1
|
Wang YQ, Ma WX, Kong LX, Zhang H, Yuan PC, Qu WM, Liu CF, Huang ZL. Ambient chemical and physical approaches for the modulation of sleep and wakefulness. Sleep Med Rev 2025; 79:102015. [PMID: 39447526 DOI: 10.1016/j.smrv.2024.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Humans spend a third of their lives asleep. While the sleep-wake behaviors are primarily modulated by homeostasis and circadian rhythm, several ambient chemical and physical factors, including light, sound, odor, vibration, temperature, electromagnetic radiation, and ultrasound, also affect sleep and wakefulness. Light at different wavelengths has different effects on sleep and wakefulness. Sound not only promotes but also suppresses sleep; this effect is mediated by certain nuclei, including the pedunculopontine nucleus and inferior colliculus. Certain sleep-promoting odorants regulate sleep through the involvement of the olfactory bulb and olfactory tubercle. In addition, vibrations may induce sleep through the vestibular system. A modest increase in ambient temperature leads to an increase in sleep duration through the involvement of the preoptic area. Electromagnetic radiation has a dual effect on sleep-wake behaviors. The stimulation produced by the ambient chemical and physical factors activates the peripheral sensory system, which converts the chemical and physical stimuli into nerve impulses. This signal is then transmitted to the central nervous system, including several nuclei associated with the modulation of sleep-wake behaviors. This review summarizes the effects of ambient chemical and physical factors on the regulation of sleep and wakefulness, as well as the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Shahsavar P, Ghazvineh S, Raoufy MR. From nasal respiration to brain dynamic. Rev Neurosci 2024; 35:639-650. [PMID: 38579456 DOI: 10.1515/revneuro-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
While breathing is a vital, involuntary physiological function, the mode of respiration, particularly nasal breathing, exerts a profound influence on brain activity and cognitive processes. This review synthesizes existing research on the interactions between nasal respiration and the entrainment of oscillations across brain regions involved in cognition. The rhythmic activation of olfactory sensory neurons during nasal respiration is linked to oscillations in widespread brain regions, including the prefrontal cortex, entorhinal cortex, hippocampus, amygdala, and parietal cortex, as well as the piriform cortex. The phase-locking of neural oscillations to the respiratory cycle, through nasal breathing, enhances brain inter-regional communication and is associated with cognitive abilities like memory. Understanding the nasal breathing impact on brain networks offers opportunities to explore novel methods for targeting the olfactory pathway as a means to enhance emotional and cognitive functions.
Collapse
Affiliation(s)
- Payam Shahsavar
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
- Faculty of Medical Sciences, 41616 Institute for Brain Sciences and Cognition, Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
3
|
Hawkins SJ, Gärtner Y, Offner T, Weiss L, Maiello G, Hassenklöver T, Manzini I. The olfactory network of larval Xenopus laevis regenerates accurately after olfactory nerve transection. Eur J Neurosci 2024; 60:3719-3741. [PMID: 38758670 DOI: 10.1111/ejn.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/19/2024]
Abstract
Across vertebrate species, the olfactory epithelium (OE) exhibits the uncommon feature of lifelong neuronal turnover. Epithelial stem cells give rise to new neurons that can adequately replace dying olfactory receptor neurons (ORNs) during developmental and adult phases and after lesions. To relay olfactory information from the environment to the brain, the axons of the renewed ORNs must reconnect with the olfactory bulb (OB). In Xenopus laevis larvae, we have previously shown that this process occurs between 3 and 7 weeks after olfactory nerve (ON) transection. In the present study, we show that after 7 weeks of recovery from ON transection, two functionally and spatially distinct glomerular clusters are reformed in the OB, akin to those found in non-transected larvae. We also show that the same odourant response tuning profiles observed in the OB of non-transected larvae are again present after 7 weeks of recovery. Next, we show that characteristic odour-guided behaviour disappears after ON transection but recovers after 7-9 weeks of recovery. Together, our findings demonstrate that the olfactory system of larval X. laevis regenerates with high accuracy after ON transection, leading to the recovery of odour-guided behaviour.
Collapse
Affiliation(s)
- Sara J Hawkins
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Yvonne Gärtner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Guido Maiello
- Department of Experimental Psychology, Justus Liebig University Gießen, Gießen, Germany
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| |
Collapse
|
4
|
Rufenacht KE, Asson AJ, Hossain K, Santoro SW. The influence of olfactory experience on the birthrates of olfactory sensory neurons with specific odorant receptor identities. Genesis 2024; 62:e23611. [PMID: 38888221 PMCID: PMC11189617 DOI: 10.1002/dvg.23611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Olfactory sensory neurons (OSNs) are one of a few neuron types that are generated continuously throughout life in mammals. The persistence of olfactory sensory neurogenesis beyond early development has long been thought to function simply to replace neurons that are lost or damaged through exposure to environmental insults. The possibility that olfactory sensory neurogenesis may also serve an adaptive function has received relatively little consideration, largely due to the assumption that the generation of new OSNs is stochastic with respect to OSN subtype, as defined by the single odorant receptor gene that each neural precursor stochastically chooses for expression out of hundreds of possibilities. Accordingly, the relative birthrates of different OSN subtypes are predicted to be constant and impervious to olfactory experience. This assumption has been called into question, however, by evidence that the birthrates of specific OSN subtypes can be selectively altered by manipulating olfactory experience through olfactory deprivation, enrichment, and conditioning paradigms. Moreover, studies of recovery of the OSN population following injury provide further evidence that olfactory sensory neurogenesis may not be strictly stochastic with respect to subtype. Here we review this evidence and consider mechanistic and functional implications of the prospect that specific olfactory experiences can regulate olfactory sensory neurogenesis rates in a subtype-selective manner.
