1
|
Varjú I, Tanka-Salamon A, Kolev K. Neutrophil Extracellular Traps: At the Interface of Thrombosis and Comorbidities. Semin Thromb Hemost 2025. [PMID: 40020757 DOI: 10.1055/a-2548-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Since their discovery in 2004, neutrophil extracellular traps (NETs) have been at the center of multidisciplinary attention. Although a key tool in neutrophil-mediated immunity, these filamentous, enzyme-enriched DNA-histone complexes can be detrimental to tissues and have been identified as an underlying factor in a range of pathological conditions. Building on more than 20 years of research into NETs, this review places thrombosis, the pathological formation of blood clots, in the spotlight. From this point of view, we discuss the structure and formation of NETs, as well as the interaction of their components with the hemostatic system, dissecting the pathways through which NETs exert their marked effect on formation and the dissolution of thrombi. We pay distinct attention to the latest developments in the research of a key player in NET formation, peptidyl-arginine-deiminase (PAD) enzymes: their types, sources, and potential cross-play with the hemostatic machinery. Besides these molecular details, we elaborate on the link between pathological thrombosis, NETs, and widespread conditions that represent a debilitating public health burden worldwide, such as sepsis and neoplasms. Finally, future implications on the treatment of thrombosis-related conditions will be discussed.
Collapse
Affiliation(s)
- Imre Varjú
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Anna Tanka-Salamon
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Krasimir Kolev
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Myers C, Cornwall GA. Host defense amyloids: Biosensors of the immune system? Andrology 2024; 12:973-980. [PMID: 37963844 DOI: 10.1111/andr.13555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
There is considerable evidence showing that highly ordered aggregate structures known as amyloids carry out essential biological roles in species ranging from bacteria to humans. Indeed, many antimicrobial peptides/proteins form amyloids to carry out their host defense functions and many amyloids are antimicrobial. The similarity of host defense amyloids from bacterial biofilms to the mammalian epididymal amyloid matrix implies highly conserved host defense structures/functions. With an emphasis on the epididymal amyloid matrix, here we review the common properties of host defense amyloids including unique traits that would allow them to function as powerful biosensors of the immune system.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
3
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Tu H, Ren H, Jiang J, Shao C, Shi Y, Li P. Dying to Defend: Neutrophil Death Pathways and their Implications in Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306457. [PMID: 38044275 PMCID: PMC10885667 DOI: 10.1002/advs.202306457] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Neutrophils, accounting for ≈70% of human peripheral leukocytes, are key cells countering bacterial and fungal infections. Neutrophil homeostasis involves a balance between cell maturation, migration, aging, and eventual death. Neutrophils undergo different death pathways depending on their interactions with microbes and external environmental cues. Neutrophil death has significant physiological implications and leads to distinct immunological outcomes. This review discusses the multifarious neutrophil death pathways, including apoptosis, NETosis, pyroptosis, necroptosis, and ferroptosis, and outlines their effects on immune responses and disease progression. Understanding the multifaceted aspects of neutrophil death, the intersections among signaling pathways and ramifications of immunity will help facilitate the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Haiyue Tu
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Haoyu Ren
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Junjie Jiang
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Peishan Li
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
5
|
Grover SP, Bharathi V, Posma JJ, Griffin JH, Palumbo JS, Mackman N, Antoniak S. Thrombin-mediated activation of PAR1 enhances doxorubicin-induced cardiac injury in mice. Blood Adv 2023; 7:1945-1953. [PMID: 36477178 PMCID: PMC10189413 DOI: 10.1182/bloodadvances.2022008637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The chemotherapeutic drug doxorubicin is cardiotoxic and can cause irreversible heart failure. In addition to being cardiotoxic, doxorubicin also induces the activation of coagulation. We determined the effect of thrombin-mediated activation of protease-activated receptor 1 (PAR1) on doxorubicin-induced cardiac injury. Administration of doxorubicin to mice resulted in a significant increase in plasma prothrombin fragment 1+2, thrombin-antithrombin complexes, and extracellular vesicle tissue factor activity. Doxorubicin-treated mice expressing low levels of tissue factor, but not factor XII-deficient mice, had reduced plasma thrombin-antithrombin complexes compared to controls. To evaluate the role of thrombin-mediated activation of PAR1, transgenic mice insensitive to thrombin (Par1R41Q) or activated protein C (Par1R46Q) were subjected to acute and chronic models of doxorubicin-induced cardiac injury and compared with Par1 wild-type (Par1+/+) and PAR1 deficient (Par1-/-) mice. Par1R41Q and Par1-/- mice, but not Par1R46Q mice, demonstrated similar reductions in the cardiac injury marker cardiac troponin I, preserved cardiac function, and reduced cardiac fibrosis compared to Par1+/+ controls after administration of doxorubicin. Furthermore, inhibition of Gαq signaling downstream of PAR1 with the small molecule inhibitor Q94 significantly preserved cardiac function in Par1+/+ mice, but not in Par1R41Q mice subjected to the acute model of cardiac injury when compared to vehicle controls. In addition, mice with PAR1 deleted in either cardiomyocytes or cardiac fibroblasts demonstrated reduced cardiac injury compared to controls. Taken together, these data suggest that thrombin-mediated activation of PAR1 contributes to doxorubicin-induced cardiac injury.
Collapse
Affiliation(s)
- Steven P. Grover
- University of North Carolina (UNC) Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Vanthana Bharathi
- University of North Carolina (UNC) Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jens J. Posma
- University of North Carolina (UNC) Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH
| | - Nigel Mackman
- University of North Carolina (UNC) Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Silvio Antoniak
- UNC Blood Research Center, UNC Lineberger Comprehensive Cancer Center, Department of Pathology and Laboratory Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
6
|
Dubyak GR, Miller BA, Pearlman E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev 2023; 314:229-249. [PMID: 36656082 PMCID: PMC10407921 DOI: 10.1111/imr.13186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pyroptosis is a proinflammatory mode of lytic cell death mediated by accumulation of plasma membrane (PM) macropores composed of gasdermin-family (GSDM) proteins. It facilitates two major functions in innate immunity: (i) elimination of intracellular replicative niches for pathogenic bacteria; and (ii) non-classical secretion of IL-1 family cytokines that amplify host-beneficial inflammatory responses to microbial infection or tissue damage. Physiological roles for gasdermin D (GSDMD) in pyroptosis and IL-1β release during inflammasome signaling have been extensively characterized in macrophages. This involves cleavage of GSDMD by caspase-1 to generate GSDMD macropores that mediate IL-1β efflux and progression to pyroptotic lysis. Neutrophils, which rapidly accumulate in large numbers at sites of tissue infection or damage, become the predominant local source of IL-1β in coordination with their potent microbiocidal capacity. Similar to macrophages, neutrophils express GSDMD and utilize the same spectrum of diverse inflammasome platforms for caspase-1-mediated cleavage of GSDMD. Distinct from macrophages, neutrophils possess a remarkable capacity to resist progression to GSDMD-dependent pyroptotic lysis to preserve their viability for efficient microbial killing while maintaining GSDMD-dependent mechanisms for export of bioactive IL-1β. Rather, neutrophils employ cell-specific mechanisms to conditionally engage GSDMD-mediated pyroptosis in response to bacterial pathogens that use neutrophils as replicative niches. GSDMD and pyroptosis have also been mechanistically linked to induction of NETosis, a signature neutrophil pathway that expels decondensed nuclear DNA into extracellular compartments for immobilization and killing of microbial pathogens. This review summarizes a rapidly growing number of recent studies that have produced new insights, unexpected mechanistic nuances, and some controversies regarding the regulation of, and roles for, neutrophil inflammasomes, pyroptosis, and GSDMs in diverse innate immune responses.
Collapse
Affiliation(s)
- George R. Dubyak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brandon A. Miller
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eric Pearlman
- Department of Ophthalmology, University of California, Irvine, California, USA
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| |
Collapse
|
7
|
Stojkov D, Claus MJ, Kozlowski E, Oberson K, Schären OP, Benarafa C, Yousefi S, Simon HU. NET formation is independent of gasdermin D and pyroptotic cell death. Sci Signal 2023; 16:eabm0517. [PMID: 36693132 DOI: 10.1126/scisignal.abm0517] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neutrophil extracellular traps (NETs) are DNA scaffolds coated with granule proteins that are released by neutrophils to ensnare and kill bacteria. NET formation occurs in response to many stimuli through independent molecular pathways. Although NET release has been equated to a form of lytic cell death, live neutrophils can rapidly release antimicrobial NETs. Gasdermin D (GSDMD), which causes pyroptotic death in macrophages, is thought to be required for NET formation by neutrophils. Through experiments with known physiological activators of NET formation and ligands that activate canonical and noncanonical inflammasome signaling pathways, we demonstrated that Gsdmd-deficient mouse neutrophils were as competent as wild-type mouse neutrophils in producing NETs. Furthermore, GSDMD was not cleaved in wild-type neutrophils during NET release in response to inflammatory mediators. We found that activation of both canonical and noncanonical inflammasome signaling pathways resulted in GSDMD cleavage in wild-type neutrophils but was not associated with cell death. Moreover, NET formation as a result of either pathway of inflammasome activation did not require GSDMD. Together, these data suggest that NETs can be formed by viable neutrophils after inflammasome activation and that this function does not require GSDMD.
