1
|
Siqueiros-Sanchez M, Serur Y, McGhee CA, Smith TF, Green T. Social Communication in Ras Pathway Disorders: A Comprehensive Review From Genetics to Behavior in Neurofibromatosis Type 1 and Noonan Syndrome. Biol Psychiatry 2025; 97:461-498. [PMID: 39366539 PMCID: PMC11805629 DOI: 10.1016/j.biopsych.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are neurogenetic syndromes caused by pathogenetic variants encoding components of the Ras-ERK-MAPK (Ras/extracellular signal-regulated kinase/mitogen-activated protein kinase) signaling pathway (Ras pathway). NF1 and NS are associated with differences in social communication and related neuropsychiatric risks. During the last decade, there has been growing interest in Ras-linked syndromes as models to understand social communication deficits and autism spectrum disorder. We systematically review the literature between 2010 and 2023 focusing on the social communication construct of the Research Domain Criteria framework. We provide an integrative summary of the research on facial and nonfacial social communication processes in NF1 and NS across molecular, cellular, neural circuitry, and behavioral domains. At the molecular and cellular levels, dysregulation in the Ras pathway is intricately tied to variations in social communication through changes in GABAergic (gamma-aminobutyric acidergic), glutamatergic, and serotonergic transmission, as well as inhibitory/excitatory imbalance. Neural circuitry typically associated with learning, attention, and memory in NF1 and NS (e.g., corticostriatal connectivity) is also implicated in social communication. We highlight less-researched potential mechanisms for social communication, such as white matter connectivity and the default mode network. Finally, key gaps in NF1 and NS literature are identified, and a roadmap for future research is provided. By leveraging genetic syndrome research, we can understand the mechanisms associated with behaviors and psychiatric disorders.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| | - Yaffa Serur
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Chloe A McGhee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Taylor F Smith
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California
| | - Tamar Green
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
2
|
Cole JJ, Ferner RE, Gutmann DH. Neurofibromatosis type 1. ROSENBERG'S MOLECULAR AND GENETIC BASIS OF NEUROLOGICAL AND PSYCHIATRIC DISEASE 2025:231-249. [DOI: 10.1016/b978-0-443-19176-3.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
McGhee CA, Honari H, Siqueiros-Sanchez M, Serur Y, van Staalduinen EK, Stevenson D, Bruno JL, Raman MM, Green T. Influences of RASopathies on Neuroanatomical Variation in Children. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:858-870. [PMID: 38621478 PMCID: PMC11381177 DOI: 10.1016/j.bpsc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND RASopathies are a group of disorders characterized by pathogenic mutations in the Ras/mitogen-activated protein kinase (Ras/MAPK) signaling pathway. Distinct pathogenic variants in genes encoding proteins in the Ras/MAPK pathway cause Noonan syndrome (NS) and neurofibromatosis type 1 (NF1), which are associated with increased risk for autism spectrum disorder and attention-deficit/hyperactivity disorder. METHODS This study examined the effect of RASopathies (NS and NF1) on human neuroanatomy, specifically on surface area (SA), cortical thickness (CT), and subcortical volumes. Using vertex-based analysis for cortical measures and Desikan region of interest parcellation for subcortical volumes, we compared structural T1-weighted images of children with RASopathies (n = 91, mean age = 8.81 years, SD = 2.12) to those of sex- and age-matched typically developing children (n = 74, mean age = 9.07 years, SD = 1.77). RESULTS Compared with typically developing children, RASopathies had convergent effects on SA and CT, exhibiting increased SA in the precentral gyrus, decreased SA in occipital regions, and thinner CT in the precentral gyrus. RASopathies exhibited divergent effects on subcortical volumes, with syndrome-specific influences from NS and NF1. Overall, children with NS showed decreased volumes in striatal and thalamic structures, and children with NF1 displayed increased volumes in the hippocampus, amygdala, and thalamus. CONCLUSIONS Our study reveals the converging and diverging neuroanatomical effects of RASopathies on human neurodevelopment. The convergence of cortical effects on SA and CT indicates a shared influence of Ras/MAPK hyperactivation on the human brain. Therefore, considering these measures as objective outcome indicators for targeted treatments is imperative.
Collapse
Affiliation(s)
- Chloe Alexa McGhee
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California.
| | - Hamed Honari
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | | | - Yaffa Serur
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Eric K van Staalduinen
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - David Stevenson
- Division of Medical Genetics, Stanford University, Stanford, California
| | - Jennifer L Bruno
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Mira Michelle Raman
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Tamar Green
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
4
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
5
|
Suarez GO, Kumar DS, Brunner H, Emel J, Teel J, Knauss A, Botero V, Broyles CN, Stahl A, Bidaye SS, Tomchik SM. Neurofibromin deficiency alters the patterning and prioritization of motor behaviors in a state-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607070. [PMID: 39149363 PMCID: PMC11326213 DOI: 10.1101/2024.08.08.607070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Genetic disorders such as neurofibromatosis type 1 increase vulnerability to cognitive and behavioral disorders, such as autism spectrum disorder and attention-deficit/hyperactivity disorder. Neurofibromatosis type 1 results from loss-of-function mutations in the neurofibromin gene and subsequent reduction in the neurofibromin protein (Nf1). While the mechanisms have yet to be fully elucidated, loss of Nf1 may alter neuronal circuit activity leading to changes in behavior and susceptibility to cognitive and behavioral comorbidities. Here we show that mutations decreasing Nf1 expression alter motor behaviors, impacting the patterning, prioritization, and behavioral state dependence in a Drosophila model of neurofibromatosis type 1. Loss of Nf1 increases spontaneous grooming in a nonlinear spatial and temporal pattern, differentially increasing grooming of certain body parts, including the abdomen, head, and wings. This increase in grooming could be overridden by hunger in food-deprived foraging animals, demonstrating that the Nf1 effect is plastic and internal state-dependent. Stimulus-evoked grooming patterns were altered as well, with nf1 mutants exhibiting reductions in wing grooming when coated with dust, suggesting that hierarchical recruitment of grooming command circuits was altered. Yet loss of Nf1 in sensory neurons and/or grooming command neurons did not alter grooming frequency, suggesting that Nf1 affects grooming via higher-order circuit alterations. Changes in grooming coincided with alterations in walking. Flies lacking Nf1 walked with increased forward velocity on a spherical treadmill, yet there was no detectable change in leg kinematics or gait. Thus, loss of Nf1 alters motor function without affecting overall motor coordination, in contrast to other genetic disorders that impair coordination. Overall, these results demonstrate that loss of Nf1 alters the patterning and prioritization of repetitive behaviors, in a state-dependent manner, without affecting motor coordination.
Collapse
Affiliation(s)
- Genesis Omana Suarez
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- H.L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Divya S. Kumar
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hannah Brunner
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Jalen Emel
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Jensen Teel
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Anneke Knauss
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Valentina Botero
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Connor N. Broyles
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Salil S. Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Seth M. Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- H.L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
6
|
Hocking MC, Albee MV, Kim M, Berman JI, Fisher MJ, Roberts TP, Blaskey L. Social challenges, autism spectrum disorder, and attention deficit/hyperactivity disorder in youth with neurofibromatosis type I. APPLIED NEUROPSYCHOLOGY. CHILD 2024:1-9. [PMID: 38864448 PMCID: PMC11635006 DOI: 10.1080/21622965.2024.2365383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Youth with neurofibromatosis type I (NF1) demonstrate high rates of Autism Spectrum Disorder (ASD) and Attention Deficit/Hyperactivity Disorder (ADHD), which often have overlapping behaviors. Diagnostic clarity is important to guide services. This study evaluated ASD classification in NF1 using various methods and whether those with ADHD suspicion have more social challenges associated with ASD. METHOD 34 youth with NF1 (Mage = 10.5 ± 1.6 years), completed ASD assessments that combined direct observation and informant ratings to yield a Clinician Best Estimate (CBE) classification. Caregivers rated ASD-related social challenges using the Social Responsiveness Scale- 2nd Edition (SRS-2). RESULTS ASD classification varied depending on the method, ranging from 32% using low-threshold SRS-2 cut-scores (T ≥ 60) to under 6% when combining cut scores for diagnostic observational tools and stringent SRS-2 cut-scores (T ≥ 70). 14.7% had a CBE ASD classification. 44% were judged to have autism traits associated with a non-ASD diagnosis. The 52.9% with a suspicion of ADHD had higher SRS-2 scores than those without ADHD, F (7, 26) = 3.45, p < .05, Wilk's lambda = 0.518, partial eta squared = 0.482. CONCLUSIONS Findings highlight the importance of rigorous diagnostic methodology when evaluating ASD in NF1 to inform the selection of targeted interventions for socialization challenges in NF1.
Collapse
Affiliation(s)
- Matthew C. Hocking
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | | | - Mina Kim
- Children’s Hospital of Philadelphia
| | - Jeffrey I. Berman
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | - Michael J. Fisher
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | - Timothy P.L. Roberts
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | - Lisa Blaskey
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| |
Collapse
|
7
|
Hocking DR, Sun X, Haebich K, Darke H, North KN, Vivanti G, Payne JM. Delineating Visual Habituation Profiles in Preschoolers with Neurofibromatosis Type 1 and Autism Spectrum Disorder: A Cross-Syndrome Study. J Autism Dev Disord 2024; 54:1998-2011. [PMID: 36877426 DOI: 10.1007/s10803-023-05913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2023] [Indexed: 03/07/2023]
Abstract
Atypical habituation to repetitive information has been commonly reported in Autism Spectrum Disorder (ASD) but it is not yet clear whether similar abnormalities are present in Neurofibromatosis Type 1 (NF1). We employed a cross-syndrome design using a novel eye tracking paradigm to measure habituation in preschoolers with NF1, children with idiopathic ASD and typically developing (TD) children. Eye movements were recorded to examine fixation duration to simultaneously presented repeating and novel stimuli. Children with NF1 showed a bias for longer look durations to repeating stimuli at the expense of novel stimuli, and slower habituation in NF1 was associated with elevated ASD traits. These findings could indicate aberrant modulation of bottom-up attentional networks that interact with the emergence of ASD phenotypes.