Collapse
Affiliation(s)
- Karlin E Rufenacht
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexa J Asson
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kawsar Hossain
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stephen W Santoro
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
5
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
6
|
Poulopoulos A, Davis P, Brandenburg C, Itoh Y, Galazo MJ, Greig LC, Romanowski AJ, Budnik B, Macklis JD. Symmetry in levels of axon-axon homophilic adhesion establishes topography in the corpus callosum and development of connectivity between brain hemispheres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587108. [PMID: 38585721 PMCID: PMC10996634 DOI: 10.1101/2024.03.28.587108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Specific and highly diverse connectivity between functionally specialized regions of the nervous system is controlled at multiple scales, from anatomically organized connectivity following macroscopic axon tracts to individual axon target-finding and synapse formation. Identifying mechanisms that enable entire subpopulations of related neurons to project their axons with regional specificity within stereotyped tracts to form appropriate long-range connectivity is key to understanding brain development, organization, and function. Here, we investigate how axons of the cerebral cortex form precise connections between the two cortical hemispheres via the corpus callosum. We identify topographic principles of the developing trans-hemispheric callosal tract that emerge through intrinsic guidance executed by growing axons in the corpus callosum within the first postnatal week in mice. Using micro-transplantation of regionally distinct neurons, subtype-specific growth cone purification, subcellular proteomics, and in utero gene manipulation, we investigate guidance mechanisms of transhemispheric axons. We find that adhesion molecule levels instruct tract topography and target field guidance. We propose a model in which transcallosal axons in the developing brain perform a "handshake" that is guided through co-fasciculation with symmetric contralateral axons, resulting in the stereotyped homotopic connectivity between the brain's hemispheres.
Collapse
Affiliation(s)
- Alexandros Poulopoulos
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD, USA
| | - Patrick Davis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Cheryl Brandenburg
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Maria J. Galazo
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Luciano C. Greig
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Andrea J. Romanowski
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD, USA
| | - Bogdan Budnik
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
7
|
Mori K, Sakano H. Circuit formation and sensory perception in the mouse olfactory system. Front Neural Circuits 2024; 18:1342576. [PMID: 38434487 PMCID: PMC10904487 DOI: 10.3389/fncir.2024.1342576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
In the mouse olfactory system, odor information is converted to a topographic map of activated glomeruli in the olfactory bulb (OB). Although the arrangement of glomeruli is genetically determined, the glomerular structure is plastic and can be modified by environmental stimuli. If the pups are exposed to a particular odorant, responding glomeruli become larger recruiting the dendrites of connecting projection neurons and interneurons. This imprinting not only increases the sensitivity to the exposed odor, but also imposes the positive quality on imprinted memory. External odor information represented as an odor map in the OB is transmitted to the olfactory cortex (OC) and amygdala for decision making to elicit emotional and behavioral outputs using two distinct neural pathways, innate and learned. Innate olfactory circuits start to work right after birth, whereas learned circuits become functional later on. In this paper, the recent progress will be summarized in the study of olfactory circuit formation and odor perception in mice. We will also propose new hypotheses on the timing and gating of olfactory circuit activity in relation to the respiration cycle.
Collapse
Affiliation(s)
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
8
|
Mallick A, Dacks AM, Gaudry Q. Olfactory Critical Periods: How Odor Exposure Shapes the Developing Brain in Mice and Flies. BIOLOGY 2024; 13:94. [PMID: 38392312 PMCID: PMC10886215 DOI: 10.3390/biology13020094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Neural networks have an extensive ability to change in response to environmental stimuli. This flexibility peaks during restricted windows of time early in life called critical periods. The ubiquitous occurrence of this form of plasticity across sensory modalities and phyla speaks to the importance of critical periods for proper neural development and function. Extensive investigation into visual critical periods has advanced our knowledge of the molecular events and key processes that underlie the impact of early-life experience on neuronal plasticity. However, despite the importance of olfaction for the overall survival of an organism, the cellular and molecular basis of olfactory critical periods have not garnered extensive study compared to visual critical periods. Recent work providing a comprehensive mapping of the highly organized olfactory neuropil and its development has in turn attracted a growing interest in how these circuits undergo plasticity during critical periods. Here, we perform a comparative review of olfactory critical periods in fruit flies and mice to provide novel insight into the importance of early odor exposure in shaping neural circuits and highlighting mechanisms found across sensory modalities.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Usui N. Possible roles of deep cortical neurons and oligodendrocytes in the neural basis of human sociality. Anat Sci Int 2024; 99:34-47. [PMID: 38010534 PMCID: PMC10771383 DOI: 10.1007/s12565-023-00747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Sociality is an instinctive property of organisms that live in relation to others and is a complex characteristic of higher order brain functions. However, the evolution of the human brain to acquire higher order brain functions, such as sociality, and the neural basis for executing these functions and their control mechanisms are largely unknown. Several studies have attempted to evaluate how human sociality was acquired during the course of evolution and the mechanisms controlling sociality from a neurodevelopment viewpoint. This review discusses these findings in the context of human brain evolution and the pathophysiology of autism spectrum disorder (ASD). Comparative genomic studies of postmortem primate brains have demonstrated human-specific regulatory mechanisms underlying higher order brain functions, providing evidence for the contribution of oligodendrocytes to human brain function. Functional analyses of the causative genes of ASD in animal models have demonstrated that the neural basis of social behavior is associated with layer 6 (L6) of the neocortex and oligodendrocytes. These findings demonstrate that both neurons and oligodendrocytes contribute to the neural basis and molecular mechanisms underlying human brain evolution and social functioning. This review provides novel insights into sociability and the corresponding neural bases of brain disorders and evolution.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| |
Collapse
|
10
|
Martinez AP, Chung AC, Huang S, Bisogni AJ, Lin Y, Cao Y, Williams EO, Kim JY, Yang JY, Lin DM. Pcdh19 mediates olfactory sensory neuron coalescence during postnatal stages and regeneration. iScience 2023; 26:108220. [PMID: 37965156 PMCID: PMC10641745 DOI: 10.1016/j.isci.2023.108220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The mouse olfactory system regenerates constantly throughout life. While genes critical for the initial projection of olfactory sensory neurons (OSNs) to the olfactory bulb have been identified, what genes are important for maintaining the olfactory map during regeneration are still unknown. Here we show a mutation in Protocadherin 19 (Pcdh19), a cell adhesion molecule and member of the cadherin superfamily, leads to defects in OSN coalescence during regeneration. Surprisingly, lateral glomeruli were more affected and males in particular showed a more severe phenotype. Single cell analysis unexpectedly showed OSNs expressing the MOR28 odorant receptor could be subdivided into two major clusters. We showed that at least one protocadherin is differentially expressed between OSNs coalescing on the medial and lateral glomeruli. Moreover, females expressed a slightly different complement of genes from males. These features may explain the differential effects of mutating Pcdh19 on medial and lateral glomeruli in males and females.
