1
|
Xiang X, He M, Li X, Wang J, Xu X, Meng J, Feng J, Guo Z, Wang Q. Efficacy and Safety of Oropharyngeal Probiotic BP-OM1 on Respiratory Infection-Like Symptoms Among Patients With Lymphoma After Autologous Hematopoietic Stem Cell Transplantation: A Multicenter Randomized Controlled Pilot Study. Transplant Proc 2025; 57:627-637. [PMID: 40140313 DOI: 10.1016/j.transproceed.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Immune system impairment and chemotherapies prior to autologous hematopoietic stem cell transplantation (auto-HSCT) significantly increase the risk of respiratory tract infections (RTIs), especially within 100 days after HSCT. Prophylaxis of RTIs among patients with HSCT are of high importance, clinical experiences have been learnt previously that oropharyngeal probiotic is safe and able to significantly reduce RTIs among patients with recurrent RTIs in both children and adults, the aim of this study is to explore the safety and preventive effects of oropharyngeal probiotics BP-OM1 on RTIs among patients after HSCT. METHODS Sixteen subjects aged between 18 and 65 years old who underwent HSCT were enrolled in a multicenter, randomized controlled trial. The subjects were randomly assigned to the oropharyngeal probiotics group and the control group. Patients were intervened and monitored for 130 days. RESULTS Less duration and severity of presented RTI-like symptoms observed among patients in the probiotic group resulted in a significantly decreased days of antibiotic consumption post-HSCT. No oropharyngeal probiotic-related adverse events were reported throughout this study, indicating that oropharyngeal probiotic BP-OM1 administration is safe for patients whose hematopoietic system are well reconstructed post-HSCT. CONCLUSIONS The administration of oropharyngeal probiotic BP-OM1 could potentially be a safe self-care approach for patients who underwent HSCT to manage the RTI prevention and reduce the risks of developing lower respiratory tract infection (LRTI), which favors the rational use of antibiotics, which is associated with a reduced risks colonization of multi-drug resistance microorganisms.
Collapse
Affiliation(s)
- Xiaochen Xiang
- Institute of Infection, Immunology, and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Wuchang Hospital, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mingxin He
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Guangdong, China
| | - Xinquan Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jun Wang
- Department of Hematology, Hongkong University Shenzhen Hospital, Shenzhen, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jingye Meng
- Department of Hematology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jialu Feng
- Institute of Infection, Immunology, and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Wuchang Hospital, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Guangdong, China; Department of Hematology and Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
| | - Qiang Wang
- Institute of Infection, Immunology, and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan Wuchang Hospital, Medical College, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Samami E, Starkweather A, Kelly DL, Lyon D. The Impact of Health-Promoting Lifestyle Behaviors on Gut Microbiota in Survivors of Hematological Cancer: A Scoping Review. Cancer Rep (Hoboken) 2025; 8:e70224. [PMID: 40364600 PMCID: PMC12075932 DOI: 10.1002/cnr2.70224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
PURPOSE This scoping review aims to explore the relationship between health-promoting lifestyle behaviors and gut microbiota in survivors of hematological cancers, including leukemia, lymphoma, and multiple myeloma. Given the rising incidence of these malignancies and the associated treatment challenges, understanding how lifestyle factors influence gut health may provide insights into improving survivorship outcomes. METHODS We conducted a comprehensive search across multiple databases, including PubMed/Medline, CINAHL, and Scopus, following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for Scoping Reviews (PRISMA-ScR). The search strategy incorporated MeSH terms related to hematological cancers, health-promoting lifestyle behaviors, and gut microbiota. Inclusion criteria focused on primary research studies published in English that reported gut microbiota results in survivors of hematological cancers. A total of 1717 papers were initially identified, with 16 studies meeting the inclusion criteria after screening for relevance. RESULTS The review identified a significant association between health-promoting lifestyle behaviors, such as physical activity, nutrition, and stress management, and the composition and diversity of gut microbiota in cancer survivors. The findings suggest that engaging in these behaviors may enhance gut health, potentially mitigating treatment-related symptoms and improving overall quality of life. Notably, the studies highlighted the importance of tailored interventions that consider individual patient needs and preferences. CONCLUSIONS This scoping review underscores the critical role of health-promoting lifestyle behaviors in influencing gut microbiota among survivors of hematological cancers. Future research should focus on longitudinal studies to establish causal relationships and explore the mechanisms underlying these associations. By promoting healthy lifestyle choices, healthcare providers can enhance survivorship care and improve health outcomes for this population.
Collapse
Affiliation(s)
- Elham Samami
- College of NursingUniversity of Florida, Health Cancer CenterGainesvilleFloridaUSA
| | | | - Debra Lynch Kelly
- Loewenberg College of NursingUniversity of MemphisMemphisTennesseeUSA
| | - Debra Lyon
- College of NursingUniversity of Florida, Health Cancer CenterGainesvilleFloridaUSA
| |
Collapse
|
3
|
Ladas EJ, Collier W, Park H, Auletta JJ, Dvorak CC, August A, Esbenshade AJ, Bhatia M, Fisher BT, Levine JE, Pollock BH, Uhlemann AC, Verneris MR, Walters M, Yu L, Nieder M. A Randomized Clinical Trial Evaluating Lactiplantibacillus Plantarum for the Prevention of GI aGvHD: A Report From the Children's Oncology Group (ACCL1633). Transplant Cell Ther 2025:S2666-6367(25)01141-8. [PMID: 40306553 DOI: 10.1016/j.jtct.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 05/02/2025]
Abstract
Gastrointestinal (GI) acute graft-versus-host disease (aGvHD) is a leading cause of non-relapse mortality following allogeneic hematopoietic cell transplant (alloHCT). Previous studies have suggested that the intestinal microbiome may influence the risk of GI aGvHD. We performed a Phase 3, randomized, placebo-controlled clinical trial to examine the effect of L. plantarum 299v (LBP 299v) in preventing GI aGvHD. Participants (N = 161 evaluable participants) received LBP 299v or placebo from the start of conditioning therapy to 56 days post alloHCT (D56). Blood, stool, and clinical data were collected until 120 days post-transplant (D120). The D120 cumulative incidences of stages 1-4 GI aGvHD were 16% and 15% (P = .54), and overall grades 2-4 aGvHD were 26% and 29% (P = .95), LBP 299v and placebo groups, respectively. No patients developed L. plantarum bacteremia and no difference in serious adverse events was reported (P = 1.00). Administration of LBP 299v was associated with increased microbial diversity at D0 (P = .02) and reduced mucosal barrier injury at D7 (P = .02). Microbial signatures significantly differed between the groups; however, this was not associated with the investigated clinical outcomes. We conclude that administration of LBP 299v is safe among children and adolescents undergoing alloHCT but ineffective at preventing GI aGvHD.
Collapse
Affiliation(s)
- E J Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, New York.
| | - W Collier
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - H Park
- Department of Medicine, Division of Infectious Disease, Columbia University Irving Medical Center, New York, New York; Columbia University Microbiome and Pathogen Genomics Core, New York, New York
| | - J J Auletta
- Center for International Blood and Marrow Transplant Research (CIBMTR) NMDP, Minneapolis, Minnesota; Divisions of Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - C C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, California
| | - A August
- Health Information Technology, Children's Mercy Kansas City, Kansas City, Missouri
| | - A J Esbenshade
- Division of Pediatric Hematology/Oncology, Vanderbilt University Medical Center and the Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - M Bhatia
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, New York
| | - B T Fisher
- Division of Infectious Diseases, Children's Hospital of Philadelphia and Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania
| | - J E Levine
- The Tisch Cancer Institute and Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - B H Pollock
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, California
| | - A C Uhlemann
- Department of Medicine, Division of Infectious Disease, Columbia University Irving Medical Center, New York, New York; Columbia University Microbiome and Pathogen Genomics Core, New York, New York
| | - M R Verneris
- Children's Cancer and Blood Disorders, Department of Pediatric, University of Colorado, Boulder, Colorado
| | - M Walters
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, New York
| | - L Yu
- Division of Hematology-Oncology/HSCT, LSUHSC/Children's Hospital, New Orleans, Louisiana
| | - M Nieder
- Division of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
4
|
Biennier S, Fontaine M, Duquenoy A, Schwintner C, Doré J, Corvaia N. Narrative Review: Advancing Dysbiosis Treatment in Onco-Hematology with Microbiome-Based Therapeutic Approach. Microorganisms 2024; 12:2256. [PMID: 39597645 PMCID: PMC11596191 DOI: 10.3390/microorganisms12112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the complex relationship between gut dysbiosis and hematological malignancies, focusing on graft-versus-host disease (GvHD) in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. We discuss how alterations in microbial diversity and composition can influence disease development, progression, and treatment outcomes in blood cancers. The mechanisms by which the gut microbiota impacts these conditions are examined, including modulation of immune responses, production of metabolites, and effects on intestinal barrier function. Recent advances in microbiome-based therapies for treating and preventing GvHD are highlighted, with emphasis on full ecosystem standardized donor-derived products. Overall, this review underscores the growing importance of microbiome research in hematology-oncology and its potential to complement existing treatments and improve outcomes for thousands of patients worldwide.
Collapse
Affiliation(s)
- Salomé Biennier
- MaaT Pharma, 69007 Lyon, France; (S.B.); (A.D.); (C.S.); (N.C.)
| | | | - Aurore Duquenoy
- MaaT Pharma, 69007 Lyon, France; (S.B.); (A.D.); (C.S.); (N.C.)
