1
|
Luo J, Tang Q, Lin T, Liu J, Wu Z, Zhang X, Zhang X, Jiang J, Wang Y. An optimized method for directed differentiation of hypothalamic neural stem cells in a 3D culture system. Sci Rep 2025; 15:18542. [PMID: 40425660 PMCID: PMC12117107 DOI: 10.1038/s41598-025-02847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Hypothalamic neurogenesis is a complex process that plays a crucial role in neuroendocrine homeostasis, making in vivo studies of the hypothalamus particularly challenging. In this study, we present an optimized protocol for isolating and culturing hypothalamic neural stem cells (htNSCs) from neonatal (P1) mice, followed by their directed differentiation in a three-dimensional (3D) Matrigel environment. We successfully established a primary culture system that supports the stability, growth, and distinct characteristics of htNSCs. Notably, we demonstrate that htNSCs can differentiate into GnRH-like neurons within the Matrigel-based 3D culture system. These differentiated neurons exhibit typical neuronal morphology and functional characteristics. Our findings highlight the potential of neonatal htNSCs as an invaluable model for studying hypothalamic function and neurogenesis. Furthermore, this method provides a novel platform for basic research and may serve as important implications for further studying the pathological mechanism of neuroendocrine disorders in hypothalamus.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiaoyan Tang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Tanjing Lin
- School of Pharmacy, Guangdong Medical University, Guangdong, China
| | - Jiabang Liu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhiheng Wu
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xintao Zhang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaohua Zhang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Junhai Jiang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
2
|
Yang M, Wang K, Liu B, Shen Y, Liu G. Hypoxic-Ischemic Encephalopathy: Pathogenesis and Promising Therapies. Mol Neurobiol 2025; 62:2105-2122. [PMID: 39073530 DOI: 10.1007/s12035-024-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain lesion caused by inadequate blood supply and oxygen deprivation, often occurring in neonates. It has emerged as a grave complication of neonatal asphyxia, leading to chronic neurological damage. Nevertheless, the precise pathophysiological mechanisms underlying HIE are not entirely understood. This paper aims to comprehensively elucidate the contributions of hypoxia-ischemia, reperfusion injury, inflammation, oxidative stress, mitochondrial dysfunction, excitotoxicity, ferroptosis, endoplasmic reticulum stress, and apoptosis to the onset and progression of HIE. Currently, hypothermia therapy stands as the sole standard treatment for neonatal HIE, albeit providing only partial neuroprotection. Drug therapy and stem cell therapy have been explored in the treatment of HIE, exhibiting certain neuroprotective effects. Employing drug therapy or stem cell therapy as adjunctive treatments to hypothermia therapy holds great significance. This article presents a systematic review of the pathogenesis and treatment strategies of HIE, with the goal of enhancing the effect of treatment and improving the quality of life for HIE patients.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Guangliang Liu
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
3
|
Yang Z, Luo TT, Dai YL, Duan HX, Chong CM, Tang J. Pharmacological Strategies and Surgical Management of Posthemorrhagic Hydrocephalus Following Germinal Matrix-Intraventricular Hemorrhage in Preterm Infants. Curr Neuropharmacol 2025; 23:241-255. [PMID: 39248058 PMCID: PMC11808585 DOI: 10.2174/1570159x23666240906115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 09/10/2024] Open
Abstract
Germinal matrix-intraventricular hemorrhage (GM-IVH) is a detrimental neurological complication that occurs in preterm infants, especially in babies born before 32 weeks of gestation and in those with a very low birth weight. GM-IVH is defined as a rupture of the immature and fragile capillaries located in the subependymal germinal matrix zone of the preterm infant brain, and it can lead to detrimental neurological sequelae such as posthemorrhagic hydrocephalus (PHH), cerebral palsy, and other cognitive impairments. PHH following GM-IVH is difficult to treat in the clinic, and no levelone strategies have been recommended to pediatric neurosurgeons. Several cellular and molecular mechanisms of PHH following GM-IVH have been studied in animal models, but no effective pharmacological strategies have been used in the clinic. Thus, a comprehensive understanding of molecular mechanisms, potential pharmacological strategies, and surgical management of PHH is urgently needed. The present review presents a synopsis of the pathogenesis, diagnosis, and cellular and molecular mechanisms of PHH following GM-IVH and explores pharmacological strategies and surgical management.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Tian Tian Luo
- Department of Neurobiology, Army Medical University (Third military medical university), Chongqing, 400038, China
| | - Ya-Lan Dai
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Han-Xiao Duan
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jun Tang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| |
Collapse
|
4
|
Cavanagh AS, Kuter N, Sollinger BI, Aziz K, Turnbill V, Martin LJ, Northington FJ. Intranasal therapies for neonatal hypoxic-ischemic encephalopathy: Systematic review, synthesis, and implications for global accessibility to care. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615156. [PMID: 39386687 PMCID: PMC11463427 DOI: 10.1101/2024.09.26.615156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of neurodevelopmental morbidity in term infants worldwide. Incidence of HIE is highest in low and middle-income communities with minimal access to neonatal intensive care and an underdeveloped infrastructure for advanced neurologic interventions. Moreover, therapeutic hypothermia, standard of care for HIE in high resourced settings, is shown to be ineffective in low and middle-income communities. With their low cost, ease of administration, and capacity to potently target the central nervous system, intranasal therapies pose a unique opportunity to be a more globally accessible treatment for neonatal HIE. Intranasal experimental therapeutics have been studied in both rodent and piglet models, but no intranasal therapeutics for neonatal HIE have undergone human clinical trials. Additional research must be done to expand the array of treatments available for use as intranasal therapies for neonatal HIE thus improving the neurologic outcomes of infants worldwide.
Collapse
|
5
|
Chen W, Ren Q, Zhou J, Liu W. Mesenchymal Stem Cell-Induced Neuroprotection in Pediatric Neurological Diseases: Recent Update of Underlying Mechanisms and Clinical Utility. Appl Biochem Biotechnol 2024; 196:5843-5858. [PMID: 38261236 DOI: 10.1007/s12010-023-04752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 01/24/2024]
Abstract
Pediatric neurological diseases refer to a group of disorders that affect the nervous system in children. These conditions can have a significant impact on a child's development, cognitive function, motor skills, and overall quality of life. Stem cell therapy is a new and innovative approach to treat various neurological conditions by repairing damaged neurons and replacing those that have been lost. Mesenchymal stem cells (MSCs) have gained significant recognition in this regard due to their ability to differentiate into different cell types. MSCs are multipotent self-replicating stem cells known to render promising results in the treatment of stroke and spinal cord injury in adults. When delivered to the foci of damage in the central nervous system, stem cells begin to differentiate into neural cells under the stimulation of paracrine factors and secrete various neurotrophic factors (NTFs) like nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) that expedite the repair process in injured neurons. In the present review, we will focus on the therapeutic benefits of the MSC-based therapies in salient pediatric neurological disorders including cerebral palsy, stroke, and autism.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, People's Liberation Army, Southern Theater, Naval First Hospital, Zhanjiang, 524002, China
| | - Qiaoling Ren
- Department of Neurology, People's Liberation Army, Southern Theater, Naval First Hospital, Zhanjiang, 524002, China
| | - Junchen Zhou
- Department of Acupuncture and Moxibustion, Rehabilitation Medical Center, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, China
| | - Wenchun Liu
- Department of Neurology, People's Liberation Army, Southern Theater, Naval First Hospital, Zhanjiang, 524002, China.
| |
Collapse
|
6
|
Tao X, Hu Y, Mao N, Shen M, Fang M, Zhang M, Lou J, Fang Y, Guo X, Lin Z. Echinatin alleviates inflammation and pyroptosis in hypoxic-ischemic brain damage by inhibiting TLR4/ NF-κB pathway. Int Immunopharmacol 2024; 136:112372. [PMID: 38850784 DOI: 10.1016/j.intimp.2024.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Hypoxic ischemic encephalopathy (HIE) is a primary cause of neonatal death and disabilities. The pathogenetic process of HIE is closely associated with neuroinflammation. Therefore, targeting and suppressing inflammatory pathways presents a promising therapeutic strategy for the treatment of HIE. Echinatin is an active component of glycyrrhiza, with anti-inflammatory and anti-oxidative properties. It is commonly combined with other traditional Chinese herbs to exert heat-clearing and detoxifying effects. This study aimed to investigate the anti-inflammatory and neuroprotective effects of Echinatin in neonatal rats with hypoxic-ischemic brain damage, as well as in PC12 cells exposed to oxygen-glucose deprivation (OGD). In vivo, Echinatin effectively reduced cerebral edema and infarct volume, protected brain tissue morphology, improved long-term behavioral functions, and inhibited microglia activation. These effects were accompanied by the downregulation of inflammatory factors and pyroptosis markers. The RNA sequencing analysis revealed an enrichment of inflammatory genes in rats with hypoxic-ischemic brain damage, and Protein-protein interaction (PPI) network analysis identified TLR4, MyD88, and NF-κB as the key regulators. In vitro, Echinatin reduced the levels of TLR4 relevant proteins, inhibited nuclear translocation of NF-κB, reduced the expression of downstreams inflammatory cytokines and pyroptosis proteins, and prevented cell membrane destructions. These findings demonstrated that Echinatin could inhibit the TLR4/NF-κB pathway, thereby alleviating neuroinflammation and pyroptosis. This suggests that Echinatin could be a potential candidate for the treatment of HIE.
Collapse
Affiliation(s)
- Xiaoyue Tao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, 325027, China
| | - Yingying Hu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, 325027, China
| | - Niping Mao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, 325027, China
| | - Ming Shen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, 325027, China
| | - Mingchu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, 325027, China
| | - Min Zhang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, 325027, China
| | - Jia Lou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, 325027, China
| | - Yu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, 325027, China
| | - Xiaoling Guo
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, 325027, China; Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,325027, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
7
|
Poupon-Bejuit L, Geard A, Millicheap N, Rocha-Ferreira E, Hagberg H, Thornton C, Rahim AA. Diabetes drugs activate neuroprotective pathways in models of neonatal hypoxic-ischemic encephalopathy. EMBO Mol Med 2024; 16:1284-1309. [PMID: 38783166 PMCID: PMC11178908 DOI: 10.1038/s44321-024-00079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) arises from diminished blood flow and oxygen to the neonatal brain during labor, leading to infant mortality or severe brain damage, with a global incidence of 1.5 per 1000 live births. Glucagon-like Peptide 1 Receptor (GLP1-R) agonists, used in type 2 diabetes treatment, exhibit neuroprotective effects in various brain injury models, including HIE. In this study, we observed enhanced neurological outcomes in post-natal day 10 mice with surgically induced hypoxic-ischaemic (HI) brain injury after immediate systemic administration of exendin-4 or semaglutide. Short- and long-term assessments revealed improved neuropathology, survival rates, and locomotor function. We explored the mechanisms by which GLP1-R agonists trigger neuroprotection and reduce inflammation following oxygen-glucose deprivation and HI in neonatal mice, highlighting the upregulation of the PI3/AKT signalling pathway and increased cAMP levels. These findings shed light on the neuroprotective and anti-inflammatory effects of GLP1-R agonists in HIE, potentially extending to other neurological conditions, supporting their potential clinical use in treating infants with HIE.
