1
|
Sharma G, Duarte S, Shen Q, Khemtong C. Analyses of mitochondrial metabolism in diseases: a review on 13C magnetic resonance tracers. RSC Adv 2024; 14:37871-37885. [PMID: 39606283 PMCID: PMC11600307 DOI: 10.1039/d4ra03605k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes, and cardiovascular diseases have become a global health concern due to their widespread prevalence and profound impact on life expectancy, healthcare expenditures, and the overall economy. Devising effective treatment strategies and management plans for these diseases requires an in-depth understanding of the pathophysiology of the metabolic abnormalities associated with each disease. Mitochondrial dysfunction is intricately linked to a wide range of metabolic abnormalities and is considered an important biomarker for diseases. However, assessing mitochondrial functions in viable tissues remains a challenging task, with measurements of oxygen consumption rate (OCR) and ATP production being the most widely accepted approaches for evaluating the health of mitochondria in tissues. Measurements of cellular metabolism using carbon-13 (or 13C) tracers have emerged as a viable method for characterizing mitochondrial metabolism in a variety of organelles ranging from cultured cells to humans. Information on metabolic activities and mitochondrial functions can be obtained from magnetic resonance (MR) analyses of 13C-labeled metabolites in tissues and organs of interest. Combining novel 13C tracer technologies with advanced analytical and imaging tools in nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) offers the potential to detect metabolic abnormalities associated with mitochondrial dysfunction. These capabilities would enable accurate diagnosis of various metabolic diseases and facilitate the assessment of responses to therapeutic interventions, hence improving patient health and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center Dallas Texas USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center Dallas Texas USA
| | - Sergio Duarte
- Department of Surgery, University of Florida Gainesville FL USA
| | - Qingyang Shen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| | - Chalermchai Khemtong
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| |
Collapse
|
2
|
Weidinger A, Meszaros AT, Dumitrescu S, Kozlov AV. Effect of mitoTEMPO on Redox Reactions in Different Body Compartments upon Endotoxemia in Rats. Biomolecules 2023; 13:biom13050794. [PMID: 37238664 DOI: 10.3390/biom13050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial ROS (mitoROS) control many reactions in cells. Biological effects of mitoROS in vivo can be investigated by modulation via mitochondria-targeted antioxidants (mtAOX, mitoTEMPO). The aim of this study was to determine how mitoROS influence redox reactions in different body compartments in a rat model of endotoxemia. We induced inflammatory response by lipopolysaccharide (LPS) injection and analyzed effects of mitoTEMPO in blood, abdominal cavity, bronchoalveolar space, and liver tissue. MitoTEMPO decreased the liver damage marker aspartate aminotransferase; however, it neither influenced the release of cytokines (e.g., tumor necrosis factor, IL-4) nor decreased ROS generation by immune cells in the compartments examined. In contrast, ex vivo mitoTEMPO treatment substantially reduced ROS generation. Examination of liver tissue revealed several redox paramagnetic centers sensitive to in vivo LPS and mitoTEMPO treatment and high levels of nitric oxide (NO) in response to LPS. NO levels in blood were lower than in liver, and were decreased by in vivo mitoTEMPO treatment. Our data suggest that (i) inflammatory mediators are not likely to directly contribute to ROS-mediated liver damage and (ii) mitoTEMPO is more likely to affect the redox status of liver cells reflected in a redox change of paramagnetic molecules. Further studies are necessary to understand these mechanisms.
Collapse
Affiliation(s)
- Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Andras T Meszaros
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sergiu Dumitrescu
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| |
Collapse
|
3
|
Streng LWJM, de Wijs CJ, Raat NJH, Specht PAC, Sneiders D, van der Kaaij M, Endeman H, Mik EG, Harms FA. In Vivo and Ex Vivo Mitochondrial Function in COVID-19 Patients on the Intensive Care Unit. Biomedicines 2022; 10:biomedicines10071746. [PMID: 35885051 PMCID: PMC9313105 DOI: 10.3390/biomedicines10071746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction has been linked to disease progression in COVID-19 patients. This observational pilot study aimed to assess mitochondrial function in COVID-19 patients at intensive care unit (ICU) admission (T1), seven days thereafter (T2), and in healthy controls and a general anesthesia group. Measurements consisted of in vivo mitochondrial oxygenation and oxygen consumption, in vitro assessment of mitochondrial respiration in platelet-rich plasma (PRP) and peripheral blood mononuclear cells (PBMCs), and the ex vivo quantity of circulating cell-free mitochondrial DNA (mtDNA). The median mitoVO2 of COVID-19 patients on T1 and T2 was similar and tended to be lower than the mitoVO2 in the healthy controls, whilst the mitoVO2 in the general anesthesia group was significantly lower than that of all other groups. Basal platelet (PLT) respiration did not differ substantially between the measurements. PBMC basal respiration was increased by approximately 80% in the T1 group when contrasted to T2 and the healthy controls. Cell-free mtDNA was eight times higher in the COVID-T1 samples when compared to the healthy controls samples. In the COVID-T2 samples, mtDNA was twofold lower when compared to the COVID-T1 samples. mtDNA levels were increased in COVID-19 patients but were not associated with decreased mitochondrial O2 consumption in vivo in the skin, and ex vivo in PLT or PBMC. This suggests the presence of increased metabolism and mitochondrial damage.
Collapse
Affiliation(s)
- Lucia W. J. M. Streng
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
- Correspondence:
| | - Calvin J. de Wijs
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Nicolaas J. H. Raat
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Patricia A. C. Specht
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Dimitri Sneiders
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Mariëlle van der Kaaij
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Henrik Endeman
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Egbert G. Mik
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Floor A. Harms
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| |
Collapse
|
4
|
Cros C, Margier M, Cannelle H, Charmetant J, Hulo N, Laganier L, Grozio A, Canault M. Nicotinamide Mononucleotide Administration Triggers Macrophages Reprogramming and Alleviates Inflammation During Sepsis Induced by Experimental Peritonitis. Front Mol Biosci 2022; 9:895028. [PMID: 35832733 PMCID: PMC9271973 DOI: 10.3389/fmolb.2022.895028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
Peritonitis and subsequent sepsis lead to high morbidity and mortality in response to uncontrolled systemic inflammation primarily mediated by macrophages. Nicotinamide adenine dinucleotide (NAD+) is an important regulator of oxidative stress and immunoinflammatory responses. However, the effects of NAD+ replenishment during inflammatory activation are still poorly defined. Hence, we investigated whether the administration of β-nicotinamide mononucleotide (β-NMN), a natural biosynthetic precursor of NAD+, could modulate the macrophage phenotype and thereby ameliorate the dysregulated inflammatory response during sepsis. For this purpose, C57BL6 mice were subjected to the cecal ligation and puncture (CLP) model to provoke sepsis or were injected with thioglycolate to induce sterile peritonitis with recruitment and differentiation of macrophages into the inflamed peritoneal cavity. β-NMN was administered for 4 days after CLP and for 3 days post thioglycolate treatment where peritoneal macrophages were subsequently analyzed. In the CLP model, administration of β-NMN decreased bacterial load in blood and reduced clinical signs of distress and mortality during sepsis. These results were supported by transcriptomic analysis of hearts and lungs 24 h post CLP-induction, which revealed that β-NMN downregulated genes controlling the immuno-inflammatory response and upregulated genes involved in bioenergetic metabolism, mitochondria, and autophagy. In the thioglycolate model, a significant increase in the proportion of CD206 macrophages, marker of anti-inflammatory M2 phenotype, was detected on peritoneal exudate macrophages from β-NMN-administered mice. Transcriptomic signature of these macrophages after bacterial stimulation confirmed that β-NMN administration limited the pro-inflammatory M1 phenotype and induced the expression of specific markers of M2 type macrophages. Furthermore, our data show that β-NMN treatment significantly impacts NAD + metabolism. This shift in the macrophage phenotype and metabolism was accompanied by a reduction in phagolysosome acidification and secretion of inflammatory mediators in macrophages from β-NMN-treated mice suggesting a reduced pro-inflammatory activation. In conclusion, administration of β-NMN prevented clinical deterioration and improved survival during sepsis. These effects relied on shifts in the metabolism of organs that face up an increased energy requirement caused by bacterial infection and in innate immunity response, including reprogramming of macrophages from a highly inflammatory phenotype to an anti-inflammatory/pro-resolving profile.
Collapse
|
5
|
Mokhtari B, Yavari R, Badalzadeh R, Mahmoodpoor A. An Overview on Mitochondrial-Based Therapies in Sepsis-Related Myocardial Dysfunction: Mitochondrial Transplantation as a Promising Approach. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3277274. [PMID: 35706715 PMCID: PMC9192296 DOI: 10.1155/2022/3277274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is defined as a life-threatening organ failure due to dysregulated host response to infection. Despite current advances in our knowledge about sepsis, it is still considered as a major global health challenge. Myocardial dysfunction is a well-defined manifestation of sepsis which is related to worse outcomes in septic patients. Given that the heart is a mitochondria-rich organ and the normal function of mitochondria is essential for successful modulation of septic response, the contribution of mitochondrial damage in sepsis-related myocardial dysfunction has attracted the attention of many scientists. It is widely accepted that mitochondrial damage is involved in sepsis-related myocardial dysfunction; however, effective and potential treatment modalities in clinical setting are still lacking. Mitochondrial-based therapies are potential approaches in sepsis treatment. Although various therapeutic strategies have been used for mitochondrial function improvement, their effects are limited when mitochondria undergo irreversible alterations under septic challenge. Therefore, application of more effective approaches such as mitochondrial transplantation has been suggested. This review highlights the crucial role of mitochondrial damage in sepsis-related myocardial dysfunction, then provides an overview on mitochondrial-based therapies and current approaches to mitochondrial transplantation as a novel strategy, and proposes future directions for more researches in this field.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Yavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Intensive Care Unit, Emam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Evidence-Based Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Ates G, Tamer S, Yorulmaz H, Mutlu S, Olgac V, Aksu A, Caglar NB, Özkök E. Melatonin pretreatment modulates anti-inflammatory, antioxidant, YKL-40, and matrix metalloproteinases in endotoxemic rat lung tissue. Exp Biol Med (Maywood) 2022; 247:1080-1089. [PMID: 35369768 PMCID: PMC9265525 DOI: 10.1177/15353702221084933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/14/2022] [Indexed: 08/30/2023] Open
Abstract
We aimed to investigate the effects of melatonin administered before and during endotoxemia on the lung tissue of rats, cytokine, YKL-40, matrix metalloproteinase (MMP) and inhibitor levels, oxidative stress parameters, and energy balance. Sepsis was induced with lipopolysaccharide (LPS), the cell wall molecule of gram negative bacteria. Rats were divided into four groups, Control, LPS (Escherichia coli O127:B8, 20 mg/kg), melatonin (10 mg/kg), and melatonin+LPS (M+LPS). After injections, lung tissues samples were taken for experimental analyses. YKL-40, thiobarbituric acid reactive substances (TBARS), glutathione reductase (GR), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) enzymes levels were measured, high-energy components were analyzed; tumor necrosis factor-alpha (TNF-α), MMP-2, YKL-40, MMP-9, myeloperoxidase (MPO), tissue inhibitors of matrix metalloproteinase (TIMP)-1, and interleukin (IL)-10 immunoreactivities were investigated. In LPS group, YKL-40, creatine phosphate (both, p < 0.05), SOD, GR, adenosine mono-phophate (AMP), adenosine tri-phosphate (ATP) (for all, p < 0.01) were significantly decreased, while TBARS and adenosine di-phosphate (ADP) levels were increased (p < 0.01, p < 0.05; respectively) compared to other groups. MMP-2 and -9, TIMP-1, TNF-α, IL-10, and MPO immunoreactivity were investigated in LPS group. On the contrary, in M+LPS group, MMP-9, TIMP-1 immunoreactivities were not found and IL-10 and MMP-2 immunoreactivities were found with little involvement. In M+LPS group, YKL-40, GR, AMP, ATP, creatine phosphate (for all, p < 0.05), and SOD (p < 0.01) levels were significantly increased and TBARS levels were decreased (p < 0.05). In our study, we suggest that melatonin exerts a protective and curative effect by reducing the matrix metalloproteinase levels responsible for tissue damage balance, stimulating the release of antioxidant enzymes, regulating cytokines and energy balance during endotoxemia.