Collapse
Affiliation(s)
- Darren R Hocking
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia.
| | - Xiaoyun Sun
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Kristina Haebich
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Hayley Darke
- Murdoch Children's Research Institute, Parkville, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Giacomo Vivanti
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, 19104-3734, Philadelphia, PA, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Debbaut E, Steyaert J, El Bakkali M. Autism spectrum disorder profiles in RASopathies: A systematic review. Mol Genet Genomic Med 2024; 12:e2428. [PMID: 38581124 PMCID: PMC10997847 DOI: 10.1002/mgg3.2428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND RASopathies are associated with an increased risk of autism spectrum disorder (ASD). For neurofibromatosis type 1 (NF1) there is ample evidence for this increased risk, while for other RASopathies this association has been studied less. No specific ASD profile has been delineated so far for RASopathies or a specific RASopathy individually. METHODS We conducted a systematic review to investigate whether a specific RASopathy is associated with a specific ASD profile, or if RASopathies altogether have a distinct ASD profile compared to idiopathic ASD (iASD). We searched PubMed, Web of Science, and Open Grey for data about ASD features in RASopathies and potential modifiers. RESULTS We included 41 articles on ASD features in NF1, Noonan syndrome (NS), Costello syndrome (CS), and cardio-facio-cutaneous syndrome (CFC). Individuals with NF1, NS, CS, and CFC on average have higher ASD symptomatology than healthy controls and unaffected siblings, though less than people with iASD. There is insufficient evidence for a distinct ASD phenotype in RASopathies compared to iASD or when RASopathies are compared with each other. We identified several potentially modifying factors of ASD symptoms in RASopathies. CONCLUSIONS Our systematic review found no convincing evidence for a specific ASD profile in RASopathies compared to iASD, or in a specific RASopathy compared to other RASopathies. However, we identified important limitations in the research literature which may also account for this result. These limitations are discussed and recommendations for future research are formulated.
Collapse
Affiliation(s)
- Edward Debbaut
- Center for Developmental Psychiatry, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Autism Research (LAuRes)KU LeuvenLeuvenBelgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Autism Research (LAuRes)KU LeuvenLeuvenBelgium
| | | |
Collapse
|
9
|
Glad DM, Pardej SK, Olszewski E, Klein-Tasman BP. Pilot study of the effectiveness of a telehealth group for improving peer relationships for adolescents with neurofibromatosis type 1. Orphanet J Rare Dis 2024; 19:115. [PMID: 38475852 DOI: 10.1186/s13023-024-03093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Interventions for social difficulties have not been investigated in the neurofibromatosis type 1 (NF1) population despite observations of elevated rates of social difficulties. In this pilot study, the effectiveness of a 14-week telehealth PEERS® intervention with nineteen adolescents with NF1 (Mage=13.79 years, SD = 1.32) with social skills difficulties was examined. Measures of social outcomes were completed at three timepoints (before, immediately after, and at 14-week follow-up). RESULTS Caregiver-reported social-emotional skills, social impairment, caregiver-reported number of adolescent get-togethers, and teen social knowledge showed significant improvement following the intervention. CONCLUSIONS The PEERS® intervention is promising to support the social and friendship skills of adolescents with NF1 who have social difficulties.
Collapse
Affiliation(s)
- Danielle M Glad
- Department of Psychology, University of Wisconsin- Milwaukee, 2441 E Hartford Ave, Wisconsin, 53211, Milwaukee, USA.
| | - Sara K Pardej
- Department of Psychology, University of Wisconsin- Milwaukee, 2441 E Hartford Ave, Wisconsin, 53211, Milwaukee, USA
| | - Ellen Olszewski
- Department of Psychology, University of Wisconsin- Milwaukee, 2441 E Hartford Ave, Wisconsin, 53211, Milwaukee, USA
| | - Bonita P Klein-Tasman
- Department of Psychology, University of Wisconsin- Milwaukee, 2441 E Hartford Ave, Wisconsin, 53211, Milwaukee, USA
| |
Collapse
|
10
|
Brown EB, Zhang J, Lloyd E, Lanzon E, Botero V, Tomchik S, Keene AC. Neurofibromin 1 mediates sleep depth in Drosophila. PLoS Genet 2023; 19:e1011049. [PMID: 38091360 PMCID: PMC10763969 DOI: 10.1371/journal.pgen.1011049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 11/03/2023] [Indexed: 01/04/2024] Open
Abstract
Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin (Nf1) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we examine multiple measures of sleep quality to determine the effects of Nf1 on sleep-dependent changes in arousal threshold and metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABAA receptor Rdl. Sleep loss has been associated with changes in gut homeostasis in flies and mammals. Selective knockdown of Nf1 in Rdl-expressing neurons within the nervous system increases gut permeability and reactive oxygen species (ROS) in the gut, raising the possibility that loss of sleep quality contributes to gut dysregulation. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila.
Collapse
Affiliation(s)
- Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Jiwei Zhang
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Elizabeth Lanzon
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seth Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
11
|
Pride NA, Haebich KM, Walsh KS, Lami F, Rouel M, Maier A, Chisholm AK, Lorenzo J, Hearps SJC, North KN, Payne JM. Sensory Processing in Children and Adolescents with Neurofibromatosis Type 1. Cancers (Basel) 2023; 15:3612. [PMID: 37509275 PMCID: PMC10377664 DOI: 10.3390/cancers15143612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the evidence of elevated autistic behaviors and co-occurring neurodevelopmental difficulties in many children with neurofibromatosis type 1 (NF1), we have a limited understanding of the sensory processing challenges that may occur with the condition. This study examined the sensory profile of children and adolescents with NF1 and investigated the relationships between the sensory profiles and patient characteristics and neuropsychological functioning. The parent/caregivers of 152 children with NF1 and 96 typically developing children completed the Sensory Profile 2 (SP2), along with standardized questionnaires assessing autistic behaviors, ADHD symptoms, internalizing symptoms, adaptive functioning, and social skills. Intellectual functioning was also assessed. The SP2 data indicated elevated sensory processing problems in children with NF1 compared to typically developing children. Over 40% of children with NF1 displayed differences in sensory registration (missing sensory input) and were unusually sensitive to and unusually avoidant of sensory stimuli. Sixty percent of children with NF1 displayed difficulties in one or more sensory modalities. Elevated autistic behaviors and ADHD symptoms were associated with more severe sensory processing difficulties. This first detailed assessment of sensory processing, alongside other clinical features, in a relatively large cohort of children and adolescents with NF1 demonstrates the relationships between sensory processing differences and adaptive skills and behavior, as well as psychological well-being. Our characterization of the sensory profile within a genetic syndrome may help facilitate more targeted interventions to support overall functioning.
Collapse
Affiliation(s)
- Natalie A Pride
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Kristina M Haebich
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Francesca Lami
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Melissa Rouel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Alice Maier
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Anita K Chisholm
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Jennifer Lorenzo
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | | | - Kathryn N North
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan M Payne
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- Royal Children's Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
12
|
Murari K, Abushaibah A, Rho JM, Turner RW, Cheng N. A clinically relevant selective ERK-pathway inhibitor reverses core deficits in a mouse model of autism. EBioMedicine 2023; 91:104565. [PMID: 37088035 PMCID: PMC10149189 DOI: 10.1016/j.ebiom.2023.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Extracellular signal-regulated kinase (ERK/MAPK) pathway in the brain is hypothesized to be a critical convergent node in the development of autism spectrum disorder. We reasoned that selectively targeting this pathway could reverse core autism-like phenotype in animal models. METHODS Here we tested a clinically relevant, selective inhibitor of ERK pathway, PD325901 (Mirdametinib), in a mouse model of idiopathic autism, the BTBR mice. FINDINGS We report that treating juvenile mice with PD325901 reduced ERK pathway activation, dose and duration-dependently reduced core disease-modeling deficits in sociability, vocalization and repetitive behavior, and reversed abnormal EEG signals. Further analysis revealed that subchronic treatment did not affect weight gain, locomotion, or neuronal density in the brain. Parallel treatment in the C57BL/6J mice did not alter their phenotype. INTERPRETATION Our data indicate that selectively inhibiting ERK pathway using PD325901 is beneficial in the BTBR model, thus further support the notion that ERK pathway is critically involved in the pathophysiology of autism. These results suggest that a similar approach could be applied to animal models of syndromic autism with dysregulated ERK signaling, to further test selectively targeting ERK pathway as a new approach for treating autism. FUNDING This has beenwork was supported by Alberta Children's Hospital Research Foundation (JMR & NC), University of Calgary Faculty of Veterinary Medicine (NC), Kids Brain Health Network (NC), and Natural Sciences and Engineering Research Council of Canada (NC).
Collapse
Affiliation(s)
- Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Canada
| | - Abdulrahman Abushaibah
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Canada
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Ray W Turner
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Canada
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada.
| |
Collapse
|
13
|
Angelova-Toshkina D, Decker JA, Traunwieser T, Holzapfel J, Bette S, Huber S, Schimmel M, Vollert K, Bison B, Kröncke T, Bramswig NC, Wieczorek D, Gnekow AK, Frühwald MC, Kuhlen M. Comprehensive neurological evaluation of a cohort of patients with neurofibromatosis type 1 from a single institution. Eur J Paediatr Neurol 2023; 43:52-61. [PMID: 36905830 DOI: 10.1016/j.ejpn.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 03/13/2023]
Abstract
Neurofibromatosis type 1 (NF1) is a phenotypically heterogenous multisystem cancer predisposition syndrome manifesting in childhood and adolescents. Central nervous system (CNS) manifestations include structural, neurodevelopmental, and neoplastic disease. We aimed to (1) characterize the spectrum of CNS manifestations of NF1 in a paediatric population, (2) explore radiological features in the CNS by image analyses, and (3) correlate genotype with phenotypic expression for those with a genetic diagnosis. We performed a database search in the hospital information system covering the period between January 2017 and December 2020. We evaluated the phenotype by retrospective chart review and imaging analysis. 59 patients were diagnosed with NF1 [median age 10.6 years (range, 1.1-22.6); 31 female] at last follow-up, pathogenic NF1 variants were identified in 26/29. 49/59 patients presented with neurological manifestations including 28 with structural and neurodevelopmental findings, 16 with neurodevelopmental, and 5 with structural findings only. Focal areas of signal intensity (FASI) were identified in 29/39, cerebrovascular anomalies in 4/39. Neurodevelopmental delay was reported in 27/59 patients, learning difficulties in 19/59. Optic pathway gliomas (OPG) were diagnosed in 18/59 patients, 13/59 had low-grade gliomas outside the visual pathways. 12 patients received chemotherapy. Beside the established NF1 microdeletion, neither genotype nor FASI were associated with the neurological phenotype. NF1 was associated with a spectrum of CNS manifestations in at least 83.0% of patients. Regular neuropsychological assessment complementing frequent clinical and ophthalmologic testing for OPG is necessary in the care of each child with NF1.
Collapse
Affiliation(s)
- Daniela Angelova-Toshkina
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Josua A Decker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Thomas Traunwieser
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Johannes Holzapfel
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Stefanie Bette
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Simon Huber
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Mareike Schimmel
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Kurt Vollert
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Brigitte Bison
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Thomas Kröncke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Nuria C Bramswig
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40255, Düsseldorf, Germany.