Collapse
Affiliation(s)
- Andrew P. Martinez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Alexander C. Chung
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Adam J. Bisogni
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Yingxin Lin
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Yue Cao
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Eric O. Williams
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Jin Y. Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jean Y.H. Yang
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - David M. Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
11
|
Alwood JS, Mulavara AP, Iyer J, Mhatre SD, Rosi S, Shelhamer M, Davis C, Jones CW, Mao XW, Desai RI, Whitmire AM, Williams TJ. Circuits and Biomarkers of the Central Nervous System Relating to Astronaut Performance: Summary Report for a NASA-Sponsored Technical Interchange Meeting. Life (Basel) 2023; 13:1852. [PMID: 37763256 PMCID: PMC10532466 DOI: 10.3390/life13091852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Biomarkers, ranging from molecules to behavior, can be used to identify thresholds beyond which performance of mission tasks may be compromised and could potentially trigger the activation of countermeasures. Identification of homologous brain regions and/or neural circuits related to operational performance may allow for translational studies between species. Three discussion groups were directed to use operationally relevant performance tasks as a driver when identifying biomarkers and brain regions or circuits for selected constructs. Here we summarize small-group discussions in tables of circuits and biomarkers categorized by (a) sensorimotor, (b) behavioral medicine and (c) integrated approaches (e.g., physiological responses). In total, hundreds of biomarkers have been identified and are summarized herein by the respective group leads. We hope the meeting proceedings become a rich resource for NASA's Human Research Program (HRP) and the community of researchers.
Collapse
Affiliation(s)
| | | | - Janani Iyer
- Universities Space Research Association (USRA), Moffett Field, CA 94035, USA
| | | | - Susanna Rosi
- Department of Physical Therapy & Rehabilitation Science, University of California, San Francisco, CA 94110, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94110, USA
| | - Mark Shelhamer
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Catherine Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20814, USA
| | - Christopher W. Jones
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Rajeev I. Desai
- Integrative Neurochemistry Laboratory, Behavioral Biology Program, McLean Hospital-Harvard Medical School, Belmont, MA 02478, USA
| | | | | |
Collapse
|
12
|
Nakama N, Usui N, Doi M, Shimada S. Early life stress impairs brain and mental development during childhood increasing the risk of developing psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110783. [PMID: 37149280 DOI: 10.1016/j.pnpbp.2023.110783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
In recent years, it has become known that stress in childhood, called early life stress (ELS), affects the mental health of children, adolescents, and adults. Child maltreatment (CM) is an inappropriate form of childcare that interferes with children's normal brain and mind development. Previous studies have reported that CM severely affects brain development and function. For example, ELS causes brain vulnerability and increases the risk of developing psychiatric disorders. In addition, it is known that the different types and timing of abuse have different effects on the brain. Epidemiological and clinical studies are being conducted to understand the mechanism underlying abuse on a child's mental health and appropriate brain development; however, they are not fully understood. Therefore, studies using animal models, as well as humans, have been conducted to better understand the effects of CM. In this review, we discuss the effects of comparing previous findings on different types of CM in human and animal models. However, it should be noted that there are differences between animal models and humans such as genetic polymorphism and susceptibility to stress. Our review provides the latest insights into the negative effects of CM on children's development and on psychiatric disorders in adulthood.
Collapse
Affiliation(s)
- Nanako Nakama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; CoMIT Omics Center, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan; Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan.
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
13
|
López M, Fernández-Real JM, Tomarev SI. Obesity wars: may the smell be with you. Am J Physiol Endocrinol Metab 2023; 324:E569-E576. [PMID: 37166265 PMCID: PMC10259866 DOI: 10.1152/ajpendo.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Classically, the regulation of energy balance has been based on central and peripheral mechanisms sensing energy, nutrients, metabolites, and hormonal cues. Several cellular mechanisms at central level, such as hypothalamic AMP-activated protein kinase (AMPK), integrate this information to elicit counterregulatory responses that control feeding, energy expenditure, and glucose homeostasis, among other processes. Recent data have added more complexity to the homeostatic regulation of metabolism by introducing, for example, the key role of "traditional" senses and sensorial information in this complicated network. In this regard, current evidence is showing that olfaction plays a key and bidirectional role in energy homeostasis. Although nutritional status dynamically and profoundly impacts olfactory sensitivity, the sense of smell is involved in food appreciation and selection, as well as in brown adipose tissue (BAT) thermogenesis and substrate utilization, with some newly described actors, such as olfactomedin 2 (OLFM2), likely playing a major role. Thus, olfactory inputs are contributing to the regulation of both sides of the energy balance equation, namely, feeding and energy expenditure (EE), as well as whole body metabolism. Here, we will review the current knowledge and advances about the role of olfaction in the regulation of energy homeostasis.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
- Service of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IDIBGI), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Stanislav I Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
14
|
Breau MA, Trembleau A. Chemical and mechanical control of axon fasciculation and defasciculation. Semin Cell Dev Biol 2023; 140:72-81. [PMID: 35810068 DOI: 10.1016/j.semcdb.2022.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
Neural networks are constructed through the development of robust axonal projections from individual neurons, which ultimately establish connections with their targets. In most animals, developing axons assemble in bundles to navigate collectively across various areas within the central nervous system or the periphery, before they separate from these bundles in order to find their specific targets. These processes, called fasciculation and defasciculation respectively, were thought for many years to be controlled chemically: while guidance cues may attract or repulse axonal growth cones, adhesion molecules expressed at the surface of axons mediate their fasciculation. Recently, an additional non-chemical parameter, the mechanical longitudinal tension of axons, turned out to play a role in axon fasciculation and defasciculation, through zippering and unzippering of axon shafts. In this review, we present an integrated view of the currently known chemical and mechanical control of axon:axon dynamic interactions. We highlight the facts that the decision to cross or not to cross another axon depends on a combination of chemical, mechanical and geometrical parameters, and that the decision to fasciculate/defasciculate through zippering/unzippering relies on the balance between axon:axon adhesion and their mechanical tension. Finally, we speculate about possible functional implications of zippering-dependent axon shaft fasciculation, in the collective migration of axons, and in the sorting of subpopulations of axons.