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, 78350 Jouy-en-Josas, France;
| | | |
Collapse
|
5
|
Wenger V, Zeiser R. Deciphering the role of the major histocompatibility complex, the intestinal microbiome and metabolites in the pathogenesis of acute graft-versus-host disease. Best Pract Res Clin Haematol 2024; 37:101567. [PMID: 39396261 DOI: 10.1016/j.beha.2024.101567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Allogeneic hematologic stem cell transplantation is a cornerstone in modern hematological treatment, yet its efficacy is compromised by acute Graft-versus-Host Disease. In acute Graft-versus-Host Disease, conditioning regimen induced epithelial damage leads to release of damage and pathogen associated molecular patters which in turns triggers activation of alloreactive donor T cells, ultimately resulting in destruction of healthy tissue. Advances in major histocompatibility complex typing and preclinical studies using tissue specific major histocompatibility complex deletion have illuminated the contributions of both, hematopoietic and non-hematopoietic cells to acute Graft-versus-Host Disease pathophysiology. Concurrently, high-throughput sequencing techniques have enabled researchers to recognize the significant impact of the intestinal microbiome and newly discovered metabolites in the pathophysiology of acute Graft-versus-Host Disease. In this review, we discuss the implications of major histocompatibility complex expression on hematopoietic and non-hematopoietic cells, the effect on the intestinal microbiome and the metabolic alterations that contribute to acute Graft-versus-Host Disease. By combining these findings, we hope to untangle the complexity of acute Graft-versus-Host Disease, ultimately paving the way for the development of novel and more effective treatmen options in patients.
Collapse
Affiliation(s)
- Valentin Wenger
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
6
|
Fukushima K, Kudo H, Oka K, Hayashi A, Onizuka M, Kusakabe S, Hino A, Takahashi M, Takeda K, Mori M, Ando K, Hosen N. Clostridium butyricum MIYAIRI 588 contributes to the maintenance of intestinal microbiota diversity early after haematopoietic cell transplantation. Bone Marrow Transplant 2024; 59:795-802. [PMID: 38431763 PMCID: PMC11161410 DOI: 10.1038/s41409-024-02250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
In patients undergoing haematopoietic stem-cell transplantation (HSCT), the intestinal microbiota plays an important role in prognosis, transplant outcome, and complications such as graft-versus-host disease (GVHD). Our prior research revealed that patients undergoing HSCT substantially differed from healthy controls. In this retrospective study, we showed that administering Clostridium butyricum MIYAIRI 588 (CBM588) as a live biotherapeutic agent is associated with maintaining intestinal microbiota in the early post-HSCT period. Alpha diversity, which reflects species richness, declined considerably in patients who did not receive CBM588, whereas it remained consistent in those who received CBM588. In addition, β-diversity analysis revealed that CBM588 did not alter the gut microbiota structure at 7-21 days post-HSCT. Patients who developed GVHD showed structural changes in their microbiota from the pre-transplant period, which was noticeable on day 14 before developing GVHD. Enterococcus was significantly prevalent in patients with GVHD after HSCT, and the population of Bacteroides was maintained from the pre-HSCT period through to the post-HSCT period. Patients who received CBM588 exhibited a contrasting trend, with lower relative abundances of both genera Enterococcus and Bacteroides. These results suggest that preoperative treatment with CBM588 could potentially be beneficial in maintaining intestinal microbiota balance.
Collapse
Affiliation(s)
- Kentaro Fukushima
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.
| | - Hayami Kudo
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Kentaro Oka
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Atsushi Hayashi
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Shinsuke Kusakabe
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Akihisa Hino
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Motomichi Takahashi
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- World Premier International Immunology Frontier Research Centre, Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
| | - Masaki Mori
- Faculty of Medicine, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Naoki Hosen
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- World Premier International Immunology Frontier Research Centre, Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
7
|
Song X, Lao J, Wang L, Liu S. Research advances on short-chain fatty acids in gastrointestinal acute graft- versus-host disease. Ther Adv Hematol 2024; 15:20406207241237602. [PMID: 38558826 PMCID: PMC10979536 DOI: 10.1177/20406207241237602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal acute graft-versus-host disease (GI-aGVHD) is a severe early complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has been shown that the intestinal microbiota plays a critical role in this process. As metabolites of the intestinal microbiota, short-chain fatty acids (SCFAs) are vital for maintaining the host-microbiota symbiotic equilibrium. This article provides an overview of the protective effect of SCFAs in the gastrointestinal tract, emphasizes their association with GI-aGVHD, and explores relevant research progress in prevention and treatment research.
Collapse
Affiliation(s)
- Xinping Song
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong 518026, China
| | - Jing Lao
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong 518026, China
| | - Lulu Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen, Guangdong 518026, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen, Guangdong 518026, China
| |
Collapse
|
8
|
Yue X, Zhou H, Wang S, Chen X, Xiao H. Gut microbiota, microbiota-derived metabolites, and graft-versus-host disease. Cancer Med 2024; 13:e6799. [PMID: 38239049 PMCID: PMC10905340 DOI: 10.1002/cam4.6799] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is one of the most effective treatment strategies for leukemia, lymphoma, and other hematologic malignancies. However, graft-versus-host disease (GVHD) can significantly reduce the survival rate and quality of life of patients after transplantation, and is therefore the greatest obstacle to transplantation. The recent development of new technologies, including high-throughput sequencing, metabolomics, and others, has facilitated great progress in understanding the complex interactions between gut microbiota, microbiota-derived metabolites, and the host. Of these interactions, the relationship between gut microbiota, microbial-associated metabolites, and GVHD has been most intensively researched. Studies have shown that GVHD patients often suffer from gut microbiota dysbiosis, which mainly manifests as decreased microbial diversity and changes in microbial composition and microbiota-derived metabolites, both of which are significant predictors of poor prognosis in GVHD patients. Therefore, the purpose of this review is to summarize what is known regarding changes in gut microbiota and microbiota-derived metabolites in GVHD, their relationship to GVHD prognosis, and corresponding clinical strategies designed to prevent microbial dysregulation and facilitate treatment of GVHD.
Collapse
Affiliation(s)
- XiaoYan Yue
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongyu Zhou
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - ShuFen Wang
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xu Chen
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - HaoWen Xiao
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
9
|
Lakshmanan AP, Deola S, Terranegra A. The Promise of Precision Nutrition for Modulation of the Gut Microbiota as a Novel Therapeutic Approach to Acute Graft-versus-host Disease. Transplantation 2023; 107:2497-2509. [PMID: 37189240 PMCID: PMC10664798 DOI: 10.1097/tp.0000000000004629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 05/17/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe side effect of allogeneic hematopoietic stem cell transplantation (aHSCT) that has complex phenotypes and often unpredictable outcomes. The current management is not always able to prevent aGVHD. A neglected actor in the management of aGVHD is the gut microbiota. Gut microbiota dysbiosis after aHSCT is caused by many factors and may contribute to the development of aGVHD. Diet and nutritional status modify the gut microbiota and a wide range of products are now available to manipulate the gut microbiota (pro-, pre-, and postbiotics). New investigations are testing the effect of probiotics and nutritional supplements in both animal models and human studies, with encouraging results. In this review, we summarize the most recent literature about the probiotics and nutritional factors able to modulate the gut microbiota and we discuss the future perspective in developing new integrative therapeutic approaches to reducing the risk of graft-versus-host disease in patients undergoing aHSCT.
Collapse
Affiliation(s)
| | - Sara Deola
- Advanced Cell Therapy Core, Research Branch, Sidra Medicine, Qatar
| | | |
Collapse
|
10
|
Ciernikova S, Sevcikova A, Drgona L, Mego M. Modulating the gut microbiota by probiotics, prebiotics, postbiotics, and fecal microbiota transplantation: An emerging trend in cancer patient care. Biochim Biophys Acta Rev Cancer 2023; 1878:188990. [PMID: 37742728 DOI: 10.1016/j.bbcan.2023.188990] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Treatment resistance, together with acute and late adverse effects, represents critical issues in the management of cancer patients. Promising results from preclinical and clinical research underline the emerging trend of a microbiome-based approach in oncology. Favorable bacterial species and higher gut diversity are associated with increased treatment efficacy, mainly in chemo- and immunotherapy. On the other hand, alterations in the composition and activity of gut microbial communities are linked to intestinal dysbiosis and contribute to high treatment-induced toxicity. In this Review, we provide an overview of studies concerning gut microbiota modulation in patients with solid and hematologic malignancies with a focus on probiotics, prebiotics, postbiotics, and fecal microbiota transplantation. Targeting the gut microbiome might bring clinical benefits and improve patient outcomes. However, a deeper understanding of mechanisms and large clinical trials concerning microbiome and immunological profiling is warranted to identify safe and effective ways to incorporate microbiota-based interventions in routine clinical practice.
Collapse
Affiliation(s)
- Sona Ciernikova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Aneta Sevcikova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Drgona
- Department of Oncohematology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
11
|
Metafuni E, Di Marino L, Giammarco S, Bellesi S, Limongiello MA, Sorà F, Frioni F, Maggi R, Chiusolo P, Sica S. The Role of Fecal Microbiota Transplantation in the Allogeneic Stem Cell Transplant Setting. Microorganisms 2023; 11:2182. [PMID: 37764025 PMCID: PMC10536954 DOI: 10.3390/microorganisms11092182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Microbiota changes during allogeneic hematopoietic stem cell transplantation has several known causes: conditioning chemotherapy and radiation, broad-spectrum antibiotic administration, modification in nutrition status and diet, and graft-versus-host disease. This article aims to review the current knowledge about the close link between microbiota and allogeneic stem cell transplantation setting. The PubMed search engine was used to perform this review. We analyzed data on microbiota dysbiosis related to the above-mentioned affecting factors. We also looked at treatments aimed at modifying gut dysbiosis and applications of fecal microbiota transplantation in the allogeneic stem cell transplant field, with particular interest in fecal microbiota transplantation for graft-versus-host disease (GvHD), multidrug-resistant and clostridium difficile infections, and microbiota restoration after chemotherapy and antibiotic therapy.
