will advance our understanding of the mutual interactions of the intestinal microbiota with other metabolically active organs, and may pave the way for harnessing these pathways to develop novel personalized therapeutics for glucometabolic disorders.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Cong Qi
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Jianwen Zhang
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617 China
| | - Wei Wang
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Xing Meng
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617 China
| | - Aifeila Aikepaer
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; Dongzhimen Hospital, the First Clinical Medical School of Beijing University of Chinese Medicine, Beijing 100700 China
| | - Yuhan Lin
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; Dongzhimen Hospital, the First Clinical Medical School of Beijing University of Chinese Medicine, Beijing 100700 China
| | - Chang Su
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124 China
| | - Yunlu Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Xingzhong Feng
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China.
| | - Huijuan Gao
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China.
| |
Collapse
|
4
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
5
|
Chen H, Wang SH, Li HL, Zhou XB, Zhou LW, Chen C, Mansell T, Novakovic B, Saffery R, Baker PN, Han TL, Zhang H. The attenuation of gut microbiota-derived short-chain fatty acids elevates lipid transportation through suppression of the intestinal HDAC3-H3K27ac-PPAR-γ axis in gestational diabetes mellitus. J Nutr Biochem 2024; 133:109708. [PMID: 39059479 DOI: 10.1016/j.jnutbio.2024.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Gut flora is considered to modulate lipid transport from the intestine into the bloodstream, and thus may potentially participate in the development of GDM. Although previous studies have shown that the intestinal microbiota influences lipid transport and metabolism in GDM, the precise mechanisms remain elusive. To address this, we used a high-fat diet (HFD)-induced GDM mouse model and conducted 16s rRNA sequencing and fecal metabolomics to assess gut microbial community shifts and associated metabolite changes. Western blot, ELISA, and chromatin immunoprecipitation (ChIP) were utilized to elucidate how gut microbiota affect intestinal lipid transport and the insulin sensitivity of hepatic, adipose, and skeletal muscle tissues. We found that HFD impaired the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) in pregnant mice. 16s rRNA sequencing demonstrated profound compositional changes, especially in the relative abundances of Firmicutes and Bacteroidetes. Metabolomics analysis presented a decline in the concentration of short-chain fatty acids (SCFAs) in the GDM group. Western blot analyses showed an upregulation of HDAC3 and a concurrent reduction in H3K27 acetylation in the intestine. ChIP-qPCR showed that PPAR-γ was inhibited, which in turn activated lipid-transporter CD36. ELISA and insulin signaling pathway detection in insulin-target organs showed high concentrations of circulating fatty acids and triglycerides and insulin resistance in insulin-target organs. Our results suggest that gut microbiota is closely associated with the development of GDM, partly because decreased gut flora-associated SCFAs activate CD36 by suppressing the HDAC3-H3K27ac-PPAR-γ axis to transport excessive fatty acids and triglycerides into blood circulation, thereby dysregulating the insulin sensitivity of insulin target organs.
Collapse
Affiliation(s)
- Hao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Shi-Han Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong-Li Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xiao-Bo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Lin-Wei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Toby Mansell
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Philip N Baker
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; College of Life Sciences, University of Leicester, Great Britain, UK
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Lan W, Yang H, Zhong Z, Luo C, Huang Q, Liu W, Yang J, Xiang H, Tang Y, Chen T. Bifidobacterium animalis subsp. lactis LPL-RH improves postoperative gastrointestinal symptoms and nutrition indexes by regulating the gut microbiota in patients with valvular heart disease: a randomized controlled trial. Food Funct 2024; 15:7605-7618. [PMID: 38938120 DOI: 10.1039/d4fo01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Gastrointestinal symptoms constitute a frequent complication in postoperative patients with valvular heart disease (VHD), impacting their postoperative recovery. Probiotics contribute to regulating human gut microbiota balance and alleviating postoperative gastrointestinal symptoms. Our objective involved assessing the potential of Bifidobacterium animalis subsp. lactis LPL-RH to alleviate postoperative gastrointestinal symptoms and expedite patient recovery. Adult patients diagnosed with VHD scheduled for valve surgery were enrolled. 110 patients were randomly divided into two groups and received LPL-RH or a placebo for 14 days. Gastrointestinal symptoms were evaluated using the Gastrointestinal Symptoms Questionnaire. An analysis of the time to recovery of bowel function and various postoperative variables was conducted in both study groups. Variations in the intestinal microbiota were detected via 16S rRNA sequencing. The study was completed by 105 participants, with 53 in the probiotic group and 52 in the placebo group. Compared to the placebo group, LPL-RH significantly reduced the total gastrointestinal symptom score after surgery (p = 0.004). Additionally, LPL-RH was found to significantly reduce abdominal pain (p = 0.001), bloating (p = 0.018), and constipation (p = 0.022) symptom scores. Furthermore, LPL-RH dramatically shortened the time to recovery of bowel function (p = 0.017). Moreover, LPL-RH administration significantly enhanced patients' postoperative nutrition indexes (red blood cell counts, hemoglobin level, p < 0.05). Microbiome analysis showed that the composition and diversity of the postoperative intestinal microbiota differed between the probiotic and placebo groups. No adverse incidents associated with probiotics were documented, emphasizing their safety. This study initially discovered that oral B. animalis subsp. lactis LPL-RH can assist in regulating intestinal microbiota balance, alleviating gastrointestinal symptoms, promoting intestinal function recovery, and enhancing nutrition indexes in patients with VHD after surgery. Regulating the intestinal microbiota may represent a potential mechanism for LPL-RH to exert clinical benefits.
Collapse
Affiliation(s)
- Wanqi Lan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Heng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhiwang Zhong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao Luo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qin Huang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wu Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Juesheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Haiyan Xiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Tingtao Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Wang S, Cui Z, Yang H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiol 2024; 24:161. [PMID: 38730357 PMCID: PMC11083820 DOI: 10.1186/s12866-024-03255-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by insulin resistance and low-grade inflammation, and most studies have demonstrated gut dysbiosis in GDM pregnancies. Overall, they were manifested as a reduction in microbiome diversity and richness, depleted short chain fatty acid (SCFA)-producing genera and a dominant of Gram-negative pathogens releasing lipopolysaccharide (LPS). The SCFAs functioned as energy substance or signaling molecules to interact with host locally and beyond the gut. LPS contributed to pathophysiology of diseases through activating Toll-like receptor 4 (TLR4) and involved in inflammatory responses. The gut microbiome dysbiosis was not only closely related with GDM, it was also vital to fetal health through vertical transmission. In this review, we summarized gut microbiota signature in GDM pregnancies of each trimester, and presented a brief introduction of microbiome derived SCFAs. We then discussed mechanisms of microbiome-host interactions in the physiopathology of GDM and associated metabolic disorders. Finally, we compared offspring microbiota composition from GDM with that from normal pregnancies, and described the possible mechanism.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Zifeng Cui
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China.