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40255, Düsseldorf, Germany.
| | - Astrid K Gnekow
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Michael C Frühwald
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Michaela Kuhlen
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| |
Collapse
|
14
|
Liu M, Chen Y, Sun M, Du Y, Bai Y, Lei G, Zhang C, Zhang M, Zhang Y, Xi C, Ma Y, Wang G. Auts2 regulated autism-like behavior, glucose metabolism and oxidative stress in mice. Exp Neurol 2023; 361:114298. [PMID: 36525998 DOI: 10.1016/j.expneurol.2022.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by abnormal social behavior and communication. The autism susceptibility candidate 2 (AUTS2) gene has been associated with multiple neurological diseases, including ASD. Glucose metabolism plays an important role in social behaviors associated with ASD, but the potential role of AUTS2 in glucose metabolism has not been studied. Here, we generated Auts2flox/flox; Emx1Cre+ conditional knockout mice with Auts2 deletion specifically in Exm1-positive neurons in the brain (Auts2-cKO mice) to evaluate the effects of Auts2 knockdown on social behaviors and metabolic pathways. Auts2-cKO mice exhibited ASD-like behaviors, including impaired social interactions and repetitive grooming behaviors. At the molecular level, we found that Auts2 knockdown reduced brain glucose uptake and inhibited the pentose phosphate pathway. Auts2 knockdown also resulted in signs of oxidative stress, and we documented increased levels of reactive oxygen species and malondialdehyde as well as decreased levels of antioxidant molecules, including glutathione and superoxide dismutases in Auts2-cKO mouse brains compared to controls. Finally, Auts2 knockdown significantly disrupted mitochondrial homeostasis and inhibited activity of the SIRT1-SIRT3 axis. Taken together, our findings indicate that loss of AUTS2 expression in Emx1-expressing cells induces multiple changes in metabolic pathways that have been linked to the pathology of ASD. Further characterization of the role of AUTS2 in Emx1-expressing cells in regulating the metabolism of brain neurons may identify opportunities to treat ASD and AUTS2-deficiency disorders with metabolism-targeted therapies.
Collapse
Affiliation(s)
- Min Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yimeng Chen
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Miao Sun
- Department of Anesthesiology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yingjie Du
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yafan Bai
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Guiyu Lei
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Congya Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Mingru Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yue Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunhua Xi
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
15
|
Zhang Y, Li Y, Guo R, Xu W, Liu X, Zhao C, Guo Q, Xu W, Ni X, Hao C, Cui Y, Li W. Genetic diagnostic yields of 354 Chinese ASD children with rare mutations by a pipeline of genomic tests. Front Genet 2023; 14:1108440. [PMID: 37035742 PMCID: PMC10076746 DOI: 10.3389/fgene.2023.1108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: To establish an effective genomic diagnosis pipeline for children with autism spectrum disorder (ASD) for its genetic etiology and intervention. Methods: A cohort of 354 autism spectrum disorder patients were obtained from Beijing Children's Hospital, Capital Medical University. Peripheral blood samples of the patients were collected for whole genome sequencing (WGS) and RNA sequencing (RNAseq). Sequencing data analyses were performed for mining the single nucleotide variation (SNV), copy number variation (CNV) and structural variation (SV). Sanger sequencing and quantitative PCR were used to verify the positive results. Results: Among 354 patients, 9 cases with pathogenic/likely pathogenic copy number variation and 10 cases with pathogenic/likely pathogenic single nucleotide variations were detected, with a total positive rate of 5.3%. Among these 9 copy number variation cases, 5 were de novo and 4 were inherited. Among the 10 de novo single nucleotide variations, 7 were previously unreported. The pathological de novo mutations account for 4.2% in our cohort. Conclusion: Rare mutations of copy number variations and single nucleotide variations account for a relatively small proportion of autism spectrum disorder children, which can be easily detected by a genomic testing pipeline of combined whole genome sequencing and RNA sequencing. This is important for early etiological diagnosis and precise management of autism spectrum disorder with rare mutations.
Collapse
Affiliation(s)
- Yue Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Ying Li
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Ruolan Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xuanshi Liu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Chunlin Zhao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qi Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wenshan Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xin Ni
- National Center for Children’s Health, Beijing, China
- *Correspondence: Wei Li, ; Yonghua Cui, ; Chanjuan Hao, ; Xin Ni,
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Wei Li, ; Yonghua Cui, ; Chanjuan Hao, ; Xin Ni,
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Wei Li, ; Yonghua Cui, ; Chanjuan Hao, ; Xin Ni,
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Wei Li, ; Yonghua Cui, ; Chanjuan Hao, ; Xin Ni,
| |
Collapse
|
16
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
17
|
Foy AMH, Hudock RL, Shanley R, Pierpont EI. Social behavior in RASopathies and idiopathic autism. J Neurodev Disord 2022; 14:5. [PMID: 35021989 PMCID: PMC8753327 DOI: 10.1186/s11689-021-09414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Background RASopathies are genetic syndromes that result from pathogenic variants in the RAS-MAPK cellular signaling pathway. These syndromes, which include neurofibromatosis type 1, Noonan syndrome, cardiofaciocutaneous syndrome, and Costello syndrome, are associated with a complex array of medical and behavioral health complications. Despite a heightened risk for social challenges and autism spectrum disorder (ASD), few studies have compared different aspects of social behavior across these conditions. It is also unknown whether the underlying neuropsychological characteristics that contribute to social competence and socially empathetic (“prosocial”) behaviors differ in children with RASopathies as compared to children with nonsyndromic (i.e., idiopathic) ASD. Methods In this cross-sectional, survey-based investigation, caregivers of preschool and school-aged children with RASopathies (n = 202) or with idiopathic ASD (n = 109) provided demographic, medical, and developmental information about their child, including psychiatric comorbidities. For children who were able to communicate verbally, caregivers also completed standardized rating scales to assess social competence and empathetic behavior as well as symptoms of hyperactivity/inattention and emotional problems. Results As compared to children with idiopathic ASD, children with RASopathies were rated as demonstrating more resilience in the domain of empathy relative to their overall social competence. Similarities and differences emerged in the psychological factors that predicted social behavior in these two groups. Stronger communication skills and fewer hyperactive-impulsive behaviors were associated with increased empathy and social competence for both groups. Greater emotional challenges were associated with lower social competence for children with RASopathies and stronger empathy for children with idiopathic ASD. Among children with RASopathy and a co-occurring ASD diagnosis, socially empathetic behaviors were observed more often as compared to children with idiopathic ASD. Conclusions Findings suggest that the development of social behavior among children with RASopathies involves a distinct pattern of strengths and weaknesses as compared to a behaviorally defined disorder (idiopathic ASD). Identification of areas of resilience as well as behavioral and social challenges will support more targeted intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09414-w.
Collapse
Affiliation(s)
- Allison M H Foy
- Department of Pediatrics, Division of Clinical Behavioral Neuroscience, University of Minnesota Medical School, 2025 East River Parkway, Minneapolis, MN, 55414, USA.,Department of Educational Psychology, University of Wisconsin-Madison, Madison, USA
| | - Rebekah L Hudock
- Department of Pediatrics, Division of Clinical Behavioral Neuroscience, University of Minnesota Medical School, 2025 East River Parkway, Minneapolis, MN, 55414, USA
| | - Ryan Shanley
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, USA
| | - Elizabeth I Pierpont
- Department of Pediatrics, Division of Clinical Behavioral Neuroscience, University of Minnesota Medical School, 2025 East River Parkway, Minneapolis, MN, 55414, USA.
| |
Collapse
|
18
|
Chisholm AK, Haebich KM, Pride NA, Walsh KS, Lami F, Ure A, Maloof T, Brignell A, Rouel M, Granader Y, Maier A, Barton B, Darke H, Dabscheck G, Anderson VA, Williams K, North KN, Payne JM. Delineating the autistic phenotype in children with neurofibromatosis type 1. Mol Autism 2022; 13:3. [PMID: 34983638 PMCID: PMC8729013 DOI: 10.1186/s13229-021-00481-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background Existing research has demonstrated elevated autistic behaviours in children with neurofibromatosis type 1 (NF1), but the autistic phenotype and its relationship to other neurodevelopmental manifestations of NF1 remains unclear. To address this gap, we performed detailed characterisation of autistic behaviours in children with NF1 and investigated their association with other common NF1 child characteristics. Methods Participants were drawn from a larger cross-sectional study examining autism in children with NF1. The population analysed in this study scored above threshold on the Social Responsiveness Scale-Second Edition (T-score ≥ 60; 51% larger cohort) and completed the Autism Diagnostic Interview-Revised (ADI-R) and/or the Autism Diagnostic Observation Schedule-Second Edition (ADOS-2). All participants underwent evaluation of their intellectual function, and behavioural data were collected via parent questionnaires. Results The study cohort comprised 68 children (3–15 years). Sixty-three per cent met the ADOS-2 ‘autism spectrum’ cut-off, and 34% exceeded the more stringent threshold for ‘autistic disorder’ on the ADI-R. Social communication symptoms were common and wide-ranging, while restricted and repetitive behaviours (RRBs) were most commonly characterised by ‘insistence on sameness’ (IS) behaviours such as circumscribed interests and difficulties with minor changes. Autistic behaviours were weakly correlated with hyperactive/impulsive attention deficit hyperactivity disorder (ADHD) symptoms but not with inattentive ADHD or other behavioural characteristics. Language and verbal IQ were weakly related to social communication behaviours but not to RRBs. Limitations Lack of genetic validation of NF1, no clinical diagnosis of autism, and a retrospective assessment of autistic behaviours in early childhood. Conclusions Findings provide strong support for elevated autistic behaviours in children with NF1. While these behaviours were relatively independent of other NF1 comorbidities, the importance of taking broader child characteristics into consideration when interpreting data from autism-specific measures in this population is highlighted. Social communication deficits appear similar to those observed in idiopathic autism and are coupled with a unique RRB profile comprising prominent IS behaviours. This autistic phenotype and its relationship to common NF1 comorbidities such as anxiety and executive dysfunction will be important to examine in future research. Current findings have important implications for the early identification of autism in NF1 and clinical management. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00481-3.