Collapse
Affiliation(s)
- Laura Poupon-Bejuit
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Amy Geard
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Nathan Millicheap
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
8
|
Wang F, Cheng XY, Zhang YT, Bai QR, Zhang XQ, Sun XC, Ma QH, Zhao XF, Liu CF. Transplantation of human neural stem cell prevents symptomatic motor behavior disability in a rat model of Parkinson's disease. Open Life Sci 2024; 19:20220834. [PMID: 38465343 PMCID: PMC10921471 DOI: 10.1515/biol-2022-0834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 03/12/2024] Open
Abstract
Parkinson's disease (PD) is a ubiquitous brain cell degeneration disease and presents a significant therapeutic challenge. By injecting 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle, rats were made to exhibit PD-like symptoms and treated by intranasal administration of a low-dose (2 × 105) or high-dose (1 × 106) human neural stem cells (hNSCs). Apomorphine-induced rotation test, stepping test, and open field test were implemented to evaluate the motor behavior and high-performance liquid chromatography was carried out to detect dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin, and 5-hydroxyindole-3-acetic acid in the striatum of rats. Animals injected with 6-OHDA showed significant motor function deficits and damaged dopaminergic system compared to the control group, which can be restored by hNSCs treatment. Treatment with hNSCs significantly increased the tyrosine hydroxylase-immunoreactive cell count in the substantia nigra of PD animals. Moreover, the levels of neurotransmitters exhibited a significant decline in the striatum tissue of animals injected with 6-OHDA when compared to that of the control group. However, transplantation of hNSCs significantly elevated the concentration of DA and DOPAC in the injured side of the striatum. Our study offered experimental evidence to support prospects of hNSCs for clinical application as a cell-based therapy for PD.
Collapse
Affiliation(s)
- Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
| | - Yu-Ting Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200333, China
| | - Xiao-Qi Zhang
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Xi-Cai Sun
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiong-Fei Zhao
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Nikolic B, Trnski-Levak S, Kosic K, Drlje M, Banovac I, Hranilovic D, Jovanov-Milosevic N. Lasting mesothalamic dopamine imbalance and altered exploratory behavior in rats after a mild neonatal hypoxic event. Front Integr Neurosci 2024; 17:1304338. [PMID: 38304737 PMCID: PMC10832065 DOI: 10.3389/fnint.2023.1304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction Adversities during the perinatal period can decrease oxygen supply to the fetal brain, leading to various hypoxic brain injuries, which can compromise the regularity of brain development in different aspects. To examine the catecholaminergic contribution to the link between an early-life hypoxic insult and adolescent behavioral aberrations, we used a previously established rat model of perinatal hypoxia but altered the hypobaric to normobaric conditions. Methods Exploratory and social behavior and learning abilities were tested in 70 rats of both sexes at adolescent age. Inherent vertical locomotion, sensory-motor functions and spatial learning abilities were explored in a subset of animals to clarify the background of altered exploratory behavior. Finally, the concentrations of dopamine (DA) and noradrenaline in midbrain and pons, and the relative expression of genes for DA receptors D1 and D2, and their down-stream targets (DA- and cAMP-regulated phosphoprotein, Mr 32 kDa, the regulatory subunit of protein kinase A, and inhibitor-5 of protein phosphatase 1) in the hippocampus and thalamus were investigated in 31 rats. Results A lesser extent of alterations in exploratory and cognitive aspects of behavior in the present study suggests that normobaric conditions mitigate the hypoxic injury compared to the one obtained under hypobaric conditions. Increased exploratory rearing was the most prominent consequence, with impaired spatial learning in the background. In affected rats, increased midbrain/pons DA content, as well as mRNA levels for DA receptors and their down-stream elements in the thalamus, but not the hippocampus, were found. Conclusion We can conclude that a mild hypoxic event induced long-lasting disbalances in mesothalamic DA signaling, contributing to the observed behavioral alterations. The thalamus was thereby indicated as another structure, besides the well-established striatum, involved in mediating hypoxic effects on behavior through DA signaling.
Collapse
Affiliation(s)
- Barbara Nikolic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Sara Trnski-Levak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Kristina Kosic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Matea Drlje
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Banovac
- Department of Biology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department for Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dubravka Hranilovic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
10
|
Scrutton AM, Ollis F, Boltze J. Mononuclear cell therapy of neonatal hypoxic-ischemic encephalopathy in preclinical versus clinical studies: a systematic analysis of therapeutic efficacy and study design. NEUROPROTECTION 2023; 1:143-159. [PMID: 38213793 PMCID: PMC7615506 DOI: 10.1002/nep3.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024]
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) is a devastating condition affecting around 8.5 in 1000 newborns globally. Therapeutic hypothermia (TH) can reduce mortality and, to a limited extent, disability after HIE. Nevertheless, there is a need for new and effective treatment strategies. Cell based treatments using mononuclear cells (MNC), which can be sourced from umbilical cord blood, are currently being investigated. Despite promising preclinical results, there is currently no strong indicator for clinical efficacy of the approach. This analysis aimed to provide potential explanations for this discrepancy. Methods A systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. Preclinical and clinical studies were retrieved from PubMed, Web of Science, Scopus, and clinicaltrials.gov using a predefined search strategy. A total of 17 preclinical and 7 clinical studies were included. We analyzed overall MNC efficacy in preclinical trials, the methodological quality of preclinical trials and relevant design features in preclinical versus clinical trials. Results There was evidence for MNC therapeutic efficacy in preclinical models of HIE. The methodological quality of preclinical studies was not optimal, and statistical design quality was particularly poor. However, methodological quality was above the standard in other fields. There were significant differences in preclinical versus clinical study design including the use of TH as a baseline treatment (only in clinical studies) and much higher MNC doses being applied in preclinical studies. Conclusions Based on the analyzed data, it is unlikely that therapeutic effect size is massively overestimated in preclinical studies. It is more plausible that the many design differences between preclinical and clinical trials are responsible for the so far lacking proof of efficacy of MNC treatments in HIE. Additional preclinical and clinical research is required to optimize the application of MNC for experimental HIE treatment.
Collapse
Affiliation(s)
- Alexander M. Scrutton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Neurobiology Division, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Ollis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
11
|
Bruschettini M, Badura A, Romantsik O. Stem cell-based interventions for the treatment of stroke in newborn infants. Cochrane Database Syst Rev 2023; 11:CD015582. [PMID: 37994736 PMCID: PMC10666199 DOI: 10.1002/14651858.cd015582.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Perinatal stroke refers to a diverse but specific group of cerebrovascular diseases that occur between 20 weeks of fetal life and 28 days of postnatal life. Acute treatment options for perinatal stroke are limited supportive care, such as controlling hypoglycemia and seizures. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. Preclinical findings have culminated in ongoing human neonatal studies. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem-cell based interventions of a different type or source. SEARCH METHODS We searched CENTRAL, PubMed, Embase, and three trials registries in February 2023. We planned to search the reference lists of included studies and relevant systematic reviews for studies not identified by the database searches. SELECTION CRITERIA We attempted to include randomized controlled trials, quasi-randomized controlled trials, and cluster trials that evaluated any of the following comparisons. • Stem cell-based interventions (any type) versus control (placebo or no treatment) • Mesenchymal stem/stromal cells (MSCs) of a specifictype (e.g. number of doses or passages) or source (e.g. autologous/allogeneic or bone marrow/cord) versus MSCs of another type or source • Stem cell-based interventions (other than MSCs) of a specific type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, or induced pluripotent stem cell-derived cells) or source (e.g. autologous/allogeneic or bone marrow/cord) versus stem cell-based interventions (other than MSCs) of another type or source • MSCs versus stem cell-based interventions other than MSCs We planned to include all types of transplantation regardless of cell source (bone marrow, cord blood, Wharton's jelly, placenta, adipose tissue, peripheral blood), type of graft (autologous or allogeneic), and dose. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were all-cause neonatal mortality, major neurodevelopmental disability, and immune rejection or any serious adverse event. Our secondary outcomes included all-cause mortality prior to first hospital discharge, seizures, adverse effects, and death or major neurodevelopmental disability at 18 to 24 months of age. We planned to use GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS We identified no completed or ongoing randomized trials that met our inclusion criteria. We excluded three studies: two were phase 1 trials, and one included newborn infants with conditions other than stroke (i.e. cerebral ischemia and anemia). Among the three excluded studies, we identified the first phase 1 trial on the use of stem cells for neonatal stroke. It reported that a single intranasal application of bone marrow-derived MSCs in term neonates with a diagnosis of perinatal arterial ischemic stroke (PAIS) was feasible and apparently not associated with severe adverse events. However, the trial included only 10 infants, and follow-up was limited to three months. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment of stroke in newborn infants. We identified no ongoing studies. Future clinical trials should focus on standardizing the timing and method of cell delivery and cell processing to optimize the therapeutic potential of stem cell-based interventions and safety profiles. Phase 1 and large animal studies might provide the groundwork for future randomized trials. Outcome measures should include all-cause mortality, major neurodevelopmental disability and immune rejection, and any other serious adverse events.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna Badura
- Department of Neonatology, University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany
| | - Olga Romantsik
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
12
|
Zhou J, Gao T, Tang W, Qian T, Wang Z, Xu P, Wang L. Progress in the treatment of neonatal hypoxic-ischemic encephalopathy with umbilical cord blood mononuclear cells. Brain Dev 2023; 45:533-546. [PMID: 37806836 DOI: 10.1016/j.braindev.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease among newborns, which is a leading cause of neonatal death and permanent neurological sequelae. Therapeutic hypothermia (TH) is the only method for the treatment of HIE that has been recognized effective clinically at home and abroad, but the efficacy is limited. Recent research suggests that the cord blood-derived mononuclear cells (CB-MNCs), which the refer to blood cells containing one nucleus in the cord blood, exert anti-oxidative, anti-inflammatory, anti-apoptotic effects and play a neuroprotective role in HIE. This review focuses on safety and efficacy, the route of administration, dose, timing and combination treatment of CB-MNCs in HIE.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Pu Xu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China.
| |
Collapse
|
13
|
Wang Z, Zhang S, Du J, Lachance BB, Chen S, Polster BM, Jia X. Neuroprotection of NSC Therapy is Superior to Glibenclamide in Cardiac Arrest-Induced Brain Injury via Neuroinflammation Regulation. Transl Stroke Res 2023; 14:723-739. [PMID: 35921049 PMCID: PMC9895128 DOI: 10.1007/s12975-022-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/05/2022] [Indexed: 02/05/2023]
Abstract
Cardiac arrest (CA) is common and devastating, and neuroprotective therapies for brain injury after CA remain limited. Neuroinflammation has been a target for two promising but underdeveloped post-CA therapies: neural stem cell (NSC) engrafting and glibenclamide (GBC). It is critical to understand whether one therapy has superior efficacy over the other and to further understand their immunomodulatory mechanisms. In this study, we aimed to evaluate and compare the therapeutic effects of NSC and GBC therapies post-CA. In in vitro studies, BV2 cells underwent oxygen-glucose deprivation (OGD) for three hours and were then treated with GBC or co-cultured with human NSCs (hNSCs). Microglial polarization phenotype and TLR4/NLRP3 inflammatory pathway proteins were detected by immunofluorescence staining. Twenty-four Wistar rats were randomly assigned to three groups (control, GBC, and hNSCs, N = 8/group). After 8 min of asphyxial CA, GBC was injected intraperitoneally or hNSCs were administered intranasally in the treatment groups. Neurological-deficit scores (NDSs) were assessed at 24, 48, and 72 h after return of spontaneous circulation (ROSC). Immunofluorescence was used to track hNSCs and quantitatively evaluate microglial activation subtype and polarization. The expression of TLR4/NLRP3 pathway-related proteins was quantified via Western blot. The in vitro studies showed the highest proportion of activated BV2 cells with an increased expression of TLR4/NLRP3 signaling proteins were found in the OGD group compared to OGD + GBC and OGD + hNSCs groups. NDS showed significant improvement after CA in hNSC and GBC groups compared to controls, and hNSC treatment was superior to GBC treatment. The hNSC group had more inactive morphology and anti-inflammatory phenotype of microglia. The quantified expression of TLR4/NLRP3 pathway-related proteins was significantly suppressed by both treatments, and the suppression was more significant in the hNSC group compared to the GBC group. hNSC and GBC therapy regulate microglial activation and the neuroinflammatory response in the brain after CA through TLR4/NLRP3 signaling and exert multiple neuroprotective effects, including improved neurological function and shortened time of severe neurological deficit. In addition, hNSCs displayed superior inflammatory regulation over GBC.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Songyu Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Yang X, Zhang X, Cao J, Wu M, Chen S, Chen L. Routes and methods of neural stem cells injection in cerebral ischemia. IBRAIN 2023; 9:326-339. [PMID: 37786754 PMCID: PMC10527797 DOI: 10.1002/ibra.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 10/04/2023]
Abstract
Cerebral ischemia is a serious cerebrovascular disease with the characteristics of high morbidity, disability, and mortality. Currently, stem cell therapy has been extensively applied to a wide range of diseases, including neurological disorders, autoimmune deficits, and other diseases. Transplantation therapy with neural stem cells (NSCs) is a very promising treatment method, which not only has anti-inflammatory, antiapoptotic, promoting angiogenesis, and neurogenesis effects, but also can improve some side effects related to thrombolytic therapy. NSCs treatment could exert protective effects in alleviating cerebral ischemia-induced brain damage and neurological dysfunctions. However, the different injection routes and doses of NSCs determine diverse therapeutic efficacy. This review mainly summarizes the various injection methods and injection effects of NSCs in cerebral ischemia, as well as proposes the existing problems and prospects of NSCs transplantation.