| |
Collapse
|
8
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
9
|
Goenka S. Exploring the effect of butyric acid, a metabolite from periodontopathic bacteria, on primary human melanocytes: An in vitro study. J Oral Biosci 2024; 66:253-259. [PMID: 38215819 DOI: 10.1016/j.job.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Effects of butyric acid, a bacterial metabolite implicated in periodontitis progression, have never been examined on oral melanocytes. Herein, primary human epidermal melanocytes were used as a model for oral melanocytes. Results show the adverse effects of butyric acid (sodium butyrate; NaB) on them, which comprise marked cytotoxicity at higher concentrations (>1 mM) and robust differentiation at lower nontoxic concentrations. NaB did not alter MITF protein levels; however, it stimulated tyrosinase protein synthesis and inhibited tyrosinase activity, with no changes in cellular melanin. NaB did not affect oxidative stress, although it induced significant levels of the pro-inflammatory cytokine IL-6.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
10
|
Browne N, Horgan K. The Impact of a Proprietary Blend of Yeast Cell Wall, Short-Chain Fatty Acids, and Zinc Proteinate on Growth, Nutrient Utilisation, and Endocrine Hormone Secretion in Intestinal Cell Models. Animals (Basel) 2024; 14:238. [PMID: 38254407 PMCID: PMC10812779 DOI: 10.3390/ani14020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
In piglets, it is observed that early weaning can lead to poor weight gain due to an underdeveloped gastrointestinal (GI) tract, which is unsuitable for an efficient absorption of nutrients. Short-chain fatty acids (SCFAs) such as butyrate have demonstrated their ability to improve intestinal development by increasing cell proliferation, which is vital during this transition period when the small and large intestinal tracts are rapidly growing. Previous reports on butyrate inclusion in feed demonstrated significantly increased feed intakes (FIs) and average daily gains (ADGs) during piglet weaning. Similar benefits in piglet performance have been observed with the inclusion of yeast cell wall in diets. A proprietary mix of yeast cell wall, SCFAs, and zinc proteinate (YSM) was assessed here in vitro to determine its impact on cellular growth, metabolism and appetite-associated hormones in ex vivo small intestinal pig cells and STC-1 mouse intestinal neuroendocrine cells. Intestinal cells demonstrated greater cell densities with the addition of YSM (150 ppm) compared to the control and butyrate (150 ppm) at 24 h. This coincided with the higher utilisation of both protein and glucose from the media of intestinal cells receiving YSM. Ghrelin (an appetite-inducing hormone) demonstrated elevated levels in the YSM-treated cells on a protein and gene expression level compared to the cells receiving butyrate and the control, while satiety hormone peptide YY protein levels were lower in the cells receiving YSM compared to the control and butyrate-treated cells across each time point. Higher levels of ghrelin and lower PYY secretion in cells receiving YSM may drive the uptake of protein and glucose, which is potentially facilitated by elevated gene transporters for protein and glucose. Greater ghrelin levels observed with the inclusion of YSM may contribute to higher cell densities that could support pig performance to a greater extent than butyrate alone.
Collapse
Affiliation(s)
- Niall Browne
- Alltech Biotechnology Centre, Sarney, Summerhill Road, Dunboyne, A86 X006 Co. Meath, Ireland
| | - Karina Horgan
- Alltech Biotechnology Centre, Sarney, Summerhill Road, Dunboyne, A86 X006 Co. Meath, Ireland
| |
Collapse
|
11
|
Martin-Gallausiaux C, Salesse L, Garcia-Weber D, Marinelli L, Beguet-Crespel F, Brochard V, Le Gléau C, Jamet A, Doré J, Blottière HM, Arrieumerlou C, Lapaque N. Fusobacterium nucleatum promotes inflammatory and anti-apoptotic responses in colorectal cancer cells via ADP-heptose release and ALPK1/TIFA axis activation. Gut Microbes 2024; 16:2295384. [PMID: 38126163 PMCID: PMC10761154 DOI: 10.1080/19490976.2023.2295384] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The anaerobic bacterium Fusobacterium nucleatum is significantly associated with human colorectal cancer (CRC) and is considered a significant contributor to the disease. The mechanisms underlying the promotion of intestinal tumor formation by F. nucleatum have only been partially uncovered. Here, we showed that F. nucleatum releases a metabolite into the microenvironment that strongly activates NF-κB in intestinal epithelial cells via the ALPK1/TIFA/TRAF6 pathway. Furthermore, we showed that the released molecule had the biological characteristics of ADP-heptose. We observed that F. nucleatum induction of this pathway increased the expression of the inflammatory cytokine IL-8 and two anti-apoptotic genes known to be implicated in CRC, BIRC3 and TNFAIP3. Finally, it promoted the survival of CRC cells and reduced 5-fluorouracil chemosensitivity in vitro. Taken together, our results emphasize the importance of the ALPK1/TIFA pathway in Fusobacterium induced-CRC pathogenesis, and identify the role of ADP-H in this process.
Collapse
Affiliation(s)
| | - Laurène Salesse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Ludovica Marinelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Vincent Brochard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Camille Le Gléau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexandre Jamet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | | | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
12
|
Custers E, Franco A, Kiliaan AJ. Bariatric Surgery and Gut-Brain-Axis Driven Alterations in Cognition and Inflammation. J Inflamm Res 2023; 16:5495-5514. [PMID: 38026245 PMCID: PMC10676679 DOI: 10.2147/jir.s437156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is associated with systemic inflammation, comorbidities like diabetes, cardiovascular disease and several cancers, cognitive decline and structural and functional brain changes. To treat, or potentially prevent these related comorbidities, individuals with obesity must achieve long-term sustainable weight loss. Often life style interventions, such as dieting and increased physical activity are not successful in achieving long-term weight loss. Meanwhile bariatric surgery has emerged as a safe and effective procedure to treat obesity. Bariatric surgery causes changes in physiological processes, but it is still not fully understood which exact mechanisms are involved. The successful weight loss after bariatric surgery might depend on changes in various energy regulating hormones, such as ghrelin, glucagon-like peptide-1 and peptide YY. Moreover, changes in microbiota composition and white adipose tissue functionality might play a role. Here, we review the effect of obesity on neuroendocrine effects, microbiota composition and adipose tissue and how these may affect inflammation, brain structure and cognition. Finally, we will discuss how these obesity-related changes may improve after bariatric surgery.
Collapse
Affiliation(s)
- Emma Custers
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - Ayla Franco
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - Amanda Johanne Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Song W, Yue Y, Zhang Q. Imbalance of gut microbiota is involved in the development of chronic obstructive pulmonary disease: A review. Biomed Pharmacother 2023; 165:115150. [PMID: 37429232 DOI: 10.1016/j.biopha.2023.115150] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic disease characterized by chronic airway inflammation and remodeling, which seriously endangers human health. Recent developments in genomics and metabolomics have revealed the roles of the gut microbiota and its metabolites in COPD. Dysbiosis of the gut microbiota directly increases gut permeability, thereby promoting the translocation of pathological bacteria. The gut microbiota and associated metabolites may influence the development and progression of COPD by modulating immunity and inflammation. Furthermore, the systemic hypoxia and oxidative stress that occur in COPD may also be involved in intestinal dysfunction. The cross-talk between the gut and lungs is known as the gut-lung axis; however, an overview of its mechanism is lacking. This review highlights the critical and complex interplay of gut microbiota and immune responses in the gut-lung axis, further explores possible links between the gut and lungs, and summarizes new interventions through diet, probiotics, vitamins, and fecal microbiota transplantation, which are critical to COPD.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, China.
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
15
|
Iyer K, Erkert L, Becker C. Know your neighbors: microbial recognition at the intestinal barrier and its implications for gut homeostasis and inflammatory bowel disease. Front Cell Dev Biol 2023; 11:1228283. [PMID: 37519301 PMCID: PMC10375050 DOI: 10.3389/fcell.2023.1228283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal epithelial cells (IECs) perform several physiological and metabolic functions at the epithelial barrier. IECs also play an important role in defining the overall immune functions at the mucosal region. Pattern recognition receptors (PRRs) on the cell surface and in other cellular compartments enable them to sense the presence of microbes and microbial products in the intestinal lumen. IECs are thus at the crossroads of mediating a bidirectional interaction between the microbial population and the immune cells present at the intestinal mucosa. This communication between the microbial population, the IECs and the underlying immune cells has a profound impact on the overall health of the host. In this review, we focus on the various PRRs present in different cellular compartments of IECs and discuss the recent developments in the understanding of their role in microbial recognition. Microbial recognition and signaling at the epithelial barrier have implications in the maintenance of intestinal homeostasis, epithelial barrier function, maintenance of commensals, and the overall tolerogenic function of PRRs in the gut mucosa. We also highlight the role of an aberrant microbial sensing at the epithelial barrier in the pathogenesis of inflammatory bowel disease (IBD) and the development of colorectal cancer.
