1
|
Zhao X, Su S, Zhou J, Gao J, Tang X, Wen B. Metabolism and Excretion of 8-O-Acetylharpagide in Rats and Identification of Its Potential Anti-Breast Cancer Active Metabolites. Drug Des Devel Ther 2025; 19:2795-2815. [PMID: 40231196 PMCID: PMC11995923 DOI: 10.2147/dddt.s487898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Background Ajuga decumbens, a traditional Chinese medicine, possesses anti-breast cancer effects. Its main component, 8-O-acetylharpagide, exhibits potential anticancer activity; however, the active metabolites and mechanisms underlying its effects remain unclear. Methods The metabolism and excretion of 8-O-acetylharpagide in rats were investigated using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry analysis of bile, urine, and feces. Active metabolites were identified and evaluated using network pharmacology, molecular docking, and Western blotting assays. Results A total of 21 metabolites were identified, with demethylation, hydrolysis, and glucuronidation being the primary metabolic pathways. M3 and M5 were identified as key metabolites, showing strong binding affinity to cancer-related targets, such as AKT1, MMP9, and STAT3. M5 displayed strong pharmacokinetic properties, including better lipid solubility and reduced polarity. Network pharmacology analysis indicated that these metabolites exert anticancer effects by modulating the PI3K/AKT signaling pathway. In vivo experiments demonstrated that oral administration of 8-O-acetylharpagide significantly inhibited the proliferation of 4T1 tumor tissues by suppressing the expression of the AKT/NF-κB/MMP9 signaling axis. This may be related to inhibition of the expression of the AKT/NF-κB/MMP9 signaling axis in 4T1 tumor tissues after metabolism of 8-O-acetylharpagide to M5 and M3. Conclusion As a prodrug, 8-O-acetylharpagide is metabolized to M5, which may subsequently exert an anti-breast cancer effect through downregulation of the AKT/NF-κB/MMP9 signaling axis. This study provides a theoretical basis for the clinical application of Ajuga decumbens in breast cancer therapy.
Collapse
MESH Headings
- Animals
- Rats
- Female
- Rats, Sprague-Dawley
- Cell Proliferation/drug effects
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Antineoplastic Agents, Phytogenic/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Mice
- Drug Screening Assays, Antitumor
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/metabolism
- Humans
- Molecular Structure
- Dose-Response Relationship, Drug
- Molecular Docking Simulation
- Administration, Oral
Collapse
Affiliation(s)
- Xinyu Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Sijia Su
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Jingna Zhou
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Junfeng Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Xu Tang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Binyu Wen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| |
Collapse
|
2
|
Rodrigues-Junior DM, Tsirigoti C, Psatha K, Kletsas D, Aivaliotis M, Heldin CH, Moustakas A. TGF-β induces cholesterol accumulation to regulate the secretion of tumor-derived extracellular vesicles. J Exp Clin Cancer Res 2025; 44:42. [PMID: 39910665 PMCID: PMC11800471 DOI: 10.1186/s13046-025-03291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Cancer cells are avid extracellular vesicle (EV) producers. EVs transport transforming growth factor-β (TGF-β), which is commonly activated under late stages of cancer progression. Nevertheless, whether TGF-β signaling coordinates EV biogenesis is a relevant topic that remains minimally explored. METHOD We sought after specific TGF-β pathway mediators that could regulate EV release. To this end, we used a large number of cancer cell models, coupled to EV cell biological assays, unbiased proteomic and transcriptomic screens, followed by signaling and cancer biology analyses, including drug resistance assays. RESULTS We report that TGF-β, by activating its type I receptor and MEK-ERK1/2 signaling, increased the numbers of EVs released by human cancer cells. Upon examining cholesterol as a mediator of EV biogenesis, we delineated a pathway whereby ERK1/2 acted by phosphorylating sterol regulatory element-binding protein-2 that transcriptionally induced 7-dehydrocholesterol reductase expression, thus raising cholesterol abundance at both cellular and EV levels. Notably, inhibition of MEK or cholesterol synthesis, which impaired TGF-β-induced EV secretion, sensitized cancer cells to chemotherapeutic drugs. Furthermore, proteomic profiling of two distinct EV populations revealed that EVs secreted by TGF-β-stimulated cells were either depleted or enriched for different sets of cargo proteins. Among these, latent-TGF-β1 present in the EVs was not affected by TGF-β signaling, while TGF-β pathway-related molecules (e.g., matrix metalloproteinases, including MMP9) were either uniquely enriched on EVs or strongly enhanced after TGF-β stimulation. EV-associated latent-TGF-β1 activated SMAD signaling, even when EV uptake was blocked by heparin, indicating competent signaling capacity from target cell surface receptors. MMP inhibitor or proteinase treatment blocked EV-mediated SMAD signaling, suggesting that EVs require MMP activity to release the active TGF-β from its latent complex, a function also linked to the EV-mediated transfer of pro-migratory potential and ability of cancer cells to survive in the presence of cytotoxic drugs. CONCLUSION Hence, we delineated a novel signaling cascade that leads to high rates of EV generation by cancer cells in response to TGF-β, with cholesterol being a key intermediate step in this mechanism.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
| | - Chrysoula Tsirigoti
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
- Astra Zeneca, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Konstantina Psatha
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', Athens, GR-153 10, Greece
| | - Michalis Aivaliotis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden.
| |
Collapse
|
3
|
Du J, Wang J, Ge F, Ma H, Zhu H, Du J, Yan F, He Q, Yang B, Yuan T, Zhu H. JOSD2 promotes breast cancer metastasis by deubiquitinating and stabilizing SMAD4. Biochem Pharmacol 2025; 232:116748. [PMID: 39793716 DOI: 10.1016/j.bcp.2025.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Breast cancer is one of the most common malignant tumors among women worldwide, and its high degree of metastasis significantly impacts treatment effectiveness leading to poor prognosis. The potential molecular mechanisms underlying breast cancer metastasis remain to be further elucidated. In this study, via database analysis, we revealed that the deubiquitinase josephin domain containing 2 (JOSD2) was abnormally amplified in patients with metastatic breast cancer, and was significantly negatively correlated with patient prognosis. By integrating data from the Gene Expression Omnibus (GEO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis, we found that the transforming growth factor beta (TGF-β) signaling pathway was significantly activated in breast cancer patients with increased JOSD2 expression. Further studies revealed that JOSD2 interacted with and stabilized SMAD family member 4 (SMAD4) by removing polyubiquitin chains. Inhibition of JOSD2 by RNA interference effectively inhibited the metastasis of breast cancer cells both in vitro and in vivo. In conclusion, our study not only reveals the role of JOSD2 in promoting breast cancer metastasis for the first time, but also indicates promising directions for the future development of deubiquitinase inhibitors, which could yield significant therapeutic benefits. Nevertheless, extensive research and development are required to fully realize this potential.
Collapse
Affiliation(s)
- Jiamin Du
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiao Wang
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fujing Ge
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongrui Ma
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongdao Zhu
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hong Zhu
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Guo Y, Miao S, Jin Y, Li Q, Wang Y, Zhang X, Li J. Tumor-associated macrophages contribute to cholangiocarcinoma progression and chemoresistance through activation of ID1. Ann Hepatol 2024; 30:101773. [PMID: 39674368 DOI: 10.1016/j.aohep.2024.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
INTRODUCTION AND OBJECTIVES Tumor-associated macrophages (TAM) can influence both cancer growth and chemoresistance, but the specific mechanisms involved in these processes in cholangiocarcinoma (CCA) are unclear. MATERIALS AND METHODS We explored the distribution of TAM in CCA samples by multiplex immunofluorescence staining and tested the effects of TAM on CCA in vitro and in vivo. We then investigated the mechanisms underlying these effects using the Luminex assay, RNA sequencing, western blotting, flow cytometry, and co-immunoprecipitation. RESULTS The infiltration of TAM was strongly increased in the cholangiocarcinoma tumor microenvironment. Oncostain M (OSM) secreted by TAM increased the proliferation and chemotherapeutic resistance of CCA cells both in vitro and in vivo. The results of transcriptome sequencing analysis, Western blot analysis, and immunofluorescence staining confirmed that OSM can promote Yap nuclear translocation and its subsequent formation of complexes with SMADs to upregulate the expression of inhibitor of DNA binding 1 (ID1). CONCLUSIONS TAM promotes CCA progression and chemoresistance through activating OSM-Yap-ID1.
Collapse
Affiliation(s)
- Yinghao Guo
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Shuangda Miao
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yun Jin
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Qi Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yihang Wang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xiaoxiao Zhang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jiangtao Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China.
| |
Collapse
|
5
|
Carvalho MI, Silva-Carvalho R, Prada J, Pinto C, Gregório H, Lobo L, Pires I, Queiroga FL. TGFβ in malignant canine mammary tumors: relation with angiogenesis, immunologic markers and prognostic role. Vet Q 2024; 44:1-12. [PMID: 39165025 PMCID: PMC11340227 DOI: 10.1080/01652176.2024.2390941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Transforming growth factor-β (TGFβ) and FoxP3 regulatory T cells (Treg) are involved in human breast carcinogenesis. This topic is not well documented in canine mammary tumors (CMT). In this work, the tumoral TGFβ expression was assessed by immunohistochemistry in 67 malignant CMT and its correlation to previously determined FoxP3, VEGF, and CD31 markers and other clinicopathologic parameters was evaluated. The high levels of TGFβ were statistically significantly associated with skin ulceration, tumor necrosis, high histological grade of malignancy (HGM), presence of neoplastic intravascular emboli and presence of lymph node metastases. The observed levels of TGFβ were positively correlated with intratumoral FoxP3 (strong correlation), VEGF (weak correlation) and CD31 (moderate correlation). Tumors that presented a concurrent high expression of TGFβ/FoxP3, TGFβ/VEGF, and TGFβ/CD31 markers were statistically significantly associated with parameters of tumor malignancy (high HGM, presence of vascular emboli and nodal metastasis). Additionally, shorter overall survival (OS) time was statistically significantly associated with tumors with an abundant TGFβ expression and with concurrent high expression of TGFβ/FoxP3, TGFβ/VEGF, and TGFβ/CD31. The presence of lymph node metastasis increased 11 times the risk of disease-related death, arising as an independent predictor of poor prognosis in the multivariable analysis. In conclusion, TGFβ and Treg cells seem involved in tumor progression emerging as potential therapeutic targets for future immunotherapy studies.