Collapse
Affiliation(s)
- Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Luca Di Marino
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Federica Sorà
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Filippo Frioni
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Roberto Maggi
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| |
Collapse
|
12
|
Pawłowski P, Pawłowska P, Ziętara KJ, Samardakiewicz M. The Critical Exploration into Current Evidence behind the Role of the Nutritional Support in Adult Patients Who Undergo Haematogenic Stem Cell Transplantation. Nutrients 2023; 15:3558. [PMID: 37630748 PMCID: PMC10459351 DOI: 10.3390/nu15163558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Haematopoietic stem cell transplantation (HSCT) is a treatment option for many haematological conditions in patients of all ages. Nutritional support is important at each stage of treatment, but particular nutritional needs and dictated support occur during the preparatory (conditioning regimen) and post-transplant periods. Patients may require nutritional treatment by the enteral or parenteral route. The quantitative and qualitative composition of meals may change. Vitamin requirements, including vitamin D and vitamin C, might also be different. An adequately composed diet, adapted to the needs of the patient, may influence the occurrence of complications such as graft-versus-host disease (GvHD), gastrointestinal disorders, infections, and reduced survival time. Haematological diseases as well as transplantation can negatively affect the intestinal flora, with negative consequences in the form of mucosal inflammation and disorders of a functional nature. Currently, aspects related to nutrition are crucial in the care of patients after HSCT, and numerous studies, including randomized trials on these aspects, are being conducted. This study serves the critical analysis of current scientific evidence regarding nutritional support for patients after HSCT.
Collapse
Affiliation(s)
- Piotr Pawłowski
- Student Scientific Association at the Department of Psychology, Faculty of Medicine, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Paulina Pawłowska
- The Critical Care Unit, The Royal Marsden Hospital, London SW3 6JJ, UK;
| | - Karolina Joanna Ziętara
- Student Scientific Association at the Department of Psychology, Faculty of Medicine, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Marzena Samardakiewicz
- Department of Psychology, Psychosocial Aspects of Medicine, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
13
|
Limpert R, Pan P, Wang LS, Chen X. From support to therapy: rethinking the role of nutrition in acute graft-versus-host disease. Front Immunol 2023; 14:1192084. [PMID: 37359550 PMCID: PMC10285162 DOI: 10.3389/fimmu.2023.1192084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (HSCT) offers a potential cure for patients with hematologic malignancies. Unfortunately, graft-versus-host disease (GVHD) remains a major obstacle to the greater success of this treatment. Despite intensive research efforts over the past several decades, GVHD is still a major cause of morbidity and mortality in patients receiving allogeneic HSCT. The genetic disparity between donor and recipient is the primary factor that dictates the extent of alloimmune response and the severity of acute GVHD (aGVHD). However, some nongenetic factors are also actively involved in GVHD pathogenesis. Thus, identifying host factors that can be readily modified to reduce GVHD risk is of important clinical significance. We are particularly interested in the potential role of nutrition, as a nongenetic factor, in the etiology and management of aGVHD. In this article, we summarize recent findings regarding how different routes of nutritional support and various dietary factors affect aGVHD. Since diet is one of the most important factors that shape gut microbiota, we also provide evidence for a potential link between certain nutrients and gut microbiota in recipients of allogeneic HSCT. We propose a shifting role of nutrition from support to therapy in GVHD by targeting gut microbiota.
Collapse
|
14
|
Yazdandoust E, Hajifathali A, Roshandel E, Zarif MN, Pourfathollah AA, Parkhideh S, Mehdizadeh M, Amini-Kafiabad S. Gut microbiota intervention by pre and probiotics can induce regulatory T cells and reduce the risk of severe acute GVHD following allogeneic hematopoietic stem cell transplantation. Transpl Immunol 2023; 78:101836. [PMID: 37037266 DOI: 10.1016/j.trim.2023.101836] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) is one of the leading causes of limitation and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Numerous studies have shown that changes in the gut microbiome diversity increased post-transplant problems, including the occurrence of aGVHD. Probiotics and prebiotics can reconstitute the gut microbiota and thus increase bacterial metabolites such as short-chain fatty acids (SCFAs) that have immunomodulatory effects preventing aGVHD in recipients of allo-HSCTs. METHODS/STUDY DESIGN We conducted a pilot randomized clinical trial to investigate whether oral synbiotics are associated with the prevention or reduction in occurrence/severity and mitigate complications of aGVHD following allo-HSCT. A commercially available synbiotic mixture containing high levels of 7 safe bacterial strains plus fructo-oligosaccharides as a prebiotic was administered to allo-HSCT recipients. Out of 40 allo-HSCT patients, 20 received daily a synbiotic 21 days prior to transplantation (days -21 to day 0). In contrast, in the control group 20 recipients of allo-HSCT did not receive a symbiotic therapy. RESULTS Within first 100 days of observation, the incidence of severe (grade III/IV) aGVHD in the a synbiotic-therapy group was 0% (0 out of 20 patients), whereas it was 25% (5 out of 20 patients) in the control group (P = 0.047). The median percentage of CD4 + CD25 + Foxp3+ regulatory T cells (Tregs) among CD4+ lymphocytes on day 28 after HSCT in the synbiotic group was higher (2.54%) than in control group (1.73%; P = 0.01). There was no difference in Treg cells on day 7 after HSCT between two groups. However, the median percentage and the absolute count of Tregs in patients who experience aGVHD was significantly lower on days 7 and 28 after HSCT (both P < 0.05). The overall 12-month survival (OS) rate was higher (90%) in the symbiotic-treated patients than in the control group (75%), but the difference was not statistically significant (P = 0.234). CONCLUSION Our preliminary findings suggest that synbiotic intake before and during the conditioning regimen of allo-HSCT patients may lead to a reduction in the incidence and severity of aGVHD through the induction of CD4 + CD25 + Foxp3+ regulatory T cells, thus contributing to the improvement of transplant outcomes. Much larger studies are needed to confirm our observations.
Collapse
Affiliation(s)
- Ehsan Yazdandoust
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
15
|
Malard F, Jenq RR. The Microbiome and Its Impact on Allogeneic Hematopoietic Cell Transplantation. Cancer J 2023; 29:75-83. [PMID: 36957977 PMCID: PMC10037670 DOI: 10.1097/ppo.0000000000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Allogeneic hematopoietic cell transplantation (alloHCT) is a standard curative therapy for a variety of benign and malignant hematological diseases. Previously, patients who underwent alloHCT were at high risk for complications with potentially life-threatening toxicities, including a variety of opportunistic infections as well as acute and chronic manifestations of graft-versus-host disease (GVHD), where the transplanted immune system can produce inflammatory damage to the patient. With recent advances, including newer conditioning regimens, advances in viral and fungal infection prophylaxis, and novel GVHD prophylactic and treatment strategies, improvements in clinical outcomes have steadily improved. One modality with great potential that has yet to be fully realized is targeting the microbiome to further improve clinical outcomes.In recent years, the intestinal microbiota, which includes bacteria, fungi, viruses, and other microbes that reside within the intestinal tract, has become established as a potent modulator of alloHCT outcomes. The composition of intestinal bacteria, in particular, has been found in large multicenter prospective studies to be strongly associated with GVHD, treatment-related mortality, and overall survival. Murine studies have demonstrated a causal relationship between intestinal microbiota injury and aggravated GVHD, and more recently, clinical interventional studies of repleting the intestinal microbiota with fecal microbiota transplantation have emerged as effective therapies for GVHD. How the composition of the intestinal bacterial microbiota, which is often highly variable in alloHCT patients, can modulate GVHD and other outcomes is not fully understood. Recent studies, however, have begun to make substantial headway, including identifying particular bacterial subsets and/or bacterial-derived metabolites that can mediate harm or benefit. Here, the authors review recent studies that have improved our mechanistic understanding of the relationship between the microbiota and alloHCT outcomes, as well as studies that are beginning to establish strategies to modulate the microbiota with the hope of optimizing clinical outcomes.
Collapse
|
16
|
van Lier YF, Vos J, Blom B, Hazenberg MD. Allogeneic hematopoietic cell transplantation, the microbiome, and graft-versus-host disease. Gut Microbes 2023; 15:2178805. [PMID: 36794370 PMCID: PMC9980553 DOI: 10.1080/19490976.2023.2178805] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Many patients with hematological malignancies, such as acute myeloid leukemia, receive an allogeneic hematopoietic cell transplantation (HCT) to cure their underlying condition. Allogeneic HCT recipients are exposed to various elements during the pre-, peri- and post-transplant period that can disrupt intestinal microbiota, including chemo- and radiotherapy, antibiotics, and dietary changes. The dysbiotic post-HCT microbiome is characterized by low fecal microbial diversity, loss of anaerobic commensals, and intestinal domination, particularly by Enterococcus species, and is associated with poor transplant outcomes. Graft-versus-host disease (GvHD) is a frequent complication of allogeneic HCT caused by immunologic disparity between donor and host cells and results in tissue damage and inflammation. Microbiota injury is particularly pronounced in allogeneic HCT recipients who go on to develop GvHD. At present, manipulation of the microbiome for example, via dietary interventions, antibiotic stewardship, prebiotics, probiotics, or fecal microbiota transplantation, is widely being explored to prevent or treat gastrointestinal GvHD. This review discusses current insights into the role of the microbiome in GvHD pathogenesis and summarizes interventions to prevent and treat microbiota injury.