Collapse
Affiliation(s)
- Gulten Ates
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul 34010, Turkey
| | - Sule Tamer
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul 34093, Turkey
| | - Hatice Yorulmaz
- Faculty of Health Sciences, Halic University, Istanbul 34445, Turkey
| | - Sevcihan Mutlu
- Department of Clinical Oncological, Institute of Oncology, Istanbul University, Istanbul 34093, Turkey
| | - Vakur Olgac
- Department of Pathology, Institute of Oncology, Istanbul University, Istanbul 34093, Turkey
| | - Abdullah Aksu
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul 34134, Turkey
| | - Nuray Balkis Caglar
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul 34134, Turkey
| | - Elif Özkök
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Turkey
| |
Collapse
|
7
|
Osuru HP, Paila U, Ikeda K, Zuo Z, Thiele RH. Anesthesia-Sepsis-Associated Alterations in Liver Gene Expression Profiles and Mitochondrial Oxidative Phosphorylation Complexes. Front Med (Lausanne) 2020; 7:581082. [PMID: 33392215 PMCID: PMC7775734 DOI: 10.3389/fmed.2020.581082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Hepatic dysfunction plays a major role in adverse outcomes in sepsis. Volatile anesthetic agents may protect against organ dysfunction in the setting of critical illness and infection. The goal of this study was to study the impact of Sepsis-inflammation on hepatic subcellular energetics in animals anesthetized with both Propofol (intravenous anesthetic agent and GABA agonist) and Isoflurane (volatile anesthetic i.e., VAA). Methods: Sprague-Dawley rats were anesthetized with Propofol or isoflurane. Rats in each group were randomized to celiotomy and closure (control) or cecal ligation and puncture “CLP” (Sepsis-inflammation) for 8 h. Results: Inflammation led to upregulation in hepatic hypoxia-inducible factor-1 in both groups. Rats anesthetized with isoflurane also exhibited increases in bcl-2, inducible nitric oxide synthase, and heme oxygenase-1(HO-1) during inflammation, whereas rats anesthetized with Propofol did not. In rats anesthetized with isoflurane, decreased mRNA, protein (Complex II, IV, V), and activity levels (Complex II/III,IV,V) were identified for all components of the electron transport chain, leading to a decrease in mitochondrial ATP. In contrast, in rats anesthetized with Propofol, these changes were not identified after exposure to inflammation. RNA-Seq and real-time quantitative PCR (qPCR) expression analysis identified a substantial difference between groups (isoflurane vs. Propofol) in mitogen-activated protein kinase (MAPK) related gene expression following exposure to Sepsis-inflammation. Conclusions: Compared to rats anesthetized with Propofol, those anesthetized with isoflurane exhibit more oxidative stress, decreased oxidative phosphorylation protein expression, and electron transport chain activity and increased expression of organ-protective proteins.
Collapse
Affiliation(s)
- Hari Prasad Osuru
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Umadevi Paila
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Keita Ikeda
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Robert H Thiele
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
8
|
Rahmel T, Marko B, Nowak H, Bergmann L, Thon P, Rump K, Kreimendahl S, Rassow J, Peters J, Singer M, Adamzik M, Koos B. Mitochondrial dysfunction in sepsis is associated with diminished intramitochondrial TFAM despite its increased cellular expression. Sci Rep 2020; 10:21029. [PMID: 33273525 PMCID: PMC7713186 DOI: 10.1038/s41598-020-78195-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis is characterized by a dysregulated immune response, metabolic derangements and bioenergetic failure. These alterations are closely associated with a profound and persisting mitochondrial dysfunction. This however occurs despite increased expression of the nuclear-encoded transcription factor A (TFAM) that normally supports mitochondrial biogenesis and functional recovery. Since this paradox may relate to an altered intracellular distribution of TFAM in sepsis, we tested the hypothesis that enhanced extramitochondrial TFAM expression does not translate into increased intramitochondrial TFAM abundance. Accordingly, we prospectively analyzed PBMCs both from septic patients (n = 10) and lipopolysaccharide stimulated PBMCs from healthy volunteers (n = 20). Extramitochondrial TFAM protein expression in sepsis patients was 1.8-fold greater compared to controls (p = 0.001), whereas intramitochondrial TFAM abundance was approximate 80% less (p < 0.001). This was accompanied by lower mitochondrial DNA copy numbers (p < 0.001), mtND1 expression (p < 0.001) and cellular ATP content (p < 0.001) in sepsis patients. These findings were mirrored in lipopolysaccharide stimulated PBMCs taken from healthy volunteers. Furthermore, TFAM-TFB2M protein interaction within the human mitochondrial core transcription initiation complex, was 74% lower in septic patients (p < 0.001). In conclusion, our findings, which demonstrate a diminished mitochondrial TFAM abundance in sepsis and endotoxemia, may help to explain the paradox of lacking bioenergetic recovery despite enhanced TFAM expression.
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| | - Britta Marko
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sebastian Kreimendahl
- Institut für Biochemie und Pathobiochemie, Abteilung für Zellbiochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Joachim Rassow
- Institut für Biochemie und Pathobiochemie, Abteilung für Zellbiochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To fully exploit the concept of hemodynamic coherence in resuscitating critically ill one should preferably take into account information about the state of parenchymal cells. Monitoring of mitochondrial oxygen tension (mitoPO2) has emerged as a clinical means to assess information of oxygen delivery and oxygen utilization at the mitochondrial level. This review will outline the basics of the technique, summarize its development and describe the rationale of measuring oxygen at the mitochondrial level. RECENT FINDINGS Mitochondrial oxygen tension can be measured by means of the protoporphyrin IX-Triplet State Lifetime Technique (PpIX-TSLT). After validation and use in preclinical animal models, the technique has recently become commercially available in the form of a clinical measuring system. This system has now been used in a number of healthy volunteer studies and is currently being evaluated in studies in perioperative and intensive care patients in several European university hospitals. SUMMARY PpIX-TSLT is a noninvasive and well tolerated method to assess aspects of mitochondrial function at the bedside. It allows doctors to look beyond the macrocirculation and microcirculation and to take the oxygen balance at the cellular level into account in treatment strategies.
Collapse
|
10
|
Herminghaus A, Buitenhuis AJ, Schulz J, Truse R, Vollmer C, Relja B, Bauer I, Picker O. Indomethacin Increases the Efficacy of Oxygen Utilization of Colonic Mitochondria and Uncouples Hepatic Mitochondria in Tissue Homogenates From Healthy Rats. Front Med (Lausanne) 2020; 7:463. [PMID: 32974368 PMCID: PMC7472952 DOI: 10.3389/fmed.2020.00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
- *Correspondence: Anna Herminghaus
| | - Albert J. Buitenhuis
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Inge Bauer
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Olaf Picker
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
11
|
Merz T, Denoix N, Huber-Lang M, Singer M, Radermacher P, McCook O. Microcirculation vs. Mitochondria-What to Target? Front Med (Lausanne) 2020; 7:416. [PMID: 32903633 PMCID: PMC7438707 DOI: 10.3389/fmed.2020.00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Circulatory shock is associated with marked disturbances of the macro- and microcirculation and flow heterogeneities. Furthermore, a lack of tissue adenosine trisphosphate (ATP) and mitochondrial dysfunction are directly associated with organ failure and poor patient outcome. While it remains unclear if microcirculation-targeted resuscitation strategies can even abolish shock-induced flow heterogeneity, mitochondrial dysfunction and subsequently diminished ATP production could still lead to organ dysfunction and failure even if microcirculatory function is restored or maintained. Preserved mitochondrial function is clearly associated with better patient outcome. This review elucidates the role of the microcirculation and mitochondria during circulatory shock and patient management and will give a viewpoint on the advantages and disadvantages of tailoring resuscitation to microvascular or mitochondrial targets.
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
12
|
Wu M, Pu K, Jiang T, Zhai Q, Ma Z, Ma H, Xu F, Zhang Z, Wang Q. Early label-free analysis of mitochondrial redox states by Raman spectroscopy predicts septic outcomes. J Adv Res 2020; 28:209-219. [PMID: 33364057 PMCID: PMC7753238 DOI: 10.1016/j.jare.2020.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Resonance Raman spectroscopy was applied to in vivo detection of the mitochondrial redox state in septic mice for the first time. Monitoring mitochondrial redox states using resonance Raman spectroscopy had higher prognostic accuracy for mortality than the lactate level during sepsis and could be a novel diagnostic marker for predicting septic outcomes at an early time point. Resonance Raman spectroscopy could detect mitochondrial dysfunction in sepsis and provide a biomarker that can be a specific target of adjunctive treatment.
Background Sepsis remains an unacceptably high mortality due to the lack of biomarkers for predicting septic outcomes in the early period. Mitochondrial redox states play a pivotal role in this condition and are disturbed early in the development of sepsis. Here, we hypothesized that visualizing mitochondrial redox states via resonance Raman spectroscopy (RRS) could identify septic outcomes at an early time point. Sepsis was induced by cecal ligation and puncture (CLP). We applied RRS analysis at baseline and 30 min, 1 h, 2 h, 4 h, and 6 h after CLP, and the mitochondrial redox states were identified. The levels of blood lactate as a predictor in sepsis were assessed. Our study is the first to reveal the possibility of in vivo detection of the mitochondrial redox state by using RRS in septic mice. The peak area for the Raman reduced mitochondrial fraction, the indicator of mitochondrial redox states, fluctuated significantly at 2 h after CLP. This fluctuation occurred earlier than the change in lactate level. Moreover, this fluctuation had higher prognostic accuracy for mortality than the lactate level during sepsis and could be a novel diagnostic marker for predicting septic outcomes according to the cutoff value of 1.059, which had a sensitivity of 80% and a specificity of 90%. Objectives To explore an effective indicator concerning mitochondrial redox states in the early stage of sepsis and to predict septic outcomes accurately in vivo using non-invasive and label-free Resonance Raman spectroscopy (RRS) analysis. Methods Mitochondria, primary skeletal muscle cells andex-vivo muscles harvested from gastrocnemius were detected mitochondrial redox states respectively by using RRS. Sepsis was induced by cecal ligation and puncture (CLP). We applied RRS analysis at baseline and 30 min, 1 h, 2 h, 4 h, and 6 h after CLP, and the mitochondrial redox states were identified. The levels of blood lactate as a predictor in sepsis were assessed. The predictive correlation of mitochondrial redox states on mortality, inflammation and organ dysfunction was further assessed. Results Mitochondrial redox states were clearly recognized in ex-vivo gastrocnemius muscles as well as purified mitochondria and primary skeletal muscle cells by using RRS. The peak area for the Raman reduced mitochondrial fraction, the indicator of mitochondrial redox states, fluctuated significantly at 2 h after CLP. This fluctuation occurred earlier than the change in lactate level. Moreover, this fluctuation had higher prognostic accuracy for mortality than the lactate level during sepsis and could be a novel diagnostic marker for predicting septic outcomes according to the cutoff value of 1.059, which had a sensitivity of 80% and a specificity of 90%. Conclusions This study demonstrated that monitoring mitochondrial redox states using RRS as early as 2 h could indicate outcomes in septic mice. These data may contribute to developing a non-invasive clinical device concerning mitochondrial redox states by using bedside-RRS.