Collapse
Affiliation(s)
- Anita K Chisholm
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Kristina M Haebich
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Natalie A Pride
- Kids Neuroscience Centre, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Michigan Avenue NW, Washington, DC, 20310, USA
| | - Francesca Lami
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alex Ure
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.,Developmental Paediatrics, Monash Children's Hospital, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Tiba Maloof
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Amanda Brignell
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Melissa Rouel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Yael Granader
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Michigan Avenue NW, Washington, DC, 20310, USA
| | - Alice Maier
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Belinda Barton
- Kids Neuroscience Centre, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia.,Children's Hospital Education Research Institute, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Hayley Darke
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Gabriel Dabscheck
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Vicki A Anderson
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Katrina Williams
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.,Developmental Paediatrics, Monash Children's Hospital, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jonathan M Payne
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia. .,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia. .,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
19
|
Lubbers K, Stijl EM, Dierckx B, Hagenaar DA, Ten Hoopen LW, Legerstee JS, de Nijs PFA, Rietman AB, Greaves-Lord K, Hillegers MHJ, Dieleman GC, Mous SE. Autism Symptoms in Children and Young Adults With Fragile X Syndrome, Angelman Syndrome, Tuberous Sclerosis Complex, and Neurofibromatosis Type 1: A Cross-Syndrome Comparison. Front Psychiatry 2022; 13:852208. [PMID: 35651825 PMCID: PMC9149157 DOI: 10.3389/fpsyt.2022.852208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The etiology of autism spectrum disorder (ASD) remains unclear, due to genetic heterogeneity and heterogeneity in symptoms across individuals. This study compares ASD symptomatology between monogenetic syndromes with a high ASD prevalence, in order to reveal syndrome specific vulnerabilities and to clarify how genetic variations affect ASD symptom presentation. METHODS We assessed ASD symptom severity in children and young adults (aged 0-28 years) with Fragile X Syndrome (FXS, n = 60), Angelman Syndrome (AS, n = 91), Neurofibromatosis Type 1 (NF1, n = 279) and Tuberous Sclerosis Complex (TSC, n = 110), using the Autism Diagnostic Observation Schedule and Social Responsiveness Scale. Assessments were part of routine clinical care at the ENCORE expertise center in Rotterdam, the Netherlands. First, we compared the syndrome groups on the ASD classification prevalence and ASD severity scores. Then, we compared individuals in our syndrome groups with an ASD classification to a non-syndromic ASD group (nsASD, n = 335), on both ASD severity scores and ASD symptom profiles. Severity scores were compared using MANCOVAs with IQ and gender as covariates. RESULTS Overall, ASD severity scores were highest for the FXS group and lowest for the NF1 group. Compared to nsASD, individuals with an ASD classification in our syndrome groups showed less problems on the instruments' social domains. We found a relative strength in the AS group on the social cognition, communication and motivation domains and a relative challenge in creativity; a relative strength of the NF1 group on the restricted interests and repetitive behavior scale; and a relative challenge in the FXS and TSC groups on the restricted interests and repetitive behavior domain. CONCLUSION The syndrome-specific strengths and challenges we found provide a frame of reference to evaluate an individual's symptoms relative to the larger syndromic population and to guide treatment decisions. Our findings support the need for personalized care and a dimensional, symptom-based diagnostic approach, in contrast to a dichotomous ASD diagnosis used as a prerequisite for access to healthcare services. Similarities in ASD symptom profiles between AS and FXS, and between NF1 and TSC may reflect similarities in their neurobiology. Deep phenotyping studies are required to link neurobiological markers to ASD symptomatology.
Collapse
Affiliation(s)
- Kyra Lubbers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eefje M Stijl
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bram Dierckx
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Doesjka A Hagenaar
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of General Paediatrics, Erasmus MC, Rotterdam, Netherlands
| | - Leontine W Ten Hoopen
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen S Legerstee
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pieter F A de Nijs
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - André B Rietman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kirstin Greaves-Lord
- Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Clinical Psychology and Experimental Psychopathology Unit, Department of Psychology, Rijksuniversiteit Groningen, Groningen, Netherlands.,Yulius Mental Health, Dordrecht, Netherlands.,Jonx Autism Team Northern-Netherlands, Lentis Mental Health, Groningen, Netherlands
| | - Manon H J Hillegers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gwendolyn C Dieleman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sabine E Mous
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
20
|
Glad DM, Casnar CL, Yund BD, Lee K, Klein-Tasman BP. Parent-Reported Social Skills in Children with Neurofibromatosis Type 1: Longitudinal Patterns and Relations with Attention and Cognitive Functioning. J Dev Behav Pediatr 2021; 42:656-665. [PMID: 34618723 PMCID: PMC8944791 DOI: 10.1097/dbp.0000000000000939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Social skills difficulties are commonly reported by parents and teachers of school age (SA) children with neurofibromatosis type 1 (NF1). Investigations of social skills of young children with NF1 are scarce. This study aimed to characterize the emergence of social skills challenges beginning in early childhood, examine social skills longitudinally into SA, and explore interrelations with attention-deficit hyperactivity disorder (ADHD) symptomatology and cognitive functioning among children with NF1 cross-sectionally and longitudinally. METHOD Three samples of children with NF1 and their parents participated: (1) early childhood (n = 50; ages 3-6; mean [M] = 3.96, SD = 1.05), (2) SA (n = 40; ages 9-13; [M] = 10.90, SD = 1.59), and (3) both early childhood and SA (n = 25). Parent-reported social skills (Social Skills Rating System and Social Skills Improvement System), ADHD symptomatology (Conners Parent Rating Scales - Revised and Conners - Third Edition), and parent-reported cognitive abilities (Differential Ability Scales - Second Edition) were evaluated. RESULTS Parental ratings of social skills were relatively stable throughout childhood. Ratings of social skills at the end of early childhood significantly predicted school-age social skills. Parental ratings of ADHD symptomatology showed significant negative relations with social skills. Early childhood inattentive symptoms predicted school-age social skills ratings. Cognitive functioning was not significantly related to social skills. CONCLUSION Parent-reported social skills difficulties are evident during early childhood. This work adds to the literature by describing the frequency and stability of social skills challenges in early childhood and in the school-age period in NF1. Research about interventions to support social skills when difficulties are present is needed.
Collapse
Affiliation(s)
- Danielle M. Glad
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Christina L. Casnar
- Department of Neurology, Division of Neuropsychology, Medical College of Wisconsin, Wauwatosa, WI
| | - Brianna D. Yund
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Kristin Lee
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
| | | |
Collapse
|
21
|
Sato A, Ikeda K. Genetic and Environmental Contributions to Autism Spectrum Disorder Through Mechanistic Target of Rapamycin. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:95-105. [PMID: 36325164 PMCID: PMC9616270 DOI: 10.1016/j.bpsgos.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects an individual’s reciprocal social interaction and communication ability. Numerous genetic and environmental conditions are associated with ASD, including tuberous sclerosis complex, phosphatase and tensin homolog hamartoma tumor syndrome, fragile X syndrome, and neurofibromatosis 1. The pathogenic molecular mechanisms of these diseases are integrated into the hyperactivation of mTORC1 (mechanistic target of rapamycin complex 1). Rodent models of these diseases have shown high mTORC1 activity in the brain and ASD-related behavioral deficits, which were reversed by the mTORC1 inhibitor rapamycin. Environmental stress can also affect this signaling pathway. In utero exposure to valproate caused ASD in offspring and enhanced mTORC1 activity in the brain, which was sensitive to mTORC1 inhibition. mTORC1 is a signaling hub for diverse cellular functions, including protein synthesis, through the phosphorylation of its targets, such as ribosomal protein S6 kinases. Metabotropic glutamate receptor 5–mediated synaptic function is also affected by the dysregulation of mTORC1 activity, such as in fragile X syndrome and tuberous sclerosis complex. Reversing these downstream changes that are associated with mTORC1 activation normalizes behavioral defects in rodents. Despite abundant preclinical evidence, few clinical studies have investigated the treatment of ASD and cognitive deficits. Therapeutics other than mTORC1 inhibitors failed to show efficacy in fragile X syndrome and neurofibromatosis 1. mTORC1 inhibitors have been tested mainly in tuberous sclerosis complex, and their effects on ASD and neuropsychological deficits are promising. mTORC1 is a promising target for the pharmacological treatment of ASD associated with mTORC1 activation.
Collapse
|
22
|
Janusz JA, Klein-Tasman BP, Payne JM, Wolters PL, Thompson HL, Martin S, de Blank P, Ullrich N, Del Castillo A, Hussey M, Hardy KK, Haebich K, Rosser T, Toledo-Tamula MA, Walsh KS. Recommendations for Social Skills End Points for Clinical Trials in Neurofibromatosis Type 1. Neurology 2021; 97:S73-S80. [PMID: 34230205 PMCID: PMC8594002 DOI: 10.1212/wnl.0000000000012422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To review parent-report social skills measures to identify and recommend consensus outcomes for use in clinical trials of social deficit in children and adolescents (ages 6-18 years) with neurofibromatosis type 1 (NF1). METHODS Searches were conducted via PubMed and ClinicalTrials.gov to identity social skills outcome measures with English language versions used in clinical trials in the past 5 years with populations with known social skills deficits, including attention-deficit/hyperactivity disorder and autism spectrum disorder (ASD). Measures were rated by the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) Neurocognitive Committee on patient characteristics, use in published studies, domains assessed, availability of standard scores, psychometric properties, and feasibility to determine their appropriateness for use in NF1 clinical trials. RESULTS Two measures were ultimately recommended by the committee: the Social Responsiveness Scale-2 (SRS-2) and the Social Skills Improvement System-Rating Scale (SSIS-RS). CONCLUSIONS Each of the 2 measures assesses different aspects of social functioning. The SSIS-RS is appropriate for studies focused on broader social functioning; the SRS-2 is best for studies targeting problematic social behaviors associated with ASD. Researchers will need to consider the goals of their study when choosing a measure, and specific recommendations for their use are provided.
Collapse
Affiliation(s)
- Jennifer A Janusz
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD.
| | - Bonita P Klein-Tasman
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Jonathan M Payne
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Pamela L Wolters
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Heather L Thompson
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Staci Martin
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Peter de Blank
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Nicole Ullrich
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Allison Del Castillo
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Maureen Hussey
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Kristina K Hardy
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Kristina Haebich
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Tena Rosser
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Mary Anne Toledo-Tamula
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Karin S Walsh
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| |
Collapse
|
23
|
Begum-Ali J, Kolesnik-Taylor A, Quiroz I, Mason L, Garg S, Green J, Johnson MH, Jones EJH. Early differences in auditory processing relate to Autism Spectrum Disorder traits in infants with Neurofibromatosis Type I. J Neurodev Disord 2021; 13:22. [PMID: 34049498 PMCID: PMC8161667 DOI: 10.1186/s11689-021-09364-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/03/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Sensory modulation difficulties are common in children with conditions such as Autism Spectrum Disorder (ASD) and could contribute to other social and non-social symptoms. Positing a causal role for sensory processing differences requires observing atypical sensory reactivity prior to the emergence of other symptoms, which can be achieved through prospective studies. METHODS In this longitudinal study, we examined auditory repetition suppression and change detection at 5 and 10 months in infants with and without Neurofibromatosis Type 1 (NF1), a condition associated with higher likelihood of developing ASD. RESULTS In typically developing infants, suppression to vowel repetition and enhanced responses to vowel/pitch change decreased with age over posterior regions, becoming more frontally specific; age-related change was diminished in the NF1 group. Whilst both groups detected changes in vowel and pitch, the NF1 group were largely slower to show a differentiated neural response. Auditory responses did not relate to later language, but were related to later ASD traits. CONCLUSIONS These findings represent the first demonstration of atypical brain responses to sounds in infants with NF1 and suggest they may relate to the likelihood of later ASD.