Collapse
Affiliation(s)
- Yannouck F. van Lier
- Department of Hematology, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Jaël Vos
- Department of Hematology, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Mette D. Hazenberg
- Department of Hematology, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands,CONTACT Mette D. Hazenberg Department of Hematology, Amsterdam UMC, Meibergdreef 9, Amsterdam1105 AZ, The Netherlands
| |
Collapse
|
17
|
Muratore E, Leardini D, Baccelli F, Venturelli F, Prete A, Masetti R. Nutritional modulation of the gut microbiome in allogeneic hematopoietic stem cell transplantation recipients. Front Nutr 2022; 9:993668. [PMID: 36337625 PMCID: PMC9632163 DOI: 10.3389/fnut.2022.993668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents a potentially curative strategy for many oncological and non-oncological diseases, but it is associated with marked morbidity and mortality. The disruption of gut microbiota (GM) eubiosis has been linked to major allo-HSCT complications, including infections and acute graft vs. host disease (aGvHD), and correlates with mortality. This increasing knowledge on the role of the GM in the allo-HSCT procedure has led to fascinating ideas for modulating the intestinal ecosystem in order to improve clinical outcomes. Nutritional strategies, either by changing the route of nutritional supplementation or by administering specific molecules, are increasingly being considered as cost- and risk-effective methods of modulating the GM. Nutritional support has also emerged in the past several years as a key feature in supportive care for allo-HSCT recipients, and deterioration of nutritional status is associated with decreased overall survival and higher complication rates during treatment. Herein we provide a complete overview focused on nutritional modulation of the GM in allo-HSCT recipients. We address how pre transplant diet could affect GM composition and its ability to withstand the upsetting events occurring during transplantation. We also provide a complete overview on the influence of the route of nutritional administration on the intestinal ecosystem, with a particular focus on the comparison between enteral and parenteral nutrition (PN). Moreover, as mounting evidence are showing how specific components of post-transplant diet, such as lactose, could drastically shape the GM, we will also summarize the role of prebiotic supplementation in the modulation of the intestinal flora and in allo-HSCT outcomes.
Collapse
Affiliation(s)
- Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- *Correspondence: Francesco Baccelli,
| | - Francesco Venturelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Kodikara S, Ellul S, Lê Cao KA. Statistical challenges in longitudinal microbiome data analysis. Brief Bioinform 2022; 23:bbac273. [PMID: 35830875 PMCID: PMC9294433 DOI: 10.1093/bib/bbac273] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 11/13/2022] Open
Abstract
The microbiome is a complex and dynamic community of microorganisms that co-exist interdependently within an ecosystem, and interact with its host or environment. Longitudinal studies can capture temporal variation within the microbiome to gain mechanistic insights into microbial systems; however, current statistical methods are limited due to the complex and inherent features of the data. We have identified three analytical objectives in longitudinal microbial studies: (1) differential abundance over time and between sample groups, demographic factors or clinical variables of interest; (2) clustering of microorganisms evolving concomitantly across time and (3) network modelling to identify temporal relationships between microorganisms. This review explores the strengths and limitations of current methods to fulfill these objectives, compares different methods in simulation and case studies for objectives (1) and (2), and highlights opportunities for further methodological developments. R tutorials are provided to reproduce the analyses conducted in this review.
Collapse
Affiliation(s)
- Saritha Kodikara
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, 3052, Victoria, Australia
| | - Susan Ellul
- Murdoch Children’s Research Institute and Department of Paediatrics, University of Melbourne, Bouverie Street, 3052, Victoria, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, 3052, Victoria, Australia
| |
Collapse
|
19
|
Sen T, Thummer RP. The Impact of Human Microbiotas in Hematopoietic Stem Cell and Organ Transplantation. Front Immunol 2022; 13:932228. [PMID: 35874759 PMCID: PMC9300833 DOI: 10.3389/fimmu.2022.932228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
The human microbiota heavily influences most vital aspects of human physiology including organ transplantation outcomes and transplant rejection risk. A variety of organ transplantation scenarios such as lung and heart transplantation as well as hematopoietic stem cell transplantation is heavily influenced by the human microbiotas. The human microbiota refers to a rich, diverse, and complex ecosystem of bacteria, fungi, archaea, helminths, protozoans, parasites, and viruses. Research accumulating over the past decade has established the existence of complex cross-species, cross-kingdom interactions between the residents of the various human microbiotas and the human body. Since the gut microbiota is the densest, most popular, and most studied human microbiota, the impact of other human microbiotas such as the oral, lung, urinary, and genital microbiotas is often overshadowed. However, these microbiotas also provide critical and unique insights pertaining to transplantation success, rejection risk, and overall host health, across multiple different transplantation scenarios. Organ transplantation as well as the pre-, peri-, and post-transplant pharmacological regimens patients undergo is known to adversely impact the microbiotas, thereby increasing the risk of adverse patient outcomes. Over the past decade, holistic approaches to post-transplant patient care such as the administration of clinical and dietary interventions aiming at restoring deranged microbiota community structures have been gaining momentum. Examples of these include prebiotic and probiotic administration, fecal microbial transplantation, and bacteriophage-mediated multidrug-resistant bacterial decolonization. This review will discuss these perspectives and explore the role of different human microbiotas in the context of various transplantation scenarios.
Collapse
Affiliation(s)
| | - Rajkumar P. Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
20
|
A Promising Insight: The Potential Influence and Therapeutic Value of the Gut Microbiota in GI GVHD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2124627. [PMID: 35571252 PMCID: PMC9098338 DOI: 10.1155/2022/2124627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HSCT) is a reconstruction process of hematopoietic and immune functions that can be curative in patients with hematologic malignancies, but it carries risks of graft-versus-host disease (GVHD), thrombotic microangiopathy (TMA), Epstein–Barr virus (EBV) infection, cytomegalovirus infection, secondary hemophagocytic lymphohistiocytosis (sHLH), macrophage activation syndrome (MAS), bronchiolitis obliterans, and posterior reversible encephalopathy syndrome (PRES). Gastrointestinal graft-versus-host disease (GI GVHD), a common complication of allo-HSCT, is one of the leading causes of transplant-related death because of its high treatment difficulty, which is affected by preimplantation, antibiotic use, dietary changes, and intestinal inflammation. At present, human trials and animal studies have proven that a decrease in intestinal bacterial diversity is associated with the occurrence of GI GVHD. Metabolites produced by intestinal bacteria, such as lipopolysaccharides, short-chain fatty acids, and secondary bile acids, can affect the development of GVHD through direct or indirect interactions with immune cells. The targeted damage of GVHD on intestinal stem cells (ISCs) and Paneth cells results in intestinal dysbiosis or dysbacteriosis. Based on the effect of microbiota metabolites on the gastrointestinal tract, the clinical treatment of GI GVHD can be further optimized. In this review, we describe the mechanisms of GI GVHD and the damage it causes to intestinal cells and we summarize recent studies on the relationship between intestinal microbiota and GVHD in the gastrointestinal tract, highlighting the role of intestinal microbiota metabolites in GI GVHD. We hope to elucidate strategies for immunomodulatory combined microbiota targeting in the clinical treatment of GI GVHD.
Collapse
|
21
|
Commission for Hospital Hygiene and Infection Prevention (KRINKO). Infection prevention requirements for the medical care of immunosuppressed patients: recommendations of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) at the Robert Koch Institute. GMS HYGIENE AND INFECTION CONTROL 2022; 17:Doc07. [PMID: 35707229 PMCID: PMC9174886 DOI: 10.3205/dgkh000410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Germany, guidelines for hygiene in hospitals are given in form of recommendations by the Commission for Hospital Hygiene and Infection Prevention (Kommission für Krankenhaushygiene und Infektionsprävention, "KRINKO"). The KRINKO and its voluntary work are legitimized by the mandate according to § 23 of the Infection Protection Act (Infektionsschutzgesetz, "IfSG"). The original German version of this document was published in February 2021 and has now been made available to the international professional public in English. The guideline provides recommendations on infection prevention and control for immunocompromised individuals in health care facilities. This recommendation addresses not only measures related to direct medical care of immunocompromised patients, but also management aspects such as surveillance, screening, antibiotic stewardship, and technical/structural aspects such as patient rooms, air quality, and special measures during renovations.
Collapse
|
22
|
Strati F, Lattanzi G, Amoroso C, Facciotti F. Microbiota-targeted therapies in inflammation resolution. Semin Immunol 2022; 59:101599. [PMID: 35304068 DOI: 10.1016/j.smim.2022.101599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has been shown to systemically shape the immunological landscape, modulate homeostasis and play a role in both health and disease. Dysbiosis of gut microbiota promotes inflammation and contributes to the pathogenesis of several major disorders in gastrointestinal tract, metabolic, neurological and respiratory diseases. Much effort is now focused on understanding host-microbes interactions and new microbiota-targeted therapies are deeply investigated as a means to restore health or prevent disease. This review details the immunoregulatory role of the gut microbiota in health and disease and discusses the most recent strategies in manipulating individual patient's microbiota for the management and prevention of inflammatory conditions.
Collapse
Affiliation(s)
- Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
23
|
Lin D, Hu B, Li P, Zhao Y, Xu Y, Wu D. Roles of the intestinal microbiota and microbial metabolites in acute GVHD. Exp Hematol Oncol 2021; 10:49. [PMID: 34706782 PMCID: PMC8555140 DOI: 10.1186/s40164-021-00240-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/25/2021] [Indexed: 01/02/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most curative strategies for the treatment of many hematologic malignancies and diseases. However, acute graft-versus-host disease (GVHD) limits the success of allo-HSCT. The prevention and treatment of acute GVHD is the key issue for improving the efficacy of allo-HSCT and has become a research hotspot. The intestine is the primary organ targeted by acute GVHD, and the intestinal microbiota is critical for maintaining the homeostasis of the intestinal microenvironment and the immune response. Many studies have demonstrated the close association between the intestinal microbiota and the pathogenesis of acute GVHD. Furthermore, dysbiosis of the microbiota, which manifests as alterations in the diversity and composition of the intestinal microbiota, and alterations of microbial metabolites are pronounced in acute GVHD and associated with poor patient prognosis. The microbiota interacts with the host directly via microbial surface antigens or microbiota-derived metabolites to regulate intestinal homeostasis and the immune response. Therefore, intervention strategies targeting the intestinal microbiota, including antibiotics, prebiotics, probiotics, postbiotics and fecal microbiota transplantation (FMT), are potential new treatment options for acute GVHD. In this review, we discuss the alterations and roles of the intestinal microbiota and its metabolites in acute GVHD, as well as interventions targeting microbiota for the prevention and treatment of acute GVHD.