Collapse
Affiliation(s)
- Meiyan Wu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kairui Pu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Tao Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhi Ma
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Hongli Ma
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fuxing Xu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhanqin Zhang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
13
|
Lado-Abeal J. Non-thyroidal illness syndrome, the hidden player in the septic shock induced myocardial contractile depression. Med Hypotheses 2020; 142:109775. [PMID: 32344285 DOI: 10.1016/j.mehy.2020.109775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Septic shock causes high mortality in hospitalized patients, especially in those that develop myocardial dysfunction as an early complication. The myocardial dysfunction of septic shock is characterized by a decrease in ventricular relaxation (diastolic dysfunction) and reduced ventricular ejection fraction (systolic dysfunction). Most patients with septic shock have low serum thyroid hormone levels, a condition known as non-thyroidal illness syndrome. Thyroid hormones sustain myocardial contractility and energy metabolism. Septic shock non-thyroidal illness syndrome causes myocardial hypothyroidism, and hypothyroidism causes myocardial dysfunction that resembles the myocardial depression of septic shock. We hypothesize that the myocardial hypothyroidism that occurs during septic shock has a causal role in the pathogenesis of septic shock-induced myocardial dysfunction. Thyroid hormones regulate the calcium cycle, the phenotype of contractile proteins, adrenergic response, and fatty acid transport and oxidation in the cardiomyocytes. Therefore, the administration of levothyroxine and liothyronine to normalize thyroid hormones level within the myocardium will improve the myocardial function. The hypothesis will be tested in humans with septic shock by performing a prospective, randomized, placebo-controlled study to compare the effect of thyroid hormone administration with placebo on myocardial function. The proposed hypothesis challenges the idea that non-thyroidal illness syndrome is a beneficial response of the thyroid hormone axis to illness and that thyroid hormone replacement is detrimental. The administration of thyroid hormone in order to prevent and reverse myocardial hypothyroidism during septic shock is a new theoretical concept on thyroid hormone metabolism and action at the tissue level during non-thyroidal illness syndrome. If the hypothesis is correct, clinicians should consider cardiac hypothyroidism as a central player in myocardial dysfunction caused by sepsis. Thyroid hormone replacement should be incorporated into the armamentarium of septic shock treatment.
Collapse
Affiliation(s)
- Joaquin Lado-Abeal
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Truman Medical Centers and University of Missouri Kansas City, MO, USA.
| |
Collapse
|
14
|
Vagus Nerve Stimulation Attenuates Multiple Organ Dysfunction in Resuscitated Porcine Progressive Sepsis. Crit Care Med 2020; 47:e461-e469. [PMID: 30908312 DOI: 10.1097/ccm.0000000000003714] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To investigate the potential benefits of vagus nerve stimulation in a clinically-relevant large animal model of progressive sepsis. DESIGN Prospective, controlled, randomized trial. SETTING University animal research laboratory. SUBJECTS Twenty-five domestic pigs were divided into three groups: 1) sepsis group (eight pigs), 2) sepsis + vagus nerve stimulation group (nine pigs), and 3) control sham group (eight pigs). INTERVENTIONS Sepsis was induced by cultivated autologous feces inoculation in anesthetized, mechanically ventilated, and surgically instrumented pigs and followed for 24 hours. Electrical stimulation of the cervical vagus nerve was initiated 6 hours after the induction of peritonitis and maintained throughout the experiment. MEASUREMENTS AND MAIN RESULTS Measurements of hemodynamics, electrocardiography, biochemistry, blood gases, cytokines, and blood cells were collected at baseline (just before peritonitis induction) and at the end of the in vivo experiment (24 hr after peritonitis induction). Subsequent in vitro analyses addressed cardiac contractility and calcium handling in isolated tissues and myocytes and analyzed mitochondrial function by ultrasensitive oxygraphy. Vagus nerve stimulation partially or completely prevented the development of hyperlactatemia, hyperdynamic circulation, cellular myocardial depression, shift in sympathovagal balance toward sympathetic dominance, and cardiac mitochondrial dysfunction, and reduced the number of activated monocytes. Sequential Organ Failure Assessment scores and vasopressor requirements significantly decreased after vagus nerve stimulation. CONCLUSIONS In a clinically-relevant large animal model of progressive sepsis, vagus nerve stimulation was associated with a number of beneficial effects that resulted in significantly attenuated multiple organ dysfunction and reduced vasopressor and fluid resuscitation requirements. This suggests that vagus nerve stimulation might provide a significant therapeutic potential that warrants further thorough investigation.
Collapse
|
15
|
Non-invasive versus ex vivo measurement of mitochondrial function in an endotoxemia model in rat: Toward monitoring of mitochondrial therapy. Mitochondrion 2020; 50:149-157. [DOI: 10.1016/j.mito.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/19/2019] [Accepted: 11/01/2019] [Indexed: 02/02/2023]
|
16
|
Serum Levels of Mitochondrial and Microbial Metabolites Reflect Mitochondrial Dysfunction in Different Stages of Sepsis. Metabolites 2019; 9:metabo9100196. [PMID: 31547099 PMCID: PMC6835733 DOI: 10.3390/metabo9100196] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/26/2022] Open
Abstract
Mechanisms of mitochondrial dysfunction in sepsis are being extensively studied in recent years. During our study, concentrations of microbial phenolic acids and mitochondrial metabolites (succinic, α-ketoglutaric, fumaric, itaconic acids) as indicators of sepsis and mitochondrial dysfunction, respectively, are measured by gas chromatography–mass spectrometry (GC–MS) in the blood of critically ill patients at the early and late stages of documented sepsis. The increase in levels of some phenylcarboxylic (phenyllactic (PhLA), p-hydroxyphenylacetic (p-HPhAA), p-hydroxyphenyllactic (p-HPhAA)) acids (PhCAs), simultaneously with a rise in levels of mitochondrial dicarboxylic acids, are mainly detected during the late stage of sepsis, especially succinic acid (up to 100–1000 µM). Itaconic acid is found in low concentrations (0.5–2.3 µM) only at early-stage sepsis. PhCAs in vitro inhibits succinate dehydrogenase (SDH) in isolated mitochondria but, unlike itaconic acid which acts as a competitive inhibitor of SDH, microbial metabolites most likely act on the ubiquinone binding site of the respiratory chain. A close correlation of the level of succinic acid in serum and sepsis-induced organ dysfunction is revealed, moreover the most significant correlation is observed at high concentrations of phenolic microbial metabolites (PhCAs) in late-stage sepsis. These data indicate the promise of such an approach for early detection, monitoring the progression of organ dysfunction and predicting the risk of non-survival in sepsis.
Collapse
|
17
|
Herminghaus A, Laser E, Schulz J, Truse R, Vollmer C, Bauer I, Picker O. Pravastatin and Gemfibrozil Modulate Differently Hepatic and Colonic Mitochondrial Respiration in Tissue Homogenates from Healthy Rats. Cells 2019; 8:cells8090983. [PMID: 31461874 PMCID: PMC6769625 DOI: 10.3390/cells8090983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023] Open
Abstract
Statins and fibrates are widely used for the management of hypertriglyceridemia but they also have limitations, mostly due to pharmacokinetic interactions or side effects. It is conceivable that some adverse events like liver dysfunction or gastrointestinal discomfort are caused by mitochondrial dysfunction. Data about the effects of statins and fibrates on mitochondrial function in different organs are inconsistent and partially contradictory. The aim of this study was to investigate the effect of pravastatin (statin) and gemfibrozil (fibrate) on hepatic and colonic mitochondrial respiration in tissue homogenates. Mitochondrial oxygen consumption was determined in colon and liver homogenates from 48 healthy rats after incubation with pravastatin or gemfibrozil (100, 300, 1000 μM). State 2 (substrate dependent respiration) and state 3 (adenosine diphosphate: ADP-dependent respiration) were assessed. RCI (respiratory control index)—an indicator for coupling between electron transport chain system (ETS) and oxidative phosphorylation (OXPHOS) and ADP/O ratio—a parameter for the efficacy of OXPHOS, was calculated. Data were presented as a percentage of control (Kruskal–Wallis + Dunn’s correction). In the liver both drugs reduced state 3 and RCI, gemfibrozil-reduced ADP/O (complex I). In the colon both drugs reduced state 3 but enhanced ADP/O. Pravastatin at high concentration (1000 µM) decreased RCI (complex II). Pravastatin and gemfibrozil decrease hepatic but increase colonic mitochondrial respiration in tissue homogenates from healthy rats.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Eric Laser
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Jan Schulz
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
18
|
Yang X, Lu GP, Cai XD, Lu ZJ, Kissoon N. Alterations of complex IV in the tissues of a septic mouse model. Mitochondrion 2019; 49:89-96. [PMID: 31356883 DOI: 10.1016/j.mito.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/23/2018] [Accepted: 11/04/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVES To characterize the mitochondrial respiratory chain complex IV(complex IV) activity and protein expression during polymicrobial sepsis. MATERIAL AND METHODS Polymicrobial peritonitis, a clinically relevant mouse model of sepsis, was generated by cecum ligation and puncture (CLP) in Sprague- Dawley rats. The rats were randomly divided into 3 groups as follows: the sepsis without resuscitation (S), sepsis and fluid resuscitated (R) group, and a control (C) group. Twelve hours after the sepsis model was established, tissue specimens were obtained from the myocardium, liver and skeletal muscle. Mitochondrial respiratory chain complex IV activity of all tissue specimens was detected by spectrophotometry. Western blot was used to measure the liver mitochondrial respiratory chain complex IV protein content. The ultrastructure changes of mitochondria were detected by transmission electron microscopy. RESULTS In myocardial cells, complex IV activity decreased significantly in the S and R groups as compared to the C group. There were no differences in complex IV activity between groups in skeletal muscle cells while in liver cells, complex IV activity and content was significantly decreased for the S group but no differences were observed between the C and R groups. Increased matrix volume and reduced density with generalized disruption of the normal cristae pattern was most extensive in the liver, followed by cardiac muscle cells with that in skeletal muscle cells been relatively mild in the S group. Mitochondrial fusion/fission and mitochondrial autophagy was also observed in the S group by transmission electron microscopy. Mitochondrial ultrastructure was preserved in the R-group and was similar to that seen in the C-group. CONCLUSIONS Changes in complex IV activity and mitochondrial ultrastructure, a manifestation of the mitochondrial dysfunction varied depending on cell type. These changes are partly reversed by fluid therapy. Therapies aimed at mitochondrial resuscitation should be explored.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatric Emergency Medicine and Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Guo-Ping Lu
- Department of Pediatric Emergency Medicine and Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiao-Di Cai
- Department of Pediatric Emergency Medicine and Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Zhu-Jin Lu
- Department of Pediatric Emergency Medicine and Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Niranjan Kissoon
- Department of Child and Family Research Institute, the BC Children'sHospital, Vancouver, BC,Canada.