Collapse
Affiliation(s)
- Krishna Iyer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Ma T, Xue X, Tian H, Zhou X, Wang J, Zhao Z, Wang M, Song J, Feng R, Li L, Jing C, Tian F. Effect of the gut microbiota and their metabolites on postoperative intestinal motility and its underlying mechanisms. J Transl Med 2023; 21:349. [PMID: 37237321 DOI: 10.1186/s12967-023-04215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Gut microbiota is closely related to human health and disease because, together with their metabolites, gut microbiota maintain normal intestinal peristalsis. The use of antibiotics or opioid anesthetics, or both, during surgical procedures can lead to dysbiosis and affect intestinal motility; however, the underlying mechanisms are not fully known. This review aims to discuss the effect of gut microbiota and their metabolites on postoperative intestinal motility, focusing on regulating the enteric nervous system, 5-hydroxytryptamine neurotransmitter, and aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- TianRong Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - XiaoLei Xue
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Hui Tian
- Department of Gastroenterology, Liaocheng People's Hospital, Shandong First Medical University, Liaocheng, 252000, China
| | - XinXiu Zhou
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - JunKe Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - ZhiWen Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - MingFei Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - JiYuan Song
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - RenXiang Feng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| | - Feng Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|
17
|
Zhang Q, Bai Y, Wang W, Li J, Zhang L, Tang Y, Yue S. Role of herbal medicine and gut microbiota in the prevention and treatment of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116127. [PMID: 36603782 DOI: 10.1016/j.jep.2022.116127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity is a common metabolic dysfunction disease, which is highly correlated with the homeostasis of gut microbiota (GM). The dysregulation of GM on energy metabolism, immune response, insulin resistance and endogenous metabolites (e.g., short chain fatty acids and secondary bile acids) can affect the occurrence and development of obesity. Herbal medicine (HM) has particular advantages and definite therapeutic effects in the prevention and treatment of obesity, but its underlying mechanism is not fully clear. AIM OF THE STUDY In this review, the representative basic and clinical anti-obesity studies associated with the homeostasis of GM regulated by HM including active components, single herb and herbal formulae were summarized and discussed. We aim to provide a state of art reference for the mechanism research of HM in treating obesity and the further development of new anti-obesity drugs. MATERIALS AND METHODS The relevant information was collected by searching keywords (obesity, herbal medicine, prescriptions, mechanism, GM, short chain fatty acids, etc.) from scientific databases (CNKI, PubMed, SpringerLink, Web of Science, SciFinder, etc.). RESULTS GM dysbiosis did occur in obese patients and mice, whiles the intervention of GM could ameliorate the condition of obesity. HM (e.g., berberine, Ephedra sinica, Rehjnannia glutinosa, and Buzhong Yiqi prescription) has been proved to possess a certain regulation on GM and an explicit effect on obesity, but the exact mechanism of HM in improving obesity by regulating GM remains superficial. CONCLUSION GM is involved in HM against obesity, and GM can be a novel therapeutic target for treating obesity.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Yaya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Wenxiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Jiajia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu Province, China.
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
18
|
Combined Omics Analysis Further Unveils the Specific Role of Butyrate in Promoting Growth in Early-Weaning Animals. Int J Mol Sci 2023; 24:ijms24021787. [PMID: 36675302 PMCID: PMC9864007 DOI: 10.3390/ijms24021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Abnormal mutations in the microbial structure of early-weaning mammals are an important cause of enteritis. Based on the multiple known beneficial functions of butyrate, we hypothesized that butyrate would alleviate the imbalance of intestinal homeostasis induced by early weaning in animals. However, the mechanisms of action between butyrate and intestinal microbes are still poorly explored. In this study, we aimed to investigate whether butyrate exerts beneficial effects on the structure of the intestinal flora of weanling rabbits and their intestinal homeostasis, growth and development, and we attempted to elucidate the potential mechanisms of action through a combined omics analysis. We found that dietary butyrate upregulated the transcription of tight junction-related proteins in the epithelial barrier and improved the intestinal microbial structure by suppressing harmful bacteria and promoting beneficial ones. Intestinal and plasma metabolomes were also altered. The bile acid secretion, α-linolenic acid, apoptotic, and prostate cancer pathways responded to the positive dietary butyrate-induced metabolic changes in the weanling rabbits, resulting in the inhibition of inflammation, improved antioxidant capacity, increased rates of cell proliferation and survival, and decreased levels of apoptosis. Additionally, dietary butyrate suppressed the release of pro-inflammatory factors and enhanced positive appetite regulation, which increased the average daily gain of the rabbits. These results demonstrated that dietary butyrate can help maintain the integrity of the intestinal epithelial barrier, improve the structural composition of the intestinal microflora, enhance organismal metabolism, inhibit inflammation, reduce post-weaning anorexia, and promote growth and development in early-weaning rabbits. These positive effects of dietary butyrate were exerted via the modulation of the microbe-gut-brain axis.
Collapse
|
19
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
20
|
Flynn CM, Yuan Q. Probiotic supplement as a promising strategy in early tau pathology prevention: Focusing on GSK-3β? Front Neurosci 2023; 17:1159314. [PMID: 37034173 PMCID: PMC10073452 DOI: 10.3389/fnins.2023.1159314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Neurofibrillary tangles (NFT) is one of the hallmarks of Alzheimer's disease (AD). Recent research suggests that pretangle tau, the soluble precursor of NFT, is an initiator for AD pathogenesis, thus targeting pretangle tau pathology may be a promising early intervention focus. The bidirectional communications between the gut and the brain play a crucial role in health. The compromised gut-brain axis is involved in various neurodegenerative diseases including AD. However, most research on the relationship between gut microbiome and AD have focused on amyloid-β. In this mini review, we propose to target preclinical pretangle tau stages with gut microbiota interventions such as probiotic supplementation. We discuss the importance of targeting pretangle tau that starts decades before the onset of clinical symptoms, and potential intervention focusing on probiotic regulation of tau hyperphosphorylation. A particular focus is on GSK-3β, a protein kinase that is at the interface between tau phosphorylation, AD and diabetes mellitus.
Collapse
|
21
|
Intestinal Flora Affect Alzheimer's Disease by Regulating Endogenous Hormones. Neurochem Res 2022; 47:3565-3582. [DOI: 10.1007/s11064-022-03784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
22
|
Lin K, Zhu L, Yang L. Gut and obesity/metabolic disease: Focus on microbiota metabolites. MedComm (Beijing) 2022; 3:e171. [PMID: 36092861 PMCID: PMC9437302 DOI: 10.1002/mco2.171] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Obesity is often associated with the risk of chronic inflammation and other metabolic diseases, such as diabetes, cardiovascular disease, and cancer. The composition and activity of the gut microbiota play an important role in this process, affecting a range of physiological processes, such as nutrient absorption and energy metabolism. The active gut microbiota can produce a large number of physiologically active substances during the process of intestinal metabolism and reproduction, including short-chain/long-chain fatty acids, secondary bile acids, and tryptophan metabolites with beneficial effects on metabolism, as well as negative metabolites, including trimethylamine N-oxide, delta-valerobetaine, and imidazole propionate. How gut microbiota specifically affect and participate in metabolic and immune activities, especially the metabolites directly produced by gut microbiota, has attracted extensive attention. So far, some animal and human studies have shown that gut microbiota metabolites are correlated with host obesity, energy metabolism, and inflammation. Some pathways and mechanisms are slowly being discovered. Here, we will focus on the important metabolites of gut microbiota (beneficial and negative), and review their roles and mechanisms in obesity and related metabolic diseases, hoping to provide a new perspective for the treatment and remission of obesity and other metabolic diseases from the perspective of metabolites.