Collapse
Affiliation(s)
- Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Meike J Claus
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Kevin Oberson
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Olivier P Schären
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Charaf Benarafa
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany
| |
Collapse
|
8
|
Bonilla MC, Quiros ON, Wendt M, Hennig-Pauka I, Mörgelin M, von Köckritz-Blickwede M, de Buhr N. New Insights into Neutrophil Extracellular Trap (NETs) Formation from Porcine Neutrophils in Response to Bacterial Infections. Int J Mol Sci 2022; 23:ijms23168953. [PMID: 36012224 PMCID: PMC9409244 DOI: 10.3390/ijms23168953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Actinobacillus pleuropneumoniae (A.pp, Gram negative) and Streptococcus (S.) suis (Gram positive) can cause severe diseases in pigs. During infection, neutrophils infiltrate to counteract these pathogens with phagocytosis and/or neutrophil extracellular traps (NETs). NETs consist of a DNA-backbone spiked with antimicrobial components. The NET formation mechanisms in porcine neutrophils as a response to both of the pathogens are not entirely clear. The aim of this study was to investigate whether A.pp (serotype 2, C3656/0271/11) and S. suis (serotype 2, strain 10) induce NETs by NADPH oxidase- or CD18-dependent mechanisms and to characterize phenotypes of NETs in porcine neutrophils. Therefore, we investigated NET induction in porcine neutrophils in the presence and absence of NET inhibitors and quantified NETs after 3 h. Furthermore, NETosis and phagocytosis were investigated by transmission electron microscopy after 30 min to characterize different phenotypes. A.pp and S. suis induce NETs that are mainly ROS-dependent. A.pp induces NETs that are partially CD18-dependent. Thirty minutes after infection, both of the pathogens induced a vesicular NET formation with only slight differences. Interestingly, some neutrophils showed only NET-marker positive phagolysosomes, but no NET-marker positive vesicles. Other neutrophils showed vesicular NETs and only NET-marker negative phagolysosomes. In conclusion, both of the pathogens induce ROS-dependent NETs. Vesicular NETosis and phagocytosis occur in parallel in porcine neutrophils in response to S. suis serotype 2 and A.pp serotype 2.
Collapse
Affiliation(s)
- Marta C. Bonilla
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Oriana N. Quiros
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Michael Wendt
- Clinic for Swine, Small Ruminants and Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - Isabel Hennig-Pauka
- Clinic for Swine, Small Ruminants and Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany
| | | | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
9
|
Colciaghi F, Costanza M. Unveiling Leukocyte Extracellular Traps in Inflammatory Responses of the Central Nervous System. Front Immunol 2022; 13:915392. [PMID: 35844591 PMCID: PMC9283689 DOI: 10.3389/fimmu.2022.915392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past nearly two decades, increasing evidence has uncovered how immune cells can actively extrude genetic material to entrap invading pathogens or convey sterile inflammatory signals that contribute to shaping immune responses. Originally identified in neutrophils, the release of decondensed chromatin fibers decorated with antimicrobial proteins, called extracellular traps (ETs), has been recognized as a specific form of programmed inflammatory cell death, which is now known to occur in several other leukocytes. Subsequent reports have shown that self-DNA can be extruded from immune cells even in the absence of cell death phenomena. More recent data suggest that ETs formation could exacerbate neuroinflammation in several disorders of the central nervous system (CNS). This review article provides an overview of the varied types, sources, and potential functions of extracellular DNA released by immune cells. Key evidence suggesting the involvement of ETs in neurodegenerative, traumatic, autoimmune, and oncological disorders of the CNS will be discussed, outlining ongoing challenges and drawing potentially novel lines of investigation.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Massimo Costanza,
| |
Collapse
|
10
|
Rosell A, Martinod K, Mackman N, Thålin C. Neutrophil extracellular traps and cancer-associated thrombosis. Thromb Res 2022; 213 Suppl 1:S35-S41. [DOI: 10.1016/j.thromres.2021.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
|
11
|
Murad M, Low L, Davidson M, Murray PI, Rauz S, Wallace GR. Low density neutrophils are increased in patients with Behçet's disease but do not explain differences in neutrophil function. J Inflamm (Lond) 2022; 19:5. [PMID: 35361212 PMCID: PMC8973557 DOI: 10.1186/s12950-022-00302-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Behçet's disease (BD) is a multisystem autoinflammatory disease characterised by mucosal ulceration, ocular, neural, joint and skin inflammation. The cause of BD is not known but there is a strong genetic association with HLA-B*51, IL10 and IL23R. Neutrophils are a first line of defence against invading pathogens and have been described as activated in patients with BD. Neutrophils can now be separated into different subsets, such as low density (LDN) and normal density (NDN) that have diverse functional roles. We wished to address neutrophil heterogeneity in patients with BD. METHODS Peripheral blood neutrophils were obtained from 32 BD patients and 37 healthy aged-matched controls. Percoll isolation was used to isolate all neutrophils, while Ficol-Hypaque was used to obtain LDN and NDN. Phagocytic capacity and production of reactive oxygen species (ROS), and neutrophil extracellular traps (NET) stimulated with phorbol 12-myristate 13-acetate (PMA) and Escherichia coli (E.coli) were assessed in both groups. RESULTS We have demonstrated reduced phagocytic capacity and ROS production but greater NET production by total neutrophils stimulated with PMA or E.coli from BD patients in comparison with healthy controls. Patients with BD had elevated numbers of LDN and lower number of NDN compared with healthy controls. However, both neutrophil subsets showed the same reduced ROS production and phagocytic function as total neutrophils in both groups. CONCLUSION Our novel findings indicate that the neutrophil population in BD is heterogeneous and the increased number of LDN in combination with greater NET production may contribute to the inflammatory response and pathogenesis.
Collapse
Affiliation(s)
- Mariam Murad
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2WD, UK
| | - Liying Low
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2WD, UK
| | - Matthew Davidson
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2WD, UK
| | - Philip I Murray
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2WD, UK
- Birmingham & Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2WD, UK
- Birmingham & Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Graham R Wallace
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2WD, UK.
- Birmingham & Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK.
| |
Collapse
|
12
|
Subhan MA, Torchilin VP. Neutrophils as an emerging therapeutic target and tool for cancer therapy. Life Sci 2021; 285:119952. [PMID: 34520766 DOI: 10.1016/j.lfs.2021.119952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 02/09/2023]
Abstract
Activation of neutrophils is necessary for the protection of the host against microbial infection. This property can be used as mode of therapy for cancer treatment. Neutrophils have conflicting dual functions in cancer as either a tumor promoter or inhibitor. Neutrophil-based drug delivery has achieved increased attention in pre-clinical models. This review addresses in detail the different neutrophil constituents, the conflicting function of neutrophils and activation of the neutrophil as an important target of therapy for cancer treatment, and use of neutrophils or neutrophil membrane-derived vesicles as vehicles for drug delivery and targeting.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh..
| | - Vladimir P Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
13
|
Parker HA, Jones HM, Kaldor CD, Hampton MB, Winterbourn CC. Neutrophil NET Formation with Microbial Stimuli Requires Late Stage NADPH Oxidase Activity. Antioxidants (Basel) 2021; 10:antiox10111791. [PMID: 34829662 PMCID: PMC8614658 DOI: 10.3390/antiox10111791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Neutrophils respond to a range of stimuli by releasing extracellular traps (NETs), a mesh consisting of chromatin plus granule and cytoplasmic proteins. We have investigated NET release in response to phorbol myristate acetate (PMA), Pseudomonas aeruginosa (PAO1), Staphylococcus aureus and Candida albicans, and the involvement of NADPH oxidase (NOX2) and myeloperoxidase (MPO) activities. An oxidative mechanism was involved with each stimulus, and the NOX2 inhibitor diphenylene iodonium (DPI) gave almost total inhibition. Notably, DPI added up to 60-90 min after stimulation still gave significant inhibition of subsequent NET formation. As most of the NOX2 activity had already occurred by that time, this indicates a requirement for late-stage low-level oxidant production. Inhibition of histone citrullination did not suppress NET formation, indicating that this was not the essential oxidant-dependent step. With PMA and P. aeruginosa PAO1, MPO activity played an important role in the induction of NETs and MPO inhibitors added up to 30-90 min after stimulation suppressed NET formation. NET formation with S. aureus and C. albicans was insensitive to MPO inhibition. Thus, MPO products are important with some stimuli but not others. Our results extend earlier observations with PMA and show that induction of NETs by microbial stimuli requires late stage oxidant production. Others have shown that NET formation involves NOX2-dependent elastase release from granules. As this is an early event, we conclude from our results that there is more than one oxidant-dependent step.