| |
Collapse
|
19
|
Larsen L, Nielsen TH, Nordström CH, Andersen AB, Schierbeck J, Schulz MK, Poulsen FR. Patterns of cerebral tissue oxygen tension and cytoplasmic redox state in bacterial meningitis. Acta Anaesthesiol Scand 2019; 63:329-336. [PMID: 30328110 DOI: 10.1111/aas.13278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Compromised cerebral energy metabolism is common in patients with bacterial meningitis. In this study, simultaneous measurements of cerebral oxygen tension and lactate/pyruvate ratio were compared to explore whether disturbed energy metabolism was usually caused by insufficient tissue oxygenation or compromised oxidative metabolism of pyruvate indicating mitochondrial dysfunction. SUBJECT AND METHODS Ten consecutive patients with severe streptococcus meningitis were included in this prospective cohort study. Intracranial pressure, brain tissue oxygen tension (PbtO2 ), and energy metabolism (intracerebral microdialysis) were continuously monitored in nine patients. A cerebral lactate/pyruvate (LP) ratio <30 was considered indicating normal oxidative metabolism, LP ratio >30 simultaneously with pyruvate below lower normal level (70 µmol/L) was interpreted as biochemical indication of ischemia, and LP ratio >30 simultaneously with a normal or increased level of pyruvate was interpreted as mitochondrial dysfunction. The biochemical variables were compared with PbtO2 simultaneously monitored within the same cerebral region. RESULTS In two cases, the LP ratio was normal during the whole study period and the simultaneously monitored PbtO2 was 18 ± 6 mm Hg. In six cases, interpreted as mitochondrial dysfunction, the simultaneously monitored PbtO2 was 20 ± 6 mm Hg and without correlation with the LP ratio. In one patient, exhibiting a pattern interpreted as ischemia, PbtO2 decreased below 10 mm Hg and a correlation between LP and PbtO2 was observed. CONCLUSION This study demonstrated that compromised cerebral energy metabolism, evidenced by increased LP ratio, was common in patients with severe bacterial meningitis while not related to insufficient tissue oxygenation.
Collapse
Affiliation(s)
- Lykke Larsen
- Department of Infectious Diseases; Odense University Hospital; Odense Denmark
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
| | - Troels H. Nielsen
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - Carl-Henrik Nordström
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - Aase B. Andersen
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Infectious Diseases; Copenhagen University Hospital Rigshospitalet; Copenhagen Denmark
| | - Jens Schierbeck
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Anaesthesiology and Intensive Care; Odense University Hospital; Odense Denmark
| | - Mette K. Schulz
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - Frantz R. Poulsen
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
- OPEN, Odense Patient data Explorative Network; Odense University Hospital; Odense Denmark
| |
Collapse
|
20
|
Kohoutová M, Dejmek J, Tůma Z, Kuncová J. Variability of mitochondrial respiration in relation to sepsis-induced multiple organ dysfunction. Physiol Res 2019; 67:S577-S592. [PMID: 30607965 DOI: 10.33549/physiolres.934050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ample experimental evidence suggests that sepsis could interfere with any mitochondrial function; however, the true role of mitochondrial dysfunction in the pathogenesis of sepsis-induced multiple organ dysfunction is still a matter of controversy. This review is primarily focused on mitochondrial oxygen consumption in various animal models of sepsis in relation to human disease and potential sources of variability in experimental results documenting decrease, increase or no change in mitochondrial respiration in various organs and species. To date, at least three possible explanations of sepsis-associated dysfunction of the mitochondrial respiratory system and consequently impaired energy production have been suggested: 1. Mitochondrial dysfunction is secondary to tissue hypoxia. 2. Mitochondria are challenged by various toxins or mediators of inflammation that impair oxygen utilization (cytopathic hypoxia). 3. Compromised mitochondrial respiration could be an active measure of survival strategy resembling stunning or hibernation. To reveal the true role of mitochondria in sepsis, sources of variability of experimental results based on animal species, models of sepsis, organs studied, or analytical approaches should be identified and minimized by the use of appropriate experimental models resembling human sepsis, wider use of larger animal species in preclinical studies, more detailed mapping of interspecies differences and organ-specific features of oxygen utilization in addition to use of complex and standardized protocols evaluating mitochondrial respiration.
Collapse
Affiliation(s)
- M Kohoutová
- Institute of Physiology, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic.
| | | | | | | |
Collapse
|
21
|
Herminghaus A, Papenbrock H, Eberhardt R, Vollmer C, Truse R, Schulz J, Bauer I, Weidinger A, Kozlov AV, Stiban J, Picker O. Time-related changes in hepatic and colonic mitochondrial oxygen consumption after abdominal infection in rats. Intensive Care Med Exp 2019; 7:4. [PMID: 30623256 PMCID: PMC6325055 DOI: 10.1186/s40635-018-0219-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/25/2018] [Indexed: 11/18/2022] Open
Abstract
Background Evidence suggests that early adaptive responses of hepatic mitochondria occur in experimentally induced sepsis. Little is known about both colonic mitochondrial function during abdominal infection and long-term changes in mitochondrial function under inflammatory conditions. We hypothesize that hepatic and colonic mitochondrial oxygen consumption changes time-dependently after sterile laparotomy and in the course of abdominal infection. The aim of the present study was to investigate the hepatic and colonic mitochondrial respiration after sterile laparotomy and abdominal infection over up to 96 h. Methods After approval of the local Animal Care and Use Committee, 95 Wistar rats were randomized into 8 groups (n = 11–12): 1–4 sham (laparotomy only) and 5–8 colon ascendens stent peritonitis (CASP). Healthy, unoperated animals served as controls (n = 9). The mitochondrial respiration in colon and liver homogenates was assessed 24, 48, 72, and 96 h after surgery. Mitochondrial oxygen consumption was determined using a Clark-type electrode. State 2 (oxygen consumption in the presence of the substrates for complexes I and II) and state 3 respiration (ADP dependent) were assessed. The respiratory control ratio (RCR state 3/state 2) and ADP/O ratio (ADP added/oxygen consumed) were calculated for both complexes. Data are presented as means ± SD, two-way ANOVA followed by Tukey’s post hoc test. Results Hepatic RCR was initially (after 24 h) elevated in both operated groups; after 48 h only, the septic group was elevated compared to controls. In CASP groups, the hepatic ADP/O ratio for complex I was elevated after 24 h (vs. controls) and after 48 h (vs. sham) but declined after 72 h (vs. controls). The ADP/O ratio for complex II stayed unchanged over the time period until 96 h. The colonic RCR and ADP/O did not change over time after sham or CASP operation. Conclusion Hepatic, but not colonic, mitochondrial respiration is increased in the initial phase (until 48 h) and normalizes in the longer course of time (until 96 h) of abdominal infection. Electronic supplementary material The online version of this article (10.1186/s40635-018-0219-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Henrike Papenbrock
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Rebecca Eberhardt
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Christian Vollmer
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200, Wien, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200, Wien, Austria
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, Birzeit, Ramallah, Palestine
| | - Olaf Picker
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
22
|
The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1865:759-773. [PMID: 30342158 DOI: 10.1016/j.bbadis.2018.10.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Myocardial dysfunction, often termed sepsis-induced cardiomyopathy, is a frequent complication and is associated with worse outcomes. Numerous mechanisms contribute to sepsis-induced cardiomyopathy and a growing body of evidence suggests that bioenergetic and metabolic derangements play a central role in its development; however, there are significant discrepancies in the literature, perhaps reflecting variability in the experimental models employed or in the host response to sepsis. The condition is characterised by lack of significant cell death, normal tissue oxygen levels and, in survivors, reversibility of organ dysfunction. The functional changes observed in cardiac tissue may represent an adaptive response to prolonged stress that limits cell death, improving the potential for recovery. In this review, we describe our current understanding of the pathophysiology underlying myocardial dysfunction in sepsis, with a focus on disrupted mitochondrial processes.
Collapse
|
23
|
Herminghaus A, Eberhardt R, Truse R, Schulz J, Bauer I, Picker O, Vollmer C. Nitroglycerin and Iloprost Improve Mitochondrial Function in Colon Homogenate Without Altering the Barrier Integrity of Caco-2 Monolayers. Front Med (Lausanne) 2018; 5:291. [PMID: 30460235 PMCID: PMC6232762 DOI: 10.3389/fmed.2018.00291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022] Open
Abstract
Locally applied nitroglycerin [nitric oxide (NO) donor] and iloprost (analog of prostacyclin PGI2) improve regional gastric oxygenation and nitroglycerin preserves gastric mucosal barrier integrity. This suggests direct effects of these substances on oxygenation and barrier function. The aim of this study was to analyze the effect of iloprost and nitroglycerin on intestinal mitochondrial function and on mucosal barrier function in vitro. Mitochondrial oxygen consumption (respirometry) was determined in colon homogenates from 16 healthy rats before (baseline) and 15 min after incubation with nitroglycerin (25 and 250 μg/ml) and iloprost (0.1 and 1 μg/ml). State 2 (substrate-dependent oxygen consumption) and state 3 respiration (ADP-dependent oxygen consumption) were assessed and ADP/O ratio (ADP added/oxygen consumed) for complex I and II were calculated. For permeability measurement we used the Caco-2 monolayer. Fluorescein sulfonic acid (FS) (200 μg/ml) and the drugs were administered into the apical compartment of the transwell chamber. After 48 h, FS translocation was assessed as basolateral/apical FS. Both concentrations of nitroglycerin and iloprost reduced state 3 by stimulation via both complexes. Iloprost increased ADP/O ratio after stimulation via both complexes at both concentrations. Nitroglycerin increased ADP/O ratio at the higher concentration (250 μg/ml) after stimulation via complex I and at the lower concentration (25 μg/ml) via complex II. Neither nitroglycerin nor iloprost influenced FS translocation. Iloprost and nitroglycerin reduce the maximal mitochondrial respiration and improve the efficacy of oxidative phosphorylation in colon homogenates. Both drugs have no direct influence on mucosal barrier integrity of Caco-2 monolayers.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Düsseldorf, Düsseldorf, Germany
| | - Rebecca Eberhardt
- Department of Anaesthesiology, University of Düsseldorf, Düsseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, University of Düsseldorf, Düsseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, University of Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anaesthesiology, University of Düsseldorf, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anaesthesiology, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Vollmer
- Department of Anaesthesiology, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr 2018; 38:982-995. [PMID: 30201141 DOI: 10.1016/j.clnu.2018.08.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 12/30/2022]
Abstract
Persistent physical impairment is frequently encountered after critical illness. Recent data point towards mitochondrial dysfunction as an important determinant of this phenomenon. This narrative review provides a comprehensive overview of the present knowledge of mitochondrial function during and after critical illness and the role and potential therapeutic applications of specific micronutrients to restore mitochondrial function. Increased lactate levels and decreased mitochondrial ATP-production are common findings during critical illness and considered to be associated with decreased activity of muscle mitochondrial complexes in the electron transfer system. Adequate nutrient levels are essential for mitochondrial function as several specific micronutrients play crucial roles in energy metabolism and ATP-production. We have addressed the role of B vitamins, ascorbic acid, α-tocopherol, selenium, zinc, coenzyme Q10, caffeine, melatonin, carnitine, nitrate, lipoic acid and taurine in mitochondrial function. B vitamins and lipoic acid are essential in the tricarboxylic acid cycle, while selenium, α-tocopherol, Coenzyme Q10, caffeine, and melatonin are suggested to boost the electron transfer system function. Carnitine is essential for fatty acid beta-oxidation. Selenium is involved in mitochondrial biogenesis. Notwithstanding the documented importance of several nutritional components for optimal mitochondrial function, at present, there are no studies providing directions for optimal requirements during or after critical illness although deficiencies of these specific micronutrients involved in mitochondrial metabolism are common. Considering the interplay between these specific micronutrients, future research should pay more attention to their combined supply to provide guidance for use in clinical practise. REVISION NUMBER: YCLNU-D-17-01092R2.