Collapse
Affiliation(s)
- Xing‐Yu Yang
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Xiao Zhang
- School of Basic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Jun‐Feng Cao
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Mei Wu
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Sheng‐Yan Chen
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Li Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
15
|
Fan Y, Li J, Fang B. A Tale of Two: When Neural Stem Cells Encounter Hypoxia. Cell Mol Neurobiol 2023; 43:1799-1816. [PMID: 36308642 PMCID: PMC11412202 DOI: 10.1007/s10571-022-01293-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/02/2022] [Indexed: 11/12/2022]
Abstract
Normoxia is defined as an oxygen concentration of 20.9%, as in room air, whereas hypoxia refers to any oxygen concentration less than this. Any physiological oxygen deficiency or tissue oxygen deficiency relative to demand is called hypoxia. Neural stem cells (NSCs) are multipotent stem cells that can differentiate into multiple cell lines such as neurons, oligodendrocytes, and astrocytes. Under hypoxic conditions, the apoptosis rate of NSCs increases remarkably in vitro or in vivo. However, some hypoxia promotes the proliferation and differentiation of NSCs. The difference is related to the oxygen concentration, the duration of hypoxia, the hypoxia tolerance threshold of the NSCs, and the tissue source of the NSCs. The main mechanism of hypoxia-induced proliferation and differentiation involves an increase in cyclin and erythropoietin concentrations, and hypoxia-inducible factors play a key role. Multiple molecular pathways are activated during hypoxia, including Notch, Wnt/β-catenin, PI3K/Akt, and altered microRNA expression. In addition, we review the protective effect of exogenous NSCs transplantation on ischemic or anoxic organs, the therapeutic potential of hypoxic preconditioning on exogenous NSCs and clinical application of NSCs.
Collapse
Affiliation(s)
- Yiting Fan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jinshi Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Berg LJ, Brüstle O. Stem cell programming - prospects for perinatal medicine. J Perinat Med 2023:jpm-2022-0575. [PMID: 36809086 DOI: 10.1515/jpm-2022-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 02/23/2023]
Abstract
Recreating human cell and organ systems in vitro has tremendous potential for disease modeling, drug discovery and regenerative medicine. The aim of this short overview is to recapitulate the impressive progress that has been made in the fast-developing field of cell programming during the past years, to illuminate the advantages and limitations of the various cell programming technologies for addressing nervous system disorders and to gauge their impact for perinatal medicine.
Collapse
Affiliation(s)
- Lea J Berg
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
17
|
Cochrane Neonatal Group, Bruschettini M, Badura A, Romantsik O. Stem cell‐based interventions for the treatment of stroke in newborn infants. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2023; 2023:CD015582. [PMCID: PMC9933426 DOI: 10.1002/14651858.cd015582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To evaluate the benefits and harms of stem cell‐based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem‐cell based interventions of a different type or source.
Collapse
Affiliation(s)
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden,Cochrane SwedenLund University, Skåne University HospitalLundSweden
| | | | - Olga Romantsik
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden
| |
Collapse
|
18
|
Romantsik O, Moreira A, Thébaud B, Ådén U, Ley D, Bruschettini M. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. Cochrane Database Syst Rev 2023; 2:CD013201. [PMID: 36790019 PMCID: PMC9932000 DOI: 10.1002/14651858.cd013201.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) and encephalopathy of prematurity (EoP) remain substantial issues in neonatal intensive care units worldwide. Current therapies to prevent or treat these conditions are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. This is an update of the 2019 review, which did not include EoP. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for prevention or treatment of GM-IVH and EoP in preterm infants. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search was April 2022. SELECTION CRITERIA We attempted to include randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing 1. stem cell-based interventions versus control; 2. mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; 3. stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or 4. MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH or EoP; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH or with EoP. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. all-cause neonatal mortality, 2. major neurodevelopmental disability, 3. GM-IVH, 4. EoP, and 5. extension of pre-existing non-severe GM-IVH or EoP. We planned to use GRADE to assess certainty of evidence for each outcome. MAIN RESULTS We identified no studies that met our inclusion criteria. Three studies are currently registered and ongoing. Phase 1 trials are described in the 'Excluded studies' section. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment or prevention of GM-IVH or EoP in preterm infants. We identified three ongoing studies, with a sample size range from 20 to 200. In two studies, autologous cord blood mononuclear cells will be administered to extremely preterm infants via the intravenous route; in one, intracerebroventricular injection of MSCs will be administered to preterm infants up to 34 weeks' gestational age.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Ulrika Ådén
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
19
|
Lv Z, Li Y, Wang Y, Cong F, Li X, Cui W, Han C, Wei Y, Hong X, Liu Y, Ma L, Jiao Y, Zhang C, Li H, Jin M, Wang L, Ni S, Liu J. Safety and efficacy outcomes after intranasal administration of neural stem cells in cerebral palsy: a randomized phase 1/2 controlled trial. Stem Cell Res Ther 2023; 14:23. [PMID: 36759901 PMCID: PMC9910250 DOI: 10.1186/s13287-022-03234-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/05/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are believed to have the most therapeutic potential for neurological disorders because they can differentiate into various neurons and glial cells. This research evaluated the safety and efficacy of intranasal administration of NSCs in children with cerebral palsy (CP). The functional brain network (FBN) analysis based on electroencephalogram (EEG) and voxel-based morphometry (VBM) analysis based on T1-weighted images were performed to evaluate functional and structural changes in the brain. METHODS A total of 25 CP patients aged 3-12 years were randomly assigned to the treatment group (n = 15), which received an intranasal infusion of NSCs loaded with nasal patches and rehabilitation therapy, or the control group (n = 10) received rehabilitation therapy only. The primary endpoints were the safety (assessed by the incidence of adverse events (AEs), laboratory and imaging examinations) and the changes in the Gross Motor Function Measure-88 (GMFM-88), the Activities of Daily Living (ADL) scale, the Sleep Disturbance Scale for Children (SDSC), and some adapted scales. The secondary endpoints were the FBN and VBM analysis. RESULTS There were only four AEs happened during the 24-month follow-up period. There was no significant difference in the laboratory examinations before and after treatment, and the magnetic resonance imaging showed no abnormal nasal and intracranial masses. Compared to the control group, patients in the treatment group showed apparent improvements in GMFM-88 and ADL 24 months after treatment. Compared with the baseline, the scale scores of the Fine Motor Function, Sociability, Life Adaptability, Expressive Ability, GMFM-88, and ADL increased significantly in the treatment group 24 months after treatment, while the SDSC score decreased considerably. Compared with baseline, the FBN analysis showed a substantial decrease in brain network energy, and the VBM analysis showed a significant increase in gray matter volume in the treatment group after NSCs treatment. CONCLUSIONS Our results showed that intranasal administration of NSCs was well-tolerated and potentially beneficial in children with CP. TRIAL REGISTRATION The study was registered in ClinicalTrials.gov (NCT03005249, registered 29 December 2016, https://www. CLINICALTRIALS gov/ct2/show/NCT03005249 ) and the Medical Research Registration Information System (CMR-20161129-1003).
Collapse
Affiliation(s)
- Zhongyue Lv
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Ying Li
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Yachen Wang
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Fengyu Cong
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China ,grid.9681.60000 0001 1013 7965Faculty of Information Technology, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Xiaoyan Li
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Wanming Cui
- grid.452435.10000 0004 1798 9070Department of Ent, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Chao Han
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Yushan Wei
- grid.452435.10000 0004 1798 9070Scientific Research Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Xiaojun Hong
- grid.452435.10000 0004 1798 9070Neurophysiological Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Yong Liu
- grid.452435.10000 0004 1798 9070Department of Rehabilitation, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Luyi Ma
- grid.452435.10000 0004 1798 9070Department of Pediatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Yang Jiao
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China ,grid.452435.10000 0004 1798 9070Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Chi Zhang
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huanjie Li
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning China
| | - Mingyan Jin
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Liang Wang
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Shiwei Ni
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, Liaoning, China. .,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning, China.
| |
Collapse
|
20
|
Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int J Mol Sci 2022; 23:ijms23137273. [PMID: 35806275 PMCID: PMC9266760 DOI: 10.3390/ijms23137273] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation, glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and protein destruction, thereby altering the cellular structure and functional outcome. To stabilise increased ROS production and modulate oxidative stress, the human body produces antioxidants, “free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed. However, scientific investigations are required to assess their efficacy. In this review, we summarise the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM), and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat ageing and chronic degenerative diseases.
Collapse
|
21
|
Li Y, Wu H, Jiang X, Dong Y, Zheng J, Gao J. New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: combining with intranasal delivery. Acta Pharm Sin B 2022; 12:3215-3232. [PMID: 35967290 PMCID: PMC9366301 DOI: 10.1016/j.apsb.2022.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022] Open
Abstract
The clinical translation of stem cells and their extracellular vesicles (EVs)-based therapy for central nervous system (CNS) diseases is booming. Nevertheless, the insufficient CNS delivery and retention together with the invasiveness of current administration routes prevent stem cells or EVs from fully exerting their clinical therapeutic potential. Intranasal (IN) delivery is a possible strategy to solve problems as IN route could circumvent the brain‒blood barrier non-invasively and fit repeated dosage regimens. Herein, we gave an overview of studies and clinical trials involved with IN route and discussed the possibility of employing IN delivery to solve problems in stem cells or EVs-based therapy. We reviewed relevant researches that combining stem cells or EVs-based therapy with IN administration and analyzed benefits brought by IN route. Finally, we proposed possible suggestions to facilitate the development of IN delivery of stem cells or EVs.