Collapse
|
14
|
Amunugama K, Kolar GR, Ford DA. Neutrophil Myeloperoxidase Derived Chlorolipid Production During Bacteria Exposure. Front Immunol 2021; 12:701227. [PMID: 34489949 PMCID: PMC8416994 DOI: 10.3389/fimmu.2021.701227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are the most abundant white blood cells recruited to the sites of infection and inflammation. During neutrophil activation, myeloperoxidase (MPO) is released and converts hydrogen peroxide to hypochlorous acid (HOCl). HOCl reacts with plasmalogen phospholipids to liberate 2-chlorofatty aldehyde (2-ClFALD), which is metabolized to 2-chlorofatty acid (2-ClFA). 2-ClFA and 2-ClFALD are linked with inflammatory diseases and induce endothelial dysfunction, neutrophil extracellular trap formation (NETosis) and neutrophil chemotaxis. Here we examine the neutrophil-derived chlorolipid production in the presence of pathogenic E. coli strain CFT073 and non-pathogenic E. coli strain JM109. Neutrophils cocultured with CFT073 E. coli strain and JM109 E. coli strain resulted in 2-ClFALD production. 2-ClFA was elevated only in CFT073 coculture. NETosis is more prevalent in CFT073 cocultures with neutrophils compared to JM109 cocultures. 2-ClFA and 2-ClFALD were both shown to have significant bactericidal activity, which is more severe in JM109 E. coli. 2-ClFALD metabolic capacity was 1000-fold greater in neutrophils compared to either strain of E. coli. MPO inhibition reduced chlorolipid production as well as bacterial killing capacity. These findings indicate the chlorolipid profile is different in response to these two different strains of E. coli bacteria.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Grant R. Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Research Microscopy and Histology Core, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David A. Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
15
|
Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G, Galdiero MR. Neutrophil extracellular traps in cancer. Semin Cancer Biol 2021; 79:91-104. [PMID: 34280576 DOI: 10.1016/j.semcancer.2021.07.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Beyond their well-known functions in the acute phases of the immune response, neutrophils play important roles in the various phases of tumor initiation and progression, through the release of their stored or newly synthesized mediators. In addition to reactive oxygen species, cytokines, chemokines, granule proteins and lipid mediators, neutrophil extracellular traps (NETs) can also be released upon neutrophil activation. NET formation can be achieved through a cell-death process or in association with the release of mitochondrial DNA from viable neutrophils. NETs are described as extracellular fibers of DNA and decorating proteins responsible for trapping and killing extracellular pathogens, playing a protective role in the antimicrobial defense. There is increasing evidence, however, that NETs play multiple roles in the scenario of cancer-related inflammation. For instance, NETs directly or indirectly promote tumor growth and progression, fostering tumor spread at distant sites and shielding cancer cells thus preventing the effects of cytotoxic lymphocytes. NETs can also promote tumor angiogenesis and cancer-associated thrombosis. On the other hand, there is some evidence that NETs may play anti-inflammatory and anti-tumorigenic roles. In this review, we focus on the main mechanisms underlying the emerging effects of NETs in cancer initiation and progression.
Collapse
Affiliation(s)
- Leonardo Cristinziano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia; Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
16
|
New Insights on NETosis Induced by Entamoeba histolytica: Dependence on ROS from Amoebas and Extracellular MPO Activity. Antioxidants (Basel) 2021; 10:antiox10060974. [PMID: 34206992 PMCID: PMC8233886 DOI: 10.3390/antiox10060974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 01/01/2023] Open
Abstract
NETosis is a neutrophil process involving sequential steps from pathogen detection to the release of DNA harboring antimicrobial proteins, including the central generation of NADPH oxidase dependent or independent ROS. Previously, we reported that NETosis triggered by Entamoeba histolytica trophozoites is independent of NADPH oxidase activity in neutrophils, but dependent on the viability of the parasites and no ROS source was identified. Here, we explored the possibility that E. histolytica trophozoites serve as the ROS source for NETosis. NET quantitation was performed using SYTOX® Green assay in the presence of selective inhibitors and scavengers. We observed that respiratory burst in neutrophils was inhibited by trophozoites in a dose dependent manner. Mitochondrial ROS was not also necessary, as the mitochondrial scavenger mitoTEMPO did not affect the process. Surprisingly, ROS-deficient amoebas obtained by pre-treatment with pyrocatechol were less likely to induce NETs. Additionally, we detected the presence of MPO on the cell surface of trophozoites after the interaction with neutrophils and found that luminol and isoluminol, intracellular and extracellular scavengers for MPO derived ROS reduced the amount of NET triggered by amoebas. These data suggest that ROS generated by trophozoites and processed by the extracellular MPO during the contact with neutrophils are required for E. histolytica induced NETosis.
Collapse
|
17
|
Giam YH, Shoemark A, Chalmers JD. Neutrophil dysfunction in bronchiectasis: an emerging role for immunometabolism. Eur Respir J 2021; 58:13993003.03157-2020. [DOI: 10.1183/13993003.03157-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
Bronchiectasis is a heterogenous disease with multiple underlying causes. The pathophysiology is poorly understood but neutrophilic inflammation and dysfunctional killing of pathogens is believed to be key. There are, however, no licensed therapies for bronchiectasis that directly target neutrophilic inflammation. In this review, we discuss our current understanding of neutrophil dysfunction and therapeutic targeting in bronchiectasis. Immunometabolic reprogramming, a process through which inflammation changes inflammatory cell behaviour by altering intracellular metabolic pathways, is increasingly recognised across multiple inflammatory and autoimmune diseases. Here, we show evidence that much of the neutrophil dysfunction observed in bronchiectasis is consistent with immunometabolic reprogramming. Previous attempts at developing therapies targeting neutrophils have focused on reducing neutrophil numbers, resulting in increased frequency of infections. New approaches are needed and we propose that targeting metabolism could theoretically reverse neutrophil dysfunction and dysregulated inflammation. As an exemplar, 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation has already been shown to reverse phagocytic dysfunction and neutrophil extracellular trap (NET) formation in models of pulmonary disease. AMPK modulates multiple metabolic pathways, including glycolysis which is critical for energy generation in neutrophils. AMPK activators can reverse metabolic reprogramming and are already in clinical use and/or development. We propose the need for a new immunomodulatory approach, rather than an anti-inflammatory approach, to enhance bacterial clearance and reduce bronchiectasis disease severity.
Collapse
|
18
|
Polymorphonuclear neutrophil leukocytes in snakebite envenoming. Toxicon 2020; 187:188-197. [DOI: 10.1016/j.toxicon.2020.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022]
|
19
|
Locke M, Francis RJ, Tsaousi E, Longstaff C. Fibrinogen protects neutrophils from the cytotoxic effects of histones and delays neutrophil extracellular trap formation induced by ionomycin. Sci Rep 2020; 10:11694. [PMID: 32678135 PMCID: PMC7366688 DOI: 10.1038/s41598-020-68584-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/30/2020] [Indexed: 12/27/2022] Open
Abstract
Neutrophils are pivotal players in immune defence which includes a process of release of histones and DNA as neutrophil extracellular traps (NETs). Histones, while toxic to invading pathogens, also kill host cells, including neutrophils. Bacteria have evolved mechanisms to escape neutrophils, including the secretion of leucocidins (e.g. ionomycin). Live cell video microscopy showed how fibrinogen and fibrin influence NETosis and neutrophil responses to extracellular histones. Histones were rapidly lethal to neutrophils after binding to cells, but formation of fibrinogen/fibrin-histone aggregates prevented cell death. Histone cytotoxicity was also reduced by citrullination by peptidyl arginine deiminase 4, or digestion by serine proteases. Ionomycin and phorbol 12-myristate 13 acetate (PMA) are used to trigger NETosis. Fibrinogen was responsible for a second distinct mechanism of neutrophil protection after treatment with ionomycin. Fibrinogen clustered on the surface of ionomycin-stimulated neutrophils to delay NETosis; and blocking the β integrin receptor, αMβ2, abolished fibrinogen protection. Fibrinogen did not bind to or protect neutrophils stimulated with PMA. Fibrinogen is an acute phase protein that will protect exposed cells from damaging circulating histones or leucocidins; but fibrinogen depletion/consumption, as in trauma or sepsis will reduce protection. It is necessary to consider the role of fibrinogen in NETosis.
Collapse
Affiliation(s)
- Matthew Locke
- Biotherapeutics, National Institute for Biological Standards and Control, S Mimms, Herts, UK
| | - Robert J Francis
- Biological Imaging Group, Analytical Biological Sciences, National Institute for Biological Standards and Control, S Mimms, Herts, UK
| | - Evgenia Tsaousi
- Biotherapeutics, National Institute for Biological Standards and Control, S Mimms, Herts, UK.,School of Biological Sciences, University of Essex, Colchester, UK
| | - Colin Longstaff
- Biotherapeutics, National Institute for Biological Standards and Control, S Mimms, Herts, UK.
| |
Collapse
|
20
|
Abstract
Neutrophil extracellular traps, or NETs, are heterogenous, filamentous structures which consist of extracellular DNA, granular proteins, and histones. NETs are extruded by a neutrophil in response to various stimuli. Although NETs were initially implicated in immune defense, subsequent studies have implicated NETs in a spectrum of disease processes, including autoimmune disease, thrombosis, and cancer. NETs also contribute to the pathogenesis of several common liver diseases, including alcohol-associated liver disease and portal hypertension. Although there is much interest in the therapeutic potential of NET inhibition, future clinical applications must be balanced against potential increased risk of infection.