Collapse
Affiliation(s)
- Maria Isabel Carvalho
- MVET Research in Veterinary Medicine. Faculty of Veterinary Medicine, Lusófona University – Lisbon Centre, Lisboa, Portugal
| | - Ricardo Silva-Carvalho
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Justina Prada
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carla Pinto
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Hugo Gregório
- Anicura Centro Hospitalar Veterinário, Porto, Portugal
| | - Luis Lobo
- MVET Research in Veterinary Medicine. Faculty of Veterinary Medicine, Lusófona University – Lisbon Centre, Lisboa, Portugal
- Onevet Hospital Veterinário do Porto, Porto, Portugal
- Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Portugal
| | - Isabel Pires
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina L. Queiroga
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Portugal
| |
Collapse
|
6
|
Saranya I, Selvamurugan N. Regulation of TGF-β/BMP signaling during osteoblast development by non-coding RNAs: Potential therapeutic applications. Life Sci 2024; 355:122969. [PMID: 39142506 DOI: 10.1016/j.lfs.2024.122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Bone is a connective tissue that is metabolically active and serves multiple functions, including movement, structural support, and organ protection. It is comprised primarily of three types of bone cells, namely osteoblasts, osteocytes, and osteoclasts. Osteoblasts are bone-forming cells, and the differentiation of mesenchymal stem cells towards osteoblasts is regulated by several growth factors, cytokines, and hormones via various signaling pathways, including TGF-β/BMP (transforming growth factor-beta/bone morphogenetic protein) signaling as a primary one. Non-coding RNAs (ncRNAs), such as microRNAs and long ncRNAs, play crucial roles in regulating osteoblast differentiation via the TGF-β/BMP signaling cascade. Dysregulation of these ncRNAs leads to bone-pathological conditions such as osteoporosis, skeletal dysplasia, and osteosclerosis. This review provides a concise overview of the latest advancements in understanding the involvement of ncRNAs/TGF-β/BMP axis in osteoblast differentiation. These findings have the potential to identify new molecular targets for early detection of bone metabolism disorders and the development of innovative therapy strategies.
Collapse
Affiliation(s)
- Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
7
|
Zhao Y, Zhao L, Li M, Meng Z, Wang S, Li J, Li L, Gong L. Long non-coding RNA PVT1 regulates TGF-β and promotes the proliferation, migration and invasion of hypopharyngeal carcinoma FaDu cells. World J Surg Oncol 2024; 22:254. [PMID: 39300515 PMCID: PMC11414033 DOI: 10.1186/s12957-024-03536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Hypopharyngeal carcinoma is one of the malignant tumors of the head and neck with a particularly poor prognosis. Recurrence and metastasis are important reasons for poor prognosis of hypopharyngeal cancer patients, and malignant proliferation, migration, and invasion of tumor cells are important factors for recurrence and metastasis of hypopharyngeal cancer. Therefore, elucidating hypopharyngeal cancer cells' proliferation, migration, and invasion mechanism is essential for improving diagnosis, treatment, and prognosis. Plasmacytoma Variant Translocation 1 (PVT1) is considered a potential diagnostic marker and therapeutic target for tumors. However, it remains unclear whether PVT1 is related to the occurrence and development of hypopharyngeal cancer and its specific mechanism. In this study, the promoting effect of PVT1 on the proliferation, migration, and invasion of hypopharyngeal carcinoma FaDu cells was verified by cell biology experiments and animal studies, and it was found that PVT1 inhibited the expression of TGF-β, suggesting that PVT1 may regulate the occurrence and development of hypopharyngeal carcinoma FaDu cells through TGF-β.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Apoptosis
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Hypopharyngeal Neoplasms/pathology
- Hypopharyngeal Neoplasms/genetics
- Hypopharyngeal Neoplasms/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Prognosis
- RNA, Long Noncoding/genetics
- Transforming Growth Factor beta/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Female
Collapse
Affiliation(s)
- Yan Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| | - Lei Zhao
- Department of Otorhinolaryngology, Heze Municipal Hospital, Heze, Shandong, China
| | - Maocai Li
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China
| | - Zhen Meng
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong, China
| | - Song Wang
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jun Li
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Lianqing Li
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China.
| | - Lili Gong
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
8
|
Kochumon S, Al-Sayyar A, Jacob T, Bahman F, Akhter N, Wilson A, Sindhu S, Hannun YA, Ahmad R, Al-Mulla F. TGF-β and TNF-α interaction promotes the expression of MMP-9 through H3K36 dimethylation: implications in breast cancer metastasis. Front Immunol 2024; 15:1430187. [PMID: 39351229 PMCID: PMC11439675 DOI: 10.3389/fimmu.2024.1430187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/26/2024] [Indexed: 10/04/2024] Open
Abstract
Increased MMP-9 expression in the tumor microenvironment (TME) plays a crucial role in the extracellular matrix remodeling to facilitate cancer invasion and metastasis. However, the mechanism of MMP-9 upregulation in TME remains elusive. Since TGF-β and TNF-α levels are elevated in TME, we asked whether these two agents interacted to induce/augment MMP-9 expression. Using a well-established MDA-MB-231 breast cancer model, we found that the synergy between TGF-β and TNF-α led to MMP-9 upregulation at the transcriptional and translational levels, compared to treatments with each agent alone. Our in vitro findings are corroborated by co-expression of elevated MMP-9 with TGF-β and TNF-α in human breast cancer tissues. Mechanistically, we found that the MMP-9 upregulation driven by TGF-β/TNF-α cooperativity was attenuated by selective inhibition of the TGF-βRI/Smad3 pathway. Comparable outcomes were observed upon inhibition of TGF-β-induced phosphorylation of Smad2/3 and p38. As expected, the cells defective in Smad2/3 or p38-mediated signaling did not exhibit this synergistic induction of MMP-9. Importantly, the inhibition of histone methylation but not acetylation dampened the synergistic MMP-9 expression. Histone modification profiling further identified the H3K36me2 as an epigenetic regulatory mark of this synergy. Moreover, TGF-β/TNF-α co-stimulation led to increased levels of the transcriptionally permissive dimethylation mark at H3K36 in the MMP-9 promoter. Comparable outcomes were noted in cells deficient in NSD2 histone methyltransferase. In conclusion, our findings support a cooperativity model in which TGF-β could amplify the TNF-α-mediated MMP-9 production via chromatin remodeling and facilitate breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Shihab Kochumon
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Amnah Al-Sayyar
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, Marseille, France
| | - Texy Jacob
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fatemah Bahman
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Nadeem Akhter
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ajit Wilson
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
9
|
Finiuk N, Kozak Y, Gornowicz A, Czarnomysy R, Tynecka M, Holota S, Moniuszko M, Stoika R, Lesyk R, Bielawski K, Bielawska A. The Proapoptotic Action of Pyrrolidinedione-Thiazolidinone Hybrids towards Human Breast Carcinoma Cells Does Not Depend on Their Genotype. Cancers (Basel) 2024; 16:2924. [PMID: 39199694 PMCID: PMC11352273 DOI: 10.3390/cancers16162924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The development of new, effective agents for the treatment of breast cancer remains a high-priority task in oncology. A strategy of treatment for this pathology depends significantly on the genotype and phenotype of human breast cancer cells. We aimed to investigate the antitumor activity of new pyrrolidinedione-thiazolidinone hybrid molecules Les-6287, Les-6294, and Les-6328 towards different types of human breast cancer cells of MDA-MB-231, MCF-7, T-47D, and HCC1954 lines and murine breast cancer 4T1 cells by using the MTT, clonogenic and [3H]-Thymidine incorporation assays, flow cytometry, ELISA, and qPCR. The studied hybrids possessed toxicity towards the mentioned tumor cells, with the IC50 ranging from 1.37 to 21.85 µM. Simultaneously, these derivatives showed low toxicity towards the pseudonormal human breast epithelial cells of the MCF-10A line (IC50 > 93.01 µM). Les-6287 at 1 µM fully inhibited the formation of colonies of the MCF-7, MDA-MB-231, and HCC1954 cells, while Les-6294 and Les-6328 did that at 2.5 and 5 µM, respectively. Les-6287 suppressed DNA biosynthesis in the MCF-7, MDA-MB-231, and HCC1954 cells. At the same time, such an effect on the MCF-10A cells was significantly lower. Les-6287 induces apoptosis using extrinsic and intrinsic pathways via a decrease in the mitochondrial membrane potential, increasing the activity of caspases 3/7, 8, 9, and 10 in all immunohistochemically different human breast cancer cells. Les-6287 decreased the concentration of the metastasis- and invasion-related proteins MMP-2, MMP-9, and ICAM-1. It did not induce autophagy in treated cells. In conclusion, the results of our study suggest that the synthesized hybrid pyrrolidinedione-thiazolidinones might be promising agents for treating breast tumors of different types.
Collapse
Affiliation(s)
- Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine; (Y.K.); (R.S.)
| | - Yuliia Kozak
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine; (Y.K.); (R.S.)
| | - Agnieszka Gornowicz
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland; (A.G.); (A.B.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland; (R.C.); (K.B.)
| | - Marlena Tynecka
- Centre of Regenerative Medicine, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland; (M.T.); (M.M.)
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Marcin Moniuszko
- Centre of Regenerative Medicine, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland; (M.T.); (M.M.)
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine; (Y.K.); (R.S.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland; (R.C.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland; (A.G.); (A.B.)
| |
Collapse
|
10
|
Zhu Y, Feng P, Jiang P, Li K, Huang K, Chen J, Chen P. Biomolecule-regulation of fluorescent probe signaling: Homogeneous rapid portable protease sensing in serum. Anal Chim Acta 2024; 1316:342824. [PMID: 38969403 DOI: 10.1016/j.aca.2024.342824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND As is well documented, prostate cancer (PCa) being the second most prevalent cancer in men worldwide, emphasizing the importance of early diagnosis for prognosis. However, conventional prostate-specific antigen (PSA) testing lacks sufficient diagnostic efficiency due to its relatively low sensitivity and limited detection range. Mounting evidence suggests that matrix metalloproteinase 9 (MMP-9) expression increases with the aggressive behavior of PCa, highlighting the significance of detecting the serum level of MMP-9 in patients. Developing a non-immune rapid, portable MMP-9 detection strategy and investigating its representativeness of PCa serum markers hold considerable implications. RESULTS Herein, our study developed a simple, homogeneous dual fluorescence and smartphone-assisted red-green-blue (RGB) visualization peptide sensor of MMP-9, utilizing cadmium telluride quantum dots (CdTe QDs) and calcein as signal reporters. The essence of our approach revolves around the proteolytic ability of MMP-9, exploiting the selective recognition of molecule-Cu2+ complexes with different molecular weights by CdTe QDs and calcein. Under optimized conditions, the limits of detection (LODs) for MMP-9 were 0.5 pg/mL and 6 pg/mL using fluorescence and RGB values readouts, respectively. Indeed, this strategy exhibited robust specificity and anti-interference ability. MMP-9 was quantified in 42 clinical serum samples via dual-fluorescence analysis, with 12 samples being visually identified with a smartphone. According to receiver operating characteristic curve (ROC) analysis, its sensitivity and specificity were 90 % and 100 %, respectively, with an area under curve (AUC) value of 0.903. SIGNIFICANCE AND NOVELTY Of note, the results of the aforementioned analysis were highly consistent with the serum level of PSA, clinical color Doppler flow imaging (CDFI), and histopathological results. Therefore, this simple, rapid, homogeneous fluorescence and visualization strategy can reliably measure MMP-9 levels and exhibit promising potential in point-of-care testing (POCT) applications for PCa patients.