Collapse
Affiliation(s)
- E Wesselink
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - W A C Koekkoek
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| | - S Grefte
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 DW, Wageningen, The Netherlands.
| | - R F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - A R H van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| |
Collapse
|
25
|
Singer M. Critical illness and flat batteries. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:309. [PMID: 29297363 PMCID: PMC5751585 DOI: 10.1186/s13054-017-1913-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An exaggerated, dysregulated host response to insults such as infection (i.e. sepsis), trauma and ischaemia-reperfusion injury can result in multiple organ dysfunction and death. While the focus of research in this area has largely centred on inflammation and immunity, a crucial missing link is the precise identification of mechanisms at the organ level that cause this physiological-biochemical failure. Any hypothesis must reconcile this functional organ failure with minimal signs of cell death, availability of oxygen, and (often) minimal early local inflammatory cell infiltrate. These failed organs also retain the capacity to usually recover, even those that are poorly regenerative. A metabolic-bioenergetic shutdown, akin to hibernation or aestivation, is the most plausible explanation currently advanced. This shutdown appears driven by a perfect storm of compromised mitochondrial oxidative phosphorylation related to inhibition by excessive inflammatory mediators, direct oxidant stress, a tissue oxygen deficit in the unresuscitated phase, altered hormonal drive, and downregulation of genes encoding mitochondrial proteins. In addition, the efficiency of oxidative phosphorylation may be affected by a substrate shift towards fat metabolism and increased uncoupling. A lack of sufficient ATP provision to fuel normal metabolic processes will drive downregulation of metabolism, and thus cellular functionality. In turn, a decrease in metabolism will provide negative feedback to the mitochondrion, inducing a bioenergetic shutdown. Arguably, these processes may offer protection against a prolonged inflammatory hit by sparing the cell from initiation of death pathways, thereby explaining the lack of significant morphological change. A narrow line may exist between adaptation and maladaptation. This places a considerable challenge on any therapeutic modulation to provide benefit rather than harm.
Collapse
Affiliation(s)
- Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Cruciform Building, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
26
|
Duvigneau JC, Kozlov AV. Pathological Impact of the Interaction of NO and CO with Mitochondria in Critical Care Diseases. Front Med (Lausanne) 2017; 4:223. [PMID: 29312941 PMCID: PMC5743798 DOI: 10.3389/fmed.2017.00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
The outcome of patients with critical care diseases (CCD) such as sepsis, hemorrhagic shock, or trauma is often associated with mitochondrial dysfunction. In turn, mitochondrial dysfunction is frequently induced upon interaction with nitric oxide (NO) and carbon monoxide (CO), two gaseous messengers formed in the body by NO synthase (NOS) and heme oxygenase (HO), respectively. Both, NOS and HO are upregulated in the majority of CCD. A multitude of factors that are associated with the pathology of CCD exert a potential to interfere with mitochondrial function or the effects of the gaseous messengers. From these, four major factors can be identified that directly influence the effects of NO and CO on mitochondria and which are defined by (i) local concentration of NO and/or CO, (ii) tissue oxygenation, (iii) redox status of cells in terms of facilitating or inhibiting reactive oxygen species formation, and (iv) the degree of tissue acidosis. The combination of these four factors in specific pathological situations defines whether effects of NO and CO are beneficial or deleterious.
Collapse
Affiliation(s)
- J Catharina Duvigneau
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
27
|
Özkök E, Yorulmaz H, Ateş G, Aydın I, Ergüven M, Tamer Ş. The impact of pretreatment with simvastatin on kidney tissue of rats with acute sepsis. Physiol Int 2017; 104:158-170. [PMID: 28665194 DOI: 10.1556/2060.104.2017.2.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been reported that changes in cytokine levels affect mitochondrial functions, levels of hypoxia-inducible factor α (HIF-1α), and tissue damage during sepsis. We aimed to investigate the effects of simvastatin pretreatment on mitochondrial enzyme activities, and on levels of ghrelin, HIF-1α, and thiobarbituric acid reactive substances (TBARS) in kidney tissue during sepsis. Rats were separated into four groups, namely, control, lipopolysaccharides (LPS) (20 mg/kg), simvastatin (20 mg/kg), and simvastatin + LPS. We measured the levels of mitochondrial enzyme activities and TBARS in the kidney using spectrophotometry. The histological structure of the kidney sections was examined after staining with hematoxylin and eosin. Tumor necrosis factor α (TNF-α), IL-10, HIF-1α, and ghrelin immunoreactivity were examined using proper antibodies. In tissue, TNF-α (p < 0.01) and HIF-1α (p < 0.05) levels were increased in the simvastatin + LPS and LPS groups. TBARS levels were higher in the LPS group than in the other groups (p < 0.01), but they were similar in the simvastatin + LPS and control groups (p > 0.05). Ghrelin immunoreactivity was lower in the LPS group (p < 0.05) and higher in the simvastatin + LPS group than in the LPS group (p < 0.01). We observed tubular damage in the sections of the LPS group. There were no differences in mitochondrial enzyme activities between the groups (p > 0.05). We observed that pretreatment of simvastatin caused favorable changes on ghrelin and TBARS levels in rats with sepsis.
Collapse
Affiliation(s)
- E Özkök
- 1 Deparment of Neuroscience, The Institute of Experimental Medicine, Istanbul University , Istanbul, Turkey
| | - H Yorulmaz
- 2 Medical Faculty, Haliç University , Istanbul, Turkey
| | - G Ateş
- 3 Department of Physiology, Istanbul Medical Faculty, Istanbul University , Istanbul, Turkey
| | - I Aydın
- 4 Medical Laboratory Techniques Department, Associate's Degree Vocational School, Beykent University , Istanbul, Turkey
| | - M Ergüven
- 5 Faculties of Engineering and Health Sciences, Istanbul Aydın University , Istanbul, Turkey
| | - Ş Tamer
- 3 Department of Physiology, Istanbul Medical Faculty, Istanbul University , Istanbul, Turkey
| |
Collapse
|
28
|
Tao X, Li K, Wang J, Zhang L, Li W, Kan B, Yu G, Jian X. Tetramethylpyrazine can ameliorate hepatocellular mitochondrial dysfunction by decreasing the inflammatory response and increasing AQP8 protein expression in septic rats. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17731003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sepsis, which could lead to mitochondrial dysfunction and cellular energy loss, always induces acute liver injury and has a high mortality rate. Tetramethylpyrazine (TMP) is an active extract from the Chinese herb Ligusticum chuanxiong and exhibits anti-sepsis activity. In this study, a rat sepsis model was first established via cecal ligation and puncture (CLP). Then, 48 Sprague Dawley male rats were randomly divided into four groups (12 rats in each group): control group (C), sepsis group (S), TMP treatment group (T), and TMP prevention group (P). Serum aspartate aminotransferase (AST), serum alanine aminotransferase (ALT), mitochondrial aspartate aminotransferase (mAST), and adenosine triphosphate (ATP) levels and mitochondrial membrane potential (MMP) were measured and used as indicators of hepatic dysfunction severity and mitochondrial function. In addition, the activities of Na+-K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, and Ca2+-Mg2+-ATPase in the mitochondrial membrane, the expression level of AQP8 and some inflammatory factors, and the level of oxidative stress were measured to explore potential mechanisms. We found that AQP8 accepts signals from inflammatory factors upon stimulation and during various infections, and low AQP8 expression levels could result in further downstream mitochondrial dysfunction. In conclusion, our data demonstrated that TMP could ameliorate hepatocellular mitochondrial dysfunction by decreasing the inflammatory response and increasing AQP8 protein expression.
Collapse
Affiliation(s)
- Xiaogen Tao
- Department of Poisoning and Occupational Diseases, Qilu Hospital of Shandong University, Jinan, China
- Intensive Care Unit (ICU), Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, China
| | - Kun Li
- Intensive Care Unit (ICU), Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, China
| | - Jinquan Wang
- Intensive Care Unit (ICU), Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, China
| | - Lin Zhang
- Intensive Care Unit (ICU), Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, China
| | - Wei Li
- School of Pharmacy, University College London, London, UK
| | - Baotian Kan
- Department of Poisoning and Occupational Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Guangcai Yu
- Department of Poisoning and Occupational Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Tóth J, Debreceni IB, Berhés M, Hajdú E, Deák Á, Pető K, Szabó J, Németh N, Fülesdi B, Kappelmayer J. Red blood cell and platelet parameters are sepsis predictors in an Escherichia coli induced lethal porcine model. Clin Hemorheol Microcirc 2017; 66:249-259. [DOI: 10.3233/ch-170271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Judit Tóth
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Beke Debreceni
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mariann Berhés
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Hajdú
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Deák
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Pető
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Németh
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Fülesdi
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
30
|
Kozlov AV, Lancaster JR, Meszaros AT, Weidinger A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol 2017; 13:170-181. [PMID: 28578275 PMCID: PMC5458092 DOI: 10.1016/j.redox.2017.05.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023] Open
Abstract
Liver failure induced by systemic inflammatory response (SIRS) is often associated with mitochondrial dysfunction but the mechanism linking SIRS and mitochondria-mediated liver failure is still a matter of discussion. Current hypotheses suggest that causative events could be a drop in ATP synthesis, opening of mitochondrial permeability transition pore, specific changes in mitochondrial morphology, impaired Ca2+ uptake, generation of mitochondrial reactive oxygen species (mtROS), turnover of mitochondria and imbalance in electron supply to the respiratory chain. The aim of this review is to critically analyze existing hypotheses, in order to highlight the most promising research lines helping to prevent liver failure induced by SIRS. Evaluation of the literature shows that there is no consistent support that impaired Ca++ metabolism, electron transport chain function and ultrastructure of mitochondria substantially contribute to liver failure. Moreover, our analysis suggests that the drop in ATP levels has protective rather than a deleterious character. Recent data suggest that the most critical mitochondrial event occurring upon SIRS is the release of mtROS in cytoplasm, which can activate two specific intracellular signaling cascades. The first is the mtROS-mediated activation of NADPH-oxidase in liver macrophages and endothelial cells; the second is the acceleration of the expression of inflammatory genes in hepatocytes. The signaling action of mtROS is strictly controlled in mitochondria at three points, (i) at the site of ROS generation at complex I, (ii) the site of mtROS release in cytoplasm via permeability transition pore, and (iii) interaction with specific kinases in cytoplasm. The systems controlling mtROS-signaling include pro- and anti-inflammatory mediators, nitric oxide, Ca2+ and NADPH-oxidase. Analysis of the literature suggests that further research should be focused on the impact of mtROS on organ failure induced by inflammation and simultaneously providing a new theoretical basis for a targeted therapy of overwhelmed inflammatory response. Relationship between mitochondrial dysfunction and high lethality upon sepsis. Criteria to define critical for lethality mitochondrial dysfunction. ATP, calcium, mitochondrial ultrastructure and apoptosis, upon inflammation. Regulation of inflammatory processes by mitochondrial ROS.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingen Str. 13, 1200 Vienna, Austria.