Collapse
Affiliation(s)
- Yaosheng Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghui Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunfei Dong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juanjuan Zheng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author. Tel.: +86 571 88208436.
| |
Collapse
|
22
|
Kim JT, Youn DH, Kim BJ, Rhim JK, Jeon JP. Recent Stem Cell Research on Hemorrhagic Stroke : An Update. J Korean Neurosurg Soc 2022; 65:161-172. [PMID: 35193326 PMCID: PMC8918254 DOI: 10.3340/jkns.2021.0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022] Open
Abstract
Although technological advances and clinical studies on stem cells have been increasingly reported in stroke, research targeting hemorrhagic stroke is still lacking compared to that targeting ischemic stroke. Studies on hemorrhagic stroke are also being conducted, mainly in the USA and China. However, little research has been conducted in Korea. In reality, stem cell research or treatment is unfamiliar to many domestic neurosurgeons. Nevertheless, given the increased interest in regenerative medicine and the increase of life expectancy, attention should be paid to this topic. In this paper, we summarized pre-clinical rodent studies and clinical trials using stem cells for hemorrhagic stroke. In addition, we discussed results of domestic investigations and future perspectives on stem cell research for a better understanding.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea.,Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
23
|
Chen D, Zhang Y, Ji L, Wu Y. CREG mitigates neonatal HIE injury through survival promotion and apoptosis inhibition in hippocampal neurons via activating AKT signaling. Cell Biol Int 2022; 46:849-860. [PMID: 35143104 DOI: 10.1002/cbin.11777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/06/2021] [Accepted: 02/06/2022] [Indexed: 11/06/2022]
Abstract
Neonatal hypoxic ischemic encephalopathy (Neonatal HIE) is a common but serious disease caused by perinatal asphyxia injury in newborns. Elevated neuronal apoptosis plays an important role in the injury process post hypoxia ischemia of the brain, which accurate mechanism is still worthy to be studied. Cellular repressor of E1A-stimulated genes (CREG) possesses the protective effect in ischemia-reperfusion in multiple organs, including livers and hearts. The main purpose of this work was to investigate whether CREG was involved in alleviating neonatal HIE and explore the possible mechanisms. We found that CREG expression was down-regulated in the hippocampus of neonatal HIE rats as well as oxygen-glucose deprivation/reperfusion (OGD/R)-treated hippocampal neurons. Besides, CREG overexpression promoted survival while inhibited apoptosis in OGD/R-induced hippocampal neurons accompanied by AKT signaling activation, which could be reversed by CREG silence. In addition, the protective effects of CREG overexpression could be antagonized by AKT deactivation, indicating the function of CREG was attributed by regulating AKT pathway. Collectedly, we demonstrated that CREG protected hippocampal neurons from hypoxic ischemia-induced injury through regulating survival and apoptosis via activating AKT signaling pathway. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dan Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yi Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lian Ji
- Center of Experimental Research, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
24
|
Salehi MS, Jurek B, Karimi-Haghighi S, Nezhad NJ, Mousavi SM, Hooshmandi E, Safari A, Dianatpour M, Haerteis S, Miyan JA, Pandamooz S, Borhani-Haghighi A. Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review. Rev Neurosci 2022; 33:583-606. [DOI: 10.1515/revneuro-2021-0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Abstract
Intranasal delivery of stem cells and conditioned medium to target the brain has attracted major interest in the field of regenerative medicine. In pre-clinical investigations during the last ten years, several research groups focused on this strategy to treat cerebral hypoxia/ischemia in neonates as well as adults. In this review, we discuss the curative potential of stem cells, stem cell derivatives, and their delivery route via intranasal application to the hypoxic/ischemic brain. After intranasal application, stem cells migrate from the nasal cavity to the injured area and exert therapeutic effects by reducing brain tissue loss, enhancing endogenous neurogenesis, and modulating cerebral inflammation that leads to functional improvements. However, application of this administration route for delivering stem cells and/or therapeutic substances to the damaged sites requires further optimization to translate the findings of animal experiments to clinical trials.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Benjamin Jurek
- Institute of Molecular and Cellular Anatomy , University of Regensburg , Regensburg 93053 , Germany
| | - Saeideh Karimi-Haghighi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Nahid Jashire Nezhad
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Seyedeh Maryam Mousavi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Anahid Safari
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy , University of Regensburg , Regensburg 93053 , Germany
| | - Jaleel A. Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology , The University of Manchester , Manchester M13 9PL , UK
| | - Sareh Pandamooz
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Afshin Borhani-Haghighi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| |
Collapse
|
25
|
Chand K, Nano R, Wixey J, Patel J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:372-382. [PMID: 35485440 PMCID: PMC9052430 DOI: 10.1093/stcltm/szac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/12/2021] [Indexed: 11/25/2022] Open
Abstract
Fetal growth restriction (FGR) occurs when a fetus is unable to grow normally due to inadequate nutrient and oxygen supply from the placenta. Children born with FGR are at high risk of lifelong adverse neurodevelopmental outcomes, such as cerebral palsy, behavioral issues, and learning and attention difficulties. Unfortunately, there is no treatment to protect the FGR newborn from these adverse neurological outcomes. Chronic inflammation and vascular disruption are prevalent in the brains of FGR neonates and therefore targeted treatments may be key to neuroprotection. Tissue repair and regeneration via stem cell therapies have emerged as a potential clinical intervention for FGR babies at risk for neurological impairment and long-term disability. This review discusses the advancement of research into stem cell therapy for treating neurological diseases and how this may be extended for use in the FGR newborn. Leading preclinical studies using stem cell therapies in FGR animal models will be highlighted and the near-term steps that need to be taken for the development of future clinical trials.
Collapse
Affiliation(s)
- Kirat Chand
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Rachel Nano
- Cancer and Ageing Research Program, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Julie Wixey
- Julie Wixey, Faculty of Medicine, Royal Brisbane and Women’s Hospital, The University of Queensland Centre for Clinical Research, Herston 4029 QLD, Australia.
| | - Jatin Patel
- Corresponding authors: Jatin Patel, Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba 4102 QLD, Australia.
| |
Collapse
|
26
|
Smith MJ, Paton MCB, Fahey MC, Jenkin G, Miller SL, Finch-Edmondson M, McDonald CA. Neural stem cell treatment for perinatal brain injury: A systematic review and meta-analysis of preclinical studies. Stem Cells Transl Med 2021; 10:1621-1636. [PMID: 34542242 PMCID: PMC8641092 DOI: 10.1002/sctm.21-0243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/15/2022] Open
Abstract
Perinatal brain injury can lead to significant neurological and cognitive deficits and currently no therapies can regenerate the damaged brain. Neural stem cells (NSCs) have the potential to engraft and regenerate damaged brain tissue. The aim of this systematic review was to evaluate the preclinical literature to determine whether NSC administration is more effective than controls in decreasing perinatal brain injury. Controlled interventional studies of NSC therapy using animal models of perinatal brain injury were identified using MEDLINE and Embase. Primary outcomes were brain infarct size, motor, and cognitive function. Data for meta‐analysis were synthesized and expressed as standardized mean difference (SMD) with 95% confidence intervals (CI), using a random effects model. We also reported secondary outcomes including NSC survival, migration, differentiation, and effect on neuroinflammation. Eighteen studies met inclusion criteria. NSC administration decreased infarct size (SMD 1.09; CI: 0.44, 1.74, P = .001; I2 = 74%) improved motor function measured via the impaired forelimb preference test (SMD 2.27; CI: 0.85, 3.69, P = .002; I2 = 86%) and the rotarod test (SMD 1.88; CI: 0.09, 3.67, P = .04; I2 = 95%). Additionally, NSCs improved cognitive function measured via the Morris water maze test (SMD of 2.41; CI: 1.16, 3.66, P = .0002; I2 = 81%). Preclinical evidence suggests that NSC therapy is promising for the treatment of perinatal brain injury. We have identified key knowledge gaps, including the lack of large animal studies and uncertainty regarding the necessity of immunosuppression for NSC transplantation in neonates. These knowledge gaps should be addressed before NSC treatment can effectively progress to clinical trial.
Collapse
Affiliation(s)
- Madeleine J Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Madison Claire Badawy Paton
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Megan Finch-Edmondson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Ejma M, Madetko N, Brzecka A, Alster P, Budrewicz S, Koszewicz M, Misiuk-Hojło M, Tomilova IK, Somasundaram SG, Kirkland CE, Aliev G. The Role of Stem Cells in the Therapy of Stroke. Curr Neuropharmacol 2021; 20:630-647. [PMID: 34365923 PMCID: PMC9608230 DOI: 10.2174/1570159x19666210806163352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Stroke is a major challenge in neurology due to its multifactorial genesis and irreversible consequences. Processes of endogenous post-stroke neurogenesis, although insufficient, may indicate possible direction of future therapy. Multiple research considers stem-cell-based approaches in order to maximize neuroregeneration and minimize post-stroke deficits. Objective: Aim of this study is to review current literature considering post-stroke stem-cell-based therapy and possibilities of inducing neuroregeneration after brain vascular damage. Methods: Papers included in this article were obtained from PubMed and MEDLINE databases. The following medical subject headings (MeSH) were used: “stem cell therapy”, “post-stroke neurogenesis”, “stem-cells stroke”, “stroke neurogenesis”, “stroke stem cells”, “stroke”, “cell therapy”, “neuroregeneration”, “neurogenesis”, “stem-cell human”, “cell therapy in human”. Ultimate inclusion was made after manual review of the obtained reference list. Results: Attempts of stimulating neuroregeneration after stroke found in current literature include supporting endogenous neurogenesis, different routes of exogenous stem cells supplying and extracellular vesicles used as a method of particle transport. Conclusion: Although further research in this field is required, post stroke brain recovery supported by exogenous stem cells seems to be promising future therapy revolutionizing modern neurology.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszynska 105, 53-439 Wroclaw. Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Borowska 213. Poland
| | - Irina K Tomilova
- Department of Biochemistry, Ivanovo State Medical Academy, Avenue Sheremetyevsky 8, Ivanovo, 153012. Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- Wroclaw Medical University, Department of Pulmonology and Lung Oncology, Wroclaw. Poland
| |
Collapse
|
28
|
Aguilera Y, Mellado-Damas N, Olmedo-Moreno L, López V, Panadero-Morón C, Benito M, Guerrero-Cázares H, Márquez-Vega C, Martín-Montalvo A, Capilla-González V. Preclinical Safety Evaluation of Intranasally Delivered Human Mesenchymal Stem Cells in Juvenile Mice. Cancers (Basel) 2021; 13:cancers13051169. [PMID: 33803160 PMCID: PMC7963187 DOI: 10.3390/cancers13051169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The concept of utilizing mesenchymal stem cells for the treatment of central nervous system disorders has progressed from preclinical studies to clinical trials. While promising, the effectiveness of cell therapy is hampered by the route used to deliver cells into the brain. In this context, intranasal cell administration has boomed over the past few years as an effective cell delivery method. However, comprehensive safety studies are required before translation to the clinic. Our study shed light on how intranasally administrated mesenchymal stem cells may be used to safely treat neurological disorders. Abstract Mesenchymal stem cell (MSC)-based therapy is a promising therapeutic approach in the management of several pathologies, including central nervous system diseases. Previously, we demonstrated the therapeutic potential of human adipose-derived MSCs for neurological sequelae of oncological radiotherapy using the intranasal route as a non-invasive delivery method. However, a comprehensive investigation of the safety of intranasal MSC treatment should be performed before clinical applications. Here, we cultured human MSCs in compliance with quality control standards and administrated repeated doses of cells into the nostrils of juvenile immunodeficient mice, mimicking the design of a subsequent clinical trial. Short- and long-term effects of cell administration were evaluated by in vivo and ex vivo studies. No serious adverse events were reported on mouse welfare, behavioral performances, and blood plasma analysis. Magnetic resonance study and histological analysis did not reveal tumor formation or other abnormalities in the examined organs of mice receiving MSCs. Biodistribution study reveals a progressive disappearance of transplanted cells that was further supported by an absent expression of human GAPDH gene in the major organs of transplanted mice. Our data indicate that the intranasal application of MSCs is a safe, simple and non-invasive strategy and encourage its use in future clinical trials.