Collapse
Affiliation(s)
- Dandan Lin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Bo Hu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Pengfei Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ye Zhao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
24
|
Van Lier YF, Van den Brink MRM, Hazenberg MD, Markey KA. The post-hematopoietic cell transplantation microbiome: relationships with transplant outcome and potential therapeutic targets. Haematologica 2021; 106:2042-2053. [PMID: 33882637 PMCID: PMC8327718 DOI: 10.3324/haematol.2020.270835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
Microbiota injury occurs in many patients undergoing allogeneic hematopoietic cell transplantation, likely as a consequence of conditioning regimens involving chemo- and radiotherapy, the widespread use of both prophylactic and therapeutic antibiotics, and profound dietary changes during the peri-transplant period. Peri-transplant dysbiosis is characterized by a decrease in bacterial diversity, loss of commensal bacteria and single-taxon domination (e.g., with Enterococcal strains). Clinically, deviation of the post-transplant microbiota from a normal, high-diversity, healthy state has been associated with increased risk of bacteremia, development of graft-versus-host disease and decreases in overall survival. A number of recent clinical trials have attempted to target the microbiota in allogeneic hematopoietic cell transplantation patients via dietary interventions, selection of therapeutic antibiotics, administration of pre- or pro-biotics, or by performing fecal microbiota transplantation. These strategies have yielded promising results but the mechanisms by which these interventions influence transplant-related complications remain largely unknown. In this review we summarize the current approaches to targeting the microbiota, discuss potential underlying mechanisms and highlight the key outstanding areas that require further investigation in order to advance microbiota- targeting therapies.
Collapse
Affiliation(s)
- Yannouck F Van Lier
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, Amsterdam
| | - Marcel R M Van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Hematopoiesis, Sanquin Research, Amsterdam
| | - Kate A Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
25
|
Henig I, Yehudai-Ofir D, Zuckerman T. The clinical role of the gut microbiome and fecal microbiota transplantation in allogeneic stem cell transplantation. Haematologica 2021; 106:933-946. [PMID: 33241674 PMCID: PMC8017815 DOI: 10.3324/haematol.2020.247395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/28/2020] [Indexed: 12/26/2022] Open
Abstract
Outcomes of allogeneic hematopoietic stem cell transplantation (allo- HSCT) have improved in the recent decade; however, infections and graft-versus-host disease remain two leading complications significantly contributing to early transplant-related mortality. In past years, the human intestinal microbial composition (microbiota) has been found to be associated with various disease states, including cancer, response to cancer immunotherapy and to modulate the gut innate and adaptive immune response. In the setting of allo-HSCT, the intestinal microbiota diversity and composition appear to have an impact on infection risk, mortality and overall survival. Microbial metabolites have been shown to contribute to the health and integrity of intestinal epithelial cells during inflammation, thus mitigating graft-versus-host disease in animal models. While the cause-andeffect relationship between the intestinal microbiota and transplant-associated complications has not yet been fully elucidated, the above findings have already resulted in the implementation of various interventions aiming to restore the intestinal microbiota diversity and composition. Among others, these interventions include the administration of fecal microbiota transplantation. The present review, based on published data, is intended to define the role of the latter approach in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Israel Henig
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa
| | - Dana Yehudai-Ofir
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa
| | - Tsila Zuckerman
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa.
| |
Collapse
|
26
|
Immunonutritional support as an important part of multidisciplinary anti-cancer therapy. Cent Eur J Immunol 2021; 45:454-460. [PMID: 33613095 PMCID: PMC7882412 DOI: 10.5114/ceji.2020.103339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/24/2020] [Indexed: 12/29/2022] Open
Abstract
Immunonutrition is one of the most important parts of nutritional treatment in patients with cancer. There are studies which confirm positive effects of using immunonutrition (arginine, glutamine, omega-3 fatty acids, nucleotides, pre- and probiotics) among others on the reduction of the pro-inflammatory cytokines concentrations, shortening of the hospital stay and improvement of the nutritional status. Arginine takes part not only in wound healing process, but also it improves body’s immunity and reduces the incidence of infections. Glutamine reduces the incidence of acute grade 2 and 3 esophagitis and improves quality of life of gastric cancer patients. Omega 3-fatty acids have the ability to inhibit the activity of NF-κB. They also reduce the symptoms of graft-versus-host disease in patients undergoing hematopoietic cell transplantation. Nucleotides support the regeneration of intestinal villi. Probiotics play many roles, mainly inhibit the process of carcinogenesis, reduce the incidence of diarrhea and modify intestinal microbiome. However, there are studies indicating the lack of advantages of using immunonutrition compared to standard nutrition. Currently, there is no clear evidence for the use of formulae enriched with immunonutrients versus standard oral nutritional supplements exclusively in the preoperative period. This review summarizes the current knowledge about the role of immunonutrition in supporting treatment of cancer diseases.
Collapse
|
27
|
Anforderungen an die Infektionsprävention bei der medizinischen Versorgung von immunsupprimierten Patienten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 64:232-264. [PMID: 33394069 PMCID: PMC7780910 DOI: 10.1007/s00103-020-03265-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. Int J Mol Sci 2021; 22:ijms22031026. [PMID: 33498529 PMCID: PMC7864170 DOI: 10.3390/ijms22031026] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hematological malignancies, including multiple myeloma, lymphoma, and leukemia, are a heterogeneous group of neoplasms that affect the blood, bone marrow, and lymph nodes. They originate from uncontrolled growth of hematopoietic and lymphoid cells from different stages in their maturation/differentiation and account for 6.5% of all cancers around the world. During the last decade, it has been proven that the gut microbiota, more specifically the gastrointestinal commensal bacteria, is implicated in the genesis and progression of many diseases. The immune-modulating effects of the human microbiota extend well beyond the gut, mostly through the small molecules they produce. This review aims to summarize the current knowledge of the role of the microbiota in modulating the immune system, its role in hematological malignancies, and its influence on different therapies for these diseases, including autologous and allogeneic stem cell transplantation, chemotherapy, and chimeric antigen receptor T cells.
Collapse
|
29
|
Chang CC, Hayase E, Jenq RR. The role of microbiota in allogeneic hematopoietic stem cell transplantation. Expert Opin Biol Ther 2021; 21:1121-1131. [PMID: 33412949 DOI: 10.1080/14712598.2021.1872541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) is commonly performed to treat a variety of benign and malignant hematological diseases. Acute graft-versus-host disease (GVHD) is a major life-threatening complication that often occurs following allo-HSCT. Recently, improvements in methods to characterize the microbiota have led to a greater appreciation for how frequently and profoundly an alteration in microbial composition, or dysbiosis, can occur in allo-HSCT recipients to better decipher the complex interplay between microbiota and allo-HSCT outcomes. AREAS COVERED This article reviews the current knowledge of the microbiota's impact on allo-HSCT outcomes, including effects of microbiota-derived metabolites, and crosstalk between commensals and the allogeneic immune response. This article also summarizes the effects of HSCT and transplant-related procedures on microbiota, and recent developments in interventional strategies. EXPERT OPINION A growing body of literature indicates that the composition of the intestinal microbiota can function as a predictive biomarker for the risk and severity of acute GVHD, as well as overall survival, in patients undergoing allo-HSCT. Mechanisms underpinning these associations, however, are not well understood, and clinical strategies that modulate the microbiome to improve outcomes have yet to be fully developed. There is an unmet need to determine mechanisms to improve the efficacy of allo-HSCT.
Collapse
Affiliation(s)
- Chia-Chi Chang
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eiko Hayase
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
30
|
Targeting the gut microbiome: An emerging trend in hematopoietic stem cell transplantation. Blood Rev 2020; 48:100790. [PMID: 33573867 DOI: 10.1016/j.blre.2020.100790] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Mounting evidence has demonstrated the critical role of the gut microbiome in different cancer treatment modalities showing intensive crosstalk between microbiota and the host immune system. In cancer patients receiving hematopoietic stem cell transplantation (HSCT), conditioning regimens including chemotherapy, radiotherapy, and immunosuppressive therapy, as well as antimicrobial prophylaxis, result in intestinal barrier disruption and massive changes in microbiota composition. According to clinical studies, a drastic loss of microbial diversity during HSCT is associated with enhanced pro-inflammatory immune response and an increased risk of transplant-related complications such as graft-versus-host disease (GvHD) and mortality. In this review, we outline the current understanding of the role of microbiota diversity in the patient response to cancer therapies and highlight the impact of changes in the gut microbiome on clinical outcomes in post-HSCT patients. Moreover, the therapeutic implications of microbiota modulation by probiotics, prebiotics, and fecal microbiota transplantation (FMT) in hematologic cancer patients receiving HSCT are discussed.