Collapse
Affiliation(s)
- Moira B. Hilscher
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
21
|
Constantinescu-Bercu A, Grassi L, Frontini M, Salles-Crawley II, Woollard K, Crawley JTB. Activated α IIbβ 3 on platelets mediates flow-dependent NETosis via SLC44A2. eLife 2020; 9:e53353. [PMID: 32314961 PMCID: PMC7253179 DOI: 10.7554/elife.53353] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/20/2020] [Indexed: 01/03/2023] Open
Abstract
Platelet-neutrophil interactions are important for innate immunity, but also contribute to the pathogenesis of deep vein thrombosis, myocardial infarction and stroke. Here we report that, under flow, von Willebrand factor/glycoprotein Ibα-dependent platelet 'priming' induces integrin αIIbβ3 activation that, in turn, mediates neutrophil and T-cell binding. Binding of platelet αIIbβ3 to SLC44A2 on neutrophils leads to mechanosensitive-dependent production of highly prothrombotic neutrophil extracellular traps. A polymorphism in SLC44A2 (rs2288904-A) present in 22% of the population causes an R154Q substitution in an extracellular loop of SLC44A2 that is protective against venous thrombosis results in severely impaired binding to both activated αIIbβ3 and VWF-primed platelets. This was confirmed using neutrophils homozygous for the SLC44A2 R154Q polymorphism. Taken together, these data reveal a previously unreported mode of platelet-neutrophil crosstalk, mechanosensitive NET production, and provide mechanistic insight into the protective effect of the SLC44A2 rs2288904-A polymorphism in venous thrombosis.
Collapse
Affiliation(s)
- Adela Constantinescu-Bercu
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Institute for Health Research BioResource, Rare Diseases, Cambridge University HospitalsCambridgeUnited Kingdom
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridgeUnited Kingdom
- British Heart Foundation Centre of Excellence, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Kevin Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - James TB Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
22
|
Granger V, Taillé C, Roach D, Letuvé S, Dupin C, Hamidi F, Noël B, Neukirch C, Aubier M, Pretolani M, Chollet‐Martin S, de Chaisemartin L. Circulating neutrophil and eosinophil extracellular traps are markers of severe asthma. Allergy 2020; 75:699-702. [PMID: 31549729 DOI: 10.1111/all.14059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vanessa Granger
- Hôpital Bichat UF Auto‐immunité et Hypersensibilités APHP HUPNVS Paris France
- Inflammation Chimiokines et Immunopathologie Faculté de Pharmacie INSERM UMR996 Université Paris‐Sud Université Paris‐Saclay Châtenay‐Malabry France
| | - Camille Taillé
- Hôpital Bichat Service de Pneumologie A APHP HUPNVS Paris France
- Labex Inflamex DHU FIRE INSERM UMR 1152 Université de Paris Paris France
| | - Dwayne Roach
- Département de Microbiologie Institut Pasteur Unité de Biologie Moléculaire du gène chez les Extrêmophiles Paris France
| | - Séverine Letuvé
- Labex Inflamex DHU FIRE INSERM UMR 1152 Université de Paris Paris France
| | - Clairelyne Dupin
- Hôpital Bichat Service de Pneumologie A APHP HUPNVS Paris France
| | - Fatima Hamidi
- Labex Inflamex DHU FIRE INSERM UMR 1152 Université de Paris Paris France
| | - Benoît Noël
- Inflammation Chimiokines et Immunopathologie Faculté de Pharmacie INSERM UMR996 Université Paris‐Sud Université Paris‐Saclay Châtenay‐Malabry France
| | - Catherine Neukirch
- Hôpital Bichat Service de Pneumologie A APHP HUPNVS Paris France
- Labex Inflamex DHU FIRE INSERM UMR 1152 Université de Paris Paris France
| | - Michel Aubier
- Labex Inflamex DHU FIRE INSERM UMR 1152 Université de Paris Paris France
| | - Marina Pretolani
- Labex Inflamex DHU FIRE INSERM UMR 1152 Université de Paris Paris France
| | - Sylvie Chollet‐Martin
- Hôpital Bichat UF Auto‐immunité et Hypersensibilités APHP HUPNVS Paris France
- Inflammation Chimiokines et Immunopathologie Faculté de Pharmacie INSERM UMR996 Université Paris‐Sud Université Paris‐Saclay Châtenay‐Malabry France
| | - Luc de Chaisemartin
- Hôpital Bichat UF Auto‐immunité et Hypersensibilités APHP HUPNVS Paris France
- Inflammation Chimiokines et Immunopathologie Faculté de Pharmacie INSERM UMR996 Université Paris‐Sud Université Paris‐Saclay Châtenay‐Malabry France
| |
Collapse
|
23
|
Galkina SI, Fedorova NV, Golenkina EA, Stadnichuk VI, Sud’ina GF. Cytonemes Versus Neutrophil Extracellular Traps in the Fight of Neutrophils with Microbes. Int J Mol Sci 2020; 21:ijms21020586. [PMID: 31963289 PMCID: PMC7014225 DOI: 10.3390/ijms21020586] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Neutrophils can phagocytose microorganisms and destroy them intracellularly using special bactericides located in intracellular granules. Recent evidence suggests that neutrophils can catch and kill pathogens extracellularly using the same bactericidal agents. For this, live neutrophils create a cytoneme network, and dead neutrophils provide chromatin and proteins to form neutrophil extracellular traps (NETs). Cytonemes are filamentous tubulovesicular secretory protrusions of living neutrophils with intact nuclei. Granular bactericides are localized in membrane vesicles and tubules of which cytonemes are composed. NETs are strands of decondensed DNA associated with histones released by died neutrophils. In NETs, bactericidal neutrophilic agents are adsorbed onto DNA strands and are not covered with a membrane. Cytonemes and NETs occupy different places in protecting the body against infections. Cytonemes can develop within a few minutes at the site of infection through the action of nitric oxide or actin-depolymerizing alkaloids of invading microbes. The formation of NET in vitro occurs due to chromatin decondensation resulting from prolonged activation of neutrophils with PMA (phorbol 12-myristate 13-acetate) or other stimuli, or in vivo due to citrullination of histones with peptidylarginine deiminase 4. In addition to antibacterial activity, cytonemes are involved in cell adhesion and communications. NETs play a role in autoimmunity and thrombosis.
Collapse
Affiliation(s)
- Svetlana I. Galkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| | - Natalia V. Fedorova
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | - Ekaterina A. Golenkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | | | - Galina F. Sud’ina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| |
Collapse
|
24
|
Mendes LP, Rostamizadeh K, Gollomp K, Myerson JW, Marcos-Contreras OA, Zamora M, Luther E, Brenner JS, Filipczak N, Li X, Torchilin VP. Monoclonal antibody 2C5 specifically targets neutrophil extracellular traps. MAbs 2020; 12:1850394. [PMID: 33323006 PMCID: PMC7755171 DOI: 10.1080/19420862.2020.1850394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 10/27/2022] Open
Abstract
Neutrophils can release DNA and granular cytoplasmic proteins that form smooth filaments of stacked nucleosomes (NS). These structures, called neutrophil extracellular traps (NETs), are involved in multiple pathological processes, and NET formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity toward intact NS but not to individual NS components, indicating that 2C5 could potentially target NS in NETs. In this study, NETs were generated in vitro using neutrophils and HL-60 cells differentiated into granulocyte-like cells. The specificity of 2C5 toward NETs was evaluated by ELISA, which showed that it binds to NETs with the specificity similar to that for purified nucleohistone substrate. Immunofluorescence showed that 2C5 stains NETs in both static and perfused microfluidic cell cultures, even after NET compaction. Modification of liposomes with 2C5 dramatically enhanced liposome association with NETs. Our results suggest that 2C5 could be used to identify and visualize NETs and serve as a ligand for NET-targeted diagnostics and therapies.