Collapse
Affiliation(s)
- Ke Lin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lixin Zhu
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseSixth Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Colorectal SurgerySixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
23
|
Akhtar M, Chen Y, Ma Z, Zhang X, Shi D, Khan JA, Liu H. Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:350-360. [PMID: 35510031 PMCID: PMC9040132 DOI: 10.1016/j.aninu.2021.11.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Gut inflammation is a challenging concern in humans and animals, which disturbs normal growth and leads to severe bowel diseases. Short chain fatty acids (SCFA) are the gut microbiota metabolites produced from fermentation of non-digestible carbohydrates, and have been reported to modulate gut inflammation. SCFA have been implicated as the potential therapeutic bioactive molecules for gut inflammatory diseases, and could be an alternative to antibiotic growth promoters (AGP). In this review, the existing knowledge about the types of SCFA, the related gut microbes producing SCFA, the roles of SCFA in maintaining gut homeostasis, and how SCFA modulate gut inflammation is summarized. The therapeutic application of SCFA in the treatment of inflammatory bowel disease (IBD) is also highlighted.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyu Ma
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolong Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jawaria A. Khan
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
24
|
Araújo MM, Vogado CDO, Mendes MM, Gonçalves VSS, Botelho PB. Effects of Bifidobacterium animalis subspecies lactis supplementation on gastrointestinal symptoms: systematic review with meta-analysis. Nutr Rev 2021; 80:1619-1633. [PMID: 34918142 DOI: 10.1093/nutrit/nuab109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CONTEXT The effects of probiotics on gastrointestinal (GI) symptoms have been increasingly investigated, particularly that of Bifidobacterium animalis. Clinical trials so far have shown differing evidence regarding these effects in healthy adults. OBJECTIVE To synthesize the published evidence on the effects of B. animalis subspecies lactis on GI symptoms (GIS) in healthy adults. DATA SOURCE A search of the Medline, Embase, Lilacs, Scopus, Web of Science, ProQuest, and Google Scholar databases was conducted for reports on randomized controlled trials published up to October 2021. DATA EXTRACTION Population characteristics and data on colonic transit time (CTT), stool consistency, defecation frequency, abdominal pain, bloating, flatulence, volunteer compliance, and adverse events were extracted. A random-effects model was used to estimate the effect of probiotic treatment on these variables. DATA SYNTHESIS In total, 1551 studies were identified, of which 14 were included in the qualitative synthesis and 13 in the meta-analysis. Overall, probiotic supplementation increased defecation frequency (standardized mean difference [SMD], 0.26; 95%CI, 0.13-0.39). Subgroup analysis revealed a decrease in CTT (SMD, -0.34; 95%CI, -0.62 to -0.07) in short-term treatment (≤14 d) and an improvement in stool consistency (SMD, 0.76; 95%CI, 0.44-1.08) in individuals without GIS. No improvement in abdominal pain and bloating was found. CONCLUSIONS B. animalis subspecies lactis supplementation may increase defecation frequency and, in short-term treatment, may reduce CTT in healthy adults and improve stool consistency in individuals without GIS. More high-quality randomized controlled trials are needed to develop a clinical protocol for the use of this strain to improve these symptoms. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020154060.
Collapse
Affiliation(s)
- Maísa Miranda Araújo
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| | - Carolina de Oliveira Vogado
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| | - Marcela Moraes Mendes
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| | - Vivian Siqueira Santos Gonçalves
- Graduate Program in Public Health, Department of Nutrition, Faculty of Health Science, University of Brasília, Brasília, Federal District, Brazil
| | - Patrícia Borges Botelho
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
25
|
Yosi F, Sharma S, Sener-Aydemir A, Koger S, Baskara AP, Metzler-Zebeli BU. Short-chain fatty acids promote jejunal barrier function and caecal muscle contractibility in laying hens ex vivo. Br Poult Sci 2021; 63:406-413. [PMID: 34806514 DOI: 10.1080/00071668.2021.2008312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Short-chain fatty acids (SCFA) exert beneficial actions in the gut; nevertheless, information about the effect of SCFA on physiological responses in the small intestine of chickens is rare.2. The aim of this study was to assess the effect of 1) different molar acetate:butyrate ratios (Ac:But; Experiment 1; 78.5% acetate and 7.3% butyrate versus 71.4% acetate and 14.0% butyrate) and 2) SCFA concentrations (Experiment 2; final concentration in chambers: 70.5 versus 141 µmol SCFA/ml buffer) on the jejunal and caecal contractibility and jejunal barrier function in laying hens. The change in muscle contractibility due to the SCFA was measured in mid-jejunal and caecal segments (n = 4 each per hen) from four laying hens using the organ bath system after precontraction with acetylcholine for 15 min. Changes in short-circuit current (ISC) and transepithelial tissue conductivity (GT) as indicators for net ion flux and barrier function, respectively, were measured in mid-jejunal tissue (n = 3/hen and treatment), mounted into Ussing chambers.3. In Experiment 1, the addition of SCFA, irrespective of the Ac:But ratio, decreased jejunal muscle tension (P < 0.05), jejunal GT as well as caused a less negative ISC (P < 0.05). In Experiment 2, the increasing SCFA concentrations increased the caecal muscle contraction and jejunal ISC by 75.6% while decreasing the GT by up to 19.6% (P < 0.05).4. In conclusion, results demonstrate that increasing butyrate proportions and SCFA concentrations stimulate caecal muscle contraction, thereby increasing caecal mixing and emptying in vivo. Jejunal ISC and GT support a strong SCFA sensing capacity in the jejunum, as both, more butyrate and higher SCFA, increased mucosal ion uptake and barrier function.
Collapse
Affiliation(s)
- F Yosi
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang, Indonesia
| | - S Sharma
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Vienna, Austria.,Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - A Sener-Aydemir
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Vienna, Austria.,Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - S Koger
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Vienna, Austria.,Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - A P Baskara
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - B U Metzler-Zebeli
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
26
|
Toll-Like Receptors as Drug Targets in the Intestinal Epithelium. Handb Exp Pharmacol 2021; 276:291-314. [PMID: 34783909 DOI: 10.1007/164_2021_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) receptors are responsible for initiation of inflammatory responses by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) or in molecules released following tissue damage in disease states. Expressed in the intestinal epithelium, they initiate an intracellular signalling cascade in response to molecular patterns resulting in the activation of transcription factors and the release of cytokines, chemokines and vasoactive molecules. Intestinal epithelial cells are exposed to microorganisms on a daily basis and form part of the primary defence against pathogens by using TLRs. TLRs and their accessory molecules are subject to tight regulation in these cells so as to not overreact or react in unnecessary circumstances. TLRs have more recently been associated with chronic inflammatory diseases as a result of inappropriate regulation, this can be damaging and lead to chronic inflammatory diseases such as inflammatory bowel disease (IBD). Targeting Toll-like receptors offers a potential therapeutic approach for IBD. In this review, the current knowledge on the TLRs is reviewed along with their association with intestinal diseases. Finally, compounds that target TLRs in animal models of IBD, clinic trials and their future merit as targets are discussed.
Collapse
|
27
|
Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 2021; 203:5281-5308. [PMID: 34405262 PMCID: PMC8370661 DOI: 10.1007/s00203-021-02516-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
The research on human gut microbiome, regarded as the black box of the human body, is still at the stage of infancy as the functional properties of the complex gut microbiome have not yet been understood. Ongoing metagenomic studies have deciphered that the predominant microbial communities belong to eubacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Cyanobacteria, Verrucomicrobia and archaebacterial phylum Euryarchaeota. The indigenous commensal microbial flora prevents opportunistic pathogenic infection and play undeniable roles in digestion, metabolite and signaling molecule production and controlling host's cellular health, immunity and neuropsychiatric behavior. Besides maintaining intestinal health via short-chain fatty acid (SCFA) production, gut microbes also aid in neuro-immuno-endocrine modulatory molecule production, immune cell differentiation and glucose and lipid metabolism. Interdependence of diet and intestinal microbial diversity suggests the effectiveness of pre- and pro-biotics in maintenance of gut and systemic health. Several companies worldwide have started potentially exploiting the microbial contribution to human health and have translated their use in disease management and therapeutic applications. The present review discusses the vast diversity of microorganisms playing intricate roles in human metabolism. The contribution of the intestinal microbiota to regulate systemic activities including gut-brain-immunity crosstalk has been focused. To the best of our knowledge, this review is the first of its kind to collate and discuss the companies worldwide translating the multi-therapeutic potential of human intestinal microbiota, based on the multi-omics studies, i.e. metagenomics and metabolomics, as ready solutions for several metabolic and systemic disorders.