Collapse
Affiliation(s)
- Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR 7622), Institut de Biologie Paris Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Alain Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France.
| |
Collapse
|
15
|
Fukuda N, Fukuda T, Percipalle P, Oda K, Takei N, Czaplinski K, Touhara K, Yoshihara Y, Sasaoka T. Axonal mRNA binding of hnRNP A/B is crucial for axon targeting and maturation of olfactory sensory neurons. Cell Rep 2023; 42:112398. [PMID: 37083330 DOI: 10.1016/j.celrep.2023.112398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.
Collapse
Affiliation(s)
- Nanaho Fukuda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Tomoyuki Fukuda
- Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, UAE; Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Kanako Oda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Nobuyuki Takei
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Kazushige Touhara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Toshikuni Sasaoka
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
16
|
Amos C, Fox MA, Su J. Collagen XIX is required for pheromone recognition and glutamatergic synapse formation in mouse accessory olfactory bulb. Front Cell Neurosci 2023; 17:1157577. [PMID: 37091919 PMCID: PMC10113670 DOI: 10.3389/fncel.2023.1157577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
In mammals, the accessory olfactory bulb (AOB) receives input from vomeronasal sensory neurons (VSN) which detect pheromones, chemical cues released by animals to regulate the physiology or behaviors of other animals of the same species. Cytoarchitecturally, cells within the AOB are segregated into a glomerular layer (GL), mitral cell layer (MCL), and granule cell layer (GCL). While the cells and circuitry of these layers has been well studied, the molecular mechanism underlying the assembly of such circuitry in the mouse AOB remains unclear. With the goal of identifying synaptogenic mechanisms in AOB, our attention was drawn to Collagen XIX, a non-fibrillar collagen generated by neurons in the mammalian telencephalon that has previously been shown to regulate the assembly of synapses. Here, we used both a targeted mouse mutant that lacks Collagen XIX globally and a conditional allele allowing for cell-specific deletion of this collagen to test if the loss of Collagen XIX causes impaired synaptogenesis in the mouse AOB. These analyses not only revealed defects in excitatory synapse distribution in these Collagen XIX-deficient mutants, but also showed that these mutant mice exhibit altered behavioral responses to pheromones. Although this collagen has been demonstrated to play synaptogenic roles in the telencephalon, those roles are at perisomatic inhibitory synapses, results here are the first to demonstrate the function of this unconventional collagen in glutamatergic synapse formation.
Collapse
Affiliation(s)
- Chase Amos
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Jianmin Su
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
17
|
Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs. J Neurosci 2023; 43:28-55. [PMID: 36446587 PMCID: PMC9838713 DOI: 10.1523/jneurosci.0884-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Developing neurons must meet core molecular, cellular, and temporal requirements to ensure the correct formation of synapses, resulting in functional circuits. However, because of the vast diversity in neuronal class and function, it is unclear whether or not all neurons use the same organizational mechanisms to form synaptic connections and achieve functional and morphologic maturation. Moreover, it remains unknown whether neurons united in a common goal and comprising the same sensory circuit develop on similar timescales and use identical molecular approaches to ensure the formation of the correct number of synapses. To begin to answer these questions, we took advantage of the Drosophila antennal lobe (AL), a model olfactory circuit with remarkable genetic access and synapse-level resolution. Using tissue-specific genetic labeling of active zones, we performed a quantitative analysis of synapse formation in multiple classes of neurons of both sexes throughout development and adulthood. We found that olfactory receptor neurons (ORNs), projection neurons (PNs), and local interneurons (LNs) each have unique time courses of synaptic development, addition, and refinement, demonstrating that each class follows a distinct developmental program. This raised the possibility that these classes may also have distinct molecular requirements for synapse formation. We genetically altered neuronal activity in each neuronal subtype and observed differing effects on synapse number based on the neuronal class examined. Silencing neuronal activity in ORNs, PNs, and LNs impaired synaptic development but only in ORNs did enhancing neuronal activity influence synapse formation. ORNs and LNs demonstrated similar impairment of synaptic development with enhanced activity of a master kinase, GSK-3β, suggesting that neuronal activity and GSK-3β kinase activity function in a common pathway. ORNs also, however, demonstrated impaired synaptic development with GSK-3β loss-of-function, suggesting additional activity-independent roles in development. Ultimately, our results suggest that the requirements for synaptic development are not uniform across all neuronal classes with considerable diversity existing in both their developmental time frames and molecular requirements. These findings provide novel insights into the mechanisms of synaptic development and lay the foundation for future work determining their underlying etiologies.SIGNIFICANCE STATEMENT Distinct olfactory neuron classes in Drosophila develop a mature synaptic complement over unique timelines and using distinct activity-dependent and molecular programs, despite having the same generalized goal of olfactory sensation.
Collapse
|
18
|
Fang A, Petentler K, Price A, Malloy S, Peterson M, Maddera L, Russell J, Treese M, Li H, Wang Y, McKinney S, Perera A, Yu CR. Identification and Localization of Cell Types in the Mouse Olfactory Bulb Using Slide-SeqV2. Methods Mol Biol 2023; 2710:171-183. [PMID: 37688732 PMCID: PMC11061798 DOI: 10.1007/978-1-0716-3425-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Spatial transcriptomics maps RNA molecules to the location in a tissue where they are expressed. Here we document the use of Slide-SeqV2 to visualize gene expression in the mouse olfactory bulb (OB). This approach relies on spatially identified beads to locate and quantify individual transcripts. The expression profiles associated with the beads are used to identify and localize individual cell types in an unbiased manner. We demonstrate the various cell types and subtypes with distinct spatial locations in the olfactory bulb that are identified using Slide-SeqV2.