Collapse
Affiliation(s)
- Yolanda Aguilera
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Nuria Mellado-Damas
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Laura Olmedo-Moreno
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Víctor López
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Concepción Panadero-Morón
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Marina Benito
- Research Magnetic Resonance Unit, Hospital Nacional de Parapléjicos, 45004 Toledo, Spain;
| | | | | | - Alejandro Martín-Montalvo
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Vivian Capilla-González
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
- Correspondence:
| |
Collapse
|
29
|
Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochem Pharmacol 2021; 186:114461. [PMID: 33571501 DOI: 10.1016/j.bcp.2021.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Acquired perinatal brain injuries are a set of conditions that remains a key challenge for neonatologists and that have significant social, emotional and financial implications for our communities. In our perspective article, we will introduce perinatal brain injury focusing specifically on the events leading to brain damage in preterm born infants and outcomes for these infants. Then we will summarize and discuss the preclinical and clinical studies testing the efficacy of stem cells as neuroprotectants in the last ten years in perinatal brain injury. There are no therapies to treat brain damage in preterm born infants and a primary finding from this review is that there is a scarcity of stem cell trials focused on overcoming brain injuries in these infants. Overall, across all forms of perinatal brain injury there is a remarkable heterogeneity in previous and on-going preclinical and clinical studies in terms of the stem cell type, animal models/patient selection, route and time of administration. Despite the quality of many of the studies this variation makes it difficult to reach a valid consensus for future developments. However, it is clear that stem cells (and stem cell derived exosomes) can reduce perinatal brain injury and our field needs to work collectively to refine an effective protocol for each type of injury. The use of standardized stem cell products and testing these products across multiple models of injury will provide a stronger framework for clinical trials development.
Collapse
|
30
|
Zhu JJ, Yu BY, Fu CC, He MZ, Zhu JH, Chen BW, Zheng YH, Chen SQ, Fu XQ, Li PJ, Lin ZL. LXA4 protects against hypoxic-ischemic damage in neonatal rats by reducing the inflammatory response via the IκB/NF-κB pathway. Int Immunopharmacol 2020; 89:107095. [PMID: 33096360 DOI: 10.1016/j.intimp.2020.107095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Hypoxia and the resultant decreases in cerebral blood flow in the perinatal period can lead to neonatal hypoxic-ischemic (HI) brain injury, which can, in turn, cause severe disability or even death. However, the efficacy of current treatment strategies remains limited. Several studies have demonstrated that lipoxin A4 (LXA4), as one of the earliest types of endogenous lipid mediators, can inhibit the accumulation of neutrophils, arrest inflammation, and promote the resolution of inflammation. However, research on LXA4 in the nervous system has rarely been carried out. In the present study, we sought to investigate the protective effect of LXA4 on HI brain damage in neonatal rats, as well as the underlying mechanisms. Through experiments conducted using an HI animal model, we found that the LXA4 intervention promoted the recovery of neuronal function and tissue structure following brain injury while maintaining the integrity of the blood-brain barrier in addition to reducing cerebral edema, infarct volume, and inflammatory responses. Our results suggest that LXA4 interfered with neuronal oxygen-glucose deprivation insults, reduced the expression of inflammatory factors, inhibited apoptosis, and promoted neuronal survival in vitro. Finally, the LXA4 intervention attenuated HI-induced activation of inhibitor kappa B (IκB) and degradation of nuclear factor-κB (NF-κB). In conclusion, our data suggest that LXA4 exerts a neuroprotective effect against neonatal HI brain damage through the IκB/NF-κB pathway. Our findings will help inform future studies regarding the effects of LXA4 on neuroinflammation, blood-brain barrier integrity, and neuronal apoptosis.
Collapse
Affiliation(s)
- Jin-Jin Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bin-Yuan Yu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chang-Chang Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min-Zhi He
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiang-Hu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bin-Wen Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yi-Hui Zheng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shang-Qin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao-Qin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Pei-Jun Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhen-Lang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
31
|
Danielyan L, Schwab M, Siegel G, Brawek B, Garaschuk O, Asavapanumas N, Buadze M, Lourhmati A, Wendel HP, Avci-Adali M, Krueger MA, Calaminus C, Naumann U, Winter S, Schaeffeler E, Spogis A, Beer-Hammer S, Neher JJ, Spohn G, Kretschmer A, Krämer-Albers EM, Barth K, Lee HJ, Kim SU, Frey WH, Claussen CD, Hermann DM, Doeppner TR, Seifried E, Gleiter CH, Northoff H, Schäfer R. Cell motility and migration as determinants of stem cell efficacy. EBioMedicine 2020; 60:102989. [PMID: 32920368 PMCID: PMC7494685 DOI: 10.1016/j.ebiom.2020.102989] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Stem cells` (SC) functional heterogeneity and its poorly understood aetiology impedes clinical development of cell-based therapies in regenerative medicine and oncology. Recent studies suggest a strong correlation between the SC migration potential and their therapeutic efficacy in humans. Designating SC migration as a denominator of functional SC heterogeneity, we sought to identify highly migrating subpopulations within different SC classes and evaluate their therapeutic properties in comparison to the parental non-selected cells. METHODS We selected highly migrating subpopulations from mesenchymal and neural SC (sMSC and sNSC), characterized their features including but not limited to migratory potential, trophic factor release and transcriptomic signature. To assess lesion-targeted migration and therapeutic properties of isolated subpopulations in vivo, surgical transplantation and intranasal administration of MSCs in mouse models of glioblastoma and Alzheimer's disease respectively were performed. FINDINGS Comparison of parental non-selected cells with isolated subpopulations revealed superior motility and migratory potential of sMSC and sNSC in vitro. We identified podoplanin as a major regulator of migratory features of sMSC/sNSC. Podoplanin engineering improved oncovirolytic activity of virus-loaded NSC on distantly located glioblastoma cells. Finally, sMSC displayed more targeted migration to the tumour site in a mouse glioblastoma model and remarkably higher potency to reduce pathological hallmarks and memory deficits in transgenic Alzheimer's disease mice. INTERPRETATION Functional heterogeneity of SC is associated with their motility and migration potential which can serve as predictors of SC therapeutic efficacy. FUNDING This work was supported in part by the Robert Bosch Stiftung (Stuttgart, Germany) and by the IZEPHA grant.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Neuroscience Laboratory and Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, Yerevan, Armenia.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Neuroscience Laboratory and Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, Yerevan, Armenia; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Georg Siegel
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Bianca Brawek
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Nithi Asavapanumas
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Marine Buadze
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Peter Wendel
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Marcel A Krueger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Carsten Calaminus
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Naumann
- Hertie Institute for Clinical Brain Research and Center Neurology, Department of Vascular Neurology, Tübingen Neuro-Campus (TNC), University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany
| | - Annett Spogis
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomic, and ICePhA, University Hospital Tübingen, Tübingen, Germany
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Tübingen, Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Anja Kretschmer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Eva-Maria Krämer-Albers
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Barth
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea; Research Institute eBiogen Inc., Seoul, Republic of Korea
| | - Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, BC, Canada
| | - William H Frey
- HealthPartners Center for Memory and Aging, HealthPartners Neurosciences, St. Paul, MN, U.S.A
| | - Claus D Claussen
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen, Essen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Christoph H Gleiter
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Hinnak Northoff
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Richard Schäfer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany; Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Zhang S, Lachance BB, Moiz B, Jia X. Optimizing Stem Cell Therapy after Ischemic Brain Injury. J Stroke 2020; 22:286-305. [PMID: 33053945 PMCID: PMC7568970 DOI: 10.5853/jos.2019.03048] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Stem cells have been used for regenerative and therapeutic purposes in a variety of diseases. In ischemic brain injury, preclinical studies have been promising, but have failed to translate results to clinical trials. We aimed to explore the application of stem cells after ischemic brain injury by focusing on topics such as delivery routes, regeneration efficacy, adverse effects, and in vivo potential optimization. PUBMED and Web of Science were searched for the latest studies examining stem cell therapy applications in ischemic brain injury, particularly after stroke or cardiac arrest, with a focus on studies addressing delivery optimization, stem cell type comparison, or translational aspects. Other studies providing further understanding or potential contributions to ischemic brain injury treatment were also included. Multiple stem cell types have been investigated in ischemic brain injury treatment, with a strong literature base in the treatment of stroke. Studies have suggested that stem cell administration after ischemic brain injury exerts paracrine effects via growth factor release, blood-brain barrier integrity protection, and allows for exosome release for ischemic injury mitigation. To date, limited studies have investigated these therapeutic mechanisms in the setting of cardiac arrest or therapeutic hypothermia. Several delivery modalities are available, each with limitations regarding invasiveness and safety outcomes. Intranasal delivery presents a potentially improved mechanism, and hypoxic conditioning offers a potential stem cell therapy optimization strategy for ischemic brain injury. The use of stem cells to treat ischemic brain injury in clinical trials is in its early phase; however, increasing preclinical evidence suggests that stem cells can contribute to the down-regulation of inflammatory phenotypes and regeneration following injury. The safety and the tolerability profile of stem cells have been confirmed, and their potent therapeutic effects make them powerful therapeutic agents for ischemic brain injury patients.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bilal Moiz
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Cochrane Database Syst Rev 2020; 8:CD013202. [PMID: 32813884 PMCID: PMC7438027 DOI: 10.1002/14651858.cd013202.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxic-ischaemic encephalopathy (HIE) is a leading cause of mortality and long-term neurological sequelae, affecting thousands of children worldwide. Current therapies to treat HIE are limited to cooling. Stem cell-based therapies offer a potential therapeutic approach to repair or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal trials. OBJECTIVES To determine the efficacy and safety of stem cell-based interventions for the treatment of hypoxic-ischaemic encephalopathy (HIE) in newborn infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 5), MEDLINE via PubMed (1966 to 8 June 2020), Embase (1980 to 8 June 2020), and CINAHL (1982 to 8 June 2020). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised controlled trials, quasi-randomised controlled trials and cluster trials comparing 1) stem cell-based interventions (any type) compared to control (placebo or no treatment); 2) use of mesenchymal stem/stromal cells (MSCs) of type (e.g. number of doses or passages) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus MSCs of other type or source; 3) use of stem cell-based interventions other than MSCs of type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, and inducible pluripotent stem cells) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus stem cell-based interventions other than MSCs of other type or source; or 4) MSCs versus stem cell-based interventions other than MSCs. DATA COLLECTION AND ANALYSIS For each of the included trials, two authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs or other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). The primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, death or major neurodevelopmental disability assessed at 18 to 24 months of age. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 616 references. Two review authors independently assessed all references for inclusion. We did not find any completed studies for inclusion. Fifteen RCTs are currently registered and ongoing. We describe the three studies we excluded. AUTHORS' CONCLUSIONS There is currently no evidence from randomised trials that assesses the benefit or harms of stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| | - Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
34
|
Xiao-Die X, Xiao-Hong W, Cheng-Feng H, Zhong-Yu Y, Jian-Tao W, Hou-Guang Z, Jing-Chun G. Increased NRSF/REST in anterior cingulate cortex contributes to diabetes-related neuropathic pain. Biochem Biophys Res Commun 2020; 527:785-790. [PMID: 32423826 DOI: 10.1016/j.bbrc.2020.04.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Diabetic neuropathic pain is one of the most common complications of diabetes. Mechanisms underlying the central modulation are still unclear. Here, we investigated the role of the neuron-restricted silencing factor (NRSF/REST) in diabetic-related neuropathic pain. Mechanical allodynia and thermal hyperalgesia were assessed to evaluate painful behaviors. Our results found that in the anterior cingulate cortex (ACC) of db/db mice, NRSF/REST levels increased significantly. Reduction of NRSF/REST improved the painful sensation. Meanwhile, in vitro study found that high glucose and high palmitic acid treatment induced elevation of NRSF/REST and its cofactors (mSin3A, CoREST and HDAC1), whereas downregulation of GluR2 and NMDAR2B. Knockdown of NRSF/REST could attenuate the LDH release and partially reversed the expression changes of HDAC1 and NMDAR2B. Our results suggested that the elevation of NRSF/REST in the ACC area of db/db mice is one of the key mediators of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Xu Xiao-Die
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wen Xiao-Hong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - He Cheng-Feng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yu Zhong-Yu
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wang Jian-Tao
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhou Hou-Guang
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guo Jing-Chun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Greco P, Nencini G, Piva I, Scioscia M, Volta CA, Spadaro S, Neri M, Bonaccorsi G, Greco F, Cocco I, Sorrentino F, D'Antonio F, Nappi L. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future. Acta Neurol Belg 2020; 120:277-288. [PMID: 32112349 DOI: 10.1007/s13760-020-01308-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Hypoxic-ischemic encephalopathy, also referred as HIE, is a type of brain injury or damage that is caused by a lack of oxygen to the brain during neonatal period. The incidence is approximately 1.5 cases per 1000 live births in developed countries. In low and middle-income countries, the incidence is much higher (10‒20 per 1000 live births). The treatment for neonatal HIE is hypothermia that is only partially effective (not more than 50% of the neonates treated achieve an improved outcome). HIE pathophysiology involves oxidative stress, mitochondrial energy production failure, glutaminergic excitotoxicity, and apoptosis. So, in the last years, many studies have focused on peptides that act somewhere in the pathway activated by severe anoxic injury leading to HIE. This review describes the pathophysiology of perinatal HIE and the mechanisms that could be the target of innovative HIE treatments.