Collapse
Affiliation(s)
- Livia P. Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Pharmaceutical Biomaterials Department, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jacob W. Myerson
- Department of Systems Pharmacology and Translational Therapeutics, University of Philadelphia, Philadelphia, PA, USA
| | - Oscar A. Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics, University of Philadelphia, Philadelphia, PA, USA
| | - Marco Zamora
- Department of Systems Pharmacology and Translational Therapeutics, University of Philadelphia, Philadelphia, PA, USA
| | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Jacob S. Brenner
- Department of Systems Pharmacology and Translational Therapeutics, University of Philadelphia, Philadelphia, PA, USA
- Pulmonary, Allergy, & Critical Care Division, University of Philadelphia, PA, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
25
|
Networks that stop the flow: A fresh look at fibrin and neutrophil extracellular traps. Thromb Res 2019; 182:1-11. [DOI: 10.1016/j.thromres.2019.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
|
26
|
Louttit C, Park KS, Moon JJ. Bioinspired nucleic acid structures for immune modulation. Biomaterials 2019; 217:119287. [PMID: 31247511 PMCID: PMC6635102 DOI: 10.1016/j.biomaterials.2019.119287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/27/2022]
Abstract
Nucleic acids have both extensive physiological function and structural potential, rendering them quintessential engineering biomaterials. As carriers of precisely-tunable genetic information, both DNA and RNA can be synthetically generated to form a myriad of structures and to transmit specific genetic code. Importantly, recent studies have shown that DNA and RNA, both in their native and engineered forms, can function as potent regulators of innate immunity, capable of initiating and modulating immune responses. In this review, we highlight recent advances in biomaterials inspired by the various interactions of nucleic acids and the immune system. We discuss key advances in self-assembled structures based on exogenous nucleic acids and engineering approaches to apply endogenous nucleic acids as found in immunogenic cell death and extracellular traps. In addition, we discuss new strategies to control dinucleotide signaling and provide recent examples of biomaterials designed for cancer immunotherapy with STING agonists.
Collapse
Affiliation(s)
- Cameron Louttit
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kyung Soo Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James J Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
27
|
Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H. Neutrophil Extracellular Traps: Villains and Targets in Arterial, Venous, and Cancer-Associated Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:1724-1738. [PMID: 31315434 DOI: 10.1161/atvbaha.119.312463] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated a role of neutrophils in both venous and arterial thrombosis. A key prothrombotic feature of neutrophils is their ability to release web-like structures composed of DNA filaments coated with histones and granule proteins referred to as neutrophil extracellular traps (NETs). NETs were discovered over a decade ago as part of our first line of host defense against invading microorganisms. Although NETs have a protective role against pathogens, recent data suggest that an uncontrolled and excessive NET formation within the vasculature may contribute to pathological thrombotic disorders. In vitro studies suggest that NETs promote vessel occlusion by providing a scaffold for platelets, red blood cells, extracellular vesicles, and procoagulant molecules, such as von Willebrand factor and tissue factor. In addition, NET components enhance coagulation by both activating the intrinsic pathway and degrading an inhibitor of the extrinsic pathway (tissue factor pathway inhibitor). NET formation has, therefore, been proposed to contribute to thrombus formation and propagation in arterial, venous, and cancer-associated thrombosis. This review will describe animal and human studies suggesting a role of NETs in the pathogenesis of various thrombotic disorders. Targeting NETs may be a novel approach to reduce thrombosis without affecting hemostasis.
Collapse
Affiliation(s)
- Charlotte Thålin
- From the Division of Internal Medicine, Department of Clinical Sciences, Danderyd Hospital (C.T.), Karolinska Institutet, Stockholm, Sweden
| | - Yohei Hisada
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill (Y.H., N.M.)
| | - Staffan Lundström
- Department of Oncology-Pathology (S.L.), Karolinska Institutet, Stockholm, Sweden.,Palliative Care Services and R&D-Unit, Stockholms Sjukhem Foundation, Sweden (S.L.)
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill (Y.H., N.M.)
| | - Håkan Wallén
- Division of Cardiovascular Medicine (H.W.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Dinauer MC. Inflammatory consequences of inherited disorders affecting neutrophil function. Blood 2019; 133:2130-2139. [PMID: 30898864 PMCID: PMC6524563 DOI: 10.1182/blood-2018-11-844563] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/13/2019] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies affecting the function of neutrophils and other phagocytic leukocytes are notable for an increased susceptibility to bacterial and fungal infections as a result of impaired leukocyte recruitment, ingestion, and/or killing of microbes. The underlying molecular defects can also impact other innate immune responses to infectious and inflammatory stimuli, leading to inflammatory and autoimmune complications that are not always directly related to infection. This review will provide an update on congenital disorders affecting neutrophil function in which a combination of host defense and inflammatory complications are prominent, including nicotinamide dinucleotide phosphate oxidase defects in chronic granulomatous disease and β2 integrin defects in leukocyte adhesion deficiency.
Collapse
Affiliation(s)
- Mary C Dinauer
- Department of Pediatrics and Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
29
|
The role of platelets in mediating a response to human influenza infection. Nat Commun 2019; 10:1780. [PMID: 30992428 PMCID: PMC6467905 DOI: 10.1038/s41467-019-09607-x] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza infection increases the incidence of myocardial infarction but the reason is unknown. Platelets mediate vascular occlusion through thrombotic functions but are also recognized to have immunomodulatory activity. To determine if platelet processes are activated during influenza infection, we collected blood from 18 patients with acute influenza infection. Microscopy reveals activated platelets, many containing viral particles and extracellular-DNA associated with platelets. To understand the mechanism, we isolate human platelets and treat them with influenza A virus. Viral-engulfment leads to C3 release from platelets as a function of TLR7 and C3 leads to neutrophil-DNA release and aggregation. TLR7 specificity is confirmed in murine models lacking the receptor, and platelet depletion models support platelet-mediated C3 and neutrophil-DNA release post-influenza infection. These findings demonstrate that the initial intrinsic defense against influenza is mediated by platelet–neutrophil cross-communication that tightly regulates host immune and complement responses but can also lead to thrombotic vascular occlusion. Influenza viremia is rare in human blood and not well studied. Here, the authors show that influenza can be found in human platelets and that platelet engulfment of influenza A results in TLR7-dependent C3 release, which in turn promotes neutrophil-DNA release and formation of platelet-DNA aggregates.
Collapse
|
30
|
Lelliott PM, Momota M, Lee MSJ, Kuroda E, Iijima N, Ishii KJ, Coban C. Rapid Quantification of NETs In Vitro and in Whole Blood Samples by Imaging Flow Cytometry. Cytometry A 2019; 95:565-578. [PMID: 30985081 DOI: 10.1002/cyto.a.23767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Neutrophil extracellular trap (NET) formation involves the release of DNA outside the cell to neutralize pathogens. Techniques such as live microscopy, flow cytometry, and intravital imaging allow the characterization of NETs, but these either cannot be applied in vivo, lack specificity or require invasive procedures. We developed an automated analysis method to rapidly acquire and characterize cells as NETs or NET precursors, as opposed to cells undergoing other forms of cell death, using imaging flow cytometry. NETs were maintained in solution using a novel three-dimensional cell culture system in which cells are suspended at the interface of two liquids of different density. Critically, we identify NETs using an image analysis algorithm based on morphological data showing the extrusion of DNA beyond the cell boundaries. In vitro, we used this technique to demonstrate different requirements for NET formation in human and mouse neutrophils. We also measured NETs in whole blood during infection of mice with the malaria parasite Plasmodium yoelii. We expect this technique will provide a valuable approach to better understand the process of NET formation and its importance in disease. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Patrick M Lelliott
- Laboratory of Malaria Immunology, Osaka University, 3-1 Yamada-oka, Suita City, 565-0871, Osaka, Japan
| | - Masatoshi Momota
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita City, 565-0871, Osaka, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Michelle S J Lee
- Laboratory of Malaria Immunology, Osaka University, 3-1 Yamada-oka, Suita City, 565-0871, Osaka, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita City, 565-0871, Osaka, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Norifumi Iijima
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita City, 565-0871, Osaka, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita City, 565-0871, Osaka, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Cevayir Coban
- Laboratory of Malaria Immunology, Osaka University, 3-1 Yamada-oka, Suita City, 565-0871, Osaka, Japan
| |
Collapse
|
31
|
Boeltz S, Amini P, Anders HJ, Andrade F, Bilyy R, Chatfield S, Cichon I, Clancy DM, Desai J, Dumych T, Dwivedi N, Gordon RA, Hahn J, Hidalgo A, Hoffmann MH, Kaplan MJ, Knight JS, Kolaczkowska E, Kubes P, Leppkes M, Manfredi AA, Martin SJ, Maueröder C, Maugeri N, Mitroulis I, Munoz LE, Nakazawa D, Neeli I, Nizet V, Pieterse E, Radic MZ, Reinwald C, Ritis K, Rovere-Querini P, Santocki M, Schauer C, Schett G, Shlomchik MJ, Simon HU, Skendros P, Stojkov D, Vandenabeele P, Berghe TV, van der Vlag J, Vitkov L, von Köckritz-Blickwede M, Yousefi S, Zarbock A, Herrmann M. To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ 2019; 26:395-408. [PMID: 30622307 PMCID: PMC6370810 DOI: 10.1038/s41418-018-0261-x] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/05/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Since the discovery and definition of neutrophil extracellular traps (NETs) 14 years ago, numerous characteristics and physiological functions of NETs have been uncovered. Nowadays, the field continues to expand and novel mechanisms that orchestrate formation of NETs, their previously unknown properties, and novel implications in disease continue to emerge. The abundance of available data has also led to some confusion in the NET research community due to contradictory results and divergent scientific concepts, such as pro- and anti-inflammatory roles in pathologic conditions, demarcation from other forms of cell death, or the origin of the DNA that forms the NET scaffold. Here, we present prevailing concepts and state of the science in NET-related research and elaborate on open questions and areas of dispute.