Collapse
Affiliation(s)
- Yalan Zhu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Pan Feng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Pengjun Jiang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kai Li
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Jie Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
11
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
12
|
Wang QL, Wang L, Li QY, Li HY, Lin L, Wei D, Xu JY, Luo XJ. Micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in tumor cells in an USP7/AKT/GSK-3β pathway-dependent manner. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4447-4459. [PMID: 38108838 DOI: 10.1007/s00210-023-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Breast cancer and osteosarcoma are common cancers in women and children, respectively, but ideal drugs for treating patients with breast cancer or osteosarcoma remain to be found. Micafungin is an antifungal drug with antitumor activity on leukemia. Based on the notion of drug repurposing, this study aims to evaluate the antitumor effects of micafungin on breast cancer and osteosarcoma in vitro and in vivo, and to elucidate the underlying mechanisms. Five breast cancer cell lines (MDA-MB-231, BT-549, SK-BR-3, MCF-7, and 4T1) and one osteosarcoma cell line (143B) were chosen for the in vitro studies. Micafungin exerted an inhibitory effect on the viability of all cell lines, and MCF-7 cells were most sensitive to micafungin among the breast cancer cell lines. In addition, micafungin showed an inhibitory effect on the proliferation, clone formation, and migration in MCF7 and 143B cells. The inhibitory effect of micafungin on the growth of breast cancer and osteosarcoma was further confirmed with xenograft tumor mouse models. To explore the underlying mechanisms, the effect of micafungin on epithelial-mesenchymal transition (EMT) was examined. As expected, the levels of matrix metalloproteinase 9 and vimentin in MCF-7 and 143B cells were notably reduced in the presence of micafungin, concomitant with the decreased levels of ubiquitin-specific protease 7 (USP7), p-AKT, and p-GSK-3β. Based on these observations, we conclude that micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in an USP7/AKT/GSK-3β pathway-dependent manner.
Collapse
Affiliation(s)
- Qian-Lin Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Laboratory Medicine, Changsha Blood Central, Changsha, 410005, China
| | - Li Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Qiong-Yu Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hui-Yin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ling Lin
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dan Wei
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jin-Yun Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
13
|
Cai N, Cheng K, Ma Y, Liu S, Tao R, Li Y, Li D, Guo B, Jia W, Liang H, Zhao J, Xia L, Ding ZY, Chen J, Zhang W. Targeting MMP9 in CTNNB1 mutant hepatocellular carcinoma restores CD8 + T cell-mediated antitumour immunity and improves anti-PD-1 efficacy. Gut 2024; 73:985-999. [PMID: 38123979 PMCID: PMC11103337 DOI: 10.1136/gutjnl-2023-331342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE The gain of function (GOF) CTNNB1 mutations (CTNNB1 GOF ) in hepatocellular carcinoma (HCC) cause significant immune escape and resistance to anti-PD-1. Here, we aimed to investigate the mechanism of CTNNB1 GOF HCC-mediated immune escape and raise a new therapeutic strategy to enhance anti-PD-1 efficacy in HCC. DESIGN RNA sequencing was performed to identify the key downstream genes of CTNNB1 GOF associated with immune escape. An in vitro coculture system, murine subcutaneous or orthotopic models, spontaneously tumourigenic models in conditional gene-knock-out mice and flow cytometry were used to explore the biological function of matrix metallopeptidase 9 (MMP9) in tumour progression and immune escape. Single-cell RNA sequencing and proteomics were used to gain insight into the underlying mechanisms of MMP9. RESULTS MMP9 was significantly upregulated in CTNNB1 GOF HCC. MMP9 suppressed infiltration and cytotoxicity of CD8+ T cells, which was critical for CTNNB1 GOF to drive the suppressive tumour immune microenvironment (TIME) and anti-PD-1 resistance. Mechanistically, CTNNB1 GOF downregulated sirtuin 2 (SIRT2), resulting in promotion of β-catenin/lysine demethylase 4D (KDM4D) complex formation that fostered the transcriptional activation of MMP9. The secretion of MMP9 from HCC mediated slingshot protein phosphatase 1 (SSH1) shedding from CD8+ T cells, leading to the inhibition of C-X-C motif chemokine receptor 3 (CXCR3)-mediated intracellular of G protein-coupled receptors signalling. Additionally, MMP9 blockade remodelled the TIME and potentiated the sensitivity of anti-PD-1 therapy in HCC. CONCLUSIONS CTNNB1 GOF induces a suppressive TIME by activating secretion of MMP9. Targeting MMP9 reshapes TIME and potentiates anti-PD-1 efficacy in CTNNB1 GOF HCC.
Collapse
Affiliation(s)
- Ning Cai
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Kun Cheng
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yue Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Sha Liu
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ran Tao
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yani Li
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Danfeng Li
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bin Guo
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenlong Jia
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huifang Liang
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jianping Zhao
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jinhong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Wanguang Zhang
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
14
|
Yang Y, Song S, Li S, Kang J, Li Y, Zhao N, Ye D, Qin F, Du Y, Sun J, Yu T, Wu H. GATA4 regulates the transcription of MMP9 to suppress the invasion and migration of breast cancer cells via HDAC1-mediated p65 deacetylation. Cell Death Dis 2024; 15:289. [PMID: 38653973 PMCID: PMC11039647 DOI: 10.1038/s41419-024-06656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
GATA-binding protein 4 (GATA4) is recognized for its significant roles in embryogenesis and various cancers. Through bioinformatics and clinical data, it appears that GATA4 plays a role in breast cancer development. Yet, the specific roles and mechanisms of GATA4 in breast cancer progression remain elusive. In this study, we identify GATA4 as a tumor suppressor in the invasion and migration of breast cancer. Functionally, GATA4 significantly reduces the transcription of MMP9. On a mechanistic level, GATA4 diminishes MMP9 transcription by interacting with p65 at the NF-κB binding site on the MMP9 promoter. Additionally, GATA4 promotes the recruitment of HDAC1, amplifying the bond between p65 and HDAC1. This leads to decreased acetylation of p65, thus inhibiting p65's transcriptional activity on the MMP9 promoter. Moreover, GATA4 hampers the metastasis of breast cancer in vivo mouse model. In summary, our research unveils a novel mechanism wherein GATA4 curtails breast cancer cell metastasis by downregulating MMP9 expression, suggesting a potential therapeutic avenue for breast cancer metastasis.
Collapse
Affiliation(s)
- Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Shuangshuang Song
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Jie Kang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Yulin Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Nannan Zhao
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Dongman Ye
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Fengying Qin
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Yixin Du
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Jing Sun
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Tao Yu
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
15
|
Xu NY, Li J, Wang ML, Chen XY, Tang R, Liu XQ. Fabrication of a Coculture Organoid Model in the Biomimetic Matrix of Alginate to Investigate Breast Cancer Progression in a TAMs-Leading Immune Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11275-11288. [PMID: 38383056 DOI: 10.1021/acsami.3c17863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The current research models of breast cancer are usually limited in their capacity to recapitulate the tumor microenvironment in vitro. The lack of an extracellular matrix (ECM) oversimplifies cell-cell or cell-ECM cross-talks. Moreover, the lack of tumor-associated macrophages (TAMs), that can comprise up to 50% of some solid neoplasms, poses a major problem for recognizing various hallmarks of cancer. To address these concerns, a type of direct breast cancer cells (BCCs)-TAMs coculture organoid model was well developed by a sequential culture method in this study. Alginate cryogels were fabricated with appropriate physical and mechanical properties to serve as an alternative ECM. Then, our previous experience was leveraged to polarize TAMs inside of the cryogels for creating an in vitro immune microenvironment. The direct coculture significantly enhanced BCCs organoid growth and cancer aggressive phenotypes, including the stemness, migration, ECM remodeling, and cytokine secretion. Furthermore, transcriptomic analysis and protein-protein interaction networks implied certain pathways (PI3K-Akt pathway, MAPK signaling pathway, etc.) and targets (TNF, PPARG, TLR2, etc.) during breast cancer progression in a TAM-leading immune microenvironment. Future studies to advance treatment strategies for BCC patients may benefit from using this facile model to reveal and target the interactions between cancer signaling and the immune microenvironment.
Collapse
Affiliation(s)
- Nian-Yuan Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Jun Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Mei-Ling Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xue-Yu Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Ruizhi Tang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, P. R. China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
16
|
Shi C, Wang C, Fu Z, Liu J, Zhou Y, Cheng B, Zhang C, Li S, Zhang Y. Lipocalin 2 (LCN2) confers acquired resistance to almonertinib in NSCLC through LCN2-MMP-9 signaling pathway. Pharmacol Res 2024; 201:107088. [PMID: 38295916 DOI: 10.1016/j.phrs.2024.107088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Almonertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC). However, the development of resistance inevitably occurs and poses a major obstacle to the clinical efficacy of almonertinib. Therefore, a clear understanding of the mechanism is of great significance to overcome drug resistance to almonertinib in the future. In this study, NCI-H1975 cell lines resistant to almonertinib (NCI-H1975 AR) were developed by concentration-increasing induction and were employed for clarification of underlying mechanisms of acquired resistance. Through RNA-seq analysis, the HIF-1 and TGF-β signaling pathways were significantly enriched by gene set enrichment analysis. Lipocalin-2 (LCN2), as the core node in these two signaling pathways, were found to be positively correlated to almonertinib-resistance in NSCLC cells. The function of LCN2 in the drug resistance of almonertinib was investigated through knockdown and overexpression assays in vitro and in vivo. Moreover, matrix metalloproteinases-9 (MMP-9) was further identified as a critical downstream effector of LCN2 signaling, which is regulated via the LCN2-MMP-9 axis. Pharmacological inhibition of MMP-9 could overcome resistance to almonertinib, as evidenced in both in vitro and in vivo models. Our findings suggest that LCN2 was a crucial regulator for conferring almonertinib-resistance in NSCLC and demonstrate the potential utility of targeting the LCN2-MMP-9 axis for clinical treatment of almonertinib-resistant lung adenocarcinoma.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Cong Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinmei Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanfeng Zhou
- Department of Preclinical Translational Science, Shanghai Hansoh Biomedical Co.,Ltd., Shanghai 201203. China
| | - Bao Cheng
- Department of Chemistry, Shanghai Hansoh Biomedical Co., Ltd, Shanghai 201203, China
| | - Cong Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China.
| |
Collapse
|
17
|
Zheng J, Hao H. The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front Oncol 2024; 13:1333839. [PMID: 38273859 PMCID: PMC10810416 DOI: 10.3389/fonc.2023.1333839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in the tumor microenvironment, exhibiting a strong association with the advancement of various types of cancer, including breast, pancreatic, and prostate cancer. CAFs represent the most abundant mesenchymal cell population in breast cancer. Through diverse mechanisms, including the release of cytokines and exosomes, CAFs contribute to the progression of breast cancer by influencing tumor energy metabolism, promoting angiogenesis, impairing immune cell function, and remodeling the extracellular matrix. Moreover, CAFs considerably impact the response to treatment in breast cancer. Consequently, the development of interventions targeting CAFs has emerged as a promising therapeutic approach in the management of breast cancer. This article provides an analysis of the role of CAFs in breast cancer, specifically in relation to diagnosis, treatment, drug resistance, and prognosis. The paper succinctly outlines the diverse mechanisms through which CAFs contribute to the malignant behavior of breast cancer cells, including proliferation, invasion, metastasis, and drug resistance. Furthermore, the article emphasizes the potential of CAFs as valuable tools for early diagnosis, targeted therapy, treatment resistance, and prognosis assessment in breast cancer, thereby offering novel approaches for targeted therapy and overcoming treatment resistance in this disease.