Collapse
Affiliation(s)
- Ai Fang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Andrew Price
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Seth Malloy
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Lucinda Maddera
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - McKenzie Treese
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - C Ron Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
19
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Chen HC, Ma YZ, Cao JX, Zhang YS, Zhang L, Gao LP, Jing YH. Synergistic effects of hIAPP and Aβ 1-42 impaired the olfactory function associated with the decline of adult neurogenesis in SVZ. Neuropeptides 2022; 96:102268. [PMID: 35841876 DOI: 10.1016/j.npep.2022.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
According to many in the field,the prevalence of Alzheimer's disease (AD) in type II diabetes (T2DM) populations is considerably higher than that in the normal population. Human islet amyloid polypeptide (hIAPP) is considered to be a common risk factor for T2DM and AD. Preliminary observations around T2DM animal model show that the decrease of adult neural stem cells (NSCs) in the subventricular zone (SVZ) is accompanied by olfactory dysfunction. Furthermore, impaired olfactory function could serve as to an early predictor of neurodegeneration,which is associated with cognitive impairment. However, the synergistic effects between hIAPP and amyloid-beta (Aβ) 1-42 in the brain and the neurodegeneration remains to be further clarified. In this study, olfactory capacity, synaptic density, status of NSC in SVZ, and status of newborn neurons in olfactory bulb (OB) were assessed 6 months after stereotactic injection of oligomer Aβ1-42 into the dens gyrus (DG) of hIAPP-/+ mice or wild-type homogenous mice. Our results set out that Aβ42 and amylin co-localized into OB and raised Aβ42 deposition in hIAPP-/+ mice compared with wild-type brood mice. In addition, 6 months after injection of Aβ1-42 in hIAPP-/+ mice, these mice showed increased olfactory dysfunction, significant loss of synapses, depletion of NSC in SVZ, and impaired cell renewal in OB. Our present study suggested that the synergistic effects between hIAPP and Aβ1-42 impairs olfactory function and was associated with decreased neurogenesis in adults with SVZ.
Collapse
Affiliation(s)
- Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Lu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
21
|
Expression pattern of Stomatin-domain proteins in the peripheral olfactory system. Sci Rep 2022; 12:11447. [PMID: 35794236 PMCID: PMC9259621 DOI: 10.1038/s41598-022-15572-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications.
Collapse
|
22
|
Schubert C, Schulz K, Träger S, Plath AL, Omriouate A, Rosenkranz SC, Morellini F, Friese MA, Hirnet D. Neuronal Adenosine A1 Receptor is Critical for Olfactory Function but Unable to Attenuate Olfactory Dysfunction in Neuroinflammation. Front Cell Neurosci 2022; 16:912030. [PMID: 35846561 PMCID: PMC9279574 DOI: 10.3389/fncel.2022.912030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adenine nucleotides, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), as well as the nucleoside adenosine are important modulators of neuronal function by engaging P1 and P2 purinergic receptors. In mitral cells, signaling of the G protein-coupled P1 receptor adenosine 1 receptor (A1R) affects the olfactory sensory pathway by regulating high voltage-activated calcium channels and two-pore domain potassium (K2P) channels. The inflammation of the central nervous system (CNS) impairs the olfactory function and gives rise to large amounts of extracellular ATP and adenosine, which act as pro-inflammatory and anti-inflammatory mediators, respectively. However, it is unclear whether neuronal A1R in the olfactory bulb modulates the sensory function and how this is impacted by inflammation. Here, we show that signaling via neuronal A1R is important for the physiological olfactory function, while it cannot counteract inflammation-induced hyperexcitability and olfactory deficit. Using neuron-specific A1R-deficient mice in patch-clamp recordings, we found that adenosine modulates spontaneous dendro-dendritic signaling in mitral and granule cells via A1R. Furthermore, neuronal A1R deficiency resulted in olfactory dysfunction in two separate olfactory tests. In mice with experimental autoimmune encephalomyelitis (EAE), we detected immune cell infiltration and microglia activation in the olfactory bulb as well as hyperexcitability of mitral cells and olfactory dysfunction. However, neuron-specific A1R activity was unable to attenuate glutamate excitotoxicity in the primary olfactory bulb neurons in vitro or EAE-induced olfactory dysfunction and disease severity in vivo. Together, we demonstrate that A1R modulates the dendro-dendritic inhibition (DDI) at the site of mitral and granule cells and impacts the processing of the olfactory sensory information, while A1R activity was unable to counteract inflammation-induced hyperexcitability.
Collapse
Affiliation(s)
- Charlotte Schubert
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Schulz
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Simone Träger
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna-Lena Plath
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Asina Omriouate
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C. Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabio Morellini
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Manuel A. Friese,
| | - Daniela Hirnet
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
- Daniela Hirnet,
| |
Collapse
|
23
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
24
|
Bast WG, Albeanu DF. Mapping odorant receptors to their glomeruli. Nat Neurosci 2022; 25:405-407. [DOI: 10.1038/s41593-022-01045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Wang D, Wu J, Liu P, Li X, Li J, He M, Li A. VIP interneurons regulate olfactory bulb output and contribute to odor detection and discrimination. Cell Rep 2022; 38:110383. [PMID: 35172159 DOI: 10.1016/j.celrep.2022.110383] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022] Open
Abstract
In the olfactory bulb (OB), olfactory information represented by mitral/tufted cells (M/Ts) is extensively modulated by local inhibitory interneurons before being transmitted to the olfactory cortex. While the crucial roles of cortical vasoactive-intestinal-peptide-expressing (VIP) interneurons have been extensively studied, their precise function in the OB remains elusive. Here, we identify the synaptic connectivity of VIP interneurons onto mitral cells (MCs) and demonstrate their important role in olfactory behaviors. Optogenetic activation of VIP interneurons reduced both spontaneous and odor-evoked activity of M/Ts in awake mice. Whole-cell recordings revealed that VIP interneurons decrease MC firing through direct inhibitory synaptic connections with MCs. Furthermore, inactivation of VIP interneurons leads to increased MC firing and impaired olfactory detection and odor discrimination. Therefore, our results demonstrate that VIP interneurons control OB output and play critical roles in odor processing and olfactory behaviors.