Collapse
Affiliation(s)
- Jannath Begum-Ali
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Wellcome Building, Malet Street, London, WC1E 7HX, UK.
| | - Anna Kolesnik-Taylor
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Wellcome Building, Malet Street, London, WC1E 7HX, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Isabel Quiroz
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Wellcome Building, Malet Street, London, WC1E 7HX, UK
| | - Luke Mason
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Wellcome Building, Malet Street, London, WC1E 7HX, UK
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Wellcome Building, Malet Street, London, WC1E 7HX, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Wellcome Building, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
24
|
Al-Beltagi M. Autism medical comorbidities. World J Clin Pediatr 2021; 10:15-28. [PMID: 33972922 PMCID: PMC8085719 DOI: 10.5409/wjcp.v10.i3.15] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Medical comorbidities are more common in children with autism spectrum disorders (ASD) than in the general population. Some genetic disorders are more common in children with ASD such as Fragile X syndrome, Down syndrome, Duchenne muscular dystrophy, neurofibromatosis type I, and tuberous sclerosis complex. Children with autism are also more prone to a variety of neurological disorders, including epilepsy, macrocephaly, hydrocephalus, cerebral palsy, migraine/headaches, and congenital abnormalities of the nervous system. Besides, sleep disorders are a significant problem in individuals with autism, occurring in about 80% of them. Gastrointestinal (GI) disorders are significantly more common in children with ASD; they occur in 46% to 84% of them. The most common GI problems observed in children with ASD are chronic constipation, chronic diarrhoea, gastroesophageal reflux and/or disease, nausea and/or vomiting, flatulence, chronic bloating, abdominal discomfort, ulcers, colitis, inflammatory bowel disease, food intolerance, and/or failure to thrive. Several categories of inborn-errors of metabolism have been observed in some patients with autism including mitochondrial disorders, disorders of creatine metabolism, selected amino acid disorders, disorders of folate or B12 metabolism, and selected lysosomal storage disorders. A significant proportion of children with ASD have evidence of persistent neuroinflammation, altered inflammatory responses, and immune abnormalities. Anti-brain antibodies may play an important pathoplastic mechanism in autism. Allergic disorders are significantly more common in individuals with ASD from all age groups. They influence the development and severity of symptoms. They could cause problematic behaviours in at least a significant subset of affected children. Therefore, it is important to consider the child with autism as a whole and not overlook possible symptoms as part of autism. The physician should rule out the presence of a medical condition before moving on to other interventions or therapies. Children who enjoy good health have a better chance of learning. This can apply to all children including those with autism.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama P.O. Box 26671, Bahrain, Bahrain
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 0000000, Al Gharbia, Egypt
| |
Collapse
|
25
|
Al-Beltagi M. Autism medical comorbidities. World J Clin Pediatr 2021. [PMID: 33972922 DOI: 10.5409/wjcp.v10.i3.15.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Medical comorbidities are more common in children with autism spectrum disorders (ASD) than in the general population. Some genetic disorders are more common in children with ASD such as Fragile X syndrome, Down syndrome, Duchenne muscular dystrophy, neurofibromatosis type I, and tuberous sclerosis complex. Children with autism are also more prone to a variety of neurological disorders, including epilepsy, macrocephaly, hydrocephalus, cerebral palsy, migraine/headaches, and congenital abnormalities of the nervous system. Besides, sleep disorders are a significant problem in individuals with autism, occurring in about 80% of them. Gastrointestinal (GI) disorders are significantly more common in children with ASD; they occur in 46% to 84% of them. The most common GI problems observed in children with ASD are chronic constipation, chronic diarrhoea, gastroesophageal reflux and/or disease, nausea and/or vomiting, flatulence, chronic bloating, abdominal discomfort, ulcers, colitis, inflammatory bowel disease, food intolerance, and/or failure to thrive. Several categories of inborn-errors of metabolism have been observed in some patients with autism including mitochondrial disorders, disorders of creatine metabolism, selected amino acid disorders, disorders of folate or B12 metabolism, and selected lysosomal storage disorders. A significant proportion of children with ASD have evidence of persistent neuroinflammation, altered inflammatory responses, and immune abnormalities. Anti-brain antibodies may play an important pathoplastic mechanism in autism. Allergic disorders are significantly more common in individuals with ASD from all age groups. They influence the development and severity of symptoms. They could cause problematic behaviours in at least a significant subset of affected children. Therefore, it is important to consider the child with autism as a whole and not overlook possible symptoms as part of autism. The physician should rule out the presence of a medical condition before moving on to other interventions or therapies. Children who enjoy good health have a better chance of learning. This can apply to all children including those with autism.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama P.O. Box 26671, Bahrain, Bahrain
| |
Collapse
|
26
|
Holter MC, Hewitt LT, Nishimura KJ, Knowles SJ, Bjorklund GR, Shah S, Fry NR, Rees KP, Gupta TA, Daniels CW, Li G, Marsh S, Treiman DM, Olive MF, Anderson TR, Sanabria F, Snider WD, Newbern JM. Hyperactive MEK1 Signaling in Cortical GABAergic Neurons Promotes Embryonic Parvalbumin Neuron Loss and Defects in Behavioral Inhibition. Cereb Cortex 2021; 31:3064-3081. [PMID: 33570093 DOI: 10.1093/cercor/bhaa413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.
Collapse
Affiliation(s)
- Michael C Holter
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Lauren T Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Interdepartmental Neuroscience Graduate Program, University of Texas, Austin, TX 78712, USA
| | - Kenji J Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Interdepartmental Neuroscience Graduate Program, University of Texas, Austin, TX 78712, USA
| | - Sara J Knowles
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Shiv Shah
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Noah R Fry
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Tanya A Gupta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Carter W Daniels
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA.,Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Guohui Li
- College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Steven Marsh
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | | | - Trent R Anderson
- College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Federico Sanabria
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - William D Snider
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
27
|
Morotti H, Mastel S, Keller K, Barnard RA, Hall T, O'Roak BJ, Fombonne E. Autism and attention-deficit/hyperactivity disorders and symptoms in children with neurofibromatosis type 1. Dev Med Child Neurol 2021; 63:226-232. [PMID: 32406525 DOI: 10.1111/dmcn.14558] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2020] [Indexed: 11/30/2022]
Abstract
AIM To evaluate if autism symptoms and diagnoses are more common in children with neurofibromatosis type 1 (NF1) than in typically developing children, to which levels, and to determine if co-occurring attention-deficit/hyperactivity disorder (ADHD) symptomatology accounts for this increase. METHOD We searched hospital electronic medical records (EMR) for International Classification of Diseases, 10th Revision NF1 and co-occurring diagnoses codes. We recruited a subsample of 45 children (mean age 9y 2mo; SD 2y 7mo; range 5-12y; 22 males, 23 females) and collected parental reports of autism symptomatology, adaptive behavior, and behavioral problems that were compared to those of 360 age- and sex-matched controls from the Simons Simplex Collection (SSC) with autism spectrum disorder (ASD; SSC-ASD) or typically developing (SSC-TD). RESULTS The EMR search identified 968 children with NF1; 8.8% had ADHD and 2.1% had ASD co-occurring diagnoses. In the subsample, the mean autism scale score for participants with NF1 was below cut-off for significant autism symptoms. Participants with NF1 had significantly more autism and behavioral symptoms than SSC-TD participants, and significantly less than SSC-ASD participants, with one exception: ADHD symptom levels were similar to those of SSC-ASD participants. In analyses that controlled for internalizing, ADHD, and communication scores, the difference in autism symptom levels between participants with NF1 and typically developing controls disappeared almost entirely. INTERPRETATION Our results do not support an association between NF1 and autism, both at the symptom and disorder levels. WHAT THIS PAPER ADDS Diagnoses of attention-deficit/hyperactivity disorder (ADHD) were more common in children with neurofibromatosis type 1 (NF1) than in the general child population. Diagnoses of autism spectrum disorder were no more common in children with NF1 than in the general child population. Increases in autism symptoms did not reach clinically significant thresholds. Co-occurring ADHD symptoms accounted for increased autism questionnaire scores. Adaptive behavior in participants with NF1 showed normal socialization but lower communication proficiency.
Collapse
Affiliation(s)
- Hadley Morotti
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Sarah Mastel
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Institute on Development & Disability, Oregon Health & Science University, Portland, Oregon, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA
| | - Kory Keller
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Rebecca A Barnard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Trevor Hall
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Institute on Development & Disability, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J O'Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric Fombonne
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Institute on Development & Disability, Oregon Health & Science University, Portland, Oregon, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
28
|
Zhang K, Wang Y, Fan T, Zeng C, Sun ZS. The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell 2020; 13:6-25. [PMID: 33306168 PMCID: PMC8776968 DOI: 10.1007/s13238-020-00812-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
The serine/threonine p21-activated kinases (PAKs), as main effectors of the Rho GTPases Cdc42 and Rac, represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity. PAKs show wide expression in the brain, but they differ in specific cell types, brain regions, and developmental stages. PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines. PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders. Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment, comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases, which may also represent potential therapeutic targets of these diseases.
Collapse
Affiliation(s)
- Kaifan Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Cheng Zeng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
Sagata N, Kano SI, Ohgidani M, Inamine S, Sakai Y, Kato H, Masuda K, Nakahara T, Nakahara-Kido M, Ohga S, Furue M, Sawa A, Kanba S, Kato TA. Forskolin rapidly enhances neuron-like morphological change of directly induced-neuronal cells from neurofibromatosis type 1 patients. Neuropsychopharmacol Rep 2020; 40:396-400. [PMID: 33037790 PMCID: PMC7722681 DOI: 10.1002/npr2.12144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Aim Neurofibromatosis type 1 (NF1) is a multifaceted disease, and frequently comorbid with neurodevelopmental disorders such as autism spectrum disorder (ASD) and learning disorder. Dysfunction of adenylyl cyclase (AC) is one of the candidate pathways in abnormal development of neuronal cells in the brain of NF1 patients, while its dynamic abnormalities have not been observed. Direct conversion technology can generate induced‐neuronal (iN) cells directly from human fibroblasts within 2 weeks. Just recently, we have revealed that forskolin, an AC activator, rescues the gene expression pattern of iN cells derived from NF1 patients (NF1‐iN cells). In this microreport, we show the dynamic effect of forskolin on NF1‐iN cells. Methods iN cells derived from healthy control (HC‐iN cells) and NF1‐iN cells were treated with forskolin (final concentration 10 μM), respectively. Morphological changes of iN cells were captured by inverted microscope with CCD camera every 2 minutes for 90 minutes. Results Prior to forskolin treatment, neuron‐like spherical‐form cells were observed in HC‐iN cells, but most NF1‐iN cells were not spherical‐form but flatform. Only 20 minutes after forskolin treatment, the morphology of the iN cells were dramatically changed from flatform to spherical form, especially in NF1‐iN cells. Conclusion The present pilot data indicate that forskolin or AC activators may have therapeutic effects on the growth of neuronal cells in NF1 patients. Further translational research should be conducted to validate our pilot findings for future drug development of ASD. Neurofibromatosis type 1 (NF1) is highly comorbid with neurodevelopmental disorders such as autism spectrum disorder (ASD) and learning disorder, and underlying mechanisms have not been well clarified. We herein showed that forskolin, an AC activator, rapidly enhances neuron‐like morphological change of directly induced‐neuronal (iN) cells from NF1 patients. The present pilot data using the direct conversion technology indicate that forskolin or AC activators may have therapeutic effects on the growth of neuronal cells in NF1 patients.
