1
|
Luganini A, Sibille G, Pavan M, Mello Grand M, Sainas S, Boschi D, Lolli ML, Chiorino G, Gribaudo G. Mechanisms of antiviral activity of the new hDHODH inhibitor MEDS433 against respiratory syncytial virus replication. Antiviral Res 2023; 219:105734. [PMID: 37852322 DOI: 10.1016/j.antiviral.2023.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Human respiratory syncytial virus (RSV) is an important cause of acute lower respiratory infections, for which no effective drugs are currently available. The development of new effective anti-RSV agents is therefore an urgent priority, and Host-Targeting Antivirals (HTAs) can be considered to target RSV infections. As a contribution to this antiviral avenue, we have characterized the molecular mechanisms of the anti-RSV activity of MEDS433, a new inhibitor of human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of de novo pyrimidine biosynthesis. MEDS433 was found to exert a potent antiviral activity against RSV-A and RSV-B in the one-digit nanomolar range. Analysis of the RSV replication cycle in MEDS433-treated cells, revealed that the hDHODH inhibitor suppressed the synthesis of viral genome, consistently with its ability to specifically target hDHODH enzymatic activity. Then, the capability of MEDS433 to induce the expression of antiviral proteins encoded by Interferon-Stimulated Genes (ISGs) was identified as a second mechanism of its antiviral activity against RSV. Indeed, MEDS433 stimulated secretion of IFN-β and IFN-λ1 that, in turn, induced the expression of some ISG antiviral proteins, such as IFI6, IFITM1 and IRF7. Singly expression of these ISG proteins reduced RSV-A replication, thus likely contributing to the overall anti-RSV activity of MEDS433. Lastly, MEDS433 proved to be effective against RSV-A replication even in a primary human small airway epithelial cell model. Taken as a whole, these observations provide new insights for further development of MEDS433, as a promising candidate to develop new strategies for treatment of RSV infections.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Marta Pavan
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | | | - Stefano Sainas
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | - Donatella Boschi
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | - Marco L Lolli
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | | | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy.
| |
Collapse
|
2
|
Nair A, Barde PJ, Routhu KV, Viswanadha S, Veeraraghavan S, Pak S, Peterson JA, Vakkalanka S. A first in man study to evaluate the safety, pharmacokinetics and pharmacodynamics of RP7214, a dihydroorotate dehydrogenase inhibitor in healthy subjects. Br J Clin Pharmacol 2023; 89:1127-1138. [PMID: 36217901 DOI: 10.1111/bcp.15562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) is a mitochondrial enzyme that is essential for pyrimidine de novo synthesis. Rapidly growing cancer cells and replicating viruses are dependent on host cell nucleotides, the precursors of which are provided by DHODH. Hence, DHODH becomes an ideal target for pharmacological intervention. RP7214 is a potent and selective inhibitor of human DHODH and has shown antiviral and antileukaemic activity in preclinical studies. This paper describes the phase I study that evaluated the safety and pharmacokinetics of single and multiple ascending doses (SAD and MAD) and the food effect of RP7214 in healthy volunteers (HVs). The study was a randomized, double-blind, placebo-controlled trial of single dose (100, 200 and 400 mg QD), multiple doses (200 and 400 mg BID for 7 days) and a food effect study at a single dose of 200 mg. A total of 18, 12 and 12 HVs were enrolled in the SAD, MAD and food effect parts of the study, respectively. RP7214 was well tolerated at all dose levels. There were 20 treatment-emergent adverse events (TEAEs) reported, out of which most were mild to moderate in severity while three TEAEs were grade ≥3. RP7214 showed accumulation on multiple dosing. Steady-state concentrations were reached within about 3-6 days. The mean plasma half-life at steady-state was 12.8 hours (9.9-15.3). Food did not impact the absorption of RP7214. Inhibition of DHODH, as evidenced by increased dihydroorotate levels, was observed, confirming target engagement. The high systemic exposure with a favourable safety profile shows potential for the development of RP7214 in SARS-CoV-2 and acute myeloid leukaemia (NCT04680429).