Collapse
Affiliation(s)
- Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| |
Collapse
|
28
|
Li Y, Cui J, Liu Y, Chen K, Huang L, Liu Y. Oral, Tongue-Coating Microbiota, and Metabolic Disorders: A Novel Area of Interactive Research. Front Cardiovasc Med 2021; 8:730203. [PMID: 34490384 PMCID: PMC8417575 DOI: 10.3389/fcvm.2021.730203] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Interactions between colonizing microbiota and the host have been fully confirmed, among which the tongue-coating microbiota have a moderate rate of renewal and disease sensitivity and are easily obtained, making them an ideal research subject. Oral microbiota disorders are related to diabetes, obesity, cardiovascular disease, cancer, and other systemic diseases. As an important part of the oral cavity, tongue-coating microbiota can promote gastritis and digestive system tumors, affecting the occurrence and development of multiple chronic diseases. Common risk factors include diet, age, and immune status, among others. Metabolic regulatory mechanisms may be similar between the tongue and gut microbiota. Tongue-coating microbiota can be transferred to the respiratory or digestive tract and create a new balance with local microorganisms, together with the host epithelial cells forming a biological barrier. This barrier is involved in the production and circulation of nitric oxide (NO) and the function of taste receptors, forming the oral-gut-brain axis (similar to the gut-brain axis). At present, the disease model and mechanism of tongue-coating microbiota affecting metabolism have not been widely studied, but they have tremendous potential.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Liang C, Zhou XH, Jiao YH, Guo MJ, Meng L, Gong PM, Lyu LZ, Niu HY, Wu YF, Chen SW, Han X, Zhang LW. Ligilactobacillus Salivarius LCK11 Prevents Obesity by Promoting PYY Secretion to Inhibit Appetite and Regulating Gut Microbiota in C57BL/6J Mice. Mol Nutr Food Res 2021; 65:e2100136. [PMID: 34272917 DOI: 10.1002/mnfr.202100136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Obesity is a common disease worldwide and there is an urgent need for strategies to preventing obesity. METHODS AND RESULTS The anti-obesity effect and mechanism of Ligilactobacillus salivarius LCK11 (LCK11) is studied using a C57BL/6J male mouse model in which obesity is induced by a high-fat diet (HFD). Results show that LCK11 can prevent HFD-induced obesity, reflected as inhibited body weight gain, abdominal and liver fat accumulation and dyslipidemia. Analysis of its mechanism shows that on the one hand, LCK11 can inhibit food intake through significantly improving the transcriptional and translational levels of peptide YY (PYY) in the rectum, in addition to the eventual serum PYY level; this is attributed to the activation of the toll-like receptor 2/nuclear factor-κB signaling pathway in enteroendocrine L cells by the peptidoglycan of LCK11. On the other hand, LCK11 supplementation effectively reduces the Firmicutes/Bacteroidetes ratio and shifts the overall structure of the HFD-disrupted gut microbiota toward that of mice fed on a low-fat diet; this also contributes to preventing obesity. CONCLUSION LCK11 shows the potential to be used as a novel probiotic for preventing obesity by both promoting PYY secretion to inhibit food intake and regulating gut microbiota.
Collapse
Affiliation(s)
- Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | | | - Yue-Hua Jiao
- Drug safety evaluation center, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Mei-Jie Guo
- Department of Adolescent Medical Clinic, Harbin Children's Hospital, Harbin, 150010, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Heilongjiang University, Harbin, 150500, China
| | - Pi-Min Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Lin-Zheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Hai-Yue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Yi-Fan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Shi-Wei Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
30
|
Mirzaei R, Bouzari B, Hosseini-Fard SR, Mazaheri M, Ahmadyousefi Y, Abdi M, Jalalifar S, Karimitabar Z, Teimoori A, Keyvani H, Zamani F, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother 2021; 139:111661. [PMID: 34243604 DOI: 10.1016/j.biopha.2021.111661] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
During the past decade, accumulating evidence from the research highlights the suggested effects of bacterial communities of the human gut microbiota and their metabolites on health and disease. In this regard, microbiota-derived metabolites and their receptors, beyond the immune system, maintain metabolism homeostasis, which is essential to maintain the host's health by balancing the utilization and intake of nutrients. It has been shown that gut bacterial dysbiosis can cause pathology and altered bacterial metabolites' formation, resulting in dysregulation of the immune system and metabolism. The short-chain fatty acids (SCFAs), such as butyrate, acetate, and succinate, are produced due to the fermentation process of bacteria in the gut. It has been noted remodeling in the gut microbiota metabolites associated with the pathophysiology of several neurological disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, stress, anxiety, depression, autism, vascular dementia, schizophrenia, stroke, and neuromyelitis optica spectrum disorders, among others. This review will discuss the current evidence from the most significant studies dealing with some SCFAs from gut microbial metabolism with selected neurological disorders.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mazaheri
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimitabar
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Han K, Singh K, Rodman MJ, Hassanzadeh S, Baumer Y, Huffstutler RD, Chen J, Candia J, Cheung F, Stagliano KER, Pirooznia M, Powell-Wiley TM, Sack MN. Identification and Validation of Nutrient State-Dependent Serum Protein Mediators of Human CD4 + T Cell Responsiveness. Nutrients 2021; 13:nu13051492. [PMID: 33924911 PMCID: PMC8146063 DOI: 10.3390/nu13051492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Intermittent fasting and fasting mimetic diets ameliorate inflammation. Similarly, serum extracted from fasted healthy and asthmatic subjects' blunt inflammation in vitro, implicating serum components in this immunomodulation. To identify the proteins orchestrating these effects, SOMAScan technology was employed to evaluate serum protein levels in healthy subjects following an overnight, 24-h fast and 3 h after refeeding. Partial least square discriminant analysis identified several serum proteins as potential candidates to confer feeding status immunomodulation. The characterization of recombinant IGFBP1 (elevated following 24 h of fasting) and PYY (elevated following refeeding) in primary human CD4+ T cells found that they blunted and induced immune activation, respectively. Furthermore, integrated univariate serum protein analysis compared to RNA-seq analysis from peripheral blood mononuclear cells identified the induction of IL1RL1 and MFGE8 levels in refeeding compared to the 24-h fasting in the same study. Subsequent quantitation of these candidate proteins in lean versus obese individuals identified an inverse regulation of serum levels in the fasted subjects compared to the obese subjects. In parallel, IL1RL1 and MFGE8 supplementation promoted increased CD4+ T responsiveness to T cell receptor activation. Together, these data show that caloric load-linked conditions evoke serological protein changes, which in turn confer biological effects on circulating CD4+ T cell immune responsiveness.
Collapse
Affiliation(s)
- Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
| | - Komudi Singh
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (M.P.)
| | - Matthew J. Rodman
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
| | - Shahin Hassanzadeh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
| | - Yvonne Baumer
- Determinants of Obesity and Cardiovascular Risk, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.B.); (T.M.P.-W.)
| | - Rebecca D. Huffstutler
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Jinguo Chen
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
| | - Julián Candia
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Foo Cheung
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
| | - Katherine E. R. Stagliano
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (M.P.)
| | - Tiffany M. Powell-Wiley
- Determinants of Obesity and Cardiovascular Risk, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.B.); (T.M.P.-W.)
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|
32
|
Tian J, Zhao Y, Wang L, Li L. Role of TLR4/MyD88/NF-κB signaling in heart and liver-related complications in a rat model of type 2 diabetes mellitus. J Int Med Res 2021; 49:300060521997590. [PMID: 33787393 PMCID: PMC8020098 DOI: 10.1177/0300060521997590] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aims To analyze expression of members of the Toll-like receptor (TLR)4/myeloid
differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling
pathway in the heart and liver in a rat model of type 2 diabetes mellitus
(T2DM). Our overall goal was to understand the underlying pathophysiological
mechanisms. Methods We measured fasting blood glucose (FBG) and insulin (FINS) in a rat model of
T2DM. Expression of members of the TLR4/MyD88/NF-κB signaling pathway as
well as downstream cytokines was investigated. Levels of mRNA and protein
were assessed using quantitative real-time polymerase chain reaction and
western blotting, respectively. Protein content of tissue homogenates was
assessed using enzyme-linked immunosorbent assays. Results Diabetic rats had lower body weights, higher FBG, higher FINS, and higher
intraperitoneal glucose tolerance than normal rats. In addition, biochemical
indicators related to heart and liver function were elevated in diabetic
rats compared with normal rats. TLR4 and MyD88 were involved in the
occurrence of T2DM as well as T2DM-related heart and liver complications.