![]()
Collapse
Affiliation(s)
- Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin-Ichi Kano
- Department of Psychiatry and Behavioral Neurobiology & Department of Neurobiology, The University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, USA.,Departments of Psychiatry, Mental Health, Neuroscience, and Biomedical Engineering, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD, USA
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makiko Nakahara-Kido
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Sawa
- Departments of Psychiatry, Mental Health, Neuroscience, and Biomedical Engineering, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
An executive functioning perspective in neurofibromatosis type 1: from ADHD and autism spectrum disorder to research domains. Childs Nerv Syst 2020; 36:2321-2332. [PMID: 32617712 DOI: 10.1007/s00381-020-04745-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE Neurofibromatosis type 1 (NF1) is a rare monogenic disorder associated with executive function (EF) deficits and heightened risk for attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The goal of this paper is to understand how EFs provide a common foundation to understand vulnerabilities for ADHD and ASD within NF1. METHODS A literature review and synthesis was conducted. RESULTS EF difficulties in working memory, inhibitory control, cognitive flexibility, and planning are evident in NF1, ADHD, and ASD. However, relatively little is known about the heterogeneity of EFs and ADHD and ASD outcomes in NF1. Assessment of ADHD and ASD in NF1 is based on behavioral symptoms without understanding neurobiological contributions. Recent efforts are promoting the use of dimensional and multidisciplinary methods to better understand normal and abnormal behavior, including integrating information from genetics to self-report measures. CONCLUSION NF1 is a monogenic disease with well-developed molecular and phenotypic research as well as complementary animal models. NF1 presents an excellent opportunity to advance our understanding of the neurobiological impact of known pathogenic variation in normal and abnormal neural pathways implicated in human psychopathology. EFs are core features of NF1, ADHD, and ASD, and these neurodevelopmental outcomes are highly prevalent in NF1. We propose a multilevel approach for understanding EFs in patients with NF1.This is essential to advance targeted interventions for NF1 patients and to advance the exciting field of research in this condition.
Collapse
|
31
|
Cervi F, Saletti V, Turner K, Peron A, Bulgheroni S, Taddei M, La Briola F, Canevini MP, Vignoli A. The TAND checklist: a useful screening tool in children with tuberous sclerosis and neurofibromatosis type 1. Orphanet J Rare Dis 2020; 15:237. [PMID: 32894194 PMCID: PMC7487732 DOI: 10.1186/s13023-020-01488-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/03/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Tuberous Sclerosis Complex (TSC) and Neurofibromatosis type 1 (NF1) are neurocutaneous disorders commonly characterized by neuropsychiatric comorbidities. The TAND (Tuberous Sclerosis Associated Neuropsychiatric Disorders) Checklist is currently used to quickly screen for behavioural, psychiatric, intellectual, academic, neuropsychological and psychosocial manifestations in patients with TSC. We administered the authorized Italian version of the TAND Checklist to the parents of 42 TSC patients and 42 age- and sex-matched NF1 patients, for a total of 84 individuals, aged 4-20 years. Aims of this study: - to test the overall usability of the TAND Checklist in NF1, -to compare the results between children and adolescents with TSC and NF1, and -to examine the association between neuropsychiatric manifestations and severity of the phenotype in terms of epilepsy severity in the TSC cohort and disease severity according to the modified version of the Riccardi severity scale in the NF1 cohort. RESULTS TSC cohort: 35.6% had Intellectual Disability (ID), 11.9% Specific Learning Disorders (SLD), 50.0% Attention Deficit Hyperactivity Disorder (ADHD) and 16.6% anxious/mood disorder. 33.3% had a formal diagnosis of Autism Spectrum Disorder (ASD). Paying attention and concentrating (61.9%), impulsivity (54.8%), temper tantrums (54.8%), anxiety (45.2%), overactivity/hyperactivity (40.5%), aggressive outburst (40.5%), absent or delayed onset of language (40.5%), repetitive behaviors (35.7%), academic difficulties (> 40%), deficits in attention (61.9%) and executive skills (50.0%) were the most commonly reported problems. NF1 cohort: 9.5% had ID, 21.4% SLD, 46.6% ADHD, and 33.3% anxious/mood disorder. No one had a diagnosis of ASD. Commonly reported issues were paying attention and concentrating (59.5%), impulsivity (52.4%), anxiety (50.0%), overactivity/hyperactivity (38.1%), temper tantrums (38.1%), academic difficulties (> 40%), deficits in attention (59.5%), and executive skills (38.1%). Neuropsychiatric features in TSC vs NF1: Aggressive outburst and ASD features were reported significantly more frequently in TSC than in NF1. Neuropsychiatric manifestations and phenotype severity: Depressed mood, absent or delayed onset of language, repetitive language, difficulties in relationship with peers, repetitive behaviors, spelling, mathematics, dual-tasking, visuo-spatial tasks, executive skills, and getting disoriented were significantly different among TSC patients with different epilepsy severity. No statistically significant differences in the NF1 subgroups were noted for any of the items in the checklist. CONCLUSION The TAND Checklist used for TSC is acceptable and feasible to complete in a clinical setting, and is able to detect the complexity of neuropsychiatric involvement in NF1 as well. NF1 is mainly characterized by an ADHD profile, anxiety problems and SLD, while ASD features are strongly associated with TSC. In conclusion, the TAND Checklist is a useful and feasible screening tool, in both TSC and NF1.
Collapse
Affiliation(s)
- Francesca Cervi
- Epilepsy Center- Child Neuropsychiatry Unit, ASST Santi Paolo Carlo, Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20131, Milan, Italy
| | - Katherine Turner
- Epilepsy Center- Child Neuropsychiatry Unit, ASST Santi Paolo Carlo, Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
| | - Angela Peron
- Epilepsy Center- Child Neuropsychiatry Unit, ASST Santi Paolo Carlo, Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milan, Italy.
- Department of Health Sciences, University of Milan, Milan, Italy.
- Department of Pediatrics, Division of Medical Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Sara Bulgheroni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20131, Milan, Italy
| | - Matilde Taddei
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20131, Milan, Italy
| | - Francesca La Briola
- Epilepsy Center- Child Neuropsychiatry Unit, ASST Santi Paolo Carlo, Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
| | - Maria Paola Canevini
- Epilepsy Center- Child Neuropsychiatry Unit, ASST Santi Paolo Carlo, Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Aglaia Vignoli
- Epilepsy Center- Child Neuropsychiatry Unit, ASST Santi Paolo Carlo, Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Walsh KS, del Castillo A, Kennedy T, Karim AI, Semerjian C. A Review of Psychological, Social, and Behavioral Functions in the RASopathies. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2020. [DOI: 10.1007/s40817-020-00088-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
King LB, Boto T, Botero V, Aviles AM, Jomsky BM, Joseph C, Walker JA, Tomchik SM. Developmental loss of neurofibromin across distributed neuronal circuits drives excessive grooming in Drosophila. PLoS Genet 2020; 16:e1008920. [PMID: 32697780 PMCID: PMC7398555 DOI: 10.1371/journal.pgen.1008920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/03/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis type 1 is a monogenetic disorder that predisposes individuals to tumor formation and cognitive and behavioral symptoms. The neuronal circuitry and developmental events underlying these neurological symptoms are unknown. To better understand how mutations of the underlying gene (NF1) drive behavioral alterations, we have examined grooming in the Drosophila neurofibromatosis 1 model. Mutations of the fly NF1 ortholog drive excessive grooming, and increased grooming was observed in adults when Nf1 was knocked down during development. Furthermore, intact Nf1 Ras GAP-related domain signaling was required to maintain normal grooming. The requirement for Nf1 was distributed across neuronal circuits, which were additive when targeted in parallel, rather than mapping to discrete microcircuits. Overall, these data suggest that broadly-distributed alterations in neuronal function during development, requiring intact Ras signaling, drive key Nf1-mediated behavioral alterations. Thus, global developmental alterations in brain circuits/systems function may contribute to behavioral phenotypes in neurofibromatosis type 1.
Collapse
Affiliation(s)
- Lanikea B. King
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Tamara Boto
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Ari M. Aviles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Breanna M. Jomsky
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Chevara Joseph
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Seth M. Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| |
Collapse
|
34
|
Cohen R, Halevi A, Aharoni S, Aronson B, Diamond G. Impairments in communication and social interaction in children with neurofibromatosis type 1: Characteristics and role of ADHD and language delay. APPLIED NEUROPSYCHOLOGY. CHILD 2020; 11:220-225. [PMID: 32569512 DOI: 10.1080/21622965.2020.1780924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Neurofibromatosis type 1 (NF1) is a multisystem neurocutaneous disorder with increased risk of tumor formation and higher incidence of autism spectrum disorder (ASD) than the general population. The aim of the study was to assess the presence of ASD symptoms in young children with NF1 and to examine their potential association with attention deficit hyperactivity disorder (ADHD) and speech delay.Methods: The cohort included 30 patients with NF1 attending the multidisciplinary NF1 clinic of a tertiary pediatric medical center from September 2015 through September 2016. The parents/caregivers completed the Social Communication Questionnaire (SCQ) and the Vineland Adaptive Behavior Scales (VABS II).Results: Sixteen patients (53%) had a previous diagnosis of ADHD. There was a positive association between the presence of ADHD and a low score on the VABS II interpersonal relationships subscale of the Socialization domain. Language delay, documented in 12 children (40%), also correlated with a low interpersonal relationships score.Conclusions: ADHD appears to be more a marker than an actual independent risk factor of ASD in NF1. The early evaluation of children with NF1 for interpersonal communication problems and ASD, especially those with a speech delay or ADHD, will alert clinicians to initiate appropriate and timely treatment.
Collapse
Affiliation(s)
- Rony Cohen
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Halevi
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Aharoni
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bosmat Aronson
- The Child Development and Rehabilitation Institute, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Department of Developmental and Educational Psychology, Clalit Health Services, Tel Aviv, Israel
| | - Gary Diamond
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Child Development and Rehabilitation Institute, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
35
|
Nix JS, Blakeley J, Rodriguez FJ. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol 2020; 139:625-641. [PMID: 30963251 DOI: 10.1007/s00401-019-02002-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis 1 (NF1) is an autosomal dominant genetic disorder that presents with variable phenotypes as a result of mutations in the neurofibromatosis type 1 (NF1) gene and subsequently, abnormal function of the protein product, neurofibromin. Patients with NF1 are at increased risk for central nervous system (CNS) manifestations including structural, functional, and neoplastic disease. The mechanisms underlying the varied manifestations of NF1 are incompletely understood, but the loss of functional neurofibromin, resulting in sustained activation of the oncoprotein RAS, is responsible for tumorigenesis throughout the body, including the CNS. Much of our understanding of NF1-related CNS manifestations is from a combination of data from animal models and natural history studies of people with NF1 and CNS disease. Data from animal models suggest the importance of both Nf1 mutations and somatic genetic alterations, such as Tp53 loss, for development of neoplasms, as well as the role of the timing of the acquisition of such alterations on the variability of CNS manifestations. A variety of non-neoplastic structural (macrocephaly, hydrocephalus, aqueductal stenosis, and vasculopathy) and functional (epilepsy, impaired cognition, attention deficits, and autism spectrum disorder) abnormalities occur with variable frequency in individuals with NF1. In addition, there is increasing evidence that similar appearing CNS neoplasms in people with and without the NF1 syndrome are due to distinct oncogenic pathways. Gliomas in people with NF1 show alterations in the RAS/MAPK pathway, generally in the absence of BRAF alterations (common to sporadic pilocytic astrocytomas) or IDH or histone H3 mutations (common to diffuse gliomas subsets). A subset of low-grade astrocytomas in these patients remain difficult to classify using standard criteria, and occasionally demonstrate morphologic features resembling subependymal giant cell astrocytomas that afflict patients with tuberous sclerosis complex ("SEGA-like astrocytomas"). There is also emerging evidence that NF1-associated high-grade astrocytomas have frequent co-existing alterations such as ATRX mutations and an alternative lengthening of telomeres (ALT) phenotype responsible for unique biologic properties. Ongoing efforts are seeking to improve diagnostic accuracy for CNS neoplasms in the setting of NF1 versus sporadic tumors. In addition, MEK inhibitors, which act on the RAS/MAPK pathway, continue to be studied as rational targets for the treatment of NF1-associated tumors, including CNS tumors.