| | - Jack R Lancaster
- University of Pittsburgh, Departments of Pharmacology & Chemical Biology, Surgery, and Medicine, 1341A Thomas E. Starzl Biomedical Science Tower, PA 15261, United States
| | - Andras T Meszaros
- University of Szeged, Institute of Surgical Research, 6720 Szeged, Hungary
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingen Str. 13, 1200 Vienna, Austria
| |
Collapse
|
31
|
Maestraggi Q, Lebas B, Clere-Jehl R, Ludes PO, Chamaraux-Tran TN, Schneider F, Diemunsch P, Geny B, Pottecher J. Skeletal Muscle and Lymphocyte Mitochondrial Dysfunctions in Septic Shock Trigger ICU-Acquired Weakness and Sepsis-Induced Immunoparalysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7897325. [PMID: 28589148 PMCID: PMC5447268 DOI: 10.1155/2017/7897325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022]
Abstract
Fundamental events driving the pathological processes of septic shock-induced multiorgan failure (MOF) at the cellular and subcellular levels remain debated. Emerging data implicate mitochondrial dysfunction as a critical factor in the pathogenesis of sepsis-associated MOF. If macrocirculatory and microcirculatory dysfunctions undoubtedly participate in organ dysfunction at the early stage of septic shock, an intrinsic bioenergetic failure, sometimes called "cytopathic hypoxia," perpetuates cellular dysfunction. Short-term failure of vital organs immediately threatens patient survival but long-term recovery is also severely hindered by persistent dysfunction of organs traditionally described as nonvital, such as skeletal muscle and peripheral blood mononuclear cells (PBMCs). In this review, we will stress how and why a persistent mitochondrial dysfunction in skeletal muscles and PBMC could impair survival in patients who overcome the first acute phase of their septic episode. First, muscle wasting protracts weaning from mechanical ventilation, increases the risk of mechanical ventilator-associated pneumonia, and creates a state of ICU-acquired muscle weakness, compelling the patient to bed. Second, failure of the immune system ("immunoparalysis") translates into its inability to clear infectious foci and predisposes the patient to recurrent nosocomial infections. We will finally emphasize how mitochondrial-targeted therapies could represent a realistic strategy to promote long-term recovery after sepsis.
Collapse
Affiliation(s)
- Quentin Maestraggi
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service de Réanimation Médicale, avenue Molière, 67098 Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
| | - Benjamin Lebas
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| | - Raphaël Clere-Jehl
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service de Réanimation Médicale, avenue Molière, 67098 Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
| | - Pierre-Olivier Ludes
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| | - Thiên-Nga Chamaraux-Tran
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Francis Schneider
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service de Réanimation Médicale, avenue Molière, 67098 Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
| | - Pierre Diemunsch
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| | - Bernard Geny
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Physiologie et d'Explorations Fonctionnelles, 1 Place de l'Hôpital, 67091 Strasbourg Cedex, France
| | - Julien Pottecher
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| |
Collapse
|
32
|
Expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and mitochondrial oxidative phosphorylation in septic patients. PLoS One 2017; 12:e0172024. [PMID: 28182798 PMCID: PMC5300193 DOI: 10.1371/journal.pone.0172024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/30/2017] [Indexed: 01/05/2023] Open
Abstract
Background and objectives Sepsis is a complex disease that is characterized by activation and inhibition of different cell signaling pathways according to the disease stage. Here, we evaluated genes involved in the TLR signaling pathway, oxidative phosphorylation and oxidative metabolism, aiming to assess their interactions and resulting cell functions and pathways that are disturbed in septic patients. Materials and methods Blood samples were obtained from 16 patients with sepsis secondary to community acquired pneumonia at admission (D0), and after 7 days (D7, N = 10) of therapy. Samples were also collected from 8 healthy volunteers who were matched according to age and gender. Gene expression of 84 genes was performed by real-time polymerase chain reactions. Their expression was considered up- or down-regulated when the fold change was greater than 1.5 compared to the healthy volunteers. A p-value of ≤ 0.05 was considered significant. Results Twenty-two genes were differently expressed in D0 samples; most of them were down-regulated. When gene expression was analyzed according to the outcomes, higher number of altered genes and a higher intensity in the disturbance was observed in non-survivor than in survivor patients. The canonical pathways altered in D0 samples included interferon and iNOS signaling; the role of JAK1, JAK2 and TYK2 in interferon signaling; mitochondrial dysfunction; and superoxide radical degradation pathways. When analyzed according to outcomes, different pathways were disturbed in surviving and non-surviving patients. Mitochondrial dysfunction, oxidative phosphorylation and superoxide radical degradation pathway were among the most altered in non-surviving patients. Conclusion Our data show changes in the expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and oxidative phosphorylation. Importantly, distinct patterns are clearly observed in surviving and non-surviving patients. Interferon signaling, marked by changes in JAK-STAT modulation, had prominent changes in both survivors and non-survivors, whereas the redox imbalance (iNOS signaling, oxidative phosphorylation and superoxide radical degradation) affecting mitochondrial functions was prominent in non-surviving patients.
Collapse
|
33
|
Insights into the Function of Long Noncoding RNAs in Sepsis Revealed by Gene Co-Expression Network Analysis. Noncoding RNA 2017; 3:ncrna3010005. [PMID: 29657277 PMCID: PMC5831999 DOI: 10.3390/ncrna3010005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/20/2017] [Indexed: 12/18/2022] Open
Abstract
Sepsis is a major cause of death and its incidence and mortality increase exponentially with age. Most gene expression studies in sepsis have focused in protein-coding genes and the expression patterns, and potential roles of long noncoding RNAs (lncRNAs) have not been investigated yet. In this study, we performed co-expression network analysis of protein-coding and lncRNAs measured in neutrophil granulocytes from adult and elderly septic patients, along with age-matched healthy controls. We found that the genes displaying highest network similarity are predominantly differently expressed in sepsis and are enriched in loci encoding proteins with structural or regulatory functions related to protein translation and mitochondrial energetic metabolism. A number of lncRNAs are strongly connected to genes from these pathways and may take part in regulatory loops that are perturbed in sepsis. Among those, the ribosomal pseudogenes RP11-302F12.1 and RPL13AP7 are differentially expressed and appear to have a regulatory role on protein translation in both the elderly and adults, and lncRNAs MALAT1, LINC00355, MYCNOS, and AC010970.2 display variable connection strength and inverted expression patterns between adult and elderly networks, suggesting that they are the best candidates to be further studied to understand the mechanisms by which the immune response is impaired by age. In summary, we report the expression of lncRNAs that are deregulated in patients with sepsis, including subsets that display hub properties in molecular pathways relevant to the disease pathogenesis and that may participate in gene expression regulatory circuits related to the poorer disease outcome observed in elderly subjects.
Collapse
|
34
|
Abstract
It has been previously shown that intestinal proteases translocate into the circulation during hemorrhagic shock and contribute to proteolysis in distal organs. However, consequences of this phenomenon have not previously been investigated using high-throughput approaches. Here, a shotgun label-free quantitative proteomic approach was utilized to compare the peptidome of plasma samples from healthy and hemorrhagic shock rats to verify the possible role of uncontrolled proteolytic activity in shock. Plasma was collected from rats after hemorrhagic shock (HS) consisting of 2-h hypovolemia followed by 2-h reperfusion, and from healthy control (CTRL) rats. A new two-step enrichment method was applied to selectively extract peptides and low molecular weight proteins from plasma, and directly analyze these samples by tandem mass spectrometry. One hundred twenty-six circulating peptides were identified in CTRL and 295 in HS animals. Ninety-six peptides were present in both conditions; of these, 57 increased and 30 decreased in shock. In total, 256 peptides were increased or present only in HS confirming a general increase in proteolytic activity in shock. Analysis of the proteases that potentially generated the identified peptides suggests that the larger relative contribution to the proteolytic activity in shock is due to chymotryptic-like proteases. These results provide quantitative confirmation that extensive, system-wide proteolysis is part of the complex pathologic phenomena occurring in hemorrhagic shock.
Collapse
|
35
|
Mink S, Roy Chowdhury SK, Gotes J, Cheng ZQ, Kasian K, Fernyhough P. Gentisic acid sodium salt, a phenolic compound, is superior to norepinephrine in reversing cardiovascular collapse, hepatic mitochondrial dysfunction and lactic acidemia in Pseudomonas aeruginosa septic shock in dogs. Intensive Care Med Exp 2016; 4:24. [PMID: 27456956 PMCID: PMC4960072 DOI: 10.1186/s40635-016-0095-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/07/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The development of lactic acidemia (LA) in septic shock (SS) is associated with an ominous prognosis. We previously showed that the mechanism of LA in SS may relate to impaired hepatic uptake of lactate, but the mechanism was not clear. Uptake of lactate by the liver occurs by a membrane-associated, pH-dependent, antiport system known as the monocarboxylate transporter. In the hepatocyte, lactate can then be metabolized by oxidative phosphorylation or converted to glucose in the cytosol. In the present study, we examined (1) whether hepatic mitochondrial dysfunction accounted for decreased uptake of lactate in a canine model of Pseudomonas aeruginosa SS, (2) whether norepinephrine (NE) treatment by increasing mean arterial pressure (MAP) could improve mitochondrial dysfunction and LA in this model, and (3) whether gentisic acid sodium salt (GSS), a novel phenolic compound, was superior to NE in these effects. METHODS In anesthetized/ventilated dogs, we infused the bacteria over ~10 h and measured hemodynamics in various treatment groups (see below). We then euthanized the animal and isolated the hepatic mitochondria. We measured hepatic mitochondrial oxygen consumption rates using the novel Seahorse XF24 analyzer under conditions that included: basal respiration, after the addition of adenosine- diphosphate to produce coupled respiration, and after the addition of a protonophore to produce maximal respiration. RESULTS We found that in the septic control group, mean arterial pressure decreased over the course of the study, and that mitochondrial dysfunction developed in which there was a reduction in maximal respiration. Whereas both NE and GSS treatments reversed the reduction in mean arterial pressure and increased maximal respiration to similar extents in respective groups, only in the GSS group was there a reduction in LA. CONCLUSIONS Hepatic mitochondrial dysfunction occurs in SS, but does not appear to be required for the development of LA in SS, since NE improved mitochondrial dysfunction without reversing LA. GSS, a phenolic compound restored mean arterial pressure, mitochondrial dysfunction, and LA in SS. This reduction in LA may be independent of its effect on improving hepatic mitochondrial function.