TLR4 caused T2DM-related heart and liver complications through activation of
NF-κB. Conclusions TLR4/MyD88/NF-κB signaling induces production of tumor necrosis factor-α,
interleukin-6, and monocyte chemoattractant protein-1, leading to the heart-
and liver-related complications of T2DM.
Collapse
Affiliation(s)
- Jiajia Tian
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Yanyan Zhao
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Lingling Wang
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Lin Li
- The PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| |
Collapse
|
33
|
Brain-Gut-Microbiome Interactions and Intermittent Fasting in Obesity. Nutrients 2021; 13:nu13020584. [PMID: 33578763 PMCID: PMC7916460 DOI: 10.3390/nu13020584] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
The obesity epidemic and its metabolic consequences are a major public health problem both in the USA and globally. While the underlying causes are multifactorial, dysregulations within the brain–gut–microbiome (BGM) system play a central role. Normal eating behavior is coordinated by the tightly regulated balance between intestinal, extraintestinal and central homeostatic and hedonic mechanisms, resulting in stable body weight. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie-dense food has played a crucial role in shifting this balance towards hedonic eating through both central (disruptions in dopaminergic signaling) and intestinal (vagal afferent function, metabolic toxemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. The balance between homeostatic and hedonic eating behaviors is not only influenced by the amount and composition of the diet, but also by the timing and rhythmicity of food ingestion. Circadian rhythmicity affects both eating behavior and multiple gut functions, as well as the composition and interactions of the microbiome with the gut. Profound preclinical effects of intermittent fasting and time restricted eating on the gut microbiome and on host metabolism, mostly demonstrated in animal models and in a limited number of controlled human trials, have been reported. In this Review, we will discuss the effects of time-restricted eating on the BGM and review the promising effects of this eating pattern in obesity treatment.
Collapse
|
34
|
Shin SY, Hussain Z, Lee YJ, Park H. An altered composition of fecal microbiota, organic acids, and the effect of probiotics in the guinea pig model of postoperative ileus. Neurogastroenterol Motil 2021; 33:e13966. [PMID: 32815235 DOI: 10.1111/nmo.13966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this study is to investigate the altered composition of fecal microbiota, organic acids, and the effect of probiotics in the guinea pig model of the postoperative ileus (POI). METHODS A laparotomy with cecal manipulation was performed to induce POI in guinea pigs. Fecal pellets were collected before the operation (the baseline) and 1, 3, and 5 days after the operation. The extracted fecal DNA was amplified and sequenced using the Illumina MiSeq sequencing system. The same POI procedures were performed after oral pretreatment of the probiotics for 7 days before operation. The effect of the probiotics on the selected taxa and fecal acetate were evaluated, as were the butyrate levels. The colonic transit was assessed by measurement of the fecal pellet output. KEY RESULTS The communities of the baseline and POI groups indicated significantly distinct composition. The genera Bifidobacterium and Lactobacillus were more abundant in the baseline group compared with the POI groups, and Bacteroides and Blautia were more abundant in the POI groups. Decreased abundances of the species Bifidobacterium bifidum and Bifidobacterium longum after the POI procedure were significantly increased in the probiotics group. The decreased fecal butyrate level after the POI procedure was significantly increased, and colonic transit was significantly improved in the probiotics group. CONCLUSIONS AND INFERENCES POI induces gut bacterial dysbiosis. Moreover, pretreatment of probiotics before operation restores the beneficial bacterial species, butyrate production, and bowel movement. The modulation of gut microbiota may help the treatment and prevention of POI.
Collapse
Affiliation(s)
- Seung Yong Shin
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Zahid Hussain
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ju Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Blachier F, Andriamihaja M, Larraufie P, Ahn E, Lan A, Kim E. Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. Am J Physiol Gastrointest Liver Physiol 2021; 320:G125-G135. [PMID: 33084401 DOI: 10.1152/ajpgi.00261.2020] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among bacterial metabolites, hydrogen sulfide (H2S) has received increasing attention. The epithelial cells of the large intestine are exposed to two sources of H2S. The main one is the luminal source that results from specific bacteria metabolic activity toward sulfur-containing substrates. The other source in colonocytes is from the intracellular production mainly through cystathionine β-synthase (CBS) activity. H2S is oxidized by the mitochondrial sulfide oxidation unit, resulting in ATP synthesis, and, thus, establishing this compound as the first mineral energy substrate in colonocytes. However, when the intracellular H2S concentration exceeds the colonocyte capacity for its oxidation, it inhibits the mitochondrial respiratory chain, thus affecting energy metabolism. Higher luminal H2S concentration affects the integrity of the mucus layer and displays proinflammatory effects. However, a low/minimal amount of endogenous H2S exerts an anti-inflammatory effect on the colon mucosa, pointing out the ambivalent effect of H2S depending on its intracellular concentration. Regarding colorectal carcinogenesis, forced CBS expression in late adenoma-like colonocytes increased their proliferative activity, bioenergetics capacity, and tumorigenicity; whereas, genetic ablation of CBS in mice resulted in a reduced number of mutagen-induced aberrant crypt foci. Activation of endogenous H2S production and low H2S extracellular concentration enhance cancerous colorectal cell proliferation. Higher exogenous H2S concentrations markedly reduce mitochondrial ATP synthesis and proliferative capacity in cancerous cells and enhance glycolysis but do not affect their ATP cell content or viability. Thus, it appears that, notably through an effect on colonocyte energy metabolism, endogenous and microbiota-derived H2S are involved in the host intestinal physiology and physiopathology.
Collapse
Affiliation(s)
- François Blachier
- UMR PNCA, Nutrition Physiology and Alimentary Behavior, Université Paris-Saclay, AgroParisTech, INRAE, Paris, France
| | - Mireille Andriamihaja
- UMR PNCA, Nutrition Physiology and Alimentary Behavior, Université Paris-Saclay, AgroParisTech, INRAE, Paris, France
| | - Pierre Larraufie
- UMR PNCA, Nutrition Physiology and Alimentary Behavior, Université Paris-Saclay, AgroParisTech, INRAE, Paris, France
| | - Eunyeong Ahn
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| | - Annaïg Lan
- UMR PNCA, Nutrition Physiology and Alimentary Behavior, Université Paris-Saclay, AgroParisTech, INRAE, Paris, France
| | - Eunjung Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
36
|
Corrigendum to " Lycium Berry Polysaccharides Strengthen Gut Microenvironment and Modulate Gut Microbiota of the Mice". EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020. [PMID: 33301546 DOI: 10.1155/2020/8097021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[This corrects the article DOI: 10.1155/2020/8097021.].