Collapse
Affiliation(s)
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
18
|
David T, Mallavialle A, Faget J, Alcaraz LB, Lapierre M, du Roure PD, Laurent-Matha V, Mansouri H, Jarlier M, Martineau P, Roger P, Guiu S, Chardès T, Liaudet-Coopman E. Anti-cathepsin D immunotherapy triggers both innate and adaptive anti-tumour immunity in breast cancer. Br J Pharmacol 2023. [PMID: 38030588 DOI: 10.1111/bph.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Triple-negative breast cancer (TNBC) has poorer outcomes than other breast cancers (BC), including HER2+ BC. Cathepsin D (CathD) is a poor prognosis marker overproduced by BC cells, hypersecreted in the tumour microenvironment with tumour-promoting activity. Here, we characterized the immunomodulatory activity of the anti-CathD antibody F1 and its improved Fab-aglycosylated version (F1M1) in immunocompetent mouse models of TNBC (C57BL/6 mice harbouring E0771 cell grafts) and HER2-amplified BC (BALB/c mice harbouring TUBO cell grafts). EXPERIMENTAL APPROACH CathD expression was evaluated by western blotting and immunofluorescence, and antibody binding to CathD by ELISA. Antibody anti-tumour efficacy was investigated in mouse models. Immune cell recruitment and activation were assessed by immunohistochemistry, immunophenotyping, and RT-qPCR. KEY RESULTS F1 and F1M1 antibodies remodelled the tumour immune landscape. Both antibodies promoted innate antitumour immunity by preventing the recruitment of immunosuppressive M2-polarized tumour-associated macrophages (TAMs) and by activating natural killer cells in the tumour microenvironment of both models. This translated into a reduction of T-cell exhaustion markers in the tumour microenvironment that could be locally supported by enhanced activation of anti-tumour antigen-presenting cell (M1-polarized TAMs and cDC1 cells) functions. Both antibodies inhibited tumour growth in the highly-immunogenic E0771 model, but only marginally in the immune-excluded TUBO model, indicating that anti-CathD immunotherapy is more relevant for BC with a high immune cell infiltrate, as often observed in TNBC. CONCLUSION AND IMPLICATION Anti-CathD antibody-based therapy triggers the anti-tumour innate and adaptive immunity in preclinical models of BC and is a promising immunotherapy for immunogenic TNBC.
Collapse
Affiliation(s)
- Timothée David
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
| | | | - Julien Faget
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
| | | | - Marion Lapierre
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
| | | | | | - Hanane Mansouri
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
- RHEM, IRCM, Montpellier, France
| | | | | | - Pascal Roger
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
- Department of Pathology, CHU Nîmes, Nîmes, France
| | - Séverine Guiu
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
- Department of Medical Oncology, ICM, Montpellier, France
| | - Thierry Chardès
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
- Centre national de la recherche Scientifique, CNRS, Paris, France
| | | |
Collapse
|
19
|
Zhang Y, Wu M, Zhou J, Diao H. Long Non-Coding RNA as a Potential Biomarker for Canine Tumors. Vet Sci 2023; 10:637. [PMID: 37999460 PMCID: PMC10674608 DOI: 10.3390/vetsci10110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Cancer is the leading cause of death in both humans and companion animals. Long non-coding RNA (lncRNA) plays a crucial role in the progression of various types of cancers in humans, involving tumor proliferation, metastasis, angiogenesis, and signaling pathways, and acts as a potential biomarker for diagnosis and targeted treatment. However, research on lncRNAs related to canine tumors is in an early stage. Dogs have long been considered a promising natural model for human disease. This article summarizes the molecular function of lncRNAs as novel biomarkers in various types of canine tumors, providing new insights into canine tumor diagnosis and treatment. Further research on the function and mechanism of lncRNAs is needed, which will benefit both human and veterinary medicine.
Collapse
Affiliation(s)
| | | | | | - Hongxiu Diao
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (J.Z.)
| |
Collapse
|
20
|
Zhang W, Sun L, Gao H, Wang S. Mechanism of the HIF-1α/VEGF/VEGFR-2 pathway in the proliferation and apoptosis of human haemangioma endothelial cells. Int J Exp Pathol 2023; 104:258-268. [PMID: 37381118 PMCID: PMC10500167 DOI: 10.1111/iep.12485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/21/2023] [Indexed: 06/30/2023] Open
Abstract
Haemangiomas (HAs) are prevalent vascular endothelial cell tumours. With respect to the possible involvement of HIF-1α in HAs, we have explored its role in haemangioma endothelial cell (HemEC) proliferation and apoptosis. shRNA HIF-1α and pcDNA3.1 HIF-α were manipulated into HemECs. HIF-α, VEGF, and VEGFR-2 mRNA and protein levels were assessed by qRT-PCR and Western blotting. Cell proliferation and viability, cell cycle and apoptosis, migration and invasion, and ability to form tubular structures were assessed by colony formation assay, CCK-8, flow cytometry, Transwell assay, and tube formation assay. Cell cycle-related protein levels, and VEGF and VEGFR-2 protein interaction were detected by Western blot and immunoprecipitation assays. An Haemangioma nude mouse model was established by subcutaneous injection of HemECs. Ki67 expression was determined by immunohistochemical staining. HIF-1α silencing suppressed HemEC neoplastic behaviour and promoted apoptosis. HIF-1α facilitated VEGF/VEGFR-2 expression and the VEGF had interacted with VEGFR-2 at protein - protein level. HIF-1α silencing arrested HemECs at G0/G1 phase, diminished Cyclin D1 protein level, and elevated p53 protein level. VEGF overexpression partially abrogated the effects of HIF-1α knockdown on inhibiting HemEC malignant behaviours. Inhibiting HIF-1α in nude mice with HAs repressed tumour growth and Ki67-positive cells. Briefly, HIF-1α regulated HemEC cell cycle through VEGF/VEGFR-2, thus promoting cell proliferation and inhibiting apoptosis.
Collapse
Affiliation(s)
- Wenpei Zhang
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lei Sun
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongxia Gao
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shengquan Wang
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
21
|
Tang H, Kuang Y, Wu W, Peng B, Fu Q. Quercetin inhibits the metabolism of arachidonic acid by inhibiting the activity of CYP3A4, thereby inhibiting the progression of breast cancer. Mol Med 2023; 29:127. [PMID: 37710176 PMCID: PMC10502985 DOI: 10.1186/s10020-023-00720-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Recent years have witnessed impressive growth in applying natural medicine in tumor treatment. Saffron is reported to elicit an inhibitory property against BC. Herein, we sought to explore the specific components and mechanistic basis of saffron's anti-breast carcinoma (BC) function. METHODS Bioinformatics analysis was employed to analyze saffron components' anti-BC activity and screen the corresponding target genes involved in BC. Then, the roles of the main saffron ingredient quercetin in the activity of BC cells were examined using CCK-8, MTS, flow cytometry, colony formation, Transwell, and Gelatin zymogram assays. Additionally, the interactions among Quercetin, EET, and Stat3 were assessed by immunofluorescence and Western blot, and LC-MS/MS determined the levels of AA, EETs, and CYP3A. Finally, BC xenograft mouse models were established to verify the anti-BC function of Quercetin in vivo. RESULTS Quercetin, the main active component of saffron, inhibited BC progression. Quercetin suppressed BC cell growth, migration, and invasion and inhibited CYP3A4 expression and activity in BC. Mechanistically, Quercetin down-regulated CYP3A4 to block the nuclear translocation of Stat3 by decreasing the metabolization of AA to EETs, thereby alleviating BC. Moreover, exogenously added EETs counteracted the anti-tumor effect of Quercetin on BC. Quercetin also inhibited the tumor growth of tumor-bearing nude mice. CONCLUSION Quercetin could inhibit the activity of CYP3A to down-regulate AA metabolites EETs, consequently hampering p-Stat3 and nuclear translocation, thus impeding BC development.
Collapse
Affiliation(s)
- Huaming Tang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Sichuan Province, Chengdu, 610000, People's Republic of China
| | - Yuanli Kuang
- Department of General Surgery, Chongqing Kaizhou District People's Hospital, Chongqing, 400700, People's Republic of China
| | - Wan Wu
- Department of General Surgery, Chongqing Kaizhou District People's Hospital, Chongqing, 400700, People's Republic of China
| | - Bing Peng
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Sichuan Province, Chengdu, 610000, People's Republic of China.
| | - Qianmei Fu
- Department of Oncology, Chongqing Kaizhou District People's Hospital, No. 8, Ankang Road, Hanfeng Street, Kaizhou District, Chongqing, 400700, People's Republic of China.
| |
Collapse
|
22
|
Nasif S, Colombo M, Uldry AC, Schröder M, de Brot S, Mühlemann O. Inhibition of nonsense-mediated mRNA decay reduces the tumorigenicity of human fibrosarcoma cells. NAR Cancer 2023; 5:zcad048. [PMID: 37681034 PMCID: PMC10480688 DOI: 10.1093/narcan/zcad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic RNA decay pathway with roles in cellular stress responses, differentiation, and viral defense. It functions in both quality control and post-transcriptional regulation of gene expression. NMD has also emerged as a modulator of cancer progression, although available evidence supports both a tumor suppressor and a pro-tumorigenic role, depending on the model. To further investigate the role of NMD in cancer, we knocked out the NMD factor SMG7 in the HT1080 human fibrosarcoma cell line, resulting in suppression of NMD function. We then compared the oncogenic properties of the parental cell line, the SMG7-knockout, and a rescue cell line in which we re-introduced both isoforms of SMG7. We also tested the effect of a drug inhibiting the NMD factor SMG1 to distinguish NMD-dependent effects from putative NMD-independent functions of SMG7. Using cell-based assays and a mouse xenograft tumor model, we showed that suppression of NMD function severely compromises the oncogenic phenotype. Molecular pathway analysis revealed that NMD suppression strongly reduces matrix metalloprotease 9 (MMP9) expression and that MMP9 re-expression partially rescues the oncogenic phenotype. Since MMP9 promotes cancer cell migration and invasion, metastasis and angiogenesis, its downregulation may contribute to the reduced tumorigenicity of NMD-suppressed cells. Collectively, our results highlight the potential value of NMD inhibition as a therapeutic approach.
Collapse
Affiliation(s)
- Sofia Nasif
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | - Martino Colombo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Switzerland
| | - Markus S Schröder
- NCCR RNA & Disease Bioinformatics Support,Department of Biology, ETH Zürich, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| |
Collapse
|
23
|
Wu K, Li W, Liu H, Niu C, Shi Q, Zhang J, Gao G, Sun H, Liu F, Fu L. Metabolome Sequencing Reveals that Protein Arginine-N-Methyltransferase 1 Promotes the Progression of Invasive Micropapillary Carcinoma of the Breast and Predicts a Poor Prognosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1267-1283. [PMID: 37301537 DOI: 10.1016/j.ajpath.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Invasive micropapillary carcinoma (IMPC) of the breast is a special histopathologic type of cancer with a high recurrence rate and the biological features of invasion and metastasis. Previous spatial transcriptome studies indicated extensive metabolic reprogramming in IMPC, which contributes to tumor cell heterogeneity. However, the impact of metabolome alterations on IMPC biological behavior is unclear. Herein, endogenous metabolite-targeted metabolomic analysis was done on frozen tumor tissue samples from 25 patients with breast IMPC and 34 patients with invasive ductal carcinoma not otherwise specified (IDC-NOS) by liquid chromatography-mass spectrometry. An IMPC-like state, which is an intermediate transitional morphologic phenotype between IMPC and IDC-NOS, was observed. The metabolic type of IMPC and IDC-NOS was related to breast cancer molecular type. Arginine methylation modification and 4-hydroxy-phenylpyruvate metabolic changes play a major role in the metabolic reprogramming of IMPC. High protein arginine-N-methyltransferase (PRMT) 1 expression was an independent factor related to the poor prognosis of patients with IMPC in terms of disease-free survival. PRMT1 promoted H4R3me2a, which induced tumor cell proliferation via cell cycle regulation and facilitated tumor cell metastasis via the tumor necrosis factor signaling pathway. This study identified the metabolic type-related features and intermediate transition morphology of IMPC. The identification of potential targets of PRMT1 has the potential to provide a basis for the precise diagnosis and treatment of breast IMPC.