Collapse
Affiliation(s)
- Sebastian Boeltz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Poorya Amini
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Simon Chatfield
- Inflammation Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Iwona Cichon
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Danielle M Clancy
- VIB-UGent Center for Inflammation Research, University of Gent, Gent, Belgium
| | - Jyaysi Desai
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Tetiana Dumych
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nishant Dwivedi
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rachael Ann Gordon
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Andrés Hidalgo
- Department of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich, Germany
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Jason S Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Elzbieta Kolaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Paul Kubes
- Snyder institute of Chronic Diseases, University of Calgary, Calgary, Canada
| | - Moritz Leppkes
- Department of Medicine 1 - Gastroenterology, Pulmonology and Endocrinology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelo A Manfredi
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Christian Maueröder
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- VIB-UGent Center for Inflammation Research, University of Gent, Gent, Belgium
| | - Norma Maugeri
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ioannis Mitroulis
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Luis E Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Daigo Nakazawa
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Victor Nizet
- UC San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, USA
| | - Elmar Pieterse
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marko Z Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christiane Reinwald
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Konstantinos Ritis
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Michal Santocki
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Mark Jay Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, University of Gent, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem platform, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, University of Gent, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Pathophysiology, Faculty of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ljubomir Vitkov
- Department of Biosciences, Vascular & Exercise Biology Unit, University of Salzburg, Salzburg, Austria
- Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry & Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Alexander Zarbock
- University of Münster, Department of Anesthesiology, Intensive Care and Pain Medicine, Münster, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| |
Collapse
|
32
|
Yousefi S, Stojkov D, Germic N, Simon D, Wang X, Benarafa C, Simon HU. Untangling "NETosis" from NETs. Eur J Immunol 2019; 49:221-227. [PMID: 30629284 DOI: 10.1002/eji.201747053] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
Abstract
Neutrophil extracellular trap (NET) formation is a cellular function of neutrophils that facilitates the immobilization and killing of invading microorganisms in the extracellular milieu. To form NETs, neutrophils release a DNA scaffold consisting of mitochondrial DNA binding granule proteins. This process does not depend on cell death, but requires glycolytic ATP production for rearrangements in the microtubule network and F-actin. Such cytoskeletal rearrangements are essential for both mitochondrial DNA release and degranulation. However, the formation of NETs has also been described as a distinct form of programed, necrotic cell death, a process designated "NETosis." Necrotic cell death of neutrophils is associated with the permeabilization of both plasma and nuclear membranes resulting in a kind of extracellular cloud of nuclear DNA. The molecular mechanisms eliciting necrotic neutrophil death have been investigated and appear to be different from those responsible for NET formation following mitochondrial DNA release. Here, we discriminate between the mechanisms responsible for the release of mitochondrial versus nuclear DNA and address their respective functions. Our aim is to clarify existing differences of opinion in the fields of NET formation and neutrophil death.
Collapse
Affiliation(s)
- Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nina Germic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xiaoliang Wang
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Charaf Benarafa
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| |
Collapse
|
33
|
Woodberry T, Bouffler SE, Wilson AS, Buckland RL, Brüstle A. The Emerging Role of Neutrophil Granulocytes in Multiple Sclerosis. J Clin Med 2018; 7:E511. [PMID: 30513926 PMCID: PMC6306801 DOI: 10.3390/jcm7120511] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong autoimmune, neurodegenerative, and neuroinflammatory component. Most of the common disease modifying treatments (DMTs) for MS modulate the immune response targeting disease associated T and B cells and while none directly target neutrophils, several DMTs do impact their abundance or function. The role of neutrophils in MS remains unknown and research is ongoing to better understand the phenotype, function, and contribution of neutrophils to both disease onset and stage of disease. Here we summarize the current state of knowledge of neutrophils and their function in MS, including in the rodent based MS model, and we discuss the potential effects of current treatments on these functions. We propose that neutrophils are likely to participate in MS pathogenesis and their abundance and function warrant monitoring in MS.
Collapse
Affiliation(s)
- Tonia Woodberry
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Sophie E Bouffler
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Alicia S Wilson
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Rebecca L Buckland
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Anne Brüstle
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| |
Collapse
|
34
|
Abstract
While the microscopic appearance of neutrophil extracellular traps (NETs) has fascinated basic researchers since its discovery, the (patho)physiological mechanisms triggering NET release, the disease relevance and clinical translatability of this unconventional cellular mechanism remained poorly understood. Here, we summarize and discuss current concepts of the mechanisms and disease relevance of NET formation.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dominik Hartl
- Children's Hospital, University of Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on Neutrophil Function in Severe Inflammation. Front Immunol 2018; 9:2171. [PMID: 30356867 PMCID: PMC6190891 DOI: 10.3389/fimmu.2018.02171] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are main players in the effector phase of the host defense against micro-organisms and have a major role in the innate immune response. Neutrophils show phenotypic heterogeneity and functional flexibility, which highlight their importance in regulation of immune function. However, neutrophils can play a dual role and besides their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead to tissue damage in severe inflammation or trauma. Neutrophils also have an important role in the modulation of the immune system in response to severe injury and trauma. In this review we will provide an overview of the current understanding of neutrophil subpopulations and their function during and post-infection and discuss the possible mechanisms of immune modulation by neutrophils in severe inflammation.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ian M Adcock
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sharon Mumby
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
36
|
Chatfield SM, Thieblemont N, Witko-Sarsat V. Expanding Neutrophil Horizons: New Concepts in Inflammation. J Innate Immun 2018; 10:422-431. [PMID: 30257246 DOI: 10.1159/000493101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Research into neutrophil biology in the last 10 years has uncovered a number of unexpected aspects of this still mysterious innate immune cell. Advances in technology have allowed visualisation of neutrophil trafficking to sites of inflammation, and, remarkably, neutrophils have been observed to depart from the scene in what has been termed reverse migration. There has also been increasing appreciation of the heterogeneity of neutrophils with ongoing categorisation of neutrophil subsets, including myeloid-derived suppressor cells and low-density granulocytes. Newly recognised neutrophil functions include the ability to release novel immune mediators such as extracellular DNA and microvesicles. Finally, studies of neutrophil cell death, both apoptotic and non-apoptotic, have revealed remarkable differences compared to other cell types. This review will highlight important discoveries in these facets of neutrophil biology and how the new findings will inform treatment of diseases where neutrophils are implicated.
Collapse
|
37
|
Core Concept: Role player or cellular rubbish? Biologists debate the function of neutrophil extracellular traps. Proc Natl Acad Sci U S A 2018; 114:13309-13311. [PMID: 29259140 DOI: 10.1073/pnas.1719978115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol 2018; 15:206-221. [PMID: 29382950 DOI: 10.1038/nrgastro.2017.183] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neutrophil extracellular traps (NETs) have an important role during infection by helping neutrophils to capture and kill pathogens. However, evidence is accumulating that uncontrolled or excessive production of NETs is related to the exacerbation of inflammation and the development of autoimmunity, cancer metastasis and inappropriate thrombosis. In this Review, we focus on the role of NETs in the liver and gastrointestinal system, outlining their protective and pathological effects. The latest mechanistic insights in NET formation, interactions between microorganisms and NETs and the relationship between neutrophil subtypes and their functions are also discussed. Additionally, we describe the potential importance of NET-related molecules, including cell-free DNA and hypercitrullinated histones, as biomarkers and targets for therapeutic intervention in gastrointestinal diseases.
Collapse
|
39
|
Healy LD, Rigg RA, Griffin JH, McCarty OJ. Regulation of immune cell signaling by activated protein C. J Leukoc Biol 2018; 103:10.1002/JLB.3MIR0817-338R. [PMID: 29601101 PMCID: PMC6165708 DOI: 10.1002/jlb.3mir0817-338r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Innate immune cells are an essential part of the host defense response, promoting inflammation through release of proinflammatory cytokines or formation of neutrophil extracellular traps. While these processes are important for defense against infectious agents or injury, aberrant activation potentiates pathologic inflammatory disease. Thus, understanding regulatory mechanisms that limit neutrophil extracellular traps formation and cytokine release is of therapeutic interest for targeting pathologic diseases. Activated protein C is an endogenous serine protease with anticoagulant activity as well as anti-inflammatory and cytoprotective functions, the latter of which are mediated through binding cell surface receptors and inducing intracellular signaling. In this review, we discuss certain leukocyte functions, namely neutrophil extracellular traps formation and cytokine release, and the inhibition of these processes by activated protein C.