Collapse
|
36
|
Clinical Management of Children and Adolescents with Neurofibromatosis Type 1 Like Phenotypes and Complex Behavioural Manifestations: A Multidisciplinary and Dimensional Approach. Case Rep Psychiatry 2020; 2019:4764031. [PMID: 32089936 PMCID: PMC7011498 DOI: 10.1155/2019/4764031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction. Cognitive and behavioural problems associated with Neurofibromatosis type 1 (NF1) are common sources of distress and the reasons behind seeking help. Here we describe patients with NF1 or NF1-like phenotypes referred to a Tier 3 Child and Adolescent Psychiatry Department and highlight the benefits of a multidisciplinary assessment.
Collapse
|
37
|
Neurofibromatosis Type 1 Implicates Ras Pathways in the Genetic Architecture of Neurodevelopmental Disorders. Behav Genet 2020; 50:191-202. [DOI: 10.1007/s10519-020-09991-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/04/2020] [Indexed: 01/12/2023]
|
38
|
McNeill AM, Hudock RL, Foy AMH, Shanley R, Semrud-Clikeman M, Pierpont ME, Berry SA, Sommer K, Moertel CL, Pierpont EI. Emotional functioning among children with neurofibromatosis type 1 or Noonan syndrome. Am J Med Genet A 2019; 179:2433-2446. [PMID: 31566897 DOI: 10.1002/ajmg.a.61361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
While neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are clinically distinct genetic syndromes, they have overlapping features because they are caused by pathogenic variants in genes encoding molecules within the Ras-mitogen-activated protein kinase signaling pathway. Increased risk for emotional and behavioral challenges has been reported in both children and adults with these syndromes. The current study examined parent-report and self-report measures of emotional functioning among children with NF1 and NS as compared to their unaffected siblings. Parents and children with NS (n = 39), NF1 (n = 39), and their siblings without a genetic condition (n = 32) completed well-validated clinical symptom rating scales. Results from parent questionnaires indicated greater symptomatology on scales measuring internalizing behaviors and symptoms of attention deficit hyperactivity disorder (ADHD) in both syndrome groups as compared with unaffected children. Frequency and severity of emotional and behavioral symptoms were remarkably similar across the two clinical groups. Symptoms of depression and anxiety were higher in children who were also rated as meeting symptom criteria for ADHD. While self-report ratings by children generally correlated with parent ratings, symptom severity was less pronounced. Among unaffected siblings, parent ratings indicated higher than expected levels of anxiety. Study findings may assist with guiding family-based interventions to address emotional challenges.
Collapse
Affiliation(s)
- Alana M McNeill
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Rebekah L Hudock
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Allison M H Foy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Educational Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan Shanley
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Margaret Semrud-Clikeman
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mary Ella Pierpont
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Susan A Berry
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Katherine Sommer
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Christopher L Moertel
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Elizabeth I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
39
|
Moutal A, Cai S, Luo S, Voisin R, Khanna R. CRMP2 is necessary for Neurofibromatosis type 1 related pain. Channels (Austin) 2019; 12:47-50. [PMID: 28837387 PMCID: PMC5972793 DOI: 10.1080/19336950.2017.1370524] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common genetic diseases, affecting roughly 1 in 3000 individuals. As a multisystem disorder, it affects cognitive development, as well as bone, nerve and muscle constitution. Peripheral neuropathy in NF1 constitutes a potentially severe clinical complication and is associated with increased morbidity and mortality. The discovery of effective therapies for Neurofibromatosis type 1 (NF1) pain depends on mechanistic understanding that has been limited, in part, by the relative lack of availability of animal models relevant to NF1 pain. We have used intrathecal targeted editing of Nf1 in rats to provide direct evidence of a causal relationship between neurofibromin and pain responses. We demonstrated that editing of neurofibromin results in functional remodeling of peripheral nociceptors characterized by enhancement of interactions of the tetrodotoxin-sensitive (TTX-S) Na+ voltage-gated sodium channel (NaV1.7) and the collapsin response mediator protein 2 (CRMP2). Collectively, these peripheral adaptations increase sensory neuron excitability and release of excitatory transmitters to the spinal dorsal horn to establish and maintain a state of central sensitization reflected by hyperalgesia to mechanical stimulation of the hindpaw. The data presented here shows that CRMP2 inhibition is sufficient to reverse the dysregulations of voltage-gated ion channels and neurotransmitter release observed after Nf1 gene editing. The concordance in normalization of ion channel dysregulation by a CRMP2-directed strategy and of hyperalgesia supports the translational targeting of CRMP2 to curb NF1-related pain.
Collapse
Affiliation(s)
- Aubin Moutal
- a Department of Pharmacology , University of Arizona , Tucson , AZ , USA
| | - Song Cai
- a Department of Pharmacology , University of Arizona , Tucson , AZ , USA
| | - Shizhen Luo
- a Department of Pharmacology , University of Arizona , Tucson , AZ , USA
| | - Raphaëlle Voisin
- a Department of Pharmacology , University of Arizona , Tucson , AZ , USA
| | - Rajesh Khanna
- a Department of Pharmacology , University of Arizona , Tucson , AZ , USA.,b Department of Anesthesiology , University of Arizona , Tucson , AZ , USA.,c Neuroscience Graduate Interdisciplinary Program , College of Medicine, University of Arizona , Tucson , AZ , USA
| |
Collapse
|
40
|
Eijk S, Mous SE, Dieleman GC, Dierckx B, Rietman AB, de Nijs PFA, Ten Hoopen LW, van Minkelen R, Elgersma Y, Catsman-Berrevoets CE, Oostenbrink R, Legerstee JS. Autism Spectrum Disorder in an Unselected Cohort of Children with Neurofibromatosis Type 1 (NF1). J Autism Dev Disord 2019; 48:2278-2285. [PMID: 29423604 PMCID: PMC5995999 DOI: 10.1007/s10803-018-3478-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a non-selected sample of children with Neurofibromatosis type 1 (NF1) the prevalence rate of autism spectrum disorder (ASD) and predictive value of an observational (ADOS)—and questionnaire-based screening instrument were assessed. Complete data was available for 128 children. The prevalence rate for clinical ASD was 10.9%, which is clearly higher than in the general population. This prevalence rate is presumably more accurate than in previous studies that examined children with NF1 with an ASD presumption or solely based on screening instruments. The combined observational- and screening based classifications demonstrated the highest positive predictive value for DSM-IV diagnosis, highlighting the importance of using both instruments in children with NF1.
Collapse
Affiliation(s)
- S Eijk
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - S E Mous
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - G C Dieleman
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - B Dierckx
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - A B Rietman
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - P F A de Nijs
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - L W Ten Hoopen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - R van Minkelen
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Y Elgersma
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus Medical Centre Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - C E Catsman-Berrevoets
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,Department of Pediatric Neurology, Erasmus Medical Center-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - R Oostenbrink
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.,Department of General Paediatrics, Erasmus Medical Center-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - J S Legerstee
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands. .,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands. .,Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, Room Sp-2509, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.
| |
Collapse
|
41
|
Shofty B, Bergmann E, Zur G, Asleh J, Bosak N, Kavushansky A, Castellanos FX, Ben-Sira L, Packer RJ, Vezina GL, Constantini S, Acosta MT, Kahn I. Autism-associated Nf1 deficiency disrupts corticocortical and corticostriatal functional connectivity in human and mouse. Neurobiol Dis 2019; 130:104479. [PMID: 31128207 PMCID: PMC6689441 DOI: 10.1016/j.nbd.2019.104479] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/11/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022] Open
Abstract
Children with the autosomal dominant single gene disorder, neurofibromatosis type 1 (NF1), display multiple structural and functional changes in the central nervous system, resulting in neuropsychological cognitive abnormalities. Here we assessed the pathological functional organization that may underlie the behavioral impairments in NF1 using resting-state functional connectivity MRI. Coherent spontaneous fluctuations in the fMRI signal across the entire brain were used to interrogate the pattern of functional organization of corticocortical and corticostriatal networks in both NF1 pediatric patients and mice with a heterozygous mutation in the Nf1 gene (Nf1+/-). Children with NF1 demonstrated abnormal organization of cortical association networks and altered posterior-anterior functional connectivity in the default network. Examining the contribution of the striatum revealed that corticostriatal functional connectivity was altered. NF1 children demonstrated reduced functional connectivity between striatum and the frontoparietal network and increased striatal functional connectivity with the limbic network. Awake passive mouse functional connectivity MRI in Nf1+/- mice similarly revealed reduced posterior-anterior connectivity along the cingulate cortex as well as disrupted corticostriatal connectivity. The striatum of Nf1+/- mice showed increased functional connectivity to somatomotor and frontal cortices and decreased functional connectivity to the auditory cortex. Collectively, these results demonstrate similar alterations across species, suggesting that NF1 pathogenesis is linked to striatal dysfunction and disrupted corticocortical connectivity in the default network.