Collapse
Affiliation(s)
- P Greco
- Department of Morphology, Surgery and Experimental Medicine, Institute of Obstetrics and Gynaecology, University of Ferrara, 44121, Ferrara, Italy
| | - G Nencini
- Department of Morphology, Surgery and Experimental Medicine, Institute of Obstetrics and Gynaecology, University of Ferrara, 44121, Ferrara, Italy
| | - I Piva
- Department of Women Health, Infancy and Adolescence, AUSL Ravenna, 48121, Ravenna, Italy
| | - M Scioscia
- Department of Obstetrics and Gynaecology, Policlinico Hospital of Abano Terme, Padua, Italy
| | - C A Volta
- Section of Anesthesia and Intensive Care, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - S Spadaro
- Section of Anesthesia and Intensive Care, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - M Neri
- Section of Forensic Medicine, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - G Bonaccorsi
- Department of Morphology, Surgery and Experimental Medicine, Institute of Obstetrics and Gynaecology, University of Ferrara, 44121, Ferrara, Italy
| | - F Greco
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121, Foggia, Italy
| | - I Cocco
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121, Foggia, Italy
| | - F Sorrentino
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121, Foggia, Italy.
| | - F D'Antonio
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121, Foggia, Italy
| | - L Nappi
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121, Foggia, Italy
| |
Collapse
|
36
|
Veronesi MC, Alhamami M, Miedema SB, Yun Y, Ruiz-Cardozo M, Vannier MW. Imaging of intranasal drug delivery to the brain. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2020; 10:1-31. [PMID: 32211216 PMCID: PMC7076302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Intranasal (IN) delivery is a rapidly developing area for therapies with great potential for the treatment of central nervous system (CNS) diseases. Moreover, in vivo imaging is becoming an important part of therapy assessment, both clinically in humans and translationally in animals. IN drug delivery is an alternative to systemic administration that uses the direct anatomic pathway between the olfactory/trigeminal neuroepithelium of the nasal mucosa and the brain. Several drugs have already been approved for IN application, while others are undergoing development and testing. To better understand which imaging modalities are being used to assess IN delivery of therapeutics, we performed a literature search with the key words "Intranasal delivery" and "Imaging" and summarized these findings in the current review. While this review does not attempt to be fully comprehensive, we intend for the examples provided to allow a well-rounded picture of the imaging tools available to assess IN delivery, with an emphasis on the nose-to-brain delivery route. Examples of in vivo imaging, for both humans and animals, include magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), gamma scintigraphy and computed tomography (CT). Additionally, some in vivo optical imaging modalities, including bioluminescence and fluorescence, have been used more in experimental testing in animals. In this review, we introduce each imaging modality, how it is being utilized and outline its strengths and weaknesses, specifically in the context of IN delivery of therapeutics to the brain.
Collapse
Affiliation(s)
- Michael C Veronesi
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
| | - Mosa Alhamami
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
| | - Shelby B Miedema
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
- Department of Biomedical Engineering, Indiana University-Purdue University IndianapolisUSA
| | - Yeonhee Yun
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
| | - Miguel Ruiz-Cardozo
- Clinical Research Institute, Universidad Nacional de Colombia School of MedicineUSA
| | - Michael W Vannier
- Department of Radiology, University of Chicago School of MedicineUSA
| |
Collapse
|
37
|
Xu B, Kurachi M, Shimauchi-Ohtaki H, Yoshimoto Y, Ishizaki Y. Transplantation of iPS-derived vascular endothelial cells improves white matter ischemic damage. J Neurochem 2020; 153:759-771. [PMID: 31883380 PMCID: PMC7317957 DOI: 10.1111/jnc.14949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
White matter infarct induces demyelination and brain dysfunction. We previously reported that transplantation of brain microvascular endothelial cells improved the behavioral outcome and promoted remyelination by increasing the number of oligodendrocyte precursor cells in the rat model of white matter infarct. In this study, we investigated the effects of transplantation of vascular endothelial cells generated from human induced pluripotent stem cells (iPSCs) on the rat model of white matter infarct. Seven days after induction of ischemic demyelinating lesion by injection of endothelin‐1 into the internal capsule of a rat brain, iPSC‐derived vascular endothelial cells (iVECs) were transplanted into the site of demyelination. The majority of iVECs transplanted into the internal capsule survived for 14 days after transplantation when traced by immunohistochemistry for a human cytoplasmic protein. iVEC transplantation significantly recovered hind limb rotation angle as compared to human iPSC or rat meningeal cell transplantation when evaluated using footprint test. Fourteen days after iVEC transplantation, the infarct area remarkably decreased as compared to that just before the transplantation when evaluated using magnetic resonance imaging or luxol fast blue staining, and remyelination was promoted dramatically in the infarct when assessed using luxol fast blue staining. Transplantation of iVECs increased the number of oligodendrocyte lineage cells and suppressed the inflammatory response and reactive astrocytogenesis. These results suggest that iVEC transplantation may prove useful in treatment for white matter infarct. ![]()
Collapse
Affiliation(s)
- Bin Xu
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masashi Kurachi
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Yuhei Yoshimoto
- Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
38
|
Romantsik O, Bruschettini M, Moreira A, Thébaud B, Ley D, Cochrane Neonatal Group. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev 2019; 9:CD013201. [PMID: 31549743 PMCID: PMC6757514 DOI: 10.1002/14651858.cd013201.pub2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) remains a substantial issue in neonatal intensive care units worldwide. Current therapies to prevent or treat GMH-IVH are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, and/or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. OBJECTIVES To determine the benefits and harms of stem cell-based interventions for prevention or treatment of germinal matrix-intraventricular haemorrhage (GM-IVH) in preterm infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 1), in the Cochrane Library; MEDLINE via PubMed (1966 to 7 January 2019); Embase (1980 to 7 January 2019); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to 7 January 2019). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA We attempted to identify randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing (1) stem cell-based interventions versus control; (2) mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; (3) stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or (4) MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH. DATA COLLECTION AND ANALYSIS For each of the included trials, two review authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs, other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). Primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, GM-IVH, and extension of pre-existing non-severe GM-IVH. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 769 references. We did not find any completed studies for inclusion. One randomised controlled trial is currently registered and ongoing. Five phase 1 trials are described in the excluded studies. AUTHORS' CONCLUSIONS Currently no evidence is available to show the benefits or harms of stem cell-based interventions for treatment or prevention of GM-IVH in preterm infants.
Collapse
Affiliation(s)
- Olga Romantsik
- Lund University, Skåne University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
| | - Matteo Bruschettini
- Lund University, Skåne University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
- Skåne University HospitalCochrane SwedenWigerthuset, Remissgatan 4, first floorroom 11‐221LundSweden22185
| | - Alvaro Moreira
- University of Texas Health Science Center at San AntonioPediatrics, Division of NeonatologySan AntonioTexasUSA
| | - Bernard Thébaud
- Children's Hospital of Eastern OntarioDepartment of PediatricsOttawaONCanada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell ResearchOttawaCanada
- University of OttawaDepartment of Cellular and Molecular MedicineOttawaCanada
| | - David Ley
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
| | | |
Collapse
|
39
|
Fang H, Li HF, Yang M, Liao R, Wang RR, Wang QY, Zheng PC, Zhang FX, Zhang JP. NF-κB signaling pathway inhibition suppresses hippocampal neuronal apoptosis and cognitive impairment via RCAN1 in neonatal rats with hypoxic-ischemic brain damage. Cell Cycle 2019; 18:1001-1018. [PMID: 30990350 PMCID: PMC6527272 DOI: 10.1080/15384101.2019.1608128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NF-κB is a core transcription factor, the activation of which can lead to hypoxic-ischemic brain damage (HIBD), while RCAN1 plays a protective role in HIBD. However, the relationship between NF-κB and RCAN1 in HIBD remains unclear. This study aimed to explore the mechanism of NF-κB signaling pathway in hippocampal neuron apoptosis and cognitive impairment of neonatal rats with HIBD in relation to RCAN1. Initially, microarray analysis was used to determine the differentially expressed genes related to HIBD. After the establishment of HIBD rat models, gain- or loss-of-function assay was performed to explore the functional role of NF-κB signaling pathway in HIBD. Then, the learning and memory ability of rats was evaluated. Expression of RCAN1, NF-κB signaling pathway-related genes and glial fibrillary acidic protein (GFAP), S-100β and acetylcholine (Ach) level, and acetylcholinesterase (AchE) activity were determined with neuron apoptosis detected to further explore the function of NF-κB signaling pathway. RCAN1 could influence the development of HIBD. In the HIBD model, the expression of RCAN1 and NF-κB-related genes increased, and NF-κB p65 showed a significant nuclear shift. By activation of NF-κB or overexpression of RCAN1, the number of neuronal apoptosis, S-100β protein level, and AchE level increased significantly, Ach activity decreased significantly, and GFAP positive cells increased. In addition, after the activation of NF-κB or overexpression of RCAN1, the learning and memory ability of HIBD rats was inhibited. All the results show that activation of NF-κB signaling pathway promotes RCAN1 expression, thus increasing neuronal apoptosis and aggravating cognitive impairment in HIBD rats.