Collapse
|
31
|
Yu J, Sun H, Cao W, Han L, Song Y, Wan D, Jiang Z. Applications of gut microbiota in patients with hematopoietic stem-cell transplantation. Exp Hematol Oncol 2020; 9:35. [PMID: 33292670 PMCID: PMC7716583 DOI: 10.1186/s40164-020-00194-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Studies of the gut microbiota (GM) have demonstrated the close link between human wellness and intestinal commensal bacteria, which mediate development of the host immune system. The dysbiosis, a disruption of the microbiome natural balance, can cause serious health problems. Patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) may cause significant changes in GM due to their underlying malignancies and exposure to extensive chemotherapy and systemic antibiotics, which may lead to different disorders. There are complex and multi-directional interactions among intestinal inflammation, GM and immune reactivity after HSCT. There is considerable effect of the human intestinal microbiome on clinical course following HSCT. Some bacteria in the intestinal ecosystem may be potential biomarkers or therapeutic targets for preventing relapse and improving survival rate after HSCT. Microbiota can be used as predictor of mortality in allo-HSCT. Two different strategies with targeted modulation of GM, preemptive and therapeutic, have been used for preventing or treating GM dysbiosis in patients with HSCT. Preemptive strategies include enteral nutrition (EN), prebiotic, probiotic, fecal microbiota transplantation (FMT) and antibiotic strategies, while therapeutic strategies include FMT, probiotic and lactoferrine usages. In this review, we summarize the advance of therapies targeting GM in patients with HSCT.
Collapse
Affiliation(s)
- Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical and Pharmaceutical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Sun
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lijie Han
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongping Song
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
32
|
McKenzie ND, Hong H, Ahmad S, Holloway RW. The gut microbiome and cancer immunotherapeutics: A review of emerging data and implications for future gynecologic cancer research. Crit Rev Oncol Hematol 2020; 157:103165. [PMID: 33227575 DOI: 10.1016/j.critrevonc.2020.103165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
Investigation of the gynecologic tract microbial milieu has revealed potential new biomarkers. Simultaneously, immunotherapeutics are establishing their place in the treatment of gynecologic malignancies. The interplay between the microbiome, the tumor micro-environment and response to therapy is a burgeoning area of interest. There is evidence to support that microbes, through their genetic make-up, gene products, and metabolites affect human physiology, metabolism, immunity, disease susceptibility, response to pharmacotherapy, and the severity of disease-related side effects. Specifically, the richness and diversity of the gut microbiome appears to affect carcinogenesis, response to immunotherapy, and modulate severity of immune-mediated adverse effects. These effects have best been described in other tumor types and these have shown compelling results. This review summarizes the current understanding and scope of the interplay between the human microbiome, host factors, cancer, and response to treatments. These findings support further exploring whether these associations exist for gynecologic malignancies.
Collapse
Affiliation(s)
- Nathalie D McKenzie
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA
| | - Hannah Hong
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA; Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA.
| | - Robert W Holloway
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA
| |
Collapse
|
33
|
Vandenhove B, Canti L, Schoemans H, Beguin Y, Baron F, Graux C, Kerre T, Servais S. How to Make an Immune System and a Foreign Host Quickly Cohabit in Peace? The Challenge of Acute Graft- Versus-Host Disease Prevention After Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2020; 11:583564. [PMID: 33193397 PMCID: PMC7609863 DOI: 10.3389/fimmu.2020.583564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) has been used as cellular immunotherapy against hematological cancers for more than six decades. Its therapeutic efficacy relies on the cytoreductive effects of the conditioning regimen but also on potent graft-versus-tumor (GVT) reactions mediated by donor-derived immune cells. However, beneficial GVT effects may be counterbalanced by acute GVHD (aGVHD), a systemic syndrome in which donor immune cells attack healthy tissues of the recipient, resulting in severe inflammatory lesions mainly of the skin, gut, and liver. Despite standard prophylaxis regimens, aGVHD still occurs in approximately 20–50% of alloHCT recipients and remains a leading cause of transplant-related mortality. Over the past two decades, advances in the understanding its pathophysiology have helped to redefine aGVHD reactions and clinical presentations as well as developing novel strategies to optimize its prevention. In this review, we provide a brief overview of current knowledge on aGVHD immunopathology and discuss current approaches and novel strategies being developed and evaluated in clinical trials for aGVHD prevention. Optimal prophylaxis of aGVHD would prevent the development of clinically significant aGVHD, while preserving sufficient immune responsiveness to maintain beneficial GVT effects and immune defenses against pathogens.
Collapse
Affiliation(s)
- Benoît Vandenhove
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium
| | - Lorenzo Canti
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium
| | - Hélène Schoemans
- Department of Clinical Hematology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| | - Carlos Graux
- Department of Clinical Hematology, CHU UCL Namur (Godinne), Université Catholique de Louvain, Yvoir, Belgium
| | - Tessa Kerre
- Hematology Department, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sophie Servais
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
34
|
Microbiota modification in hematology: still at the bench or ready for the bedside? Blood Adv 2020; 3:3461-3472. [PMID: 31714965 DOI: 10.1182/bloodadvances.2019000365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that human microbiota likely influence diverse processes including hematopoiesis, chemotherapy metabolism, and efficacy, as well as overall survival in patients with hematologic malignancies and other cancers. Both host genetic susceptibility and host-microbiota interactions may impact cancer risk and response to treatment; however, microbiota have the potential to be uniquely modifiable and accessible targets for treatment. Here, we focus on strategies to modify microbiota composition and function in patients with cancer. First, we evaluate the use of fecal microbiota transplant to restore microbial equilibrium following perturbation by antibiotics and chemotherapy, and as a treatment of complications of hematopoietic stem cell transplantation (HSCT), such as graft-versus-host disease and colonization with multidrug-resistant organisms. We then address the potential use of both probiotics and dietary prebiotic compounds in targeted modulation of the microbiota intended to improve outcomes in hematologic diseases. With each type of therapy, we highlight the role that abnormal, or dysbiotic, microbiota play in disease, treatment efficacy, and toxicity and evaluate their potential promise as emerging strategies for microbiota manipulation in patients with hematologic malignancies and in those undergoing HSCT.
Collapse
|
35
|
Pereira AZ, Gonçalves SEA, Rodrigues M, Hamerschlak N, Flowers ME. Challenging and Practical Aspects of Nutrition in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2020; 26:e265-e270. [PMID: 32784069 DOI: 10.1016/j.bbmt.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 01/22/2023]
Abstract
There is a paucity of information about nutrition in chronic graft-versus-host disease (GVHD). The role of nutrition is important because malnutrition is strongly associated with severe chronic GVHD manifestations. There is a high prevalence of metabolic syndrome and osteoporosis in this setting. Here we review the literature, describe main aspects of nutrition and discuss macronutrients (ie, vitamins), micronutrients (ie, Mg, Zn, Ca, and K) and supplements (probiotics and omega 3 fatty acids). A search was carried out in March 2020 using PubMed. Databases were screened for searching terms in titles and abstracts referring to chronic GVHD, nutrition intervention, protein, and body composition. Data were extracted for the following outcomes: nutrition, nutrition intervention, chronic GVHD, nutrition deficiencies, diet, vitamin, dry eye, probiotic, protein, and body composition. In this report, we summarize interventional nutrition studies reported in oncology and metabolic syndrome settings and describe our nutritional clinical practice in hematopoietic cell transplantation and chronic GVHD. The impact of nutrition evaluation and intervention on muscle mass loss, dry eye, dysgeusia, metabolic syndrome, osteoporosis, and comorbidities associated with chronic GVHD need to be studied prospectively.
Collapse
Affiliation(s)
- Andrea Z Pereira
- Oncology and Hematology Department, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Sandra Elisa Adami Gonçalves
- Oncology and Hematology Department, Hospital Israelita Albert Einstein, São Paulo, Brazil; Clinical Nutrition Department, Prevent Senior Center, São Paulo, Brazil
| | - Morgani Rodrigues
- Oncology and Hematology Department, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nelson Hamerschlak
- Oncology and Hematology Department, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Mary E Flowers
- Division of Clinical Research, Fred Hutchinson Cancer Research Center and University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
36
|
Rafei H, Jenq RR. Microbiome-intestine cross talk during acute graft-versus-host disease. Blood 2020; 136:401-409. [PMID: 32526029 PMCID: PMC7378453 DOI: 10.1182/blood.2019000950] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-SCT) offers cure for a variety of conditions, in particular, but not limited to, hematologic malignancies. However, it can be associated with life-threatening complications, including graft-versus-host disease (GVHD) and infections, which are factors limiting its widespread use. Technical advances in the field of microbiome research have allowed for a better understanding of the microbial flora of the human intestine, as well as dissection of their interactions with the host immune system in allo-SCT and posttransplant complications. There is growing evidence that the commensal microbiome is frequently dysregulated following allo-SCT and that this dysbiosis can predispose to adverse clinical outcomes, especially including acute intestinal GVHD and reduced overall survival. In this review, we discuss the interactions between the microbiome and the components of the immune system that play a major role in the pathways leading to the inflammatory state of acute intestinal GVHD. We also discuss the microbiome-centered strategies that have been devised or are actively being investigated to improve the outcomes of allo-SCT patients in regard to acute intestinal GVHD.