Collapse
Affiliation(s)
- Kailiang Wu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Weidong Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hanjiao Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chen Niu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qianqian Shi
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyue Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guangshen Gao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Sun
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fangfang Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
24
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
25
|
Shi H, Kong R, Miao X, Gou L, Yin X, Ding Y, Cao X, Meng Q, Gu M, Suo F. Decreased PPP1R3G in pre-eclampsia impairs human trophoblast invasion and migration via Akt/MMP-9 signaling pathway. Exp Biol Med (Maywood) 2023; 248:1373-1382. [PMID: 37642261 PMCID: PMC10657594 DOI: 10.1177/15353702231182214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 08/31/2023] Open
Abstract
Pre-eclampsia (PE) is a severe pregnancy complication characterized by impaired trophoblast invasion and spiral artery remodeling and can have serious consequences for both mother and child. Protein phosphatase 1 regulatory subunit 3G (PPP1R3G) is involved in numerous tumor-related biological processes. However, the biological action and underlying mechanisms of PPP1R3G in PE progression remain unclear. We used western blotting and immunohistochemistry to investigate PPP1R3G expression in gestational age-matched pre-eclamptic and normal placental tissues. After lentivirus transfection, wound-healing, Transwell, cell-counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and TdT mediateddUTP Nick End Labeling (TUNEL) assays were used to assess trophoblast migration, invasion, proliferation, and apoptosis, respectively. The relative expression levels of PPP1R3G and the proteins involved in the Akt signaling pathway were determined using western blotting. The results showed that PPP1R3G levels were significantly lower in the placental tissues and GSE74341 microarray of the PE group than those of the healthy control group. We also found that neonatal weight and Apgar score were lower at birth, and peak systolic blood pressure and diastolic blood pressure were higher in the PE group than in the non-PE group. In addition, PPP1R3G knockdown decreased p-Akt/Akt expression and inhibited migration, invasion, and proliferation in HTR-8/SVneo trophoblasts but had no discernible effect on cell apoptosis. Furthermore, PPP1R3G positively regulated matrix metallopeptidase 9 (MMP-9), which was downregulated in placental tissues of pregnant women with PE. These results provided the first evidence that the reduced levels of PPP1R3G might contribute to PE by suppressing the invasion and migration of trophoblasts and targeting the Akt/MMP-9 signaling pathway.
Collapse
Affiliation(s)
- Huimin Shi
- Department of Obstetrics, Xuzhou Cancer Hospital, Xuzhou 221005, Jiangsu Province, China
| | - Renyu Kong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Miao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Lingshan Gou
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Xin Yin
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Yuning Ding
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiliang Cao
- Department of Urology, Xuzhou No. 1 People’s Hospital, the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qingyong Meng
- Department of Obstetrics, Xuzhou Maternal and Child Health Hospital Affiliated to Xuzhou Medical University, Xuzhou 221009, Jiangsu Province, China
| | - Maosheng Gu
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Feng Suo
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| |
Collapse
|
26
|
Poursani EM, Mercatelli D, Raninga P, Bell JL, Saletta F, Kohane FV, Neumann DP, Zheng Y, Rouaen JRC, Jue TR, Michniewicz FT, Schadel P, Kasiou E, Tsoli M, Cirillo G, Waters S, Shai-Hee T, Cazzoli R, Brettle M, Slapetova I, Kasherman M, Whan R, Souza-Fonseca-Guimaraes F, Vahdat L, Ziegler D, Lock JG, Giorgi FM, Khanna K, Vittorio O. Copper chelation suppresses epithelial-mesenchymal transition by inhibition of canonical and non-canonical TGF-β signaling pathways in cancer. Cell Biosci 2023; 13:132. [PMID: 37480151 PMCID: PMC10362738 DOI: 10.1186/s13578-023-01083-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis. RESULTS Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers.
Collapse
Affiliation(s)
- Ensieh M Poursani
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Prahlad Raninga
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jessica L Bell
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Felix V Kohane
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Daniel P Neumann
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ye Zheng
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Toni Rose Jue
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Filip T Michniewicz
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Piper Schadel
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Erin Kasiou
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Maria Tsoli
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Shafagh Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tyler Shai-Hee
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Riccardo Cazzoli
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Merryn Brettle
- Katharina Gauss Light Microscopy Facility, University of New South Wales, Sydney, NSW, Australia
| | - Iveta Slapetova
- Katharina Gauss Light Microscopy Facility, University of New South Wales, Sydney, NSW, Australia
| | - Maria Kasherman
- Katharina Gauss Light Microscopy Facility, University of New South Wales, Sydney, NSW, Australia
| | - Renee Whan
- Katharina Gauss Light Microscopy Facility, University of New South Wales, Sydney, NSW, Australia
| | | | | | - David Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - John G Lock
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - KumKum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Orazio Vittorio
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Dang W, Xing B, Jia X, Zhang Y, Jia B, Yu C, He J, Li Z, Li H, Liu Z. Subcellular Organelle-Targeted Nanostructured Lipid Carriers for the Treatment of Metastatic Breast Cancer. Int J Nanomedicine 2023; 18:3047-3068. [PMID: 37312934 PMCID: PMC10259594 DOI: 10.2147/ijn.s413680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/21/2023] [Indexed: 06/15/2023] Open
Abstract
Background Subcellular organelle targeted nano-formulations for cancer treatment are receiving increasing attention owing to their benefits of precise drug delivery, maximized therapeutic index, and reduced off-target side effects. The nucleus and mitochondria, as the main subcellular organelles, are the significant organelles responsible for maintaining cell operation and metabolism. They can be involved in many essential physiological and pathological processes such as cell proliferation, organism metabolism, intracellular transportation, and play a critical role in regulating cell biology. Meanwhile, breast cancer metastasis is one of the leading causes of death in breast cancer patients. With the development of nanotechnology, nanomaterials have been widely used in tumor therapy. Methods We designed a subcellular organelle targeted nanostructured lipid carriers (NLC) to deliver paclitaxel (PTX) and gambogic acid (GA) to tumor tissues. Results Due to the surface of NLC being modified by subcellular organelle targeted peptide, the PTX and GA co-loaded NLC can accurately release PTX and GA in tumor cells. This property makes NLC able to easy to enter tumor site and target the specific subcellular organelle. The modified NLC can efficiently inhibit the growth of 4T1 primary tumor and lung metastasis, which may be related to the down-regulation of matrix metalloproteinase-9 (MMP-9) and BCL-2 levels, up-regulation of E-cadherin level, and antagonized PTX-induced increase of C-C chemokine ligand 2 (CCL-2) levels by GA. Meanwhile, the synergistic anti-tumor effect of GA and PTX has also been verified in vitro and in vivo experiments. Conclusion The subcellular organelle targeted peptide modified PTX+GA multifunctional nano-drug delivery system has a good therapeutic effect on tumors, and this study provides significant insights into the role of different subcellular organelles in inhibiting tumor growth and metastasis and inspires researchers to develop highly effective cancer therapeutic strategies through subcellular organelle targeted drugs.
Collapse
Affiliation(s)
- Wenli Dang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Xintao Jia
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Bei Jia
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Changxiang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Jiachen He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Ziwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Huihui Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
28
|
Turati M, Mousset A, Issa N, Turtoi A, Ronca R. TGF-β mediated drug resistance in solid cancer. Cytokine Growth Factor Rev 2023; 71-72:54-65. [PMID: 37100675 DOI: 10.1016/j.cytogfr.2023.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Transforming growth factor β (TGF-β) is an important signaling molecule which is expressed in three different isoforms in mammals (i.e. TGF-β1, -β2, and -β3). The interaction between TGF-β and its receptor triggers several pathways, which are classified into SMAD-dependent (canonical) and SMAD-independent (non-canonical) signaling, whose activation/transduction is finely regulated by several mechanisms. TGF-β is involved in many physiological and pathological processes, assuming a dualistic role in cancer progression depending on tumor stage. Indeed, TGF-β inhibits cell proliferation in early-stage tumor cells, while it promotes cancer progression and invasion in advanced tumors, where high levels of TGF-β have been reported in both tumor and stromal cells. In particular, TGF-β signaling has been found to be strongly activated in cancers after treatment with chemotherapeutic agents and radiotherapy, resulting in the onset of drug resistance conditions. In this review we provide an up-to-date description of several mechanisms involved in TGF-β-mediated drug resistance, and we report different strategies that are currently under development in order to target TGF-β pathway and increase tumor sensitivity to therapy.
Collapse
Affiliation(s)
- Marta Turati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alexandra Mousset
- Tumor Microenvironment and Resistance to Treatment Lab, Institut de Recherche en Cancérologie de Montpellier, INSERMU1194, Institut du Cancer de Montpellier, University of Montpellier, France
| | - Nervana Issa
- Tumor Microenvironment and Resistance to Treatment Lab, Institut de Recherche en Cancérologie de Montpellier, INSERMU1194, Institut du Cancer de Montpellier, University of Montpellier, France
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Treatment Lab, Institut de Recherche en Cancérologie de Montpellier, INSERMU1194, Institut du Cancer de Montpellier, University of Montpellier, France.
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
29
|
Hanson I, Pitman KE, Edin NFJ. The Role of TGF-β3 in Radiation Response. Int J Mol Sci 2023; 24:ijms24087614. [PMID: 37108775 PMCID: PMC10141893 DOI: 10.3390/ijms24087614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Transforming growth factor-beta 3 (TGF-β3) is a ubiquitously expressed multifunctional cytokine involved in a range of physiological and pathological conditions, including embryogenesis, cell cycle regulation, immunoregulation, and fibrogenesis. The cytotoxic effects of ionizing radiation are employed in cancer radiotherapy, but its actions also influence cellular signaling pathways, including that of TGF-β3. Furthermore, the cell cycle regulating and anti-fibrotic effects of TGF-β3 have identified it as a potential mitigator of radiation- and chemotherapy-induced toxicity in healthy tissue. This review discusses the radiobiology of TGF-β3, its induction in tissue by ionizing radiation, and its potential radioprotective and anti-fibrotic effects.