Collapse
Affiliation(s)
- Ajit Nair
- Rhizen Pharmaceuticals AG, Basel, Switzerland
| | | | | | | | | | - Samuel Pak
- Novum Pharmaceutical Research Services, Las Vegas, Nevada, USA
| | | | | |
Collapse
|
3
|
de Mariz E Miranda LS. The synergy between nucleotide biosynthesis inhibitors and antiviral nucleosides: New opportunities against viral infections? Arch Pharm (Weinheim) 2023; 356:e2200217. [PMID: 36122181 DOI: 10.1002/ardp.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
5'-Phosphorylated nucleoside derivatives are molecules that can be found in all living organisms and viruses. Over the last century, the development of structural analogs that could disrupt the transcription and translation of genetic information culminated in the development of clinically relevant anticancer and antiviral drugs. However, clinically effective broad-spectrum antiviral compounds or treatments are lacking. This viewpoint proposes that molecules that inhibit nucleotide biosynthesis may sensitize virus-infected cells toward direct-acting antiviral nucleosides. Such potentially synergistic combinations might allow the repurposing of drugs, leading to the development of new combination therapies.
Collapse
Affiliation(s)
- Leandro S de Mariz E Miranda
- Department of Organic Chemistry, Chemistry Institute, Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Hyroššová P, Milošević M, Škoda J, Vachtenheim Jr J, Rohlena J, Rohlenová K. Effects of metabolic cancer therapy on tumor microenvironment. Front Oncol 2022; 12:1046630. [PMID: 36582801 PMCID: PMC9793001 DOI: 10.3389/fonc.2022.1046630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Targeting tumor metabolism for cancer therapy is an old strategy. In fact, historically the first effective cancer therapeutics were directed at nucleotide metabolism. The spectrum of metabolic drugs considered in cancer increases rapidly - clinical trials are in progress for agents directed at glycolysis, oxidative phosphorylation, glutaminolysis and several others. These pathways are essential for cancer cell proliferation and redox homeostasis, but are also required, to various degrees, in other cell types present in the tumor microenvironment, including immune cells, endothelial cells and fibroblasts. How metabolism-targeted treatments impact these tumor-associated cell types is not fully understood, even though their response may co-determine the overall effectivity of therapy. Indeed, the metabolic dependencies of stromal cells have been overlooked for a long time. Therefore, it is important that metabolic therapy is considered in the context of tumor microenvironment, as understanding the metabolic vulnerabilities of both cancer and stromal cells can guide new treatment concepts and help better understand treatment resistance. In this review we discuss recent findings covering the impact of metabolic interventions on cellular components of the tumor microenvironment and their implications for metabolic cancer therapy.
Collapse
Affiliation(s)
- Petra Hyroššová
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Mirko Milošević
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Josef Škoda
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Vachtenheim Jr
- 3rd Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Rohlenová
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Sibille G, Luganini A, Sainas S, Boschi D, Lolli ML, Gribaudo G. The Novel hDHODH Inhibitor MEDS433 Prevents Influenza Virus Replication by Blocking Pyrimidine Biosynthesis. Viruses 2022; 14:v14102281. [PMID: 36298835 PMCID: PMC9611833 DOI: 10.3390/v14102281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
The pharmacological management of influenza virus (IV) infections still poses a series of challenges due to the limited anti-IV drug arsenal. Therefore, the development of new anti-influenza agents effective against antigenically different IVs is therefore an urgent priority. To meet this need, host-targeting antivirals (HTAs) can be evaluated as an alternative or complementary approach to current direct-acting agents (DAAs) for the therapy of IV infections. As a contribution to this antiviral strategy, in this study, we characterized the anti-IV activity of MEDS433, a novel small molecule inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 exhibited a potent antiviral activity against IAV and IBV replication, which was reversed by the addition of exogenous uridine and cytidine or the hDHODH product orotate, thus indicating that MEDS433 targets notably hDHODH activity in IV-infected cells. When MEDS433 was used in combination either with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, or with an anti-IV DAA, such as N4-hydroxycytidine (NHC), synergistic anti-IV activities were observed. As a whole, these results indicate MEDS433 as a potential HTA candidate to develop novel anti-IV intervention approaches, either as a single agent or in combination regimens with DAAs.