Collapse
Affiliation(s)
- Hua Fang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Hua-Feng Li
- c Department of Anesthesiology, West China Second University Hospital , Sichuan University , Chengdu , P. R. China
| | - Miao Yang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Ren Liao
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Ru-Rong Wang
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Quan-Yun Wang
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Peng-Cheng Zheng
- e Guizhou University Research Center for Analysis of Drugs and Metabolites , Guizhou University , Chengdu , P. R. China
| | - Fang-Xiang Zhang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Jian-Ping Zhang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| |
Collapse
|
40
|
Sato Y, Ueda K, Kondo T, Hattori T, Mikrogeorgiou A, Sugiyama Y, Suzuki T, Yamamoto M, Hirata H, Hirakawa A, Nakanishi K, Tsuji M, Hayakawa M. Administration of Bone Marrow-Derived Mononuclear Cells Contributed to the Reduction of Hypoxic-Ischemic Brain Injury in Neonatal Rats. Front Neurol 2018; 9:987. [PMID: 30559704 PMCID: PMC6284369 DOI: 10.3389/fneur.2018.00987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background/Objective: Perinatal hypoxic-ischemia (HI) causes neonatal death and permanent neurological deficits. Cell therapy using various cell sources has been recently identified as a novel therapy for perinatal HI. Among the available types of cell sources, bone marrow-derived mononuclear cells (BMMNCs) have unique features for clinical application. For example, stem cells can be collected after admission, thus enabling us to perform autologous transplantation. This study aimed to investigate whether the administration of BMMNCs ameliorated HI brain injury in a neonatal rat model. Methods: Seven-day-old rats underwent left carotid artery ligation and were exposed to 8% oxygen for 60 min. BMMNCs were collected from the femurs and tibias of juvenile rats using the Ficoll-Hypaque technique and injected intravenously 24 h after the insult (1 × 105 cells). Active caspase-3, as an apoptosis marker, and ED1, as an activated microglia/macrophage marker, were evaluated immunohistochemically 48 h after the insult (vehicle, n = 9; BMMNC, n = 10). Behavioral assessments using the rotarod treadmill, gait analysis, and active avoidance tests were initiated 3 weeks after the insult (sham, n = 9, vehicle, n = 8; BMMNC, n = 8). After these behavioral tests (6 weeks after the insult), we evaluated the volumes of their hippocampi, cortices, thalami, striata, and globus pallidus. Results: The mean cell densities of the sum of four parts that were positive for active caspase-3 significantly decreased in the BMMNC group (p < 0.05), whereas in the hippocampi, cortices, thalami, and striata cell densities decreased by 42, 60, 56, and 47%, respectively, although statistical significance was not attained. The number of ED1 positive cells for the sum of the four parts also significantly decreased in the BMMNC group compared to the vehicle group (p < 0.05), whereas in each of the four parts the decrease was 35, 39, 47, and 36%, respectively, although statistical significance was not attained. In gait analysis, the BMMNC normalized the contact area of the affected hind paw widened by HI. The volumes of the affected striata and globus pallidus were significantly larger in the BMMNC group than in the control group. Conclusion: These results indicated that the injection of BMMNCs ameliorated HI brain injury in a neonatal rat model.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Taiki Kondo
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Tetsuo Hattori
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Alkisti Mikrogeorgiou
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yuichiro Sugiyama
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Toshihiko Suzuki
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Michiro Yamamoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiko Nakanishi
- Department of Perinatology, Aichi Human Service Center, Institute for Developmental Research, Aichi, Japan
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
41
|
Beldick SR, Hong J, Altamentova S, Khazaei M, Hundal A, Zavvarian MM, Rumajogee P, Chio J, Fehlings MG. Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells. PLoS One 2018; 13:e0208105. [PMID: 30485360 PMCID: PMC6261629 DOI: 10.1371/journal.pone.0208105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
Cerebral palsy (CP) encompasses a group of non-progressive brain disorders that are often acquired through perinatal hypoxic-ischemic (HI) brain injury. Injury leads to a cascade of cell death events, resulting in lifetime motor and cognitive deficits. There are currently no treatments that can repair the resulting brain damage and improve functional outcomes. To date, preclinical research using neural precursor cell (NPC) transplantation as a therapy for HI brain injury has shown promise. To translate this treatment to the clinic, it is essential that human-derived NPCs also be tested in animal models, however, a major limitation is the high risk of xenograft rejection. A solution is to transplant the cells into immune-deficient rodents, but there are currently no models of HI brain injury established in such a cohort of animals. Here, we demonstrate that a model of HI brain injury can be generated in immune-deficient Prkdc knockout (KO) rats. Long-term deficits in sensorimotor function were similar between KO and wildtype (WT) rats. Interestingly, some aspects of the injury were more severe in KO rats. Additionally, human induced pluripotent stem cell derived (hiPSC)-NPCs had higher survival at 10 weeks post-transplant in KO rats when compared to their WT counterparts. This work establishes a reliable model of neonatal HI brain injury in Prkdc KO rats that will allow for future transplantation, survival, and long-term evaluation of the safety and efficacy of hiPSC-NPCs for neonatal brain damage. This model will enable critical preclinical translational research using human NPCs.
Collapse
Affiliation(s)
- Stephanie R. Beldick
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - James Hong
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Svetlana Altamentova
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Anisha Hundal
- Life Sciences Program, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Mohammad-Masoud Zavvarian
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Prakasham Rumajogee
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Jonathon Chio
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Michael G. Fehlings
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| |
Collapse
|
43
|
Romantsik O, Bruschettini M, Moreira A, Thébaud B, Ley D. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| |
Collapse
|
44
|
Sato Y, Shinjyo N, Sato M, Nilsson MKL, Osato K, Zhu C, Pekna M, Kuhn HG, Blomgren K. Grafting Neural Stem and Progenitor Cells Into the Hippocampus of Juvenile, Irradiated Mice Normalizes Behavior Deficits. Front Neurol 2018; 9:715. [PMID: 30254600 PMCID: PMC6141740 DOI: 10.3389/fneur.2018.00715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022] Open
Abstract
The pool of neural stem and progenitor cells (NSPCs) in the dentate gyrus of the hippocampus is reduced by ionizing radiation. This explains, at least partly, the learning deficits observed in patients after radiotherapy, particularly in pediatric cases. An 8 Gy single irradiation dose was delivered to the whole brains of postnatal day 9 (P9) C57BL/6 mice, and BrdU-labeled, syngeneic NSPCs (1.0 × 105 cells/injection) were grafted into each hippocampus on P21. Three months later, behavior tests were performed. Irradiation impaired novelty-induced exploration, place learning, reversal learning, and sugar preference, and it altered the movement pattern. Grafting of NSPCs ameliorated or even normalized the observed deficits. Less than 4% of grafted cells survived and were found in the dentate gyrus 5 months later. The irradiation-induced loss of endogenous, undifferentiated NSPCs in the dentate gyrus was completely restored by grafted NSPCs in the dorsal, but not the ventral, blade. The grafted NSPCs did not exert appreciable effects on the endogenous NSPCs; however, more than half of the grafted NSPCs differentiated. These results point to novel strategies aimed at ameliorating the debilitating late effects of cranial radiotherapy, particularly in children.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Noriko Shinjyo
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Machiko Sato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Narita Hospital, Nagoya, Japan
| | - Marie K L Nilsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Kazuhiro Osato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Hans G Kuhn
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol 2018; 173:1-17. [PMID: 29758244 DOI: 10.1016/j.pneurobio.2018.05.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic brain injury is a significant cause of morbidity and mortality in the adult as well as in the neonate. Extensive pre-clinical studies have shown promising therapeutic effects of neural stem cell-based treatments for hypoxic-ischemic brain injury. There are two major strategies of neural stem cell-based therapies: transplanting exogenous neural stem cells and boosting self-repair of endogenous neural stem cells. Neural stem cell transplantation has been proved to improve functional recovery after brain injury through multiple by-stander mechanisms (e.g., neuroprotection, immunomodulation), rather than simple cell-replacement. Endogenous neural stem cells reside in certain neurogenic niches of the brain and response to brain injury. Many molecules (e.g., neurotrophic factors) can stimulate or enhance proliferation and differentiation of endogenous neural stem cells after injury. In this review, we first present an overview of neural stem cells during normal brain development and the effect of hypoxic-ischemic injury on the activation and function of endogenous neural stem cells in the brain. We then summarize and discuss the current knowledge of strategies and mechanisms for neural stem cell-based therapies on brain hypoxic-ischemic injury, including neonatal hypoxic-ischemic brain injury and adult ischemic stroke.
Collapse
|
46
|
Wang Q, Lv H, Lu L, Ren P, Li L. Neonatal hypoxic-ischemic encephalopathy: emerging therapeutic strategies based on pathophysiologic phases of the injury. J Matern Fetal Neonatal Med 2018; 32:3685-3692. [PMID: 29681183 DOI: 10.1080/14767058.2018.1468881] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is an important cause of neonatal death and disability. At present, there is no unified standard and specialized treatment method for neonatal HIE. In clinical practice, we have found that a gap remains between preclinical medical research and clinical application in the treatment of neonatal HIE. To promote an organic combination of preclinical research and clinical application, we propose the different phases as intervention targets, based on the pathophysiologic changes in phases I, II, and III of neonatal HIE; moreover, we suggest transformative medicine as a principle that may improve the therapeutic effect by blocking the progression of the disease to an irreversible stage. For instance, in phase I, mild hypothermia, free radical scavenger (erythropoietin, hydrogen-rich saline), excitatory amino acid receptor blocker, and neuroprotective agents should be administered to neonates with moderate/severe HIE; in phase II, following phase I treatment, anti-inflammatory agents, neuroprotective or nerve regeneration agents, and stem cell transplantation should be administered to patients; in phase III, anti-inflammatory agents, neuroprotective or nerve regeneration agents, and stem cell transplantation should be administered to patients. As soon as the patient's condition has stabilized, acupuncture, massage, and rehabilitation training should be performed. Following further study of stem cells, stem cell transplantation is expected to become the most promising therapeutic candidate for treatment of severe neonatal HIE with its sequelae.
Collapse
Affiliation(s)
- Qiuli Wang
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Hongyan Lv
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China.,b Department of Neonatal Pathology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Lixin Lu
- c Department of Pediatrics , Handan 7th Hospital , Handan , PR China
| | - Pengshun Ren
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Lianxiang Li
- b Department of Neonatal Pathology , Handan Maternal and Child Health Care Hospital , Handan , PR China.,d Department of Neural Development and Neural Pathology , Hebei University of Engineering School of Medicine , Handan , PR China
| |
Collapse
|
47
|
Ling L, Feng X, Wei T, Wang Y, Wang Y, Zhang W, He L, Wang Z, Zeng Q, Xiong Z. Effects of low-intensity pulsed ultrasound (LIPUS)-pretreated human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation on primary ovarian insufficiency in rats. Stem Cell Res Ther 2017; 8:283. [PMID: 29258619 PMCID: PMC5735876 DOI: 10.1186/s13287-017-0739-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human amnion-derived mesenchymal stem cells (hAD-MSCs) have the features of mesenchymal stem cells (MSCs). Low-intensity pulsed ultrasound (LIPUS) can promote the expression of various growth factors and anti-inflammatory molecules that are necessary to keep the follicle growing and to reduce granulosa cell (GC) apoptosis in the ovary. This study aims to explore the effects of LIPUS-pretreated hAD-MSC transplantation on chemotherapy-induced primary ovarian insufficiency (POI) in rats. METHODS The animals were divided into control, POI, hAD-MSC treatment, and LIPUS-pretreated hAD-MSC treatment groups. POI rat models were established by intraperitoneal injection of cyclophosphamide (CTX). The hAD-MSCs isolated from the amnion were exposed to LIPUS or sham irradiation for 5 consecutive days and injected into the tail vein of POI rats. Expression and secretion of growth factors promoted by LIPUS in hAD-MSCs were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) in vitro. Estrous cycle, serum sex hormone levels, follicle counts, ovarian pathological changes, GC apoptosis, Bcl2 and Bax expression, and pro-inflammatory cytokine levels in ovaries were examined. RESULTS Primary hAD-MSCs were successfully isolated from the amnion. LIPUS promoted the expression and secretion of growth factors in hAD-MSCs in vitro. Both hAD-MSC and LIPUS-pretreated hAD-MSC transplantation increased the body and reproductive organ weights, improved ovarian function, and reduced reproductive organ injuries in POI rats. Transplantation of hAD-MSCs increased the Bcl-2/Bax ratio and reduced GC apoptosis and ovarian inflammation induced by chemotherapy in ovaries. These effects could be improved by pretreatment with LIPUS on hAD-MSCs. CONCLUSION Both hAD-MSC transplantation and LIPUS-pretreated hAD-MSC transplantation can repair ovarian injury and improve ovarian function in rats with chemotherapy-induced POI. LIPUS-pretreated hAD-MSC transplantation is more advantageous for reducing inflammation, improving the local microenvironment, and inhibiting GC apoptosis induced by chemotherapy in ovarian tissue of POI rats.