Collapse
Affiliation(s)
- Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaowen Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiaxin Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
26
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
27
|
Molecular insights into transgenerational inheritance of stress memory. J Genet Genomics 2021; 49:89-95. [PMID: 34923165 DOI: 10.1016/j.jgg.2021.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
There is accumulating evidence to show that environmental stressors can regulate a variety of phenotypes in descendants through germline-mediated epigenetic inheritance. Studies of model organisms exposed to environmental cues (e.g., diet, heat stress, toxins) indicate that altered DNA methylations, histone modifications, or non-coding RNAs in the germ cells are responsible for the transgenerational effects. In addition, it has also become evident that maternal provision could provide a mechanism for the transgenerational inheritance of stress adaptations that result from ancestral environmental cues. However, how the signal of environmentally-induced stress response transmits from the soma to the germline, which may influence offspring fitness, remains largely elusive. Small RNAs could serve as signaling molecules that transmit between tissues and even across generations. Furthermore, a recent study revealed that neuronal mitochondrial perturbations induce a transgenerational induction of the mitochondrial unfolded protein response mediated by a Wnt-dependent increase in mitochondrial DNA levels. Here, we review recent work on the molecular mechanism by which parental experience can affect future generations and the importance of soma-to-germline signaling for transgenerational inheritance.
Collapse
|
28
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
29
|
Hartig R, Wolf D, Schmeisser MJ, Kelsch W. Genetic influences of autism candidate genes on circuit wiring and olfactory decoding. Cell Tissue Res 2021; 383:581-595. [PMID: 33515293 PMCID: PMC7872953 DOI: 10.1007/s00441-020-03390-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Olfaction supports a multitude of behaviors vital for social communication and interactions between conspecifics. Intact sensory processing is contingent upon proper circuit wiring. Disturbances in genetic factors controlling circuit assembly and synaptic wiring can lead to neurodevelopmental disorders, such as autism spectrum disorder (ASD), where impaired social interactions and communication are core symptoms. The variability in behavioral phenotype expression is also contingent upon the role environmental factors play in defining genetic expression. Considering the prevailing clinical diagnosis of ASD, research on therapeutic targets for autism is essential. Behavioral impairments may be identified along a range of increasingly complex social tasks. Hence, the assessment of social behavior and communication is progressing towards more ethologically relevant tasks. Garnering a more accurate understanding of social processing deficits in the sensory domain may greatly contribute to the development of therapeutic targets. With that framework, studies have found a viable link between social behaviors, circuit wiring, and altered neuronal coding related to the processing of salient social stimuli. Here, the relationship between social odor processing in rodents and humans is examined in the context of health and ASD, with special consideration for how genetic expression and neuronal connectivity may regulate behavioral phenotypes.
Collapse
Affiliation(s)
- Renée Hartig
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - David Wolf
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Michael J Schmeisser
- Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Wolfgang Kelsch
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
30
|
Dibattista M, Al Koborssy D, Genovese F, Reisert J. The functional relevance of olfactory marker protein in the vertebrate olfactory system: a never-ending story. Cell Tissue Res 2021; 383:409-427. [PMID: 33447880 DOI: 10.1007/s00441-020-03349-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Olfactory marker protein (OMP) was first described as a protein expressed in olfactory receptor neurons (ORNs) in the nasal cavity. In particular, OMP, a small cytoplasmic protein, marks mature ORNs and is also expressed in the neurons of other nasal chemosensory systems: the vomeronasal organ, the septal organ of Masera, and the Grueneberg ganglion. While its expression pattern was more easily established, OMP's function remained relatively vague. To date, most of the work to understand OMP's role has been done using mice lacking OMP. This mostly phenomenological work has shown that OMP is involved in sharpening the odorant response profile and in quickening odorant response kinetics of ORNs and that it contributes to targeting of ORN axons to the olfactory bulb to refine the glomerular response map. Increasing evidence shows that OMP acts at the early stages of olfactory transduction by modulating the kinetics of cAMP, the second messenger of olfactory transduction. However, how this occurs at a mechanistic level is not understood, and it might also not be the only mechanism underlying all the changes observed in mice lacking OMP. Recently, OMP has been detected outside the nose, including the brain and other organs. Although no obvious logic has become apparent regarding the underlying commonality between nasal and extranasal expression of OMP, a broader approach to diverse cellular systems might help unravel OMP's functions and mechanisms of action inside and outside the nose.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | | | | | | |
Collapse
|
31
|
TAK-242 ameliorates olfactory dysfunction in a mouse model of allergic rhinitis by inhibiting neuroinflammation in the olfactory bulb. Int Immunopharmacol 2021; 92:107368. [PMID: 33454639 DOI: 10.1016/j.intimp.2021.107368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Olfactory dysfunction (OD) is a common symptom of allergic rhinitis (AR) that can seriously affect patient quality of life; however, the associated pathogenesis remains unclear. This study aimed to explore the relationship between OD and damage of the olfactory bulb (OB) in allergic rhinitis (AR). The therapeutic potential of TAK-242, a selective TLR4 inhibitor, was evaluated for OD. METHOD An AR mouse model was established with ovalbumin (OVA) to test the olfactory function of AR mice using the buried food pellet test (BFPT). Mice with OD were intraperitoneally injected with TAK-242 or 1% DMSO (vehicle). Immunohistochemistry was used to detect microglia and astrocyte activation in the OB. TUNNEL staining was performed to detect apoptosis in the OB. Proteins in the TLR4 signaling pathway were detected by Western blot. The level of proinflammatory factor mRNA in the OB was determined by RT-PCR. RESULT Neuroinflammation was observed in the OB of the OD group, as evidenced by glial cell activation and increased proinflammatory factor expression. The number of apoptotic cells was significantly increased in the OB of the OD group. The expression of TLR4, MyD88, and p-NF-κBp65 was significantly up-regulated in the OB of the OD group. TAK-242 treatment significantly reduced the level of IL-1β, IL-6, and TNF-α mRNA expression, as well as activation of microglia and astrocytes in the OB tissues. CONCLUSION TAK-242 improve olfactory function in AR mice mainly by reducing neuroinflammation and apoptosis in the OB, which may be related to blocking the TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