Collapse
|
37
|
Aktar R, Parkar N, Stentz R, Baumard L, Parker A, Goldson A, Brion A, Carding S, Blackshaw A, Peiris M. Human resident gut microbe Bacteroides thetaiotaomicron regulates colonic neuronal innervation and neurogenic function. Gut Microbes 2020; 11:1745-1757. [PMID: 32515657 PMCID: PMC7524364 DOI: 10.1080/19490976.2020.1766936] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND AIMS As the importance of gut-brain interactions increases, understanding how specific gut microbes interact with the enteric nervous system (ENS), which is the first point of neuronal exposure becomes critical. Our aim was to understand how the dominant human gut bacterium Bacteroides thetaiotaomicron (Bt) regulates anatomical and functional characteristics of the ENS. METHODS Neuronal cell populations, as well as enteroendocrine cells, were assessed in proximal colonic sections using fluorescent immunohistochemistry in specific pathogen-free (SPF), germ-free (GF) and Bt conventionalized-germ-free mice (Bt-CONV). RNA expression of tight junction proteins and toll-like receptors (TLR) were measured using qPCR. Colonic motility was analyzed using in vitro colonic manometry. RESULTS Decreased neuronal and vagal afferent innervation observed in GF mice was normalized by Bt-CONV with increased neuronal staining in mucosa and myenteric plexus. Bt-CONV also restored expression of nitric oxide synthase expressing inhibitory neurons and of choline acetyltransferase and substance P expressing excitatory motor neurons comparable to those of SPF mice. Neurite outgrowth and glial cells were upregulated by Bt-CONV. RNA expression of tight junction protein claudin 3 was downregulated while TLR2 was upregulated by Bt-CONV. The enteroendocrine cell subtypes L-cells and enterochromaffin cells were reduced in GF mice, with Bt-CONV restoring L-cell numbers. Motility as measured by colonic migrating motor complexes (CMMCs) increased in GF and Bt-CONV. CONCLUSION Bt, common gut bacteria, is critical in regulating enteric neuronal and enteroendocrine cell populations, and neurogenic colonic activity. This highlights the potential use of this resident gut bacteria for maintaining healthy gut function.
Collapse
Affiliation(s)
- Rubina Aktar
- Blizard Institute, Queen Mary University of London, London, UK
| | - Nabil Parkar
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Lucas Baumard
- Blizard Institute, Queen Mary University of London, London, UK
| | | | | | | | - Simon Carding
- Quadram Institute Bioscience, Norwich, UK,Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Madusha Peiris
- Blizard Institute, Queen Mary University of London, London, UK,CONTACT Madusha Peiris Blizard Institute, Queen Mary University of London,LondonE1 2AT, UK
| |
Collapse
|
38
|
Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol 2020; 17:655-672. [PMID: 32855515 PMCID: PMC7841622 DOI: 10.1038/s41575-020-0341-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Normal eating behaviour is coordinated by the tightly regulated balance between intestinal and extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction is a complex, maladaptive eating behaviour that reflects alterations in brain-gut-microbiome (BGM) interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM axis has been implicated in the development of food addiction, with both brain to gut and gut to brain signalling playing a role. Early-life influences can prime the infant gut microbiome and brain for food addiction, which might be further reinforced by increased antibiotic usage and dietary patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie-dense food can further shift this balance towards hedonic eating through both central (disruptions in dopaminergic signalling) and intestinal (vagal afferent function, metabolic endotoxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. In this Review, we propose a systems biology model of BGM interactions, which incorporates published reports on food addiction, and provides novel insights into treatment targets aimed at each level of the BGM axis.
Collapse
Affiliation(s)
- Arpana Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA.
- Ahmanson-Lovelace Brain Mapping Center at University of California Los Angeles, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
40
|
Bacillus subtilis HU58 and Bacillus coagulans SC208 Probiotics Reduced the Effects of Antibiotic-Induced Gut Microbiome Dysbiosis in An M-SHIME ® Model. Microorganisms 2020; 8:microorganisms8071028. [PMID: 32664604 PMCID: PMC7409217 DOI: 10.3390/microorganisms8071028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Benefits associated with probiotic use have been reported; however, the mechanisms behind these benefits are poorly understood. The effects of a probiotic formulation (MegaDuo™) containing Bacillus coagulans SC208 and Bacillus subtilis HU58 on intestinal permeability and immune markers was assessed using a combination of the in vitro gut model, the mucosal simulator of the human intestinal microbial ecosystem (M-SHIME®), and an in vitro inflammatory bowel disease-like Caco-2/THP1 co-culture model in both healthy and antibiotic-induced dysbiosis conditions. Established M-SHIME® proximal colon vessels were treated with/without clindamycin (1 week) and then with/without daily MegaDuo™ treatment (2 weeks). The mucosal and luminal microbial communities were sampled weekly. Suspensions were removed from the proximal colon vessels after 1 and 2 weeks of MegaDuo™ treatment and added to the co-culture system. Transepithelial resistance (membrane barrier function), cytokine/chemokine release, and NFκB activity were then measured. Under conditions of antibiotic-induced dysbiosis, suspensions from MegaDuo™ treated vessels showed reduced gut membrane barrier damage and decreased levels of TNFα and IL-6 compared with suspensions from untreated vessels; no appreciable differences were observed under healthy conditions. MegaDuo™ treatment had no effect on NFκB activity of THP1-Blue™ cells. The potential benefits of MegaDuo™ treatment appeared most evident after 2 weeks of treatment.
Collapse
|
41
|
Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020; 43:337-353. [PMID: 32101483 PMCID: PMC7573801 DOI: 10.1146/annurev-neuro-091619-022657] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Laura E Rupprecht
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Winston W Liu
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Peter Weng
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Diego V Bohórquez
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
42
|
Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020. [PMID: 32101483 DOI: 10.1146/annurev‐neuro‐091619‐022657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Laura E Rupprecht
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Winston W Liu
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Peter Weng
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Diego V Bohórquez
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
43
|
Lupien-Meilleur J, Andrich DE, Quinn S, Micaelli-Baret C, St-Amand R, Roy D, St-Pierre DH. Interplay Between Gut Microbiota and Gastrointestinal Peptides: Potential Outcomes on the Regulation of Glucose Control. Can J Diabetes 2020; 44:359-367. [DOI: 10.1016/j.jcjd.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
|
44
|
Pearce SC, Weber GJ, van Sambeek DM, Soares JW, Racicot K, Breault DT. Intestinal enteroids recapitulate the effects of short-chain fatty acids on the intestinal epithelium. PLoS One 2020; 15:e0230231. [PMID: 32240190 PMCID: PMC7117711 DOI: 10.1371/journal.pone.0230231] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Enteroids are cultured primary intestinal epithelial cells that recapitulate epithelial lineage development allowing for a more complex and physiologically relevant model for scientific study. The large presence of intestinal stem cells (ISC) in these enteroids allows for the study of metabolite effects on cellular processes and resulting progeny cells. Short-chain fatty acids (SCFA) such as butyrate (BUT) are bacterial metabolites produced in the gastrointestinal tract that are considered to be beneficial to host cells. Therefore, the objective was to study the effects of SCFAs on biomarkers of ISC activity, differentiation, barrier function and epithelial defense in the intestine using mouse and human enteroid models. Enteroids were treated with two concentrations of acetate (ACET), propionate (PROP), or BUT for 24 h. Enteroids treated with BUT or PROP showed a decrease in proliferation via EdU uptake relative to the controls in both mouse and human models. Gene expression of Lgr5 was shown to decrease with BUT and PROP treatments, but increased with ACET. As a result of BUT and PROP treatments, there was an increase in differentiation markers for enterocyte, Paneth, goblet, and enteroendocrine cells. Gene expression of antimicrobial proteins Reg3β, Reg3γ, and Defb1 were stimulated by BUT and PROP, but not by ACET which had a greater effect on expression of tight junction genes Cldn3 and Ocln in 3D enteroids. Similar results were obtained with human enteroids treated with 10 mM SCFAs and grown in either 3D or Transwell™ model cultures, although tight junctions were influenced by BUT and PROP, but not ACET in monolayer format. Furthermore, BUT and PROP treatments increased transepithelial electrical resistance after 24 h compared to ACET or control. Overall, individual SCFAs are potent stimulators of cellular gene expression, however, PROP and especially BUT show great efficacy for driving cell differentiation and gene expression.