Collapse
Affiliation(s)
- Ingunn Hanson
- Department of Physics, University of Oslo, 0371 Oslo, Norway
| | | | - Nina F J Edin
- Department of Physics, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
30
|
Wang Q, Zhang Q, Zhang Z, Ji M, Du T, Jin J, Jiang JD, Chen X, Hu HY. Characterization of Chlorogenic Acid as a Two-Photon Fluorogenic Probe that Regulates Glycolysis in Tumor Cells under Hypoxia. J Med Chem 2023; 66:2498-2505. [PMID: 36745976 DOI: 10.1021/acs.jmedchem.2c01317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High levels of steady-state mitochondrial reactive oxygen species (ROS) and glycolysis are hallmarks of cancer. An improved understanding of interactions between tumor energetics and mitochondrial ROS modulation is useful for the development of new anticancer strategies. Here, we show that the natural product chlorogenic acid (CGA) specifically scavenged abnormally elevated mitochondrial O2•- and exhibited a two-photon fluorescence turn-on response to tumor cells under hypoxia and tumor tissues in vivo. Furthermore, we illustrated that CGA treatment reduced O2•- levels in cells, hampered activation of AMP-activated protein kinase (AMPK), and shifted metabolism from glycolysis to oxidative phosphorylation (OXPHOS), resulting in inhibition of tumor growth under hypoxia. This study demonstrates an efficient two-photon fluorescent tool for real-time assessment of mitochondrial O2•- and a clear link between reducing intracellular ROS levels by CGA treatments and regulating metabolism, as well as undeniably helpful insights for the development of new anticancer strategies.
Collapse
Affiliation(s)
- Qinghua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhihui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
31
|
Tamraz M, Al Ghossaini N, Temraz S. The Ketogenic Diet in Colorectal Cancer: A Means to an End. Int J Mol Sci 2023; 24:ijms24043683. [PMID: 36835094 PMCID: PMC9965563 DOI: 10.3390/ijms24043683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Some diets, such as high lipid and high glucose diets, are known to increase the risk of colorectal cancer. On the other hand, little is known about diets that prevent colonic carcinogenesis. The ketogenic diet, which is characterized by high fat and very low carbohydrate content, is one such diet. The ketogenic diet decreases the amount of available glucose for tumors and shifts to the production of ketone bodies as an alternative energy source for healthy cells. Cancer cells are unable to use the ketone bodies for energy thus depriving them of the energy needed for progression and survival. Many studies reported the beneficial effects of the ketogenic diet in several types of cancers. Recently, the ketone body β-hydroxybutyrate has been found to possess anti-tumor potential in colorectal cancer. Despite its beneficial effects, the ketogenic diet also has some drawbacks, some of which are related to gastrointestinal disorders and weight loss. Thus, studies are being directed at this time towards finding alternatives to following a strict ketogenic diet and supplementing patients with the ketone bodies responsible for its beneficial effects in the hope of overcoming some potential setbacks. This article discusses the mechanism by which a ketogenic diet influences growth and proliferation of tumor cells, it sheds the light on the most recent trials regarding its use as an adjunctive measure to chemotherapy in patients with metastatic colorectal cancer, and it explains the limitations of its usage in metastatic patients and the promising role of exogenous ketone supplementation in this setting.
Collapse
Affiliation(s)
- Magie Tamraz
- Department of Nutrition and Dietetics, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon
| | - Najib Al Ghossaini
- Department of Internal Medicine, Ain Wazein Medical Village, Chouf 5841, Lebanon
| | - Sally Temraz
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon
- Correspondence: ; Tel.: +961-1-374374
| |
Collapse
|
32
|
Wang W, Zhao H, Wang S. Identification of a novel immune-related gene signature for prognosis and the tumor microenvironment in patients with uveal melanoma combining single-cell and bulk sequencing data. Front Immunol 2023; 14:1099071. [PMID: 36793711 PMCID: PMC9922847 DOI: 10.3389/fimmu.2023.1099071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction Uveal melanoma (UVM) is the most invasive intraocular malignancy in adults with a poor prognosis. Growing evidence revealed that immune-related gene is related to tumorigenesis and prognosis. This study aimed to construct an immune-related prognostic signature for UVM and clarify the molecular and immune classification. Methods Based on The Cancer Genome Atlas (TCGA) database, single-sample gene set enrichment (ssGSEA) and hierarchical clustering analysis were performed to identify the immune infiltration pattern of UVM and classify patients into two immunity clusters. Then, we proposed univariate and multivariate Cox regression analysis to identify immune-related genes that related to overall survival (OS) and validated in the Gene Expression Omnibus (GEO) external validation cohort. The molecular and immune classification in the immune-related gene prognostic signature defined subgroups were analyzed. Results The immune-related gene prognostic signature was constructed based on S100A13, MMP9, and SEMA3B genes. The prognostic value of this risk model was validated in three bulk RNA sequencing datasets and one single-cell sequencing dataset. Patients in the low-risk group had better OS than those in the high-risk group. The receiver-operating characteristic (ROC) analysis revealed its strong predictive ability for UVM patients. Lower expression of immune checkpoint genes was presented in the low-risk group. Functional studies showed that S100A13 knockdown via siRNA inhibited UVM cell proliferation, migration, and invasion in vitro, with the increased expression of reactive oxygen species (ROS) related markers in UVM cell lines. Discussion The immune-related gene prognostic signature is an independent predictive factor for the survival of patients with UVM and provides new information about cancer immunotherapy in UVM.
Collapse
Affiliation(s)
- Wanpeng Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Hunan, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Sha Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Hunan, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
33
|
Wang Q, Wang K, Tan X, Li Z, Wang H. Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol 2022; 13:1064033. [PMID: 36591235 PMCID: PMC9800621 DOI: 10.3389/fimmu.2022.1064033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Metalloproteinases (MPs) is a large family of proteinases with metal ions in their active centers. According to the different domains metalloproteinases can be divided into a variety of subtypes mainly including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteases (ADAMs) and ADAMs with Thrombospondin Motifs (ADAMTS). They have various functions such as protein hydrolysis, cell adhesion and remodeling of extracellular matrix. Metalloproteinases expressed in multiple types of cancers and participate in many pathological processes involving tumor genesis and development, invasion and metastasis by regulating signal transduction and tumor microenvironment. In this review, based on the current research progress, we summarized the structure of MPs, their expression and especially immunomodulatory role and mechanisms in cancers. Additionally, a relevant and timely update of recent advances and future directions were provided for the diagnosis and immunotherapy targeting MPs in cancers.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaojing Tan
- Department of Oncology, Dongying People's Hospital, Dongying, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| |
Collapse
|
34
|
Zhu MM, Ma Y, Tang M, Pan L, Liu WL. Hypoxia-induced upregulation of matrix metalloproteinase 9 increases basement membrane degradation by downregulating collagen type IV alpha 1 chain. Physiol Res 2022. [DOI: 10.33549/physiolres.934930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia can cause basement membrane (BM) degradation in tissues. Matrix metalloproteinase 9 (MMP-9) is involved in various human cancers as well as BM degradation by downregulating type IV collagen (COL4). This study investigated the role of MMP-9 in hypoxia-mediated BM degradation in rat bone marrow based on its regulation of collagen type IV alpha 1 chain (COL4A1). Eighty male rats were randomly divided into four groups based on exposure to hypoxic conditions at a simulated altitude of 7,000 m, control (normoxia) and 3, 7, and 10 days of hypoxia exposure. BM degradation in bone marrow was determined by transmission electron microscopy. MMP-9 levels were assessed by western blot and real-time PCR, and COL4A1 levels were assessed by western blot and immunohistochemistry. Microvessels BMs in bone marrow exposed to acute hypoxia were observed by electron microscopy. MMP-9 expression increased, COL4A1 protein expression decreased, and BM degradation occurred in the 10-, 7-, and 3-day hypoxia groups compared with that in the control group (all P < 0.05). Hypoxia increased MMP-9 levels, which in turn downregulated COL4A1, thereby increasing BM degradation. MMP-9 upregulation significantly promoted BM degradation and COL4A1 downregulation. Our results suggest that MMP-9 is related to acute hypoxia-induced BM degradation in bone marrow by regulating COL4A1.
Collapse
Affiliation(s)
| | | | | | | | - WL Liu
- Affiliated Hospital of Qinghai University, Xining 810001, China;
| |
Collapse
|
35
|
Lee MG, Lee SG, Nam KS. Ginkgolide B Suppresses TPA-induced Metastatic Potential in MCF-7 Human Breast Cancer Cells by Inhibiting MAPK/AP-1 Signaling. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Ivković I, Limani Z, Jakovčević A, Huić D, Prgomet D. Role of Matrix Metalloproteinases and Their Inhibitors in Locally Invasive Papillary Thyroid Cancer. Biomedicines 2022; 10:biomedicines10123178. [PMID: 36551933 PMCID: PMC9775144 DOI: 10.3390/biomedicines10123178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Locally invasive papillary thyroid carcinoma (PTC) protrudes beyond the thyroid capsule and invades local structures. Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are implicated in local invasion and metastasis in PTC. The aim of our study was to determine expression levels of MMP-1, MMP-2, MMP-9, TIMP-1, and TIMP-2 in tissue specimens of invasive and non-invasive PTC. Our hypothesis was that expression levels of these biomarkers correlate with the development of locally invasive PTC. In our single-center study we retrospectively investigated MMP and TIMP expression levels in 50 samples of thyroid tissue diagnosed as locally invasive papillary carcinoma (study group) and 30 samples of thyroid tissue diagnosed as non-invasive, non-metastatic papillary carcinoma (control group). Tissue specimens were immunohistochemically stained with primary monoclonal antibodies against MMP-1, MMP-2, MMP-9, TIMP-1, and TIMP-2. When correlating expression levels of MMPs and TIMPs in thyroid tissue, statistically significant differences were found for MMP-1 and TIMP-1 expression (p < 0.001; Mann−Whitney U test) with the highest levels of expression in the invasive PTC group. Although expression of MMP-9 and TIMP-2 was higher in invasive PTC, the differences were not statistically significant. Elevated expression of MMP-1 and TIMP-1 in tumor tissue can predict invasiveness for PTC.
Collapse
Affiliation(s)
- Irena Ivković
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine Zagreb, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia
| | - Zgjim Limani
- Department of ENT-Head & Neck Surgery, University Clinical Center of Kosovo, 10 000 Prishtina, Kosovo
- Faculty of Medicine, University of Prishtina “Hasan Prishtina”, 10 000 Prishtina, Kosovo
- Correspondence: ; Tel.: +383-44-173-379
| | - Antonia Jakovčević
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia
| | - Dražen Huić
- Department of Nuclear Medicine and Radiation Protection, School of Medicine Zagreb, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia
| | - Drago Prgomet
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine Zagreb, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia
| |
Collapse
|
37
|
ZHU MM, MA Y, TANG M, PAN L, LIU WL. Hypoxia-induced upregulation of matrix metalloproteinase 9 increases basement membrane degradation by downregulating collagen type IV alpha 1 chain. Physiol Res 2022; 71:825-834. [PMID: 36281728 PMCID: PMC9814978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hypoxia can cause basement membrane (BM) degradation in tissues. Matrix metalloproteinase 9 (MMP-9) is involved in various human cancers as well as BM degradation by downregulating type IV collagen (COL4). This study investigated the role of MMP-9 in hypoxia-mediated BM degradation in rat bone marrow based on its regulation of collagen type IV alpha 1 chain (COL4A1). Eighty male rats were randomly divided into four groups based on exposure to hypoxic conditions at a simulated altitude of 7,000 m, control (normoxia) and 3, 7, and 10 days of hypoxia exposure. BM degradation in bone marrow was determined by transmission electron microscopy. MMP-9 levels were assessed by western blot and real-time PCR, and COL4A1 levels were assessed by western blot and immunohistochemistry. Microvessels BMs in bone marrow exposed to acute hypoxia were observed by electron microscopy. MMP-9 expression increased, COL4A1 protein expression decreased, and BM degradation occurred in the 10-, 7-, and 3-day hypoxia groups compared with that in the control group (all P < 0.05). Hypoxia increased MMP-9 levels, which in turn downregulated COL4A1, thereby increasing BM degradation. MMP-9 upregulation significantly promoted BM degradation and COL4A1 downregulation. Our results suggest that MMP-9 is related to acute hypoxia-induced BM degradation in bone marrow by regulating COL4A1.