32
|
Furusawa K, Emoto K. Scrap and Build for Functional Neural Circuits: Spatiotemporal Regulation of Dendrite Degeneration and Regeneration in Neural Development and Disease. Front Cell Neurosci 2021; 14:613320. [PMID: 33505249 PMCID: PMC7829185 DOI: 10.3389/fncel.2020.613320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023] Open
Abstract
Dendrites are cellular structures essential for the integration of neuronal information. These elegant but complex structures are highly patterned across the nervous system but vary tremendously in their size and fine architecture, each designed to best serve specific computations within their networks. Recent in vivo imaging studies reveal that the development of mature dendrite arbors in many cases involves extensive remodeling achieved through a precisely orchestrated interplay of growth, degeneration, and regeneration of dendritic branches. Both degeneration and regeneration of dendritic branches involve precise spatiotemporal regulation for the proper wiring of functional networks. In particular, dendrite degeneration must be targeted in a compartmentalized manner to avoid neuronal death. Dysregulation of these developmental processes, in particular dendrite degeneration, is associated with certain types of pathology, injury, and aging. In this article, we review recent progress in our understanding of dendrite degeneration and regeneration, focusing on molecular and cellular mechanisms underlying spatiotemporal control of dendrite remodeling in neural development. We further discuss how developmental dendrite degeneration and regeneration are molecularly and functionally related to dendrite remodeling in pathology, disease, and aging.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Togashi K, Tsuji M, Takeuchi S, Nakahama R, Koizumi H, Emoto K. Adeno-Associated Virus-Mediated Single-Cell Labeling of Mitral Cells in the Mouse Olfactory Bulb: Insights into the Developmental Dynamics of Dendrite Remodeling. Front Cell Neurosci 2020; 14:572256. [PMID: 33362468 PMCID: PMC7756102 DOI: 10.3389/fncel.2020.572256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons typically remodel axons/dendrites for functional refinement of neural circuits in the developing brain. Mitral cells in the mammalian olfactory system remodel their dendritic arbors in the perinatal development, but the underlying molecular and cellular mechanisms remain elusive in part due to a lack of convenient methods to label mitral cells with single-cell resolution. Here we report a novel method for single-cell labeling of mouse mitral cells using adeno-associated virus (AAV)-mediated gene delivery. We first demonstrated that AAV injection into the olfactory ventricle of embryonic day 14.5 (E14.5) mice preferentially labels mitral cells in the olfactory bulb (OB). Birthdate labeling indicated that AAV can transduce mitral cells independently of their birthdates. Furthermore, in combination with the Cre-mediated gene expression system, AAV injection allows visualization of mitral cells at single-cell resolution. Using this AAV-mediated single-cell labeling method, we investigated dendrite development of mitral cells and found that ~50% of mitral cells exhibited mature apical dendrites with a single thick and tufted branch before birth, suggesting that a certain population of mitral cells completes dendrite remodeling during embryonic stages. We also found an atypical subtype of mitral cells that have multiple dendritic shafts innervating the same glomeruli. Our data thus demonstrate that the AAV-mediated labeling method that we reported here provides an efficient way to visualize mitral cells with single-cell resolution and could be utilized to study dynamic aspects as well as functions of mitral cells in the olfactory circuits.
Collapse
Affiliation(s)
- Kazuya Togashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryota Nakahama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Koizumi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Chen F, Takemoto M, Nishimura M, Tomioka R, Song WJ. Postnatal development of subfields in the core region of the mouse auditory cortex. Hear Res 2020; 400:108138. [PMID: 33285368 DOI: 10.1016/j.heares.2020.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The core region of the rodent auditory cortex has two subfields: the primary auditory area (A1) and the anterior auditory field (AAF). Although the postnatal development of A1 has been studied in several mammalian species, few studies have been conducted on the postnatal development of AAF. Using a voltage-sensitive-dye-based imaging method, we examined and compared the postnatal development of AAF and A1 in mice from postnatal day 11 (P11) to P40. We focused on the postnatal development of tonotopy, the relative position between A1 and AAF, and the properties of tone-evoked responses in the subfields. Tone-evoked responses in the mouse auditory cortex were first observed at P12, and tonotopy was found in both A1 and AAF at this age. Quantification of tonotopy using the cortical magnification factor (CMF; octave difference per unit cortical distance) revealed a rapid change from P12 to P14 in both A1 and AAF, and a stable level from P14. A similar time course of postnatal development was found for the distance between the 4 kHz site in A1 and AAF, the distance between the 16 kHz site in A1 and AAF, and the angle between the frequency axis of A1 and AAF. The maximum amplitude and rise time of tone-evoked signals in both A1 and AAF showed no significant change from P12 to P40, but the latency of the responses to both the 4 kHz and 16 kHz tones decreased during this period, with a more rapid decrease in the latency to 16 kHz tones in both subfields. The duration of responses evoked by 4 kHz tones in both A1 and AAF showed no significant postnatal change, but the duration of responses to 16 kHz tones decreased exponentially in both subfields. The cortical area activated by 4 kHz tones in AAF was always larger than that in A1 at all ages (P12-P40). Our results demonstrated that A1 and AAF developed in parallel postnatally, showing a rapid maturation of tonotopy, slow maturation of response latency and response duration, and a dorsal-to-ventral order (high-frequency site to low-frequency site) of functional maturation.