Collapse
Affiliation(s)
- Sarah C. Pearce
- Performance Nutrition Team, Combat Feeding Directorate, Combat Capabilities Development Command Soldier Center, Natick, Massachusetts, United States of America
- * E-mail:
| | - Gregory J. Weber
- Performance Nutrition Team, Combat Feeding Directorate, Combat Capabilities Development Command Soldier Center, Natick, Massachusetts, United States of America
| | - Dana M. van Sambeek
- Performance Nutrition Team, Combat Feeding Directorate, Combat Capabilities Development Command Soldier Center, Natick, Massachusetts, United States of America
| | - Jason W. Soares
- Biological Sciences & Technology Team, Soldier Performance Optimization Directorate, Combat Capabilities Development Command Soldier Center, Natick, Massachusetts, United States of America
| | - Kenneth Racicot
- Biological Sciences & Technology Team, Soldier Performance Optimization Directorate, Combat Capabilities Development Command Soldier Center, Natick, Massachusetts, United States of America
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
45
|
Abstract
In recent years, the importance of the gut microbiota in human health has been revealed and many publications have highlighted its role as a key component of human physiology. Owing to the use of modern sequencing approaches, the characterisation of the microbiome in healthy individuals and in disease has demonstrated a disturbance of the microbiota, or dysbiosis, associated with pathological conditions. The microbiota establishes a symbiotic crosstalk with their host: commensal microbes benefit from the nutrient-rich environment provided by the gut and the microbiota produces hundreds of proteins and metabolites that modulate key functions of the host, including nutrient processing, maintenance of energy homoeostasis and immune system development. Many bacteria-derived metabolites originate from dietary sources. Among them, an important role has been attributed to the metabolites derived from the bacterial fermentation of dietary fibres, namely SCFA linking host nutrition to intestinal homoeostasis maintenance. SCFA are important fuels for intestinal epithelial cells (IEC) and regulate IEC functions through different mechanisms to modulate their proliferation, differentiation as well as functions of subpopulations such as enteroendocrine cells, to impact gut motility and to strengthen the gut barrier functions as well as host metabolism. Recent findings show that SCFA, and in particular butyrate, also have important intestinal and immuno-modulatory functions. In this review, we discuss the mechanisms and the impact of SCFA on gut functions and host immunity and consequently on human health.
Collapse
|
46
|
Teichman EM, O'Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When Rhythms Meet the Blues: Circadian Interactions with the Microbiota-Gut-Brain Axis. Cell Metab 2020; 31:448-471. [PMID: 32130879 DOI: 10.1016/j.cmet.2020.02.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/18/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
The microbiota-gut-brain axis encompasses a bidirectional mode of communication between the microorganisms residing in our gut, and our brain function and behavior. The composition of the gut microbiota is subject to diurnal variation and is entrained by host circadian rhythms. In turn, a diverse microbiota is essential for optimal regulation of host circadian pathways. Disruption of the cyclical nature of this microbe-host interaction profoundly influences disease pathology and severity. This review aims to summarize current knowledge on this bidirectional relationship. Indeed, the past few years have revealed promising data regarding the relationship between the microbiota-gut-brain axis and circadian rhythms and how they act in concert to influence disease, but further research needs to be done to examine how they coalesce to modulate severity of, and risk for, certain diseases. Moreover, there is a need for a greater understanding of the molecular mechanisms underlying the close relationship between circadian-microbiome-brain interactions.
Collapse
Affiliation(s)
| | | | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
47
|
Guida C, Ramracheya R. PYY, a Therapeutic Option for Type 2 Diabetes? CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551419892985. [PMID: 32030069 PMCID: PMC6977199 DOI: 10.1177/1179551419892985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022]
Abstract
Metabolic surgery leads to rapid and effective diabetes reversal in humans, by weight-independent mechanisms. The crucial improvement in pancreatic islet function observed after surgery is induced by alteration in several factors, including gut hormones. In addition to glucagon-like peptide 1 (GLP-1), increasing lines of evidence show that peptide tyrosine tyrosine (PYY) plays a key role in the metabolic benefits associated with the surgery, ranging from appetite regulation to amelioration of islet secretory properties and survival. Here, we summarize the current knowledge and the latest advancements in the field, which pitch a strong case for the development of novel PYY-based therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Abstract
Preclinical evidence strongly suggests a role for the gut microbiome in modulating the host central nervous system function and behavior. Several communication channels have been identified that enable microbial signals to reach the brain and that enable the brain to influence gut microbial composition and function. In rodent models, endocrine, neural, and inflammatory signals generated by gut microbes can alter brain structure and function, while autonomic nervous system activity can affect the microbiome by modulating the intestinal environment and by directly regulating microbial behavior. The amount of information that reaches the brain is dynamically regulated by the blood-brain barrier and the intestinal barrier. In humans, associations between gut microbial composition and function and several brain disorders have been reported, and fecal microbial transplants from patient populations into gnotobiotic mice have resulted in the reproduction of homologous features in the recipient mice. However, in contrast to preclinical findings, there is little information about a causal role of the gut microbiome in modulating human central nervous system function and behavior. Longitudinal studies in large patient populations with therapeutic interventions are required to demonstrate such causality, which will provide the basis for future clinical trials. © 2020 American Physiological Society. Compr Physiol 10:57-72, 2020.
Collapse
Affiliation(s)
- Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Clair R Martin
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
49
|
Wu Y, He H, Cheng Z, Bai Y, Ma X. The Role of Neuropeptide Y and Peptide YY in the Development of Obesity via Gut-brain Axis. Curr Protein Pept Sci 2019; 20:750-758. [PMID: 30678628 DOI: 10.2174/1389203720666190125105401] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Abstract
Obesity is one of the main challenges of public health in the 21st century. Obesity can induce a series of chronic metabolic diseases, such as diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver, which seriously affect human health. Gut-brain axis, the two-direction pathway formed between enteric nervous system and central nervous system, plays a vital role in the occurrence and development of obesity. Gastrointestinal signals are projected through the gut-brain axis to nervous system, and respond to various gastrointestinal stimulation. The central nervous system regulates visceral activity through the gut-brain axis. Brain-gut peptides have important regulatory roles in the gut-brain axis. The brain-gut peptides of the gastrointestinal system and the nervous system regulate the gastrointestinal movement, feeling, secretion, absorption and other complex functions through endocrine, neurosecretion and paracrine to secrete peptides. Both neuropeptide Y and peptide YY belong to the pancreatic polypeptide family and are important brain-gut peptides. Neuropeptide Y and peptide YY have functions that are closely related to appetite regulation and obesity formation. This review describes the role of the gutbrain axis in regulating appetite and maintaining energy balance, and the functions of brain-gut peptides neuropeptide Y and peptide YY in obesity. The relationship between NPY and PYY and the interaction between the NPY-PYY signaling with the gut microbiota are also described in this review.
Collapse
Affiliation(s)
- Yi Wu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hengxun He
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhibin Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan 650201, China
| | - Yueyu Bai
- Animal Health Supervision of Henan province, Breeding Animal Genetic Performance Measurement Center of Henan province, Zhengzhou, Henan 450008, China.,Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xi Ma
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
50
|
O’Callaghan AA, Corr SC. Establishing Boundaries: The Relationship That Exists between Intestinal Epithelial Cells and Gut-Dwelling Bacteria. Microorganisms 2019; 7:microorganisms7120663. [PMID: 31818022 PMCID: PMC6956261 DOI: 10.3390/microorganisms7120663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022] Open
Abstract
The human gastrointestinal (GI) tract is a highly complex organ in which various dynamic physiological processes are tightly coordinated while interacting with a complex community of microorganisms. Within the GI tract, intestinal epithelial cells (IECs) create a structural interface that separates the intestinal lumen from the underlying lamina propria. In the lumen, gut-dwelling microbes play an essential role in maintaining gut homeostasis and functionality. Whether commensal or pathogenic, their interaction with IECs is inevitable. IECs and myeloid immune cells express an array of pathogen recognition receptors (PRRs) that define the interaction of both pathogenic and beneficial bacteria with the intestinal mucosa and mount appropriate responses including induction of barrier-related factors which enhance the integrity of the epithelial barrier. Indeed, the integrity of this barrier and induction of appropriate immune responses is critical to health status, with defects in this barrier and over-activation of immune cells by invading microbes contributing to development of a range of inflammatory and infectious diseases. This review describes the complexity of the GI tract and its interactions with gut bacteria.
Collapse
|