Collapse
Affiliation(s)
- Laura D. Healy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rachel A. Rigg
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Owen J.T. McCarty
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
40
|
Mohanty T, Sørensen OE, Nordenfelt P. NETQUANT: Automated Quantification of Neutrophil Extracellular Traps. Front Immunol 2018; 8:1999. [PMID: 29379509 PMCID: PMC5775513 DOI: 10.3389/fimmu.2017.01999] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) that are extensive webs of DNA covered with antimicrobial proteins into the extracellular environment during infection or inflammation as a part of their defense arsenal. Image acquisition of fluorescently labeled NETs and subsequent image-based quantification is frequently used to analyze NET formation (NETosis) in response to various stimuli. However, there are important limitations in the present methods for quantification. Manual methods tend to be error-prone, tedious, and often quite subjective, whereas the software-rooted options are either semi-automatic or difficult to operate. Here, we present an automated and uncomplicated approach for quantifying NETs from fluorescence images, built as a freely available app for MATLAB®. It is based on detection of a set of clearly defined parameters, all related to the biological manifestation of NETs and allowing for single-cell resolution quantification and analysis.
Collapse
Affiliation(s)
- Tirthankar Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Ole E Sørensen
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.,LEO Pharma A/S, Ballerup, Denmark
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Naffah de Souza C, Breda LCD, Khan MA, de Almeida SR, Câmara NOS, Sweezey N, Palaniyar N. Alkaline pH Promotes NADPH Oxidase-Independent Neutrophil Extracellular Trap Formation: A Matter of Mitochondrial Reactive Oxygen Species Generation and Citrullination and Cleavage of Histone. Front Immunol 2018; 8:1849. [PMID: 29375550 PMCID: PMC5767187 DOI: 10.3389/fimmu.2017.01849] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
pH is highly variable in different tissues and affects many enzymatic reactions in neutrophils. In response to calcium ionophores such as A23187 and ionomycin, neutrophils undergo nicotinamide adenine dinucleotide phosphate oxidase (NOX)-independent neutrophil extracellular trap (NET) formation (NETosis). However, how pH influences calcium-dependent Nox-independent NET formation is not well understood. We hypothesized that increasing pH promotes Nox-independent NET formation by promoting calcium influx, mitochondrial reactive oxygen species (mROS) generation, histone citrullination, and histone cleavage. Here, we show that stimulating human neutrophils isolated from peripheral blood with calcium ionophore A23187 or ionomycin in the media with increasing extracellular pH (6.6, 6.8, 7.0, 7.2, 7.4, 7.8) drastically increases intracellular pH within in 10-20 min. These intracellular pH values are much higher compared to unstimulated cells placed in the media with corresponding pH values. Raising pH slightly drastically increases intracellular calcium concentration in resting and stimulated neutrophils, respectively. Like calcium, mROS generation also increases with increasing pH. An mROS scavenger, MitoTempo, significantly suppresses calcium ionophore-mediated NET formation with a greater effect at higher pH, indicating that mROS production is at least partly responsible for pH-dependent suppression of Nox-independent NETosis. In addition, raising pH increases PAD4 activity as determined by the citrullination of histone (CitH3) and histone cleavage determined by Western blots. The pH-dependent histone cleavage is reproducibly very high during ionomycin-induced NETosis compared to A23187-induced NETosis. Little or no histone cleavage was noted in unstimulated cells, at any pH. Both CitH3 and cleavage of histones facilitate DNA decondensation. Therefore, alkaline pH promotes intracellular calcium influx, mROS generation, PAD4-mediated CitH3 formation, histone 4 cleavage and eventually NET formation. Calcium-mediated NET formation and CitH3 formation are often related to sterile inflammation. Hence, understanding these important mechanistic steps helps to explain how pH regulates NOX-independent NET formation, and modifying pH may help to regulate NET formation during sterile inflammation or potential damage caused by compounds such as ionomycin, secreted by Streptomyces, a group of Gram-positive bacteria well known for producing antibiotics.
Collapse
Affiliation(s)
- Cristiane Naffah de Souza
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, The University of Toronto, Toronto, ON, Canada.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Butantã, Brazil
| | - Leandro C D Breda
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, The University of Toronto, Toronto, ON, Canada.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Meraj A Khan
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, The University of Toronto, Toronto, ON, Canada
| | - Sandro Rogério de Almeida
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Neil Sweezey
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, The University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Law SM, Gray RD. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review. J Inflamm (Lond) 2017; 14:29. [PMID: 29299029 PMCID: PMC5745605 DOI: 10.1186/s12950-017-0176-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/14/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cystic Fibrosis (CF) is a devastating genetic disease characterised primarily by unrelenting lung inflammation and infection resulting in premature death and significant morbidity. Neutrophil Extracellular Traps (NETs) are possibly key to inflammation in the disease. This review aims to draw together existing research investigating NETs in the context of a dysfunctional innate immune system in CF. MAIN BODY NETs have a limited anti-microbial role in CF and studies have shown they are present in higher numbers in CF airways and their protein constituents correlate with lung function decline. Innate immune system cells express CFTR and myeloid-specific CFTR KO mice have greater neutrophil recruitment and higher pro-inflammatory cytokine production to both sterile and bacterial inflammatory challenges. CFTR KO neutrophils have impaired anti-microbial capacity and intrinsic abnormalities in the pH of their cytoplasm, abnormal protein trafficking, increased neutrophil elastase and myeloperoxidase function, and decreased hypochlorite concentrations in their phagolysosomes. Furthermore, neutrophils from CF patients have less intrinsic apoptosis and may be therefore more likely to make NETs. CFTR KO macrophages have high intraphagolysosomal pH and increased toll-like receptor 4 on their cell surface membranes, which inhibit their anti-microbial capacity and render them hyper-responsive to inflammatory stimuli, respectively. Pharmacological treatments for CF target these intrinsic abnormalities of immune dysfunction. Emerging evidence suggests that the absence of CFTR from neutrophils affects NETosis and the interaction of NETs with macrophages. CONCLUSION Current evidence suggests that NETs contribute to inflammation and lung destruction rather than working effectively in their anti-microbial capacity. Further studies focussing on the pro-inflammatory nature of NET constituents are required to identify the exact mechanistic role of NETs in CF and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sheonagh M. Law
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Robert D. Gray
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| |
Collapse
|
43
|
Ortmann W, Kolaczkowska E. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res 2017; 371:473-488. [PMID: 29250748 PMCID: PMC5820386 DOI: 10.1007/s00441-017-2751-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Neutrophil extracellular traps or NETs are released by highly activated neutrophils in response to infectious agents, sterile inflammation, autoimmune stimuli and cancer. In the cells, the nuclear envelop disintegrates and decondensation of chromatin occurs that depends on peptidylarginine deiminase 4 (PAD4) and neutrophil elastase (NE). Subsequently, proteins from neutrophil granules (e.g., NE, lactoferrin and myeloperoxidase) and the nucleus (histones) bind to decondensed DNA and the whole structure is ejected from the cell. The DNA decorated with potent antimicrobials and proteases can act to contain dissemination of infection and in sterile inflammation NETs were shown to degrade cytokines and chemokines via serine proteases. On the other hand, overproduction of NETs, or their inadequate removal and prolonged presence in vasculature or tissues, can lead to bystander damage or even initiation of diseases. Considering the pros and cons of NET formation, it is of relevance if the stage of neutrophil maturation (immature, mature and senescent cells) affects the capacity to produce NETs as the cells of different age-related phenotypes dominate in given (pathological) conditions. Moreover, the immune system of neonates and elderly individuals is weaker than in adulthood. Is the same pattern followed when it comes to NETs? The overall importance of individual and neutrophil age on the capacity to release NETs is reviewed in detail and the significance of these facts is discussed.
Collapse
Affiliation(s)
- Weronika Ortmann
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
44
|
Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc Natl Acad Sci U S A 2017; 114:E9618-E9625. [PMID: 29078325 DOI: 10.1073/pnas.1708247114] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) constitutes life-threatening autoimmune diseases affecting every organ, including the kidneys, where they cause necrotizing crescentic glomerulonephritis. ANCA activates neutrophils and activated neutrophils damage the endothelium, leading to vascular inflammation and necrosis. Better understanding of neutrophil-mediated AAV disease mechanisms may reveal novel treatment strategies. Here we report that ANCA induces neutrophil extracellular traps (NETs) via receptor-interacting protein kinase (RIPK) 1/3- and mixed-lineage kinase domain-like (MLKL)-dependent necroptosis. NETs from ANCA-stimulated neutrophils caused endothelial cell (EC) damage in vitro. This effect was prevented by (i) pharmacologic inhibition of RIPK1 or (ii) enzymatic NET degradation. The alternative complement pathway (AP) was recently implicated in AAV, and C5a inhibition is currently being tested in clinical studies. We observed that NETs provided a scaffold for AP activation that in turn contributed to EC damage. We further established the in vivo relevance of NETs and the requirement of RIPK1/3/MLKL-dependent necroptosis, specifically in the bone marrow-derived compartment, for disease induction using murine AAV models and in human kidney biopsies. In summary, we identified a mechanistic link between ANCA-induced neutrophil activation, necroptosis, NETs, the AP, and endothelial damage. RIPK1 inhibitors are currently being evaluated in clinical trials and exhibit a novel therapeutic strategy in AAV.