Collapse
Affiliation(s)
- Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- Correspondence: ; Tel.: +39-011-6704648
| |
Collapse
|
6
|
Sainas S, Giorgis M, Circosta P, Poli G, Alberti M, Passoni A, Gaidano V, Pippione AC, Vitale N, Bonanni D, Rolando B, Cignetti A, Ramondetti C, Lanno A, Ferraris DM, Canepa B, Buccinnà B, Piccinini M, Rizzi M, Saglio G, Al-Karadaghi S, Boschi D, Miggiano R, Tuccinardi T, Lolli ML. Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold: SAR of the Aryloxyaryl Moiety. J Med Chem 2022; 65:12701-12724. [PMID: 36162075 PMCID: PMC9574863 DOI: 10.1021/acs.jmedchem.2c00496] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/28/2022]
Abstract
In recent years, human dihydroorotate dehydrogenase inhibitors have been associated with acute myelogenous leukemia as well as studied as potent host targeting antivirals. Starting from MEDS433 (IC50 1.2 nM), we kept improving the structure-activity relationship of this class of compounds characterized by 2-hydroxypyrazolo[1,5-a]pyridine scaffold. Using an in silico/crystallography supported design, we identified compound 4 (IC50 7.2 nM), characterized by the presence of a decorated aryloxyaryl moiety that replaced the biphenyl scaffold, with potent inhibition and pro-differentiating abilities on AML THP1 cells (EC50 74 nM), superior to those of brequinar (EC50 249 nM) and boosted when in combination with dipyridamole. Finally, compound 4 has an extremely low cytotoxicity on non-AML cells as well as MEDS433; it has shown a significant antileukemic activity in vivo in a xenograft mouse model of AML.
Collapse
Affiliation(s)
- Stefano Sainas
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Paola Circosta
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Giulio Poli
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Marta Alberti
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Alice Passoni
- Laboratory
of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Valentina Gaidano
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo
Turati, 62, Turin 10128, Italy
| | - Agnese C. Pippione
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Nicoletta Vitale
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Davide Bonanni
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
- Life
Science Department, University of Modena, Via Università 4, Modena 41121, Italy
| | - Barbara Rolando
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Alessandro Cignetti
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo
Turati, 62, Turin 10128, Italy
| | - Cristina Ramondetti
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Alessia Lanno
- Laboratory
of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Davide M. Ferraris
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Barbara Canepa
- GEM FORLAB, Via Ing.
Comotto 36, Caluso, Turin, 10014, Italy
| | - Barbara Buccinnà
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Marco Piccinini
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Menico Rizzi
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Giuseppe Saglio
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo
Turati, 62, Turin 10128, Italy
| | - Salam Al-Karadaghi
- Department
of Biochemistry and Structural Biology, Lund University, Naturvetarvägen
14, Box 124, Lund 221 00, Sweden
| | - Donatella Boschi
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Riccardo Miggiano
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Tiziano Tuccinardi
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Marco L. Lolli
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| |
Collapse
|
7
|
Zanetta C, Rocca MA, Filippi M. Impact of immunotherapies on COVID-19 outcomes in multiple sclerosis patients. Expert Rev Clin Immunol 2022; 18:495-512. [PMID: 35395927 DOI: 10.1080/1744666x.2022.2064845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION SARS-CoV-2 pandemic has led the scientific community to maximize efforts to prevent infections and disease severity in patients with multiple sclerosis (pwMS). We analyze the impact of immunotherapies on COVID-19 outcomes in pwMS, providing our interpretation of data. AREAS COVERED Infections, hospitalizations, intensive care unit admissions and death rates in COVID-19 pwMS are comparable to general population. Severity of disability, MS clinical phenotype, age and comorbidities, along with the use of intravenous methylprednisolone and anti-CD20 treatments, are risk factors for COVID-19 severity. Disease modifying treatments (DMTs) can be safely started and continued during the pandemic. Benefit-risk evaluation is mandatory when managing second-line therapies, to balance risk of worse COVID-19 outcomes and MS reactivation. COVID-19 vaccination is safe in MS and its efficacy could be reduced in fingolimod and ocrelizumab-treated patients. EXPERT OPINION Rate of (re)-infection and outcomes with SARS-CoV-2 variants in pwMS and antiviral properties of DMTs need to be further explored. Data on COVID-19 in pregnant MS women, children and elderly pwMS are limited. Evidence on long-term effects of infection is needed. Impact of emerging DMTs on COVID-19 should be investigated. More data and longer follow-up are needed to characterize long-term efficacy and safety profile of vaccinations in pwMS.