Collapse
Affiliation(s)
- Steven Mink
- Departments of Medicine and Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada. .,Health Sciences Centre, GF-221, 820 Sherbrook St, Winnipeg, MB, R3A-1R9, Canada.
| | - Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders at the St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Jose Gotes
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico.,Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhao-Qin Cheng
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Krika Kasian
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders at the St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Harms F, Stolker RJ, Mik E. Cutaneous Respirometry as Novel Technique to Monitor Mitochondrial Function: A Feasibility Study in Healthy Volunteers. PLoS One 2016; 11:e0159544. [PMID: 27455073 PMCID: PMC4959702 DOI: 10.1371/journal.pone.0159544] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/04/2016] [Indexed: 01/16/2023] Open
Abstract
Background The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) is proposed as a potential clinical non-invasive tool to monitor mitochondrial function. This technique has been evaluated in several animal studies. Mitochondrial respirometry allows measurement in vivo of mitochondrial oxygen tension (mitoPO2) and mitochondrial oxygen consumption (mitoVO2) in skin. This study describes the first use of a clinical prototype in skin of humans. Methods The clinical prototype was tested in 30 healthy volunteers. A self-adhesive patch containing 2 mg 5-aminolevulinic acid (ALA) was applied on the skin of the anterior chest wall (sternal) for induction of mitochondrial protoporphyrin IX and was protected from light for 5 h. MitoPO2 was measured by means of oxygen-dependent delayed fluorescence of protoporphyrin IX. MitoVO2 was determined by dynamic mitoPO2 measurements on the primed skin, while locally blocking oxygen supply by applying local pressure with the measurement probe. MitoPO2 was recorded before and during a 60-s period of compression of the microcirculation, at an interval of 1 Hz. Oxygen consumption (i.e. the local oxygen disappearance rate) was calculated from the decay of the mitoPO2 slope. Results Oxygen-dependent delayed fluorescence measurements were successfully performed in the skin of 27 volunteers. The average value (± SD) of mitoPO2 was 44 ± 17 mmHg and mean mitoVO2 values were 5.8 ± 2.3 and 6.1 ± 1.6 mmHg s-1 at a skin temperature of 34°C and 40°C, respectively. No major discomfort during measurement and no long-term dermatological abnormalities were reported in a survey performed 1 month after measurements. Conclusion These results show that the clinical prototype allows measurement of mitochondrial oxygenation and oxygen consumption in humans. The development of this clinically applicable device offers opportunities for further evaluation of the technique in humans and the start of first clinical studies.
Collapse
Affiliation(s)
- Floor Harms
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus University Medical Center Rotterdam, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
- * E-mail:
| | - Robert Jan Stolker
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus University Medical Center Rotterdam, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Egbert Mik
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus University Medical Center Rotterdam, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center Rotterdam, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
37
|
Sueyoshi K, Sumi Y, Inoue Y, Kuroda Y, Ishii K, Nakayama H, Iwabuchi K, Kurishita Y, Shigemitsu H, Hamachi I, Tanaka H. Fluorescence imaging of ATP in neutrophils from patients with sepsis using organelle-localizable fluorescent chemosensors. Ann Intensive Care 2016; 6:64. [PMID: 27422255 PMCID: PMC4947066 DOI: 10.1186/s13613-016-0175-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/07/2016] [Indexed: 12/29/2022] Open
Abstract
Background The activation of polymorphonuclear neutrophils (PMNs) plays an important role in sepsis. Previously, we showed that ATP release and feedback via ATP receptors are essential for PMN activation; however, the dynamics remain poorly understood. Two new fluorescent chemosensors, PMAP-1 and MitoAP-1, were developed to detect ATP in the plasma membrane and mitochondria of living cells, respectively. In this study, we aimed to evaluate ATP localization using these chemosensors in PMNs of sepsis patients. Methods Live PMNs isolated from 16 sepsis patients and healthy controls (HCs) were stained with these chemosensors and observed by confocal microscopy, and their mean fluorescence intensities (MFIs) were evaluated using flow cytometry. CD11b expression in PMNs was also evaluated. Results The MFIs of PMAP-1 and MitoAP-1 and CD11b expression in PMNs from sepsis patients on days 0–1 were significantly higher than those of HCs. The MFI of PMAP-1 and CD11b expression on days 3–4 decreased significantly compared to those observed at days 0–1, whereas MitoAP-1 MFI was maintained at a high level. The PMAP-1 MFI was significantly positively correlated with CD11b expression, white blood cell counts, neutrophil counts, and C-reactive protein levels in patients. Conclusions The higher MFIs of PMAP-1 and MitoAP-1 in sepsis patients suggest a pivotal role of ATP for PMN activation. The temporal difference in ATP levels suggests that ATP plays different roles in the mitochondria and on the cell surface. These data should contribute to the understanding of the dynamics of ATP in PMNs and help to develop a novel therapy for sepsis.
Collapse
Affiliation(s)
- Koichiro Sueyoshi
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan.
| | - Yuka Sumi
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Yoshiaki Inoue
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Yoko Kuroda
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Kumiko Ishii
- Lipid Biology Laboratory, Riken Advanced Science Institute, Wako, Saitama, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender Specific Medicine, Juntendo University, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender Specific Medicine, Juntendo University, Urayasu, Chiba, Japan
| | - Yasutaka Kurishita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hajime Shigemitsu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| |
Collapse
|
38
|
Grip J, Jakobsson T, Tardif N, Rooyackers O. The effect of plasma from septic ICU patients on healthy rat muscle mitochondria. Intensive Care Med Exp 2016; 4:20. [PMID: 27387527 PMCID: PMC4937008 DOI: 10.1186/s40635-016-0093-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/01/2016] [Indexed: 01/20/2023] Open
Abstract
Background Although sepsis-induced organ failure is a major cause of death in ICU worldwide, the associated mitochondrial dysfunction is not fully characterized and there is presently no evidence of causality. In this study, we examined whether a central factor in septic plasma could directly affect respiratory function of healthy rat muscle mitochondria. Methods ICU patients with severe sepsis or septic shock were recruited within 24 h of admission together with age-matched controls. Blood samples were centrifuged and immediately frozen. Two trials were performed, and mitochondrial respiration was analyzed using an Oxygraph chamber with a Clark-electrode. (1) Isolated mitochondria from the rat skeletal muscle were divided and incubated for 30 min with plasma from patients or postoperative controls (n = 10). Respiration was normalized for citrate synthase activity. (2) Permeabilized muscle fibers from rats were divided and incubated with plasma from patients or healthy controls, for 30 and 120 min, and analyzed for mitochondrial respiration (n = 10). Respiration was normalized for wet weight. Primary outcome was state 3 respiration, corresponding to the maximal respiration initiated by ADP and energy substrates (malate and pyruvate). T test was used for statistical comparison. Results No differences in respiratory function of the mitochondria were seen between the groups in either of the experiments. (1) State 3 respiration of isolated mitochondria were 19.9 ± 6.7 vs. 20.2 ± 8.8 nmol O2 × U CS−1 × min−1 for sepsis vs. control, respectively. (2) State 3 respiration for fibers incubated with septic and control plasma were after 30 min 2.6 ± 0.3 vs. 2.4 ± 0.7 and after 120 min 2.5 ± 0.4 vs. 2.5 ± 0.6 nmol O2 × mg × w.w−1 × min−1. Respiratory control ratios were good in all experiments (8.8–11.2), ensuring functioning mitochondria. Conclusions These findings indicate that muscle mitochondria are not directly influenced by a factor in plasma of septic patients. The effects seen in mitochondrial function in sepsis may rather be a result of intracellular processes and signaling, such as e.g., production of reactive oxygen species.
Collapse
Affiliation(s)
- Jonathan Grip
- Department of Anesthesiology and Intensive Care, Clintec, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Towe Jakobsson
- Department of Anesthesiology and Intensive Care, Clintec, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Nicolas Tardif
- Department of Anesthesiology and Intensive Care, Clintec, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Department of Anesthesiology and Intensive Care, Clintec, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Sims CR, Nguyen TC, Mayeux PR. Could Biomarkers Direct Therapy for the Septic Patient? J Pharmacol Exp Ther 2016; 357:228-39. [PMID: 26857961 PMCID: PMC4851319 DOI: 10.1124/jpet.115.230797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 01/25/2023] Open
Abstract
Sepsis is a serious medical condition caused by a severe systemic inflammatory response to a bacterial, fungal, or viral infection that most commonly affects neonates and the elderly. Advances in understanding the pathophysiology of sepsis have resulted in guidelines for care that have helped reduce the risk of dying from sepsis for both children and older adults. Still, over the past three decades, a large number of clinical trials have been undertaken to evaluate pharmacological agents for sepsis. Unfortunately, all of these trials have failed, with the use of some agents even shown to be harmful. One key issue in these trials was the heterogeneity of the patient population that participated. What has emerged is the need to target therapeutic interventions to the specific patient's underlying pathophysiological processes, rather than looking for a universal therapy that would be effective in a "typical" septic patient, who does not exist. This review supports the concept that identification of the right biomarkers that can direct therapy and provide timely feedback on its effectiveness will enable critical care physicians to decrease mortality of patients with sepsis and improve the quality of life of survivors.
Collapse
Affiliation(s)
- Clark R Sims
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| | - Trung C Nguyen
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| |
Collapse
|
40
|
Ferguson MA, Sutton RM, Karlsson M, Sjövall F, Becker LB, Berg RA, Margulies SS, Kilbaugh TJ. Increased platelet mitochondrial respiration after cardiac arrest and resuscitation as a potential peripheral biosignature of cerebral bioenergetic dysfunction. J Bioenerg Biomembr 2016; 48:269-79. [PMID: 27020568 DOI: 10.1007/s10863-016-9657-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/15/2016] [Indexed: 02/02/2023]
Abstract
UNLABELLED Cardiac arrest (CA) results in a sepsis-like syndrome with activation of the innate immune system and increased mitochondrial bioenergetics. OBJECTIVE To determine if platelet mitochondrial respiration increases following CA in a porcine pediatric model of asphyxia-associated ventricular fibrillation (VF) CA, and if this readily obtained biomarker is associated with decreased brain mitochondrial respiration. CA protocol: 7 min of asphyxia, followed by VF, protocolized titration of compression depth to systolic blood pressure of 90 mmHg and vasopressor administration to a coronary perfusion pressure greater than 20 mmHg. PRIMARY OUTCOME platelet integrated mitochondrial electron transport system (ETS) function evaluated pre- and post-CA/ROSC four hours after return of spontaneous circulation (ROSC). Secondary outcome: correlation of platelet mitochondrial bioenergetics to cerebral bioenergetic function. Platelet maximal oxidative phosphorylation (OXPHOSCI+CII), P < 0.02, and maximal respiratory capacity (ETSCI+CII), P < 0.04, were both significantly increased compared to pre-arrest values. This was primarily due to a significant increase in succinate-supported respiration through Complex II (OXPHOSCII, P < 0.02 and ETSCII, P < 0.03). Higher respiration was not due to uncoupling, as the LEAKCI + CII respiration (mitochondrial respiration independent of ATP-production) was unchanged after CA/ROSC. Larger increases in platelet mitochondrial respiratory control ratio (RCR) compared to pre-CA RCR were significantly correlated with lower RCRs in the cortex (P < 0.03) and hippocampus (P < 0.04) compared to sham respiration. Platelet mitochondrial respiration is significantly increased four hours after ROSC. Future studies will identify mechanistic relationships between this serum biomarker and altered cerebral bioenergetics function following cardiac arrest.