Collapse
Affiliation(s)
| | - Robert R Jenq
- Department of Genomic Medicine, and
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX; and
- Cancer Prevention and Research Institute of Texas, Houston, TX
| |
Collapse
|
37
|
Xia Y. Correlation and association analyses in microbiome study integrating multiomics in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:309-491. [PMID: 32475527 DOI: 10.1016/bs.pmbts.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Correlation and association analyses are one of the most widely used statistical methods in research fields, including microbiome and integrative multiomics studies. Correlation and association have two implications: dependence and co-occurrence. Microbiome data are structured as phylogenetic tree and have several unique characteristics, including high dimensionality, compositionality, sparsity with excess zeros, and heterogeneity. These unique characteristics cause several statistical issues when analyzing microbiome data and integrating multiomics data, such as large p and small n, dependency, overdispersion, and zero-inflation. In microbiome research, on the one hand, classic correlation and association methods are still applied in real studies and used for the development of new methods; on the other hand, new methods have been developed to target statistical issues arising from unique characteristics of microbiome data. Here, we first provide a comprehensive view of classic and newly developed univariate correlation and association-based methods. We discuss the appropriateness and limitations of using classic methods and demonstrate how the newly developed methods mitigate the issues of microbiome data. Second, we emphasize that concepts of correlation and association analyses have been shifted by introducing network analysis, microbe-metabolite interactions, functional analysis, etc. Third, we introduce multivariate correlation and association-based methods, which are organized by the categories of exploratory, interpretive, and discriminatory analyses and classification methods. Fourth, we focus on the hypothesis testing of univariate and multivariate regression-based association methods, including alpha and beta diversities-based, count-based, and relative abundance (or compositional)-based association analyses. We demonstrate the characteristics and limitations of each approaches. Fifth, we introduce two specific microbiome-based methods: phylogenetic tree-based association analysis and testing for survival outcomes. Sixth, we provide an overall view of longitudinal methods in analysis of microbiome and omics data, which cover standard, static, regression-based time series methods, principal trend analysis, and newly developed univariate overdispersed and zero-inflated as well as multivariate distance/kernel-based longitudinal models. Finally, we comment on current association analysis and future direction of association analysis in microbiome and multiomics studies.
Collapse
Affiliation(s)
- Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
38
|
Pereira AZ, Vigorito AC, Almeida ADM, Candolo ADA, Silva ACL, Brandão-Anjos AEDP, Sá BLD, Souza CLSD, Castro Junior CGD, Oliveira JSRD, Barban JB, Mancilha EMB, Todaro J, Lopes LP, Macedo MCMDA, Rodrigues M, Ribeiro PC, Silva RLD, Roberto TS, Rodrigues TDCR, Colturato VAR, Paton EJDA, Barros GMN, Almeida RDS, Moreira MCR, Flowers ME. Brazilian Nutritional Consensus in Hematopoietic Stem Cell Transplantation: Graft- versus -host disease. EINSTEIN-SAO PAULO 2020; 18:eAE4799. [PMID: 32215466 PMCID: PMC7069734 DOI: 10.31744/einstein_journal/2020ae4799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
The Brazilian Consensus on Nutrition in Hematopoietic Stem Cell Transplantation: Graft- versus -host disease was approved by Sociedade Brasileira de Transplante de Medula Óssea , with the participation of 26 Brazilian hematopoietic stem cell transplantation centers. It describes the main nutritional protocols in cases of Graft- versus -host disease, the main complication of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Juliana Todaro
- Hospital Israelita Albert Einstein , São Paulo , SP , Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The microbiome is an integrated part of the human body that can modulate a variety of disease processes and affect prognosis, treatment response, complications, and outcomes. The importance of allogeneic hematopoietic cell transplantation in cancer treatment has resulted in extensive investigations on the interaction between the microbiome and this treatment modality. These investigations are beginning to lead to clinical trials of microbiome-targeted interventions. Here we review some of these discoveries and describe strategies being investigated to manipulate the microbiome for favorable outcomes, such as the proper selection and timing of antibiotics, type of diet and route of administration, probiotics, prebiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Zaker I. Schwabkey
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA,Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
40
|
Zama D, Bossù G, Leardini D, Muratore E, Biagi E, Prete A, Pession A, Masetti R. Insights into the role of intestinal microbiota in hematopoietic stem-cell transplantation. Ther Adv Hematol 2020; 11:2040620719896961. [PMID: 32010434 PMCID: PMC6974760 DOI: 10.1177/2040620719896961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota (GM) is able to modulate the human immune system. The development of novel investigation methods has provided better characterization of the GM, increasing our knowledge of the role of GM in the context of hematopoietic stem-cell transplantation (HSCT). In particular, the GM influences the development of the major complications seen after HSCT, having an impact on overall survival. In fact, this evidence highlights the possible therapeutic implications of modulation of the GM during HSCT. Insights into the complex mechanisms and functions of the GM are essential for the rational design of these therapeutics. To date, preemptive and curative approaches have been tested. The current state of understanding of the impact of the GM on HSCT, and therapies targeting the GM balance is reviewed herein.
Collapse
Affiliation(s)
- Daniele Zama
- Pediatric Oncology and Hematology Unit ‘Lalla
Seràgnoli,’ Sant’Orsola-Malpighi Hospital, University of Bologna, Via
Massarenti 11, Bologna, 40137, Italy
| | - Gianluca Bossù
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Davide Leardini
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Edoardo Muratore
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology,
University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Andrea Pession
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Riccardo Masetti
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| |
Collapse
|
41
|
Riwes M, Reddy P. Short chain fatty acids: Postbiotics/metabolites and graft versus host disease colitis. Semin Hematol 2020; 57:1-6. [DOI: 10.1053/j.seminhematol.2020.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/07/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
42
|
Severyn CJ, Brewster R, Andermann TM. Microbiota modification in hematology: still at the bench or ready for the bedside? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:303-314. [PMID: 31808861 PMCID: PMC6913456 DOI: 10.1182/hematology.2019000365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Growing evidence suggests that human microbiota likely influence diverse processes including hematopoiesis, chemotherapy metabolism, and efficacy, as well as overall survival in patients with hematologic malignancies and other cancers. Both host genetic susceptibility and host-microbiota interactions may impact cancer risk and response to treatment; however, microbiota have the potential to be uniquely modifiable and accessible targets for treatment. Here, we focus on strategies to modify microbiota composition and function in patients with cancer. First, we evaluate the use of fecal microbiota transplant to restore microbial equilibrium following perturbation by antibiotics and chemotherapy, and as a treatment of complications of hematopoietic stem cell transplantation (HSCT), such as graft-versus-host disease and colonization with multidrug-resistant organisms. We then address the potential use of both probiotics and dietary prebiotic compounds in targeted modulation of the microbiota intended to improve outcomes in hematologic diseases. With each type of therapy, we highlight the role that abnormal, or dysbiotic, microbiota play in disease, treatment efficacy, and toxicity and evaluate their potential promise as emerging strategies for microbiota manipulation in patients with hematologic malignancies and in those undergoing HSCT.
Collapse
Affiliation(s)
- Christopher J Severyn
- Division of Hematology/Oncology, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford, CA
| | - Ryan Brewster
- School of Medicine, Stanford University, Stanford, CA; and
| | - Tessa M Andermann
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
43
|
Alteration of the Intestinal Microbiota by Broad-Spectrum Antibiotic Use Correlates with the Occurrence of Intestinal Graft-versus-Host Disease. Biol Blood Marrow Transplant 2019; 25:1933-1943. [PMID: 31195137 DOI: 10.1016/j.bbmt.2019.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/27/2019] [Accepted: 06/02/2019] [Indexed: 01/09/2023]
Abstract
Patients undergoing hematopoietic stem cell transplantation (HSCT) frequently receive empiric antibiotics during the neutropenic period before engraftment. Several recent studies have shown that anaerobes in the intestine are important mediators of intestinal homeostasis, and that commensal bacteria can be potent modulators of the severity of acute graft-versus-host disease (aGVHD). However, the relationships among the type of antibiotic used during the neutropenic period, changes in the intestinal microbiota, and subsequent occurrence of aGVHD are not clear. In this study, a total of 211 patients undergoing HSCT were stratified into 3 groups: patients not treated with any antibiotics during the neutropenic period (group 1; n = 43), patients treated with cefepime only (group 2; n = 87), and patients treated with carbapenem antibiotics, defined as meropenem or prepenem with or without previous cefepime therapy (group 3; n = 81). Intestinal microbiota analyses were performed on pre- and post-HSCT stool samples, and immunophenotypic analyses were performed on pre- and post-HSCT peripheral blood samples. Among the 211 patients, 95 (45%) developed aGVHD (grade ≥II), including 54 with intestinal GVHD. The incidence of intestinal GVHD was higher in group 3 compared with group 1 and group 2 (32.1%, 11.6%, and 26.4%, respectively; P = .044). After adjusting for potentially significant variables identified by univariate analysis, multivariate analyses identified broad-spectrum antibiotic use during the neutropenic period as associated with the occurrence of intestinal GVHD (hazard ratio, 3.25; 95% confidence interval, 1.13 to 9.34; P = .029). Accordingly, loss of bacterial diversity in terms of alterations in intestinal microbiota after HSCT was observed in patients who received broad-spectrum antibiotics. Moreover, alterations in the frequencies of several intestinal bacteria phyla were associated with the occurrence of intestinal GVHD. Evaluation of circulating immune cell subsets according to type of antibiotic used during the neutropenic period revealed delayed recovery of myeloid-derived suppressor cells in the broad-spectrum antibiotic use group. Our data indicate that the use of broad-spectrum antibiotics during the neutropenic period is associated with a higher incidence of intestinal GVHD via loss of microbiome diversity. Further studies are needed to determine whether maintaining bacterial diversity can help prevent the development of aGVHD.
Collapse
|
44
|
Abstract
Graft-versus-host disease (GvHD) is a common complication of hematopoietic cell transplantation that negatively impacts quality of life in recipients and can be fatal. Animal experiments and human studies provide compelling evidence that the gut microbiota is associated with risk of GvHD, but the nature of this relationship remains unclear. If the gut microbiota is a driver of GvHD pathogenesis, then manipulation of the gut microbiota offers one promising avenue for preventing or treating this common condition, and antibiotic stewardship efforts in transplantation may help preserve the indigenous microbiota and modulate immune responses to benefit the host.