Collapse
Affiliation(s)
| | - Maria A Rocca
- Neurology Unit.,Neuroimaging Research Unit, Division of Neuroscience.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neurology Unit.,Neurorehabilitation Unit.,Neuroimaging Research Unit, Division of Neuroscience.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
Wang FS, Chen KL, Chu SW. Human/SARS-CoV-2 genome-scale metabolic modeling to discover potential antiviral targets for COVID-19. J Taiwan Inst Chem Eng 2022; 133:104273. [PMID: 35186172 PMCID: PMC8843340 DOI: 10.1016/j.jtice.2022.104273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has caused a substantial increase in mortality and economic and social disruption. The absence of US Food and Drug Administration-approved drugs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for new therapeutic drugs to combat COVID-19. METHODS The present study proposed a fuzzy hierarchical optimization framework for identifying potential antiviral targets for COVID-19. The objectives in the decision-making problem were not only to evaluate the elimination of the virus growth, but also to minimize side effects causing treatment. The identified candidate targets could promote processes of drug discovery and development. SIGNIFICANT FINDINGS Our gene-centric method revealed that dihydroorotate dehydrogenase (DHODH) inhibition could reduce viral biomass growth and metabolic deviation by 99.4% and 65.6%, respectively, and increase cell viability by 70.4%. We also identified two-target combinations that could completely block viral biomass growth and more effectively prevent metabolic deviation. We also discovered that the inhibition of two antiviral metabolites, cytidine triphosphate (CTP) and uridine-5'-triphosphate (UTP), exhibits effects similar to those of molnupiravir, which is undergoing phase III clinical trials. Our predictions also indicate that CTP and UTP inhibition blocks viral RNA replication through a similar mechanism to that of molnupiravir.
Collapse
Affiliation(s)
- Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Ke-Lin Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Sz-Wei Chu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan
| |
Collapse
|
9
|
Yamaoka S, Weisend CM, Swenson VA, Ebihara H. Development of accelerated high-throughput antiviral screening systems for emerging orthomyxoviruses. Antiviral Res 2022; 200:105291. [PMID: 35296419 PMCID: PMC9259280 DOI: 10.1016/j.antiviral.2022.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/19/2022]
Abstract
Bourbon virus (BRBV) is an emerging tick-borne orthomyxovirus that causes severe febrile illness in humans. There are no specific treatments for BRBV disease currently available. Here, we developed a highly accessible and robust, quantitative fluorescence-based BRBV minigenome (MG) system and applied it to high-throughput antiviral drug screening. We demonstrated that human dihydroorotate dehydrogenase (DHODH) inhibitors, hDHODH-IN-4 and brequinar, efficiently reduced BRBV RNA synthesis, and validated these findings using infectious BRBV in vitro. The DHODH inhibitors also exhibited high potency in inhibiting MG activities of other orthomyxoviruses with emerging zoonotic potential, including bat influenza A virus, swine influenza D virus, and Thogoto virus. Our newly developed MG system is a powerful platform for antiviral drug screening across the Orthomyxoviridae family, enabling rapid development and deployment of antivirals against future emerging orthomyxoviruses.
Collapse
Affiliation(s)
- Satoko Yamaoka
- Mayo Clinic, Department of Infectious Diseases, Rochester, MN, 55905, USA
| | - Carla M Weisend
- Mayo Clinic, Department of Infectious Diseases, Rochester, MN, 55905, USA; Mayo Clinic, Department of Molecular Medicine, Rochester, MN, 55905, USA
| | - Vaille A Swenson
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Program, Rochester, MN, 55905, USA
| | - Hideki Ebihara
- National Institute of Infectious Diseases, Department of Virology I, Tokyo, 162-8640, Japan.
| |
Collapse
|
10
|
Abstract
The development of effective antiviral therapy for COVID-19 is critical for those awaiting vaccination, as well as for those who do not respond robustly to vaccination. This review summarizes 1 year of progress in the race to develop antiviral therapies for COVID-19, including research spanning preclinical and clinical drug development efforts, with an emphasis on antiviral compounds that are in clinical development or that are high priorities for clinical development. The review is divided into sections on compounds that inhibit SARS-CoV-2 enzymes, including its polymerase and proteases; compounds that inhibit virus entry, including monoclonal antibodies; interferons; and repurposed drugs that inhibit host processes required for SARS-CoV-2 replication. The review concludes with a summary of the lessons to be learned from SARS-CoV-2 drug development efforts and the challenges to continued progress.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
11
|
Rodriguez-Rodriguez BA, Noval MG, Kaczmarek ME, Jang KK, Thannickal SA, Cifuentes Kottkamp A, Brown RS, Kielian M, Cadwell K, Stapleford KA. Atovaquone and Berberine Chloride Reduce SARS-CoV-2 Replication In Vitro. Viruses 2021; 13:v13122437. [PMID: 34960706 PMCID: PMC8706021 DOI: 10.3390/v13122437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
Epidemic RNA viruses seem to arise year after year leading to countless infections and devastating disease. SARS-CoV-2 is the most recent of these viruses, but there will undoubtedly be more to come. While effective SARS-CoV-2 vaccines are being deployed, one approach that is still missing is effective antivirals that can be used at the onset of infections and therefore prevent pandemics. Here, we screened FDA-approved compounds against SARS-CoV-2. We found that atovaquone, a pyrimidine biosynthesis inhibitor, is able to reduce SARS-CoV-2 infection in human lung cells. In addition, we found that berberine chloride, a plant-based compound used in holistic medicine, was able to inhibit SARS-CoV-2 infection in cells through direct interaction with the virion. Taken together, these studies highlight potential avenues of antiviral development to block emerging viruses. Such proactive approaches, conducted well before the next pandemic, will be essential to have drugs ready for when the next emerging virus hits.