Collapse
Affiliation(s)
- Feifan Chen
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Japan; Program for Leading Graduate Schools HIGO Program, Kumamoto University, Kumamoto, Japan
| | - Makoto Takemoto
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Masataka Nishimura
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Ryohei Tomioka
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Japan; Program for Leading Graduate Schools HIGO Program, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
35
|
Abstract
In mammals, odor information detected by olfactory sensory neurons is converted to a topographic map of activated glomeruli in the olfactory bulb. Mitral cells and tufted cells transmit signals sequentially to the olfactory cortex for behavioral outputs. To elicit innate behavioral responses, odor signals are directly transmitted by distinct subsets of mitral cells from particular functional domains in the olfactory bulb to specific amygdala nuclei. As for the learned decisions, input signals are conveyed by tufted cells as well as by mitral cells to the olfactory cortex. Behavioral scene cells link the odor information to the valence cells in the amygdala to elicit memory-based behavioral responses. Olfactory decision and perception take place in relation to the respiratory cycle. How is the sensory quality imposed on the olfactory inputs for behavioral outputs? How are the two types of odor signals, innate and learned, processed during respiration? Here, we review recent progress on the study of neural circuits involved in decision making in the mouse olfactory system.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan;
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1197, Japan;
| |
Collapse
|
36
|
Imamura F, Ito A, LaFever BJ. Subpopulations of Projection Neurons in the Olfactory Bulb. Front Neural Circuits 2020; 14:561822. [PMID: 32982699 PMCID: PMC7485133 DOI: 10.3389/fncir.2020.561822] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of neuronal diversity is a biological strategy widely used in the brain to process complex information. The olfactory bulb is the first relay station of olfactory information in the vertebrate central nervous system. In the olfactory bulb, axons of the olfactory sensory neurons form synapses with dendrites of projection neurons that transmit the olfactory information to the olfactory cortex. Historically, the olfactory bulb projection neurons have been classified into two populations, mitral cells and tufted cells. The somata of these cells are distinctly segregated within the layers of the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted cells are found in the external plexiform layer. Although mitral and tufted cells share many morphological, biophysical, and molecular characteristics, they differ in soma size, projection patterns of their dendrites and axons, and odor responses. In addition, tufted cells are further subclassified based on the relative depth of their somata location in the external plexiform layer. Evidence suggests that different types of tufted cells have distinct cellular properties and play different roles in olfactory information processing. Therefore, mitral and different types of tufted cells are considered as starting points for parallel pathways of olfactory information processing in the brain. Moreover, recent studies suggest that mitral cells also consist of heterogeneous subpopulations with different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In this review, we first compare the morphology of projection neurons in the olfactory bulb of different vertebrate species. Next, we explore the similarities and differences among subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the timing of neurogenesis as a factor for the generation of projection neuron heterogeneity in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection neurons will contribute to a better understanding of the complex olfactory information processing in higher brain regions.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Brandon J LaFever
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
37
|
Trans-Axonal Signaling in Neural Circuit Wiring. Int J Mol Sci 2020; 21:ijms21145170. [PMID: 32708320 PMCID: PMC7404203 DOI: 10.3390/ijms21145170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The development of neural circuits is a complex process that relies on the proper navigation of axons through their environment to their appropriate targets. While axon–environment and axon–target interactions have long been known as essential for circuit formation, communication between axons themselves has only more recently emerged as another crucial mechanism. Trans-axonal signaling governs many axonal behaviors, including fasciculation for proper guidance to targets, defasciculation for pathfinding at important choice points, repulsion along and within tracts for pre-target sorting and target selection, repulsion at the target for precise synaptic connectivity, and potentially selective degeneration for circuit refinement. This review outlines the recent advances in identifying the molecular mechanisms of trans-axonal signaling and discusses the role of axon–axon interactions during the different steps of neural circuit formation.
Collapse
|
38
|
Harada H, Charish J, Monnier PP. Emerging evidence for cell-autonomous axon guidance. Dev Growth Differ 2020; 62:391-397. [PMID: 32279322 DOI: 10.1111/dgd.12666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/28/2022]
Abstract
Current models of axon guidance within the central nervous system (CNS) involve the presentation of environmental cues to navigating growth cones. The surrounding and target tissues present a variety of ligands that either restrict or promote growth, thus providing pathfinding instructions to developing axons. Recent findings show that RGMb, a GPI anchored extracellular protein present on retinal ganglion cells, down-regulates Wnt3a signaling by lowering LRP5 levels at the membrane surface. When RGMb is phosphorylated by the extracellular tyrosine kinase VLK, phosphorylated RGMb (p-RGMb) is internalized and carries LRP5 towards intracellular compartments. In the eye, a dorsal-high ventral-low gradient of VLK generates a dorsal-low ventral-high gradient of LRP5 that modulates Wnt3a signaling. These molecules, which are all expressed by individual RGCs, generate Wnt-signal gradients along the dorso-ventral axis of the retina, resulting in differential axon growth which in turn regulates proper retino-tectal/collicular map formation. This pathway represents a regulatory mechanism whereby extracellular phosphorylation generates what may be the first example of a unique self-guiding mechanism that affects neuronal-target connections independent of paracrine signals from the surrounding target tissue.
Collapse
Affiliation(s)
- Hidekiyo Harada
- Vision Division, Krembil Research Institute, Krembil Discovery Tower, Toronto, Ontario, Canada
| | - Jason Charish
- Vision Division, Krembil Research Institute, Krembil Discovery Tower, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Vision Division, Krembil Research Institute, Krembil Discovery Tower, Toronto, Ontario, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Sakano H. Developmental regulation of olfactory circuit formation in mice. Dev Growth Differ 2020; 62:199-213. [PMID: 32112394 PMCID: PMC7318115 DOI: 10.1111/dgd.12657] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
In mammals, odorants induce various behavioral responses that are critical to the survival of the individual and species. Binding signals of odorants to odorant receptors (ORs) expressed in the olfactory epithelia are converted to an odor map, a pattern of activated glomeruli, in the olfactory bulb (OB). This topographic map is used to identify odorants for memory‐based learned decisions. In the embryo, a coarse olfactory map is generated in the OB by a combination of dorsal‐ventral and anterior‐posterior targeting of olfactory sensory neurons (OSNs), using specific sets of axon‐guidance molecules. During the process of OSN projection, odor signals are sorted into distinct odor qualities in separate functional domains in the OB. Odor information is then conveyed by the projection neurons, mitral/tufted cells, to various regions in the olfactory cortex, particularly to the amygdala for innate olfactory decisions. Although the basic architecture of hard‐wired circuits is generated by a genetic program, innate olfactory responses are modified by neonatal odor experience in an activity‐dependent manner. Stimulus‐driven OR activity promotes post‐synaptic events and dendrite selection in the responding glomeruli making them larger. As a result, enhanced odor inputs in neonates establish imprinted olfactory memory that induces attractive responses in adults, even when the odor quality is innately aversive. In this paper, I will provide an overview of the recent progress made in the olfactory circuit formation in mice.
Collapse
Affiliation(s)
- Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|