Collapse
|
45
|
Abstract
IMPACT STATEMENT This review describes a growing body of research on relationships between the microbiome and eye disease. Several groups have investigated the microbiota of the ocular surface; dysregulation of this delicate ecosystem has been associated with a variety of pro-inflammatory states. Other research has explored the effects of the gastrointestinal microbiota on ophthalmic diseases. Characterizing the ways these microbiotas influence ophthalmic homeostasis and pathogenesis may lead to research on new techniques for managing ophthalmic disease.
Collapse
Affiliation(s)
- Adam D Baim
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Asadolah Movahedan
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Asim V Farooq
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
46
|
Köhler N, Zeiser R. Intestinal Microbiota Influence Immune Tolerance Post Allogeneic Hematopoietic Cell Transplantation and Intestinal GVHD. Front Immunol 2019; 9:3179. [PMID: 30705680 PMCID: PMC6344415 DOI: 10.3389/fimmu.2018.03179] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Under normal conditions our intestines are inhabited by trillions of diverse microorganisms composing the intestinal microbiota, which are mostly non-pathogenic anaerobic commensal bacteria vital for the maintenance of immune homeostasis. The composition and diversity of the intestinal microbiota can be disturbed by various factors including diet, antibiotics, and exposure to intestinal pathogens. Alterations of the intestinal microbiota contributes to many diseases including graft-vs.-host disease (GVHD), a life threatening complication that occurs after allogeneic hematopoietic cell transplantation (allo-HCT) caused by an allogeneic reaction of donor T cells against recipient target tissues. Intestinal GVHD is most difficult to treat and connected to a high mortality. Due to recent advances in high-throughput sequencing technology, composition of the microbiome during allo-HCT has been characterized, and some common patterns have been identified. Metabolites produced by intestinal bacteria were shown to promote intestinal tissue homeostasis and immune tolerance post-allo-HCT. In this review, we discuss the role of the intestinal microbiota and metabolites in the context of acute GVHD. Moreover, novel therapeutic approaches that aim at protecting or regenerating intestinal cell populations will be highlighted.
Collapse
Affiliation(s)
- Natalie Köhler
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Mori Y, Yoshimoto G, Nishida R, Sugio T, Miyawaki K, Shima T, Nagasaki Y, Miyake N, Harada Y, Kunisaki Y, Kamezaki K, Numata A, Kato K, Shiratsuchi M, Maeda T, Takenaka K, Iwasaki H, Shimono N, Akashi K, Miyamoto T. Gastrointestinal Graft-versus-Host Disease Is a Risk Factor for Postengraftment Bloodstream Infection in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Biol Blood Marrow Transplant 2018; 24:2302-2309. [PMID: 29909153 DOI: 10.1016/j.bbmt.2018.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/04/2018] [Indexed: 01/13/2023]
Abstract
Bloodstream infection (BSI) is a well-known cause of morbidity and mortality in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients. Here, we conducted a retrospective study to assess the morbidity, etiology, risk factors, and outcomes of BSI in the postengraftment period (PE-BSI) after allo-HSCT. Forty-three of 316 patients (13.6%) developed 57 PE-BSI episodes, in which 62 pathogens were isolated: Gram-positive bacteria, gram-negative bacteria, and fungi, respectively, accounted for 54.8%, 35.5%, and 9.7% of the isolates. Multivariate analysis revealed methylprednisolone use for graft-versus-host disease (GVHD) prophylaxis (odds ratio [OR], 6.49; 95% confidence interval [CI], 1.49 to 28.2; P = .013) and acute gastrointestinal GVHD (GI-GVHD) (OR, 8.82; 95% CI, 3.99 to 19.5; P < .0001) as risk factors for developing PE-BSI. This finding suggested that GI-GVHD increases the risk of bacterial translocation and subsequent septicemia. Moreover, among patients with GI-GVHD, insufficient response to corticosteroids, presumably related to an intestinal dysbiosis, significantly correlated with this complication. Patients with PE-BSI presented worse outcome compared with those without (3-year overall survival, 47.0% versus 18.6%; P < .001). Close microbiologic monitoring for BSIs and minimizing intestinal dysbiosis may be crucial to break the vicious cycle between GI-GVHD and bacteremia and to improve transplant outcomes especially in patients who require additional immunosuppressants.
Collapse
Affiliation(s)
- Yasuo Mori
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Goichi Yoshimoto
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ruriko Nishida
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeshi Sugio
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kohta Miyawaki
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiro Shima
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoji Nagasaki
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Noriko Miyake
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yukiko Harada
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuya Kunisaki
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kenjiro Kamezaki
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Akihiko Numata
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koji Kato
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Motoaki Shiratsuchi
- Medicine and Bioregulatory Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Katsuto Takenaka
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiromi Iwasaki
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuyuki Shimono
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
48
|
Andermann TM, Peled JU, Ho C, Reddy P, Riches M, Storb R, Teshima T, van den Brink MRM, Alousi A, Balderman S, Chiusolo P, Clark WB, Holler E, Howard A, Kean LS, Koh AY, McCarthy PL, McCarty JM, Mohty M, Nakamura R, Rezvani K, Segal BH, Shaw BE, Shpall EJ, Sung AD, Weber D, Whangbo J, Wingard JR, Wood WA, Perales MA, Jenq RR, Bhatt AS. The Microbiome and Hematopoietic Cell Transplantation: Past, Present, and Future. Biol Blood Marrow Transplant 2018; 24:1322-1340. [PMID: 29471034 DOI: 10.1016/j.bbmt.2018.02.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Tessa M Andermann
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Christine Ho
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Pavan Reddy
- Department of Medicine, University of Michigan Cancer Center, Ann Arbor, Michigan
| | - Marcie Riches
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Marcel R M van den Brink
- Immunology Program, Sloan Kettering Institute, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amin Alousi
- Multidiscipline GVHD Clinic and Research Program, Department of Stem Cell Transplant and Cellular Therapies, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sophia Balderman
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrizia Chiusolo
- Hematology Department, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - William B Clark
- Bone Marrow Transplant Program, Division of Hematology/Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ernst Holler
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Leslie S Kean
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andrew Y Koh
- Divisions of Hematology/Oncology and Infectious Diseases, Departments of Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip L McCarthy
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - John M McCarty
- Bone Marrow Transplantation Program, Virginia Commonwealth University Massey Cancer, Richmond, Virginia
| | - Mohamad Mohty
- Clinical Hematology and Cellular Therapy Department, Hôpital Saint-Antoine, AP-HP, Paris, France; Sorbonne Université, Paris, France; INSERM UMRs U938, Paris, France
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Katy Rezvani
- Section of Cellular Therapy, Good Manufacturing Practices Facility, Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brahm H Segal
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York; Division of Infectious Diseases, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Bronwen E Shaw
- Center for International Blood and Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth J Shpall
- Cell Therapy Laboratory and Cord Blood Bank, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Daniela Weber
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Jennifer Whangbo
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - John R Wingard
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Florida
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ami S Bhatt
- Department of Genetics and Division of Hematology, Department of Medicine, Stanford University, Stanford, California.
| | | |
Collapse
|
49
|
Postoperative symbiotic in patients with head and neck cancer: a double-blind randomised trial. Br J Nutr 2017; 119:190-195. [PMID: 29277158 DOI: 10.1017/s0007114517003403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies on the 'gut origin of sepsis' have suggested that stressful insults, such as surgery, can affect intestinal permeability, leading to bacterial translocation. Symbiotics have been reported to be able to improve gut permeability and modulate the immunologic system, thereby decreasing postoperative complications. Therefore we aimed to evaluate the postoperative use of symbiotics in head and neck cancer surgical patients for intestinal function and permeability, as well as the postoperative outcomes. Patients were double-blind randomised into the symbiotic (n 18) or the control group (n 18). Samples were administered twice a day by nasoenteric tube, starting on the 1st postoperative day until the 5th to 7th day, and comprised 109 colony-forming units/ml each of Lactobacillus paracasei, L. rhamnosus, L. acidophilus, and Bifidobacterium lactis plus 6 g of fructo-oligosaccharides, or a placebo (6 g of maltodextrin). Intestinal function (day of first evacuation, total stool episodes, stool consistency, gastrointestinal tract symptoms and gut permeability by diamine oxidase (DAO) enzyme) and postoperative complications (infectious and non-infectious) were assessed. Results of comparison of the pre- and postoperative periods showed that the groups were similar for all outcome variables. In all, twelve patients had complications in the symbiotic group v. nine in the control group (P>0·05), and the preoperative-postoperative DAO activity ranged from 28·5 (sd 15·4) to 32·7 (sd 11·0) ng/ml in the symbiotic group and 35·2 (sd 17·7) to 34·1 (sd 12·0) ng/ml in the control group (P>0·05). In conclusion, postoperative symbiotics did not impact on intestinal function and postoperative outcomes of head and neck surgical patients.
Collapse
|
50
|
Galloway-Peña J, Brumlow C, Shelburne S. Impact of the Microbiota on Bacterial Infections during Cancer Treatment. Trends Microbiol 2017; 25:992-1004. [PMID: 28728967 DOI: 10.1016/j.tim.2017.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/06/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
Abstract
Patients being treated for cancer are at high risk for infectious complications, generally due to colonizing organisms that gain access to sterile sites via disrupted epithelial barriers. There is an emerging understanding that the ability of bacterial pathogens, including multidrug-resistant organisms, to colonize and subsequently infect humans is largely dependent on protective bacterial species present in the microbiome. Thus, herein we review recent studies demonstrating strong correlations between the microbiome of the oncology patient and infections occurring during chemotherapy. An increased knowledge of the interplay between potential pathogens, protective commensals, and the host immune system may facilitate the development of novel biomarkers or therapeutics that could help ameliorate the toll that infections take during the treatment of cancer.
Collapse
Affiliation(s)
- Jessica Galloway-Peña
- The Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chelcy Brumlow
- The Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel Shelburne
- The Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|