Collapse
|
45
|
Marteyn BS, Burgel PR, Meijer L, Witko-Sarsat V. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by Pseudomonas aeruginosa: Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis. Front Cell Infect Microbiol 2017; 7:243. [PMID: 28713772 PMCID: PMC5492487 DOI: 10.3389/fcimb.2017.00243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
More than two decades after cloning the cystic fibrosis transmembrane regulator (CFTR) gene, the defective gene in cystic fibrosis (CF), we still do not understand how dysfunction of this ion channel causes lung disease and the tremendous neutrophil burden which persists within the airways; nor why chronic colonization by Pseudomonas aeruginosa develops in CF patients who are thought to be immunocompetent. It appears that the microenvironment within the lung of CF patients provides favorable conditions for both P. aeruginosa colonization and neutrophil survival. In this context, the ability of bacteria to induce hypoxia, which in turn affects neutrophil survival is an additional level of complexity that needs to be accounted for when controlling neutrophil fate in CF. Recent studies have underscored the importance of neutrophils in innate immunity and their functions appear to extend far beyond their well-described role in antibacterial defense. Perhaps a disturbance in neutrophil reprogramming during the course of an infection severely modulates the inflammatory response in CF. Furthermore there is an emerging concept that the CFTR itself may be an immune modulator and stimulating CFTR function in CF patients could promote neutrophil and macrophages antimicrobial function. Fostering the resolution of inflammation by favoring neutrophil apoptosis could preserve their microbicidal activities but decrease their proinflammatory potential. In this context, triggering neutrophil apoptosis with roscovitine may be a potential therapeutic option and this is currently being evaluated in CF patients. In the present review we discuss how neutrophils functions are disturbed in CF and how this may relate to chronic infection with P. aeuginosa and we propose novel research directions aimed at modulating neutrophil survival, dampening lung inflammation and ultimately leading to an amelioration of the lung disease.
Collapse
Affiliation(s)
- Benoît S Marteyn
- Unité de Pathogénie Microbienne Moléculaire, Institut PasteurParis, France.,Institut National de la Santé et de la Recherche Médicale, U12021202Paris, France.,Institut Gustave RoussyVillejuif, France
| | - Pierre-Régis Burgel
- Université Paris Descartes, Sorbonne Paris CitéParis, France.,Pneumology Department, Hôpital CochinParis, France
| | | | - Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut CochinParis, France.,Centre National de la Recherche Scientifique-UMR 8104Paris, France.,Center of Excellence, Labex InflamexParis, France
| |
Collapse
|
46
|
Storisteanu DML, Pocock JM, Cowburn AS, Juss JK, Nadesalingam A, Nizet V, Chilvers ER. Evasion of Neutrophil Extracellular Traps by Respiratory Pathogens. Am J Respir Cell Mol Biol 2017; 56:423-431. [PMID: 27854516 DOI: 10.1165/rcmb.2016-0193ps] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The release of neutrophil extracellular traps (NETs) is a major immune mechanism intended to capture pathogens. These histone- and protease-coated DNA structures are released by neutrophils in response to a variety of stimuli, including respiratory pathogens, and have been identified in the airways of patients with respiratory infection, cystic fibrosis, acute lung injury, primary graft dysfunction, and chronic obstructive pulmonary disease. NET production has been demonstrated in the lungs of mice infected with Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. Since the discovery of NETs over a decade ago, evidence that "NET evasion" might act as an immune protection strategy among respiratory pathogens, including group A Streptococcus, Bordetella pertussis, and Haemophilus influenzae, has been growing, with the majority of these studies being published in the past 2 years. Evasion strategies fall into three main categories: inhibition of NET release by down-regulating host inflammatory responses; degradation of NETs using pathogen-derived DNases; and resistance to the microbicidal components of NETs, which involves a variety of mechanisms, including encapsulation. Hence, the evasion of NETs appears to be a widespread strategy to allow pathogen proliferation and dissemination, and is currently a topic of intense research interest. This article outlines the evidence supporting the three main strategies of NET evasion-inhibition, degradation, and resistance-with particular reference to common respiratory pathogens.
Collapse
Affiliation(s)
| | | | - Andrew S Cowburn
- Departments of 1 Medicine and.,2 Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jatinder K Juss
- Departments of 1 Medicine and.,3 Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | | | - Victor Nizet
- 4 Department of Pediatrics, University of California-La Jolla, San Diego, California
| | | |
Collapse
|
47
|
Granger V, Faille D, Marani V, Noël B, Gallais Y, Szely N, Flament H, Pallardy M, Chollet-Martin S, de Chaisemartin L. Human blood monocytes are able to form extracellular traps. J Leukoc Biol 2017; 102:775-781. [PMID: 28465447 DOI: 10.1189/jlb.3ma0916-411r] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular DNA filaments formed during neutrophil activation. This process, called netosis, was originally associated with neutrophil antibacterial properties. However, several lines of evidence now suggest a major role for netosis in thrombosis, autoimmune diseases, and cancer. We demonstrate here that highly purified human blood monocytes are also capable of extracellular trap (ET) release in response to several stimuli. Monocyte ETs display a morphology analogous to NETs and are associated with myeloperoxidase (MPO), lactoferrin (LF), citrullinated histones, and elastase. Monocyte ET release depends on oxidative burst but not on MPO activity, in contrast to neutrophils. Moreover, we demonstrate procoagulant activity for monocyte ETs, a feature that could be relevant to monocyte thrombogenic properties. This new cellular mechanism is likely to have implications in the multiple pathologic contexts where monocytes are implicated, such as inflammatory disorders, infection, or thrombosis.
Collapse
Affiliation(s)
- Vanessa Granger
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Assistance Publique Hopitaux de Paris, Bichat Hospital, Immunology Department, Paris, France; and
| | - Dorothée Faille
- Assistance Publique Hopitaux de Paris, Bichat Hospital, Hematology Department, Paris, France
| | - Vanessa Marani
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Benoît Noël
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Yann Gallais
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Natacha Szely
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Héloïse Flament
- Assistance Publique Hopitaux de Paris, Bichat Hospital, Immunology Department, Paris, France; and
| | - Marc Pallardy
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Assistance Publique Hopitaux de Paris, Bichat Hospital, Immunology Department, Paris, France; and
| | - Luc de Chaisemartin
- Unité mixte de Recherche 996-Inflammation, Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France; .,Assistance Publique Hopitaux de Paris, Bichat Hospital, Immunology Department, Paris, France; and
| |
Collapse
|
48
|
Kobayashi SD, Malachowa N, DeLeo FR. Influence of Microbes on Neutrophil Life and Death. Front Cell Infect Microbiol 2017; 7:159. [PMID: 28507953 PMCID: PMC5410578 DOI: 10.3389/fcimb.2017.00159] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in humans and they are among the first white cells recruited to infected tissues. These leukocytes are essential for the innate immune response to bacteria and fungi. Inasmuch as neutrophils produce or contain potent microbicides that can be toxic to the host, neutrophil turnover and homeostasis is a highly regulated process that prevents unintended host tissue damage. Indeed, constitutive neutrophil apoptosis and subsequent removal of these cells by mononuclear phagocytes is a primary means by which neutrophil homeostasis is maintained in healthy individuals. Processes that alter normal neutrophil turnover and removal of effete cells can lead to host tissue damage and disease. The interaction of neutrophils with microbes and molecules produced by microbes often alters neutrophil turnover. The ability of microbes to alter the fate of neutrophils is highly varied, can be microbe-specific, and ranges from prolonging the neutrophil lifespan to causing rapid neutrophil lysis after phagocytosis. Here we provide a brief overview of these processes and their associated impact on innate host defense.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| |
Collapse
|
49
|
Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis. Pathogens 2017; 6:pathogens6010010. [PMID: 28282951 PMCID: PMC5371898 DOI: 10.3390/pathogens6010010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa.
Collapse
|
50
|
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol 2017; 17:151-164. [PMID: 28138137 DOI: 10.1038/nri.2016.147] [Citation(s) in RCA: 727] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic cells can die from physical trauma, which results in necrosis. Alternatively, they can die through programmed cell death upon the stimulation of specific signalling pathways. In this Review, we discuss the role of different cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary 'arms race' with pathogens. Finally, we describe how the resulting cell corpses - apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) - promote the clearance of infection.
Collapse
Affiliation(s)
- Ine Jorgensen
- Department of Immunology, Oslo University Hospital, Sognsvannsveien 20, Rikshospitalet 0372, Oslo, Norway
| | - Manira Rayamajhi
- Camargo Pharmaceutical Services, 2505 Meridian Parkway, Suite 175, Durham, North Carolina 27713, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|