Collapse
Affiliation(s)
- Ming-Ming ZHU
- Affiliated Hospital of Qinghai University, Xining, China
| | - Yi MA
- Qinghai University, Xining, China,Qinghai University High Altitude Medicine Research Center, Key Laboratory of High-Altitude Medicine Ministry of Education Qinghai Provincial Key Laboratory of Plateau Medicine Application Basics Xining, China
| | - Meng TANG
- The First People’s Hospital of Yibin, Yibin, China
| | - Li PAN
- Xi’an Daxing Hospital, Xi’an, China
| | | |
Collapse
|
38
|
Hao L, Chen Q, Chen X, Zhou Q. The Role of Gender-Related Immune Genes in Childhood Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3235238. [PMID: 36193320 PMCID: PMC9525781 DOI: 10.1155/2022/3235238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
The study of immune genes and immune cells is highly focused in recent years. To find immunological genes with prognostic value, the current study examines childhood acute myeloid leukemia according to gender. The TARGET database was used to gather the "mRNA expression profile data" and relevant clinical data of children with AML. To normalize processing and find differentially expressed genes (DEG) between male and female subgroups, the limma software package is utilized. We identified prognostic-related genes and built models using LASSO, multivariate Cox, and univariate Cox analysis. The prognostic significance of prognostic genes was then examined through the processing of survival analysis and risk score (RS) calculation. We investigated the connections between immune cells and prognostic genes as well as the connections between prognostic genes and medications. Finally, five immune genes from the TARGET database have been identified. These immune genes are considerably correlated to the prognosis of male patients.
Collapse
Affiliation(s)
- Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qing Zhou
- Central Laboratory, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
39
|
Loss of YB-1 alleviates liver fibrosis by suppressing epithelial-mesenchymal transition in hepatic progenitor cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166510. [DOI: 10.1016/j.bbadis.2022.166510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
|
40
|
TRIM66 Promotes Malignant Progression of Non-Small-Cell Lung Cancer Cells via Targeting MMP9. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6058720. [PMID: 35912155 PMCID: PMC9334090 DOI: 10.1155/2022/6058720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer has a higher incidence and mortality rate than other cancers, and over 80% of lung cancer cases were classified as non-small-cell lung cancer (NSCLC). TRIM66 is one of the crucial members of TRIM, which has a deep connection with the behavior of various malignant tumors. But it remains uncertain regarding its exact function and underlying mechanism in NSCLC. In our study, qRT-PCR and Western blot were employed to validate that TRIM66 was overexpressed in NSCLC. The migration, invasion, and epithelial-mesenchymal transformation (EMT) progression of NSCLC cells were determined by Western blotting and Transwell experiments after knocking down TRIM66, and it was found that knockdown TRIM66 inhibited the migration, invasion, and EMT processes of NSCLC cells. Next, the binding relationship between TRIM66 and MMP9 was verified by Co-IP assay. After determining the interaction between them, rescue assays showed that overexpression of MMP9 was capable to promote the migration, invasion, and EMT of NSCLC cells. However, the transfection of si-TRIM66 could reverse this facilitating effectiveness. To sum up, we concluded that by targeting MMP9, TRIM66 could exert a cancer-promoting role in the progression of NSCLC cells.
Collapse
|
41
|
Differential expression profile of mRNAs, lncRNAs and circRNAs reveals potential molecular mechanism in breast cancer. Biosci Rep 2022; 42:231581. [PMID: 35852149 PMCID: PMC9338430 DOI: 10.1042/bsr20220645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, breast cancer attracts more and more attention because of its high incidence. To explore the molecular functions and mechanisms, we performed RNA sequencing on the tumor tissues and their paired normal tissues from three breast cancer patients. By differential expression analysis, we found 3764 differentially expressed (DE) mRNAs, 5416 DE lncRNAs, and 148 DE circRNAs. Enrichment analysis suggested that the DE lncRNAs and DE circRNAs were enriched in mitochondria and nucleus, which indicated that they may participate in the vital metabolism directly or indirectly, such as fatty acid metabolism. Subsequently, the protein–protein interaction (PPI) network was constructed and we got 8 key proteins, of which the matrix metalloproteinase-9 (MMP9; degree 5) draws our attention. Based on the 38 up-regulated circRNAs and 14 down-regulated circRNAs, we constructed competing endogenous RNA (ceRNA) networks, from which the has-miR-6794-5p has been identified to enriched in the up-regulated network and correlated with the circNFIX directly. At this point, we presented that the circNFIX and MMP9 may play a significant role by regulating fatty acid metabolism in breast cancer.
Collapse
|
42
|
Ginkgolic acid improves bleomycin-induced pulmonary fibrosis by inhibiting SMAD4 SUMOylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8002566. [PMID: 35707278 PMCID: PMC9192210 DOI: 10.1155/2022/8002566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a refractory chronic respiratory disease with progressively exacerbating symptoms and a high mortality rate. There are currently only two effective drugs for IPF; thus, there is an urgent need to develop new therapeutics. Previous experiments have shown that ginkgolic acid (GA), as a SUMO-1 inhibitor, exerted an inhibitory effect on cardiac fibrosis induced by myocardial infarction. Regarding the pathogenesis of PF, previous studies have concluded that small ubiquitin-like modifier (SUMO) polypeptides bind multiple target proteins and participate in fibrosis of multiple organs, including PF. In this study, we found altered expression of SUMO family members in lung tissues from IPF patients. GA mediated the reduced expression of SUMO1/2/3 and the overexpression of SENP1 in a PF mouse model, which improved PF phenotypes. At the same time, the protective effect of GA on PF was also confirmed in the SENP1-KO transgenic mice model. Subsequent experiments showed that SUMOylation of SMAD4 was involved in PF. It was inhibited by TGF-β1, but GA could reverse the effects of TGF-β1. SENP1 also inhibited the SUMOylation of SMAD4 and then participated in epithelial-mesenchymal transition (EMT) downstream of TGF-β1. We also found that SENP1 regulation of SMAD4 SUMOylation affected reactive oxygen species (ROS) production during TGF-β1-induced EMT and that GA prevented this oxidative stress through SENP1. Therefore, GA may inhibit the SUMOylation of SMAD4 through SENP1 and participate in TGF-β1-mediated pulmonary EMT, all of which reduce the degree of PF. This study provided potential novel targets and a new alternative for the future clinical testing in PF.
Collapse
|
43
|
Chen W, Zhang Y, Fang Z, Qi W, Xu Y. TRIM66 hastens the malignant progression of non-small cell lung cancer via modulating MMP9-mediated TGF-β/SMAD pathway. Cytokine 2022; 153:155831. [PMID: 35301175 DOI: 10.1016/j.cyto.2022.155831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate regulatory function and underlying mechanism of TRIM66 in non-small cell lung cancer (NSCLC). METHODS TRIM66 and MMP9 expression in NSCLC cells and tissues was assayed via qRT-PCR and western blot. CCK-8, colony formation, Transwell and flow cytometry assays were conducted to measure cell functional alternations in NSCLC. Western blot was employed to measure expression as well as phosphorylation levels of epithelial-mesenchymal transition-(EMT) and TGF-β/SMAD pathways-related proteins. Co-immunoprecipitation (Co-IP) assay was done to probe interaction between TRIM66 and MMP9. Xenograft in vivo experiment and tumor metastasis model in nude mice were utilized to investigate effects of TRIM66 on tumor growth of NSCLC. RESULTS TRIM66 and MMP9 were conspicuously highly expressed in NSCLC cells and tissues. High TRIM66 level was markedly correlated with metastasis. Silencing TRIM66 prominently repressed the proliferation, migration and invasion of transfected cells, while inducing cell apoptosis. Whereas forced expression of TRIM66 exerted the opposite effect. The aberrant expression of TRIM66 modulated EMT pathway. TRIM66 also regulated MMP9 expression, and the interaction between them was validated by Co-IP assay. Overexpression of MMP9 could activate TGF-β/SMAD pathway. Rescue experiments manifested that si-MMP9 or SB431542 could partially reverse phenotypes induced by TRIM66. In vivo experiments revealed that silencing TRIM66 could hamper NSCLC tumor growth and metastasis. CONCLUSION TRIM66 and MMP9 were up-regulated in NSCLC. TRIM66 facilitated the malignant progression of NSCLC through modulating MMP9-mediated TGF-β/SMAD pathway.
Collapse
Affiliation(s)
- Wenyu Chen
- Department of Respiratory, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Ye Zhang
- Department of General Practice, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Zhixian Fang
- Department of Respiratory, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Yufen Xu
- Department of Oncology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China.
| |
Collapse
|
44
|
Yang J, Yang Y. Long noncoding RNA endogenous bornavirus-like nucleoprotein acts as an oncogene by regulating microRNA-655-3p expression in T-cell acute lymphoblastic leukemia. Bioengineered 2022; 13:6409-6419. [PMID: 35220878 PMCID: PMC8974199 DOI: 10.1080/21655979.2022.2044249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute lymphocytic leukemia (ALL) is the most common malignant tumor in children with T-cell ALL (T-ALL), accounting for approximately 15% of all cases. Long noncoding RNAs (lncRNAs) are involved in the pathogenesis and progression of T-ALL. The present study aimed to explore the role and mechanism of action of lncRNA EBLN3P in T-ALL. We used quantitative reverse transcription-PCR (qRT-PCR) to determine the expression of lncRNA endogenous bornavirus-like nucleoprotein (EBLN3P), microRNA (miR)-655-3p, and the transcription level of matrix metalloproteinase-9 (MMP-9), and Western blot assay to quantify the protein expression level of cleaved-caspase3, caspase3, proliferating cell nuclear antigen (PCNA), and MMP-9. The potential binding sites between lncRNA EBLN3P and miR-655-3p were predicted using StarBase, and the interaction was further verified by dual-luciferase reporter assay and RNA pull-down assay. The proliferation ability of Jurkat cells was detected using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and their invasion and migration ability using transwell assay. Cell apoptosis was determined using flow cytometry (FCM) assay. The expression of lncRNA EBLN3P was upregulated while that of miR-655-3p was downregulated in human T-ALL cell lines and lncRNA EBLN3P negatively regulated miR-655-3p. LncRNA EBLN3P knockdown significantly inhibited proliferation, invasion, and migration of Jurkat cells and induced their apoptosis. Downregulating miR-655-3p reversed the effects of lncRNA EBLN3P knockdown on Jurkat cells. In conclusion, we confirmed for the first time that lncRNA EBLN3P is dysregulated in T-ALL cell lines, and lncRNA EBLN3P knockdown inhibited the malignant biological behaviors of T-ALL cells by up-regulating miR-655-3p.