Collapse
Affiliation(s)
- Michael A Ferguson
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Robert M Sutton
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84, Lund, Sweden
| | - Fredrik Sjövall
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84, Lund, Sweden
| | - Lance B Becker
- Department of Emergency Medicine, Perelman School of Medicine at the University of Pennsylvania, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Robert A Berg
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Susan S Margulies
- School of Engineering and Applied Science, Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Todd J Kilbaugh
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Poulsen FR, Schulz M, Jacobsen A, Andersen ÅB, Larsen L, Schalén W, Nielsen TH, Nordström CH. Bedside evaluation of cerebral energy metabolism in severe community-acquired bacterial meningitis. Neurocrit Care 2016; 22:221-8. [PMID: 25142826 DOI: 10.1007/s12028-014-0057-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mortality and morbidity have remained high in bacterial meningitis. Impairment of cerebral energy metabolism probably contributes to unfavorable outcome. Intracerebral microdialysis is routinely used to monitor cerebral energy metabolism, and recent experimental studies indicate that this technique may separate ischemia and non-ischemic mitochondrial dysfunction. The present study is a retrospective interpretation of biochemical data obtained in a series of patients with severe community-acquired meningitis. METHODS Cerebral energy metabolism was monitored in 15 patients with severe community-acquired meningitis utilizing intracerebral microdialysis and bedside biochemical analysis. According to previous studies, cerebral ischemia was defined as lactate/pyruvate (LP) ratio > 30 with intracerebral pyruvate level < 70 µmol L(-1). Non-ischemic mitochondrial dysfunction was defined as LP-ratio > 30 at a normal or increased interstitial concentration of pyruvate (≥ 70 μmol L(-1)). Patients with LP-ratios < 30 were classified as no mitochondrial dysfunction. RESULTS The biochemical pattern was in 8 patients (10 microdialysis catheters) classified as no mitochondrial dysfunction, in 5 patients classified as non-ischemic mitochondrial dysfunction, and in 2 patients (3 catheters) classified as ischemia. CONCLUSIONS In patients with severe community-acquired meningitis, compromised cerebral energy metabolism occurs frequently and was diagnosed in 7 out of 15 cases. A biochemical pattern of non-ischemic mitochondrial dysfunction appears to be a more common underlying condition than cerebral ischemia.
Collapse
Affiliation(s)
- Frantz R Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Grip J, Jacobsson T, Tardif N, Rooyackers O. The effect of plasma from septic icu patients on healthy rat muscle mitochondria. Intensive Care Med Exp 2015. [PMCID: PMC4797143 DOI: 10.1186/2197-425x-3-s1-a623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
43
|
Harms FA, Bodmer SIA, Raat NJH, Mik EG. Non-invasive monitoring of mitochondrial oxygenation and respiration in critical illness using a novel technique. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:343. [PMID: 26391983 PMCID: PMC4578612 DOI: 10.1186/s13054-015-1056-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 09/03/2015] [Indexed: 01/20/2023]
Abstract
Introduction Although mitochondrial dysfunction is proposed to be involved in the pathophysiology of sepsis, conflicting results are reported. Variation in methods used to assess mitochondrial function might contribute to this controversy. A non-invasive method for monitoring mitochondrial function might help overcome this limitation. Therefore, this study explores the possibility of in vivo monitoring of mitochondrial oxygen tension (mitoPO2) and local mitochondrial oxygen consumptionin in an endotoxin-induced septic animal model. Methods Animals (rats n = 28) were assigned to a control group (no treatment), or to receive lipopolysaccharide without fluid resuscitation (LPS-NR) or lipopolysaccharide plus fluid resuscitation (LPS-FR). Sepsis was induced by intravenous LPS injection (1.6 mg/kg during 10 min), fluid resuscitation was performed by continuous infusion of a colloid solution, 7 ml kg−1 h−1 and a 2-ml bolus of the same colloid solution. MitoPO2 and ODR were measured by means of the protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT). Kinetic aspects of the drop in mitoPO2 were recorded during 60s of skin compression. ODR was derived from the slope of the mitoPO2 oxygen disappearance curve. Measurements were made before and 3 h after induction of sepsis. Results At baseline (t0) all rats were hemodynamically stable. After LPS induction (t1), significant (p < 0.05) hemodynamic changes were observed in both LPS groups. At t0, mitoPO2 and ODR were 59 ± 1 mmHg, 64 ± 3 mmHg, 68 ± 4 mmHg and 5.0 ± 0.3 mmHg s−1, 5.3 ± 0.5 mmHg s−1, 5.7 ± 0.5 mmHg s−1 in the control, LPS-FR and LPS-NR groups, respectively; at t1 these values were 58 ± 5 mmHg, 50 ± 2.3 mmHg, 30 ± 3.3 mmHg and 4.5 ± 0.5 mmHg s−1, 3.3 ± 0.3 mmHg s−1, 1.8 ± 0.3 mmHg s−1, respectively. At t1, only mitoPO2 showed a significant difference between the controls and LPS-NR. In contrast, at t1 both LPS groups showed a significantly lower ODR compared to controls. Conclusion These data show the feasibility to monitor alterations in mitochondrial oxygen consumption in vivo by PpIX-TSLT in a septic rat model. These results may contribute to the development of a clinical device to monitor mitochondrial function in the critically ill.
Collapse
Affiliation(s)
- Floor A Harms
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - Sander I A Bodmer
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - Nicolaas J H Raat
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - Egbert G Mik
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands. .,Department of Intensive Care, Erasmus University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| |
Collapse
|
44
|
Herminghaus A, Barthel F, Heinen A, Beck C, Vollmer C, Bauer I, Weidinger A, Kozlov A, Picker O. Severity of polymicrobial sepsis modulates mitochondrial function in rat liver. Mitochondrion 2015; 24:122-8. [DOI: 10.1016/j.mito.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 01/14/2023]
|
45
|
Assuncao MSCD, Corrêa TD, Bravim BDA, Silva E. How to choose the therapeutic goals to improve tissue perfusion in septic shock. ACTA ACUST UNITED AC 2015; 13:441-7. [PMID: 26313438 PMCID: PMC4943794 DOI: 10.1590/s1679-45082015rw3148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 03/14/2015] [Indexed: 12/30/2022]
Abstract
The early recognition and treatment of severe sepsis and septic shock is the key to a successful outcome. The longer the delay in starting treatment, the worse the prognosis due to persistent tissue hypoperfusion and consequent development and worsening of organ dysfunction. One of the main mechanisms responsible for the development of cellular dysfunction is tissue hypoxia. The adjustments necessary for adequate tissue blood flow and therefore of oxygen supply to metabolic demand according to the assessment of the cardiac index and oxygen extraction rate should be performed during resuscitation period, especially in high complexity patients. New technologies, easily handled at the bedside, and new studies that directly assess the impact of macro-hemodynamic parameter optimization on microcirculation and in the clinical outcome of septic patients, are needed.
Collapse
Affiliation(s)
| | | | | | - Eliézer Silva
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| |
Collapse
|
46
|
Corrêa TD, Takala J, Jakob SM. Angiotensin II in septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:98. [PMID: 25886853 PMCID: PMC4360936 DOI: 10.1186/s13054-015-0802-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2015 and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/annualupdate2015. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Thiago D Corrêa
- Hospital Israelita Albert Einstein, Intensive Care Unit, São Paulo, Brazil.
| | - Jukka Takala
- Department of Intensive Care Medicine, Bern University Hospital, Inselspital, Bern, Switzerland. .,University of Bern, Bern, Switzerland.
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Bern University Hospital, Inselspital, Bern, Switzerland. .,University of Bern, Bern, Switzerland.
| |
Collapse
|
47
|
Leukocyte Toll-like receptor 2-mitochondria axis in sepsis: unraveling immune response sophistication. Anesthesiology 2015; 121:1147-9. [PMID: 25285948 DOI: 10.1097/aln.0000000000000471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Dose response of endotoxin on hepatocyte and muscle mitochondrial respiration in vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:353074. [PMID: 25649304 PMCID: PMC4306363 DOI: 10.1155/2015/353074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 01/02/2023]
Abstract
Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner.
Collapse
|
49
|
Jiménez-Sousa MA, Tamayo E, Guzmán-Fulgencio M, Heredia M, Fernández-Rodríguez A, Gómez E, Almansa R, Gómez-Herreras JI, García-Álvarez M, Gutiérrez-Junco S, Bermejo-Martin JF, Resino S. Mitochondrial DNA haplogroups are associated with severe sepsis and mortality in patients who underwent major surgery. J Infect 2014; 70:20-9. [PMID: 25043396 DOI: 10.1016/j.jinf.2014.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/23/2014] [Accepted: 07/12/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To analyse whether mitochondrial DNA (mtDNA) haplogroups are associated with severe sepsis and mortality after major surgery. METHODS We performed a case-control study on 240 cardiac or abdominal surgery patients developing severe sepsis (Case-group) and 267 cardiac or abdominal surgery patients without severe sepsis and with systemic inflammatory response syndrome (SIRS, Control-group). Furthermore, a longitudinal substudy was performed for analysing the survival in septic patients. Only European white patients within the N macro-cluster were included. RESULTS Case-group underwent cardiac surgery had lower frequencies of cluster HV (p = 0.005) and haplogroup H (p = 0.005) and higher frequencies of cluster JT (p = 0.028) than Control-group; but no significant differences were found for abdominal surgery. Besides, both cluster HV and haplogroup H were associated with decreased odds of severe sepsis (adjusted odds ratio (aOR) = 0.45 (95%CI = 0.25; 0.82); p = 0.009 and aOR = 0.48 (95%CI = 0.26; 0.87); p = 0.015, respectively) among patients underwent cardiac surgery. In Case-group, 45.4% (109/240) patients died with a survival median of 39 (95%CI = 31.4; 46.62) days. When the clusters were examined, 41% (55/134) patients within cluster HV died versus 71.4% (10/14) patients within cluster IWX (p = 0.018). Additionally, patients within cluster IWX had an increased risk of death (adjusted hazard ratio (aHR) = 2.22; (95%CI = 1.14; 4.34); p = 0.019). CONCLUSIONS European mitochondrial haplogroups might be related to the onset of severe sepsis in patients who underwent major cardiac surgery, but not in patients underwent major abdominal surgery. Besides, mtDNA haplogroups could have influence on mortality in septic patients.
Collapse
Affiliation(s)
- Maria Angeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| | - Eduardo Tamayo
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain
| | - María Guzmán-Fulgencio
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Heredia
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Esther Gómez
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain
| | - Raquel Almansa
- Unidad de Investigación Médica en Infección e Inmunidad, Hospital Clínico Universitario-IECSCYL, Valladolid, Spain
| | - José I Gómez-Herreras
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain
| | - Mónica García-Álvarez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Sandra Gutiérrez-Junco
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain
| | - Jesús F Bermejo-Martin
- Unidad de Investigación Médica en Infección e Inmunidad, Hospital Clínico Universitario-IECSCYL, Valladolid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| | | |
Collapse
|
50
|
Censoplano N, Epting CL, Coates BM. The Role of the Innate Immune System in Sepsis. CLINICAL PEDIATRIC EMERGENCY MEDICINE 2014. [DOI: 10.1016/j.cpem.2014.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|