Collapse
Affiliation(s)
- Ben Shofty
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel; The Gilbert Israeli NF Center, Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, and Tel Aviv University, Tel Aviv, Israel
| | - Eyal Bergmann
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gil Zur
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jad Asleh
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noam Bosak
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Liat Ben-Sira
- The Gilbert Israeli NF Center, Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, and Tel Aviv University, Tel Aviv, Israel
| | - Roger J Packer
- The Gilbert Family Neurofibromatosis Institute, Children's National Health System, Department of Neurology and Pediatrics, George Washington University, Washington, DC, USA
| | - Gilbert L Vezina
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC, USA
| | - Shlomi Constantini
- The Gilbert Israeli NF Center, Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, and Tel Aviv University, Tel Aviv, Israel
| | - Maria T Acosta
- The Gilbert Family Neurofibromatosis Institute, Children's National Health System, Department of Neurology and Pediatrics, George Washington University, Washington, DC, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Itamar Kahn
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
42
|
Miller DT, Freedenberg D, Schorry E, Ullrich NJ, Viskochil D, Korf BR. Health Supervision for Children With Neurofibromatosis Type 1. Pediatrics 2019; 143:e20190660. [PMID: 31010905 DOI: 10.1542/peds.2019-0660] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a multisystem disorder that primarily involves the skin and peripheral nervous system. Its population prevalence is approximately 1 in 3000. The condition is usually recognized in early childhood, when pigmentary manifestations emerge. Although NF1 is associated with marked clinical variability, most children affected follow patterns of growth and development within the normal range. Some features of NF1 can be present at birth, but most manifestations emerge with age, necessitating periodic monitoring to address ongoing health and developmental needs and minimize the risk of serious medical complications. In this report, we provide a review of the clinical criteria needed to establish a diagnosis, the inheritance pattern of NF1, its major clinical and developmental manifestations, and guidelines for monitoring and providing intervention to maximize the health and quality of life of a child affected.
Collapse
|
43
|
Measurement considerations in pediatric research on autism spectrum disorders. PROGRESS IN BRAIN RESEARCH 2018. [PMID: 30447755 DOI: 10.1016/bs.pbr.2018.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Studying Autism Spectrum Disorders (ASD) in genetic syndromes has gained interest in the scientific community as a way to elucidate mechanisms and symptom profiles to understand ASD more broadly. Appropriate and adequate measurement of constructs, symptomatology, and outcomes in clinical research is of vital importance in establishing the prevalence of such symptoms and measuring change in symptoms in the context of clinical trials. As such, we provide an overview of the prevalence of ASD, present current diagnostic guidelines, discuss important comorbidities to consider, describe current assessment strategies in assessing ASD, and discuss these within the context of a specific genetic condition to highlight how ASD can be best evaluated.
Collapse
|
44
|
Drozd HP, Karathanasis SF, Molosh AI, Lukkes JL, Clapp DW, Shekhar A. From bedside to bench and back: Translating ASD models. PROGRESS IN BRAIN RESEARCH 2018; 241:113-158. [PMID: 30447753 DOI: 10.1016/bs.pbr.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) represent a heterogeneous group of disorders defined by deficits in social interaction/communication and restricted interests, behaviors, or activities. Models of ASD, developed based on clinical data and observations, are used in basic science, the "bench," to better understand the pathophysiology of ASD and provide therapeutic options for patients in the clinic, the "bedside." Translational medicine creates a bridge between the bench and bedside that allows for clinical and basic science discoveries to challenge one another to improve the opportunities to bring novel therapies to patients. From the clinical side, biomarker work is expanding our understanding of possible mechanisms of ASD through measures of behavior, genetics, imaging modalities, and serum markers. These biomarkers could help to subclassify patients with ASD in order to better target treatments to a more homogeneous groups of patients most likely to respond to a candidate therapy. In turn, basic science has been responding to developments in clinical evaluation by improving bench models to mechanistically and phenotypically recapitulate the ASD phenotypes observed in clinic. While genetic models are identifying novel therapeutics targets at the bench, the clinical efforts are making progress by defining better outcome measures that are most representative of meaningful patient responses. In this review, we discuss some of these challenges in translational research in ASD and strategies for the bench and bedside to bridge the gap to achieve better benefits to patients.
Collapse
Affiliation(s)
- Hayley P Drozd
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sotirios F Karathanasis
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jodi L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - D Wade Clapp
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anantha Shekhar
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translation Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
45
|
Abstract
The MAPK pathway is a prominent intracellular signaling pathway regulating various intracellular functions. Components of this pathway are mutated in a related collection of congenital syndromes collectively referred to as neuro-cardio-facio-cutaneous syndromes (NCFC) or Rasopathies. Recently, it has been appreciated that these disorders are associated with autism spectrum disorders (ASD). In addition, idiopathic ASD has also implicated the MAPK signaling cascade as a common pathway that is affected by many of the genetic variants that have been found to be linked to ASDs. This chapter describes the components of the MAPK pathway and how it is regulated. Furthermore, this chapter will highlight the various functions of the MAPK pathway during both embryonic development of the central nervous system (CNS) and its roles in neuronal physiology and ultimately, behavior. Finally, we will summarize the perturbations to MAPK signaling in various models of autism spectrum disorders and Rasopathies to highlight how dysregulation of this pivotal pathway may contribute to the pathogenesis of autism.
Collapse
|
46
|
Molosh AI, Shekhar A. Neurofibromatosis type 1 as a model system to study molecular mechanisms of autism spectrum disorder symptoms. PROGRESS IN BRAIN RESEARCH 2018; 241:37-62. [PMID: 30447756 DOI: 10.1016/bs.pbr.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurofibromatosis type 1 (NF1) is monogenic neurodevelopmental disorder caused by mutation of NF1 gene, which leads to increased susceptibility to various tumors formations. Additionally, majority of patients with NF1 are experience high incidence of cognitive deficits. Particularly, we review the growing number of reports demonstrated a higher incidence of autism spectrum disorder (ASD) in individuals with NF1. In this review we also discuss face validity of preclinical Nf1 mouse models. Then we describe discoveries from these animal models that have uncovered the deficiencies in the regulation of Ras and other intracellular pathways as critical mechanisms underlying the Nf1 cognitive problems. We also summarize and interpret recent preclinical and clinical studies that point toward potential pharmacological therapies for NF1 patients.
Collapse
Affiliation(s)
- Andrei I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States.
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States; Department of Pharmacology & Toxicology, IU School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translational Institute, IU School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
47
|
Social Function and Autism Spectrum Disorder in Children and Adults with Neurofibromatosis Type 1: a Systematic Review and Meta-Analysis. Neuropsychol Rev 2018; 28:317-340. [DOI: 10.1007/s11065-018-9380-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
48
|
Abstract
The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR inhibitors to improve neurodevelopmental outcomes have been initiated.
Collapse
Affiliation(s)
- Kellen D. Winden
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
49
|
Pierpont EI, Hudock RL, Foy AM, Semrud-Clikeman M, Pierpont ME, Berry SA, Shanley R, Rubin N, Sommer K, Moertel CL. Social skills in children with RASopathies: a comparison of Noonan syndrome and neurofibromatosis type 1. J Neurodev Disord 2018; 10:21. [PMID: 29914349 PMCID: PMC6006579 DOI: 10.1186/s11689-018-9239-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Background Gene mutations within the RAS-MAPK signaling cascade result in Noonan syndrome (NS), neurofibromatosis type 1 (NF1), and related disorders. Recent research has documented an increased risk for social difficulties and features of autism spectrum disorder (ASD) among children with these conditions. Despite this emerging evidence, the neuropsychological characteristics associated with social skills deficits are not well understood, particularly for children with NS. Methods Parents of children with NS (n = 39), NF1 (n = 39), and unaffected siblings (n = 32) between the ages of 8 and 16 years were administered well-validated caregiver questionnaires assessing their child’s social skills, language abilities, attention-deficit hyperactivity disorder (ADHD) symptoms and anxiety. Results With respect to overall social skills, average ratings of children in both clinical groups were similar, and indicated weaker social skills compared to unaffected siblings. Although ratings of social skills were outside of normal limits for more than four in ten children within the clinical groups, most of the deficits were mild/moderate. Fifteen percent of the children with NS and 5% of the children with NF1 were rated as having severe social skills impairment (< − 2SD). Independent of diagnosis, having fewer ADHD symptoms or better social-pragmatic language skills was predictive of stronger social skills. Conclusions Amidst efforts to support social skill development among children and adolescents with RASopathies, neuropsychological correlates such as social language competence, attention, and behavioral self-regulation could be important targets of intervention.
Collapse
Affiliation(s)
- Elizabeth I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 486, Minneapolis, MN, 55455, USA.
| | - Rebekah L Hudock
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 486, Minneapolis, MN, 55455, USA
| | - Allison M Foy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 486, Minneapolis, MN, 55455, USA
| | - Margaret Semrud-Clikeman
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 486, Minneapolis, MN, 55455, USA
| | - Mary Ella Pierpont
- Division of Genetics & Metabolism, Department of Pediatrics and Ophthalmology, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55455, USA
| | - Susan A Berry
- Division of Genetics & Metabolism, Department of Pediatrics and Ophthalmology, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55455, USA
| | - Ryan Shanley
- Biostatistics Core, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Nathan Rubin
- Biostatistics Core, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Katherine Sommer
- University of Minnesota Health, 2450 Riverside Avenue, Minneapolis, MN, 55455, USA
| | - Christopher L Moertel
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Mayo Mail Code 484, 420 Delaware Street SE, Mayo Mail Code 486, Minneapolis, MN, 55455, USA
| |
Collapse
|
50
|
Bizaoui V, Gage J, Brar R, Rauen KA, Weiss LA. RASopathies are associated with a distinct personality profile. Am J Med Genet B Neuropsychiatr Genet 2018; 177:434-446. [PMID: 29659143 PMCID: PMC6039190 DOI: 10.1002/ajmg.b.32632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 11/08/2022]
Abstract
Personality is a complex, yet partially heritable, trait. Although some Mendelian diseases like Williams-Beuren syndrome are associated with a particular personality profile, studies have failed to assign the personality features to a single gene or pathway. As a family of monogenic disorders caused by mutations in the Ras/MAPK pathway known to influence social behavior, RASopathies are likely to provide insight into the genetic basis of personality. Eighty subjects diagnosed with cardiofaciocutaneous syndrome, Costello syndrome, neurofibromatosis type 1, and Noonan syndrome were assessed using a parent-report BFQ-C (Big Five Questionnaire for Children) evaluating agreeableness, extraversion, conscientiousness, intellect/openness, and neuroticism, along with 55 unaffected sibling controls. A short questionnaire was added to assess sense of humor. RASopathy subjects and sibling controls were compared for individual components of personality, multidimensional personality profiles, and individual questions using Student tests, analysis of variance, and principal component analysis. RASopathy subjects were given lower scores on average compared to sibling controls in agreeableness, extraversion, conscientiousness, openness, and sense of humor, and similar scores in neuroticism. When comparing the multidimensional personality profile between groups, RASopathies showed a distinct profile from unaffected siblings, but no difference in this global profile was found within RASopathies, revealing a common profile for the Ras/MAPK-related disorders. In addition, several syndrome-specific strengths or weaknesses were observed in individual domains. We describe for the first time an association between a single pathway and a specific personality profile, providing a better understanding of the genetics underlying personality, and new tools for tailoring educational and behavioral approaches for individuals with RASopathies.
Collapse
Affiliation(s)
- Varoona Bizaoui
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA,Laboratoire de Génétique moléculaire et Histocompatibilité, CHRU de Brest, Brest, France,Inserm UMR1078, Etablissement français du sang – Bretagne, Brest, France, Association Gaëtan Saleun
| | - Jessica Gage
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA,Department of Biological Sciences, California State University, Stanislaus, Turlock, California, USA
| | - Rita Brar
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Katherine A Rauen
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA,Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Lauren A Weiss
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|