Collapse
Affiliation(s)
- Jinhua Yang
- Department of Hematology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingying Yang
- Department of Hematology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
45
|
Pandit A, Begum Y, Saha P, Srivastava AK, Swarnakar S. Approaches Toward Targeting Matrix Metalloproteases for Prognosis and Therapies in Gynecological Cancer: MicroRNAs as a Molecular Driver. Front Oncol 2022; 11:720622. [PMID: 35145899 PMCID: PMC8821656 DOI: 10.3389/fonc.2021.720622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
Gene expression can be regulated by small non-coding RNA molecules like microRNAs (miRNAs) which act as cellular mediators necessary for growth, differentiation, proliferation, apoptosis, and metabolism. miRNA deregulation is often observed in many human malignancies, acting both as tumor-promoting and suppressing, and their abnormal expression is linked to unrestrained cellular proliferation, metastasis, and perturbation in DNA damage as well as cell cycle. Matrix Metalloproteases (MMPs) have crucial roles in both growth, and tissue remodeling in normal conditions, as well as in promoting cancer development and metastasis. Herein, we outline an integrated interactive study involving various MMPs and miRNAs and also feature a way in which these communications impact malignant growth, movement, and metastasis. The present review emphasizes on important miRNAs that might impact gynecological cancer progression directly or indirectly via regulating MMPs. Additionally, we address the likely use of miRNA-mediated MMP regulation and their downstream signaling pathways towards the development of a potential treatment of gynecological cancers.
Collapse
Affiliation(s)
- Anuradha Pandit
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Yasmin Begum
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Snehasikta Swarnakar
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Snehasikta Swarnakar,
| |
Collapse
|
46
|
Wei J, Ding Y, Liu X, Liu Q, Lu Y, He S, Yuan B, Zhang J. Eupafolin induces apoptosis and autophagy of breast cancer cells through PI3K/AKT, MAPKs and NF-κB signaling pathways. Sci Rep 2021; 11:21478. [PMID: 34728712 PMCID: PMC8563970 DOI: 10.1038/s41598-021-00945-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/20/2021] [Indexed: 11/15/2022] Open
Abstract
Eupafolin is a flavonoid that can be extracted from common sage. Previous studies have reported that Eupafolin has antioxidant, anti-inflammatory and anti-tumor properties. However, no studies have investigated the role of Eupafolin in breast cancer. Herein, we investigated the effect of Eupafolin on two human breast cancer cell lines, as well as its potential mechanism of action. Next, the data showed that proliferation, migration and invasion ability of breast cancer cells that were treated with Eupafolin was significantly reduced, while the apoptosis rate was significantly increased. In addition, Eupafolin treatment caused breast cancer cell proliferation to be blocked in the S phase. Moreover, Eupafolin significantly induced autophagy in breast cancer cells, with an increase in the expression of LC3B-II. PI3K/AKT, MAPKs and NF-κB pathways were significantly inhibited by Eupafolin treatment. Additionally, 3-MA (a blocker of autophagosome formation) significantly reduced Eupafolin-induced activation of LC3B-II in breast cancer cells. Furthermore, Eupafolin displayed good in vitro anti-angiogenic activity. Additionally, anti-breast cancer activity of Eupafolin was found to be partially mediated by Cav-1. Moreover, Eupafolin treatment significantly weakened carcinogenesis of MCF-7 cells in nude mice. Therefore, this data provides novel directions on the use of Eupafolin for treatment of breast cancer.
Collapse
Affiliation(s)
- Jiahui Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Xinmiao Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Qing Liu
- The Second Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Yiran Lu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Jiabao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China.
| |
Collapse
|
47
|
Bi J, Pu Y, Yu X. Exosomal circ_0004136 enhances the progression of pediatric acute myeloid leukemia depending on the regulation of miR-570-3p/TSPAN3 axis. Anticancer Drugs 2021; 32:802-811. [PMID: 33853086 DOI: 10.1097/cad.0000000000001068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circular RNAs (circRNAs) have been implicated in the progression of pediatric acute myeloid leukemia (AML). Although circ_0004136 has been found to play a crucial role in AML, our understanding of its molecular mechanism remains very limited. The levels of circ_0004136, miR-570-3p and tetraspanin 3 (TSPAN3) were determined by quantitative real-time PCR or western blot. Cell viability, migration, invasion, cell cycle and apoptosis were detected using the Cell Counting Kit-8, transwell and flow cytometry assays. Targeted relationships among circ_0004136, miR-570-3p and TSPAN3 were validated by dual-luciferase reporter and RNA immunoprecipitation assays. Our data showed that circ_0004136 could be transmitted by exosomes, and exosomal circ_0004136 was highly expressed in AML serum and cells. Circ_0004136 was unusually stable and mainly localized in the cytoplasm. Circ_0004136 knockdown mediated by exosomes hampered AML cell viability, cell cycle progression, migration and invasion, and promoted cell apoptosis. Moreover, circ_0004136 worked as a sponge of miR-570-3p and TSPAN3 was a functional target of miR-370-3p in AML cells. The suppression of circ_0004136 knockdown mediated by exosomes on AML cell malignant progression was reversed by miR-570-3p downregulation, and the increased miR-570-3p expression hindered the progression of aggressive AML by downregulating TSPAN3. Furthermore, circ_0004136 worked as a miR-570-3p sponge to modulate TSPAN3 expression. Our findings identified a novel regulatory mechanism in which exosome-mediated circ_0004136 knockdown restrained AML cell malignant progression at least partly through targeting the miR-570-3p/TSPAN3 axis, highlighting a novel therapeutic strategy for AML management.
Collapse
Affiliation(s)
- Jing Bi
- Department of Pediatrics, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | | | | |
Collapse
|
48
|
Xu Y, Tian H, Luan CG, Sun K, Bao PJ, Zhang HY, Zhang N. Telocytes promote hepatocellular carcinoma by activating the ERK signaling pathway and miR-942-3p/MMP9 axis. Cell Death Discov 2021; 7:209. [PMID: 34376644 PMCID: PMC8355302 DOI: 10.1038/s41420-021-00592-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
In China, hepatocellular carcinoma (HCC) is considered a malignant tumor with poor prognosis, frequent metastasis, and a high relapse rate. Telocytes (TCs) participate in tumorigenic, invasive, and migratory processes by secreting functional proteins and transmitting cell-to-cell information, but their functions in HCC are still unknown. TC counts and MMP9 expression in liver cancer tissues were measured using immunohistochemistry, western blotting, and RT-PCR. Primary TCs from liver para-cancer tissues were cultured in vitro. To verify the role of TCs in HCC, a metastatic cancer animal model was established using three types of liver cancer cell lines in vivo. TCs promoted HCC cell metastasis by MMP9 expression in vitro and in vivo. Platelet-derived growth factor-alpha (PDGF-α), secreted by HCC cells, activated the Ras/ERK signaling pathway in TCs, thereby increasing MMP9 expression; Moreover, miR-942-3p suppressed MMP9 expression in TCs. Our results reveal the role of TCs in HCC and the mechanisms by which they elicit their effects, and they may serve as novel prognostic markers for HCC.
Collapse
Affiliation(s)
- Ying Xu
- Shandong First Medical University and Shandong Academy of Medical Science, Shandong Cancer Hospital and Institute, Ji'nan, Shandong, China
| | - Hu Tian
- The First Affiliated Hospital of Shandong First Medical University, General Surgery, Ji'nan, Shandong, China.
| | - Chao Guang Luan
- Ji 'nan Municipal Three Hospitals, General Surgery, Ji'nan, Shandong, China
| | - Kai Sun
- The First Affiliated Hospital of Shandong First Medical University, General Surgery, Ji'nan, Shandong, China
| | - Peng Jin Bao
- Shandong First Medical University and Shandong Academy of Medical Science, Shandong Cancer Hospital and Institute, Ji'nan, Shandong, China
| | - Hua Yu Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, China
| | - Nan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, China
| |
Collapse
|
49
|
Zhou L, Jia X, Yang X. LncRNA-TUG1 promotes the progression of infantile hemangioma by regulating miR-137/IGFBP5 axis. Hum Genomics 2021; 15:50. [PMID: 34362467 PMCID: PMC8344165 DOI: 10.1186/s40246-021-00349-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
Background Previous studies indicated that lncRNA taurine upregulated gene 1 (TUG1) played essential roles in human cancers. This study aimed to investigate its function in infantile hemangioma (IH). Methods A total of 30 pairs of clinical infantile specimens were used in this study. The expression of TUG1 in IH tissues was assessed by quantitative reverse transcriptase PCR (qRT-PCR). Two short hairpin RNA targeting TUG1 (sh-TUG1-1 and sh-TUG1-2) were transfected into hemangioma-derived endothelial cells, HemECs, to block its expression. The effects of TUG1 on HemECs were evaluated by Cell Counting Kit-8 (CCK-8), colony formation assay, wound healing assay, and Transwell assay. The underlying molecular mechanism of TUG1 was investigated by Starbase prediction and luciferase reporter assay and further determined by loss- and gain-of-function approaches. In addition, the role of TUG1 on tumorigenesis of HemECs was confirmed in an in vivo mouse model. Results TUG1 was significantly upregulated in infant hemangioma tissues compared with normal adjacent subcutaneous tissues. The loss- and gain-of-function approaches indicated that TUG1 overexpression promoted proliferation, migration, and invasion of HemECs in vitro, and TUG1 knockdown inhibited the tumorigenesis of HemECs in vivo. Specifically, TUG1 could compete with IGFBP5 for miR137 binding. Rescue experiments further confirmed the role of the TUG1/miR137/IGFBP5 axis in HemECs. Conclusion TUG1 was closely associated with the progression of IH by regulating the miR-137/IGFBP5 axis, which might be a potential target for IH treatment.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Pediatrics, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), No. 1 Dayun Road, Shenzhen City, Guangdong Province, 518000, People's Republic of China.
| | - Xiao Jia
- Department of Orthopedics, Gansu Provincial Hospital of TCM, Lanzhou City, Gansu Province, 730050, People's Republic of China
| | - Xiangzheng Yang
- Department of Pediatrics, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), No. 1 Dayun Road, Shenzhen City, Guangdong Province, 518000, People's Republic of China
| |
Collapse
|
50
|
Zhang C, Xie C, Lu Y. Local Anesthetic Lidocaine and Cancer: Insight Into Tumor Progression and Recurrence. Front Oncol 2021; 11:669746. [PMID: 34249706 PMCID: PMC8264592 DOI: 10.3389/fonc.2021.669746] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading contributor to deaths worldwide. Surgery is the primary treatment for resectable cancers. Nonetheless, it also results in inflammatory response, angiogenesis, and stimulated metastasis. Local anesthetic lidocaine can directly and indirectly effect different cancers. The direct mechanisms are inhibiting proliferation and inducing apoptosis via regulating PI3K/AKT/mTOR and caspase-dependent Bax/Bcl2 signaling pathways or repressing cytoskeleton formation. Repression invasion, migration, and angiogenesis through influencing the activation of TNFα-dependent, Src-induced AKT/NO/ICAM and VEGF/PI3K/AKT signaling pathways. Moreover, the indirect influences are immune regulation, anti-inflammation, and postoperative pain relief. This review summarizes the latest evidence that revealed potential clinical benefits of lidocaine in cancer treatment to explore the probable molecular mechanisms and the appropriate dose.
Collapse
Affiliation(s)
- Caihui Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cuiyu Xie
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Ambulatory Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|