Collapse
Affiliation(s)
- Li Ling
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Xiushan Feng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Tianqin Wei
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400010 China
| | - Yaping Wang
- Department of Histology and Embryology, Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400010 China
| | - Wenqian Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Lianli He
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital, Zunyi Medical College, Zunyi, 563000 Guizhou China
| | - Ziling Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Qianru Zeng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| |
Collapse
|
48
|
Tang Y, Yu P, Cheng L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 2017; 8:e3108. [PMID: 29022921 PMCID: PMC5682670 DOI: 10.1038/cddis.2017.504] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) have a unique role in neural regeneration. Cell therapy based on NSC transplantation is a promising tool for the treatment of nervous system diseases. However, there are still many issues and controversies associated with the derivation and therapeutic application of these cells. In this review, we summarize the different sources of NSCs and their derivation methods, including direct isolation from primary tissues, differentiation from pluripotent stem cells and transdifferentiation from somatic cells. We also review the current progress in NSC implantation for the treatment of various neural defects and injuries in animal models and clinical trials. Finally, we discuss potential optimization strategies for NSC derivation and propose urgent challenges to the clinical translation of NSC-based therapies in the near future.
Collapse
Affiliation(s)
- Yuewen Tang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Haematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Yu
- Department of Orthopaedics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Cheng
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Haematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Guan Z, Tao Y, Zhang X, Guo Q, Liu Y, Zhang Y, Wang Y, ji G, Wu G, Wang N, Yang H, Yu Z, Guo J, Zhou H. G-CSF and cognitive dysfunction in elderly diabetic mice with cerebral small vessel disease: Preventive intervention effects and underlying mechanisms. CNS Neurosci Ther 2017; 23:462-474. [PMID: 28374506 PMCID: PMC6492719 DOI: 10.1111/cns.12691] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/23/2022] Open
Abstract
AIMS Although cognitive dysfunction is a common neurological complication in elderly patients with diabetes, the mechanisms underlying this relationship remain unclear, and effective preventive interventions have yet to be developed. Thus, this study investigated the preventive effects and mechanisms of action associated with granulocyte colony-stimulating factor (G-CSF) on cognitive dysfunction in elderly diabetic mice with cerebral small vessel disease. METHODS This study included 40 male db/db diabetic and wild-type (WT) mice that were categorized into the following four groups at the age of 3 weeks: db/db group (DG), db/db+G-CSF group (DGG), WT group (WG), and WT+G-CSF group (WGG). The mice were fed normal diets for 4 months and then given G-CSF (75 μg/kg) via intraperitoneal injections for 1 month. At 7.5 months of age, the cognitive abilities of the mice were assessed with the Y-maze test and the Social Choice Test; body weight, blood pressure (BP), and blood glucose measurements were obtained throughout the study. Brain imaging and blood oxygen level-dependent (BOLD) contrast imaging analyses were performed with a small animal magnetic resonance imaging (MRI) system, autophagosome levels were detected with a transmission electron microscope (TEM), hippocampal neurons were assessed with hematoxylin and eosin (HE) staining, and protein expressions and distributions were evaluated using immunohistochemistry and Western blot analyses. RESULTS (i) The body weight and blood glucose levels of the DG and DGG mice were significantly higher than those of the WG and WGG mice; (ii) social choice and spatial memory capabilities were significantly reduced in DG mice but were recovered by G-CSF in DGG mice; (iii) the MRI scans revealed multiple lacunar lesions and apparent hippocampal atrophy in the brains of DG mice, but G-CSF reduced the number of lacunar lesions and ameliorated hippocampal atrophy; (iv) the MRI-BOLD scans showed a downward trend in whole-brain activity and reductions in the connectivities of the hippocampus and amygdala with subcortical structures in DG mice, but G-CSF clearly improved the altered brain activity as well as the connectivity of the hippocampus in DGG mice; (v) HE staining revealed fewer neurons in the hippocampus in DG mice; (vi) TEM analyses revealed significantly fewer autophagosomes in the hippocampi of DG mice, but G-CSF did not increase these numbers; (vii) there were significant reductions in mechanistic target of rapamycin (mTOR) and LC3-phosphatidylethanolamine conjugate (LC3)-II/I levels in the hippocampi of DG mice, whereas p62 was upregulated, and G-CSF significantly enhanced the levels of Beclin1, mTOR, and LC-II/I in DGG mice; and (viii) G-CSF significantly reversed increases in nuclear factor κB (NF-κB) protein levels in DG but not in WG mice. CONCLUSIONS In this study, aged diabetic mice were prone to cognitive dysfunction and cerebral small vessel disease. However, administration of G-CSF significantly improved cognitive function in elderly db/db diabetic mice, and this change was likely related to the regulation of autophagy and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhu‐Fei Guan
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
- State Key Laboratory of Medical NeurobiologyInstitute of Brain ScienceFudan UniversityShanghaiChina
| | - Ying‐Hong Tao
- Department of General MedicineOuyang Community Health Service CenterHongkou DistrictShanghaiChina
| | - Xiao‐Ming Zhang
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Qi‐Lin Guo
- State Key Laboratory of Medical NeurobiologyInstitute of Brain ScienceFudan UniversityShanghaiChina
| | - Ying‐Chao Liu
- Department of NeurosurgeryShandong Provincial HospitalJinanChina
| | - Yu Zhang
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Yan‐Mei Wang
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Gang ji
- State Key Laboratory of Medical NeurobiologyInstitute of Brain ScienceFudan UniversityShanghaiChina
| | - Guo‐Feng Wu
- Department of Emergency NeurologyAffiliated HospitalGuiyang Medical UniversityGuiyangChina
| | - Na‐Na Wang
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Hao Yang
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Zhong‐Yu Yu
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Jing‐Chun Guo
- State Key Laboratory of Medical NeurobiologyInstitute of Brain ScienceFudan UniversityShanghaiChina
| | - Hou‐Guang Zhou
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
50
|
Guan ZF, Zhou XL, Zhang XM, Zhang Y, Wang YM, Guo QL, Ji G, Wu GF, Wang NN, Yang H, Yu ZY, Zhou HG, Guo JC, Liu YC. Beclin-1- mediated autophagy may be involved in the elderly cognitive and affective disorders in streptozotocin-induced diabetic mice. Transl Neurodegener 2016; 5:22. [PMID: 27999666 PMCID: PMC5154026 DOI: 10.1186/s40035-016-0070-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/04/2016] [Indexed: 02/07/2023] Open
Abstract
Background Diabetes is the most common metabolic disease with many chronic complications, and cognitive disorders are one of the common complications in patients with diabetes. Previous studies have showed that autophagy played important roles in the progression of metabolic syndrome, diabetes and other diseases. So we investigated whether aged diabetic mice are prone to be associated with the cognitive and affective disorders and whether Beclin-1-mediated autophagy might be involved in thepahological process. Methods High-fat diet/streptozotocin (STZ) injection-induced diabetic C57 mice were adopted in this study. Cognitive disorders were detected by Morris water maze and fear conditional test. Affective disorders were detected by tail suspension test and forced swimming test. Magnetic resonance imaging was applied to observe changes of morphology and metabolism in the brain. The 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) was used to assess metabolism changes in the brain of aged diabetic mice. Autophagy were evaluated by Beclin- 1, LC3II/I and P62, which were detected by western blot analysis and observed by electron microscopy. Results 1. Compared with control group, diabetes mice showed significantly decreasing abilities in spatial memory and conditioned fear memory (all P < 0.05), and increasing tendency of depression (P < 0.05). 2. MRI showed that the majority of elderly diabetic mice were associated with multiple cerebral small vessel disease. Some even showed hippocampal atrophy, ventricular dilatation and leukoaraiosis. 3. FDG-PET-CT discovered that the glucose metabolism in the amygdala and hippocampus was significantly decreased compared with normal aged mice (P < 0.05). 4. Electron microscopy found that, although autophagy bodies was not widespread, and there was no significant difference between the two groups, yet compared with normal aged mice, apparent cell edema, myelinated tow reduction and intracellular lipofuscin augmentation existed in elderly diabetic mice brain. 5. The level of p62 was increased in the STZ-induced diabetic mice hippocampus and striatum, and beclin1 protein expression were significantly decreased in diabetic mice hippocampus compared with normal aged mice (P < 0.05). There was a upward trend of the ratio of LC3II/I in hippocampus, cortex and striatum, but no statistically difference between the two groups. Conclusion Compared with normal aged mice, diabetic aged mice were apt to cerebral small vessel disease and associated with cognitive and affective disorders, which may be related to the significantly reduced glucose metabolism in hippocampus and amygdala. Beclin1 mediated autophagy in hippocampus probably played an important role in cognitive and affective disorders of STZ-induced aged diabetic mice.
Collapse
Affiliation(s)
- Zhu-Fei Guan
- Department of Geriatric Neurology, Huashan Hospital, Fudan University; National Clinical Medicine Research Center for Age-related Diseases, 12 Middle WuLuMuQi Rd, Shanghai, 200040 China ; State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, 131 DongAn Rd, Shanghai, 200032 China
| | - Xiu-Ling Zhou
- Department of Ultrasonics, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Xiao-Ming Zhang
- Department of Geriatric Neurology, Huashan Hospital, Fudan University; National Clinical Medicine Research Center for Age-related Diseases, 12 Middle WuLuMuQi Rd, Shanghai, 200040 China
| | - Yu Zhang
- Department of Geriatric Neurology, Huashan Hospital, Fudan University; National Clinical Medicine Research Center for Age-related Diseases, 12 Middle WuLuMuQi Rd, Shanghai, 200040 China
| | - Yan-Mei Wang
- Department of Geriatric Neurology, Huashan Hospital, Fudan University; National Clinical Medicine Research Center for Age-related Diseases, 12 Middle WuLuMuQi Rd, Shanghai, 200040 China
| | - Qi-Lin Guo
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, 131 DongAn Rd, Shanghai, 200032 China
| | - Gang Ji
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, 131 DongAn Rd, Shanghai, 200032 China
| | - Guo-Feng Wu
- Department of EmergencyNeurology, Guiyang Medical University, Guiyang, 550004 China
| | - Na-Na Wang
- Department of Geriatric Neurology, Huashan Hospital, Fudan University; National Clinical Medicine Research Center for Age-related Diseases, 12 Middle WuLuMuQi Rd, Shanghai, 200040 China
| | - Hao Yang
- Department of Geriatric Neurology, Huashan Hospital, Fudan University; National Clinical Medicine Research Center for Age-related Diseases, 12 Middle WuLuMuQi Rd, Shanghai, 200040 China
| | - Zhong-Yu Yu
- Department of Geriatric Neurology, Huashan Hospital, Fudan University; National Clinical Medicine Research Center for Age-related Diseases, 12 Middle WuLuMuQi Rd, Shanghai, 200040 China
| | - Hou-Guang Zhou
- Department of Geriatric Neurology, Huashan Hospital, Fudan University; National Clinical Medicine Research Center for Age-related Diseases, 12 Middle WuLuMuQi Rd, Shanghai, 200040 China
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, 131 DongAn Rd, Shanghai, 200032 China
| | - Ying-Chao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, 5 Latitude and 7 longitude Rd, Jinan, 250021 China
| |
Collapse
|