Collapse
Affiliation(s)
- Bruno A. Rodriguez-Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Maria E. Kaczmarek
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Kyung Ku Jang
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara A. Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | | | - Rebecca S. Brown
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.S.B.); (M.K.)
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.S.B.); (M.K.)
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Correspondence:
| |
Collapse
|
12
|
Mathieu C, Touret F, Jacquemin C, Janin YL, Nougairède A, Brailly M, Mazelier M, Décimo D, Vasseur V, Hans A, Valle-Casuso JC, de Lamballerie X, Horvat B, André P, Si-Tahar M, Lotteau V, Vidalain PO. A Bioluminescent 3CL Pro Activity Assay to Monitor SARS-CoV-2 Replication and Identify Inhibitors. Viruses 2021; 13:1814. [PMID: 34578395 PMCID: PMC8473059 DOI: 10.3390/v13091814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Our therapeutic arsenal against viruses is very limited and the current pandemic of SARS-CoV-2 highlights the critical need for effective antivirals against emerging coronaviruses. Cellular assays allowing a precise quantification of viral replication in high-throughput experimental settings are essential to the screening of chemical libraries and the selection of best antiviral chemical structures. To develop a reporting system for SARS-CoV-2 infection, we generated cell lines expressing a firefly luciferase maintained in an inactive form by a consensus cleavage site for the viral protease 3CLPro of coronaviruses, so that the luminescent biosensor is turned on upon 3CLPro expression or SARS-CoV-2 infection. This cellular assay was used to screen a metabolism-oriented library of 492 compounds to identify metabolic vulnerabilities of coronaviruses for developing innovative therapeutic strategies. In agreement with recent reports, inhibitors of pyrimidine biosynthesis were found to prevent SARS-CoV-2 replication. Among the top hits, we also identified the NADPH oxidase (NOX) inhibitor Setanaxib. The anti-SARS-CoV-2 activity of Setanaxib was further confirmed using ACE2-expressing human pulmonary cells Beas2B as well as human primary nasal epithelial cells. Altogether, these results validate our cell-based functional assay and the interest of screening libraries of different origins to identify inhibitors of SARS-CoV-2 for drug repurposing or development.
Collapse
Affiliation(s)
- Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral Infections, Univ Lyon, Institut National de la Santé et de la Recherche Médicale (Inserm), U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France; (C.M.); (M.B.); (M.M.); (D.D.); (B.H.)
| | - Franck Touret
- Unité des Virus Emergents (UVE), Aix Marseille Univ, Institut de Recherche pour le Développement (IRD) 190, Institut National de la Santé et de la Recherche Médicale (Inserm) U1207, IHU Méditerranée Infection, 13005 Marseille, France; (F.T.); (A.N.); (X.d.L.)
| | - Clémence Jacquemin
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Institut National de la Santé et de la Recherche Médicale (Inserm), U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France; (C.J.); (P.A.)
| | - Yves L. Janin
- Unité de Chimie et Biocatalyse, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS), UMR 3523, 28 rue du Dr. Roux, CEDEX 15, 75724 Paris, France;
| | - Antoine Nougairède
- Unité des Virus Emergents (UVE), Aix Marseille Univ, Institut de Recherche pour le Développement (IRD) 190, Institut National de la Santé et de la Recherche Médicale (Inserm) U1207, IHU Méditerranée Infection, 13005 Marseille, France; (F.T.); (A.N.); (X.d.L.)
| | - Manon Brailly
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral Infections, Univ Lyon, Institut National de la Santé et de la Recherche Médicale (Inserm), U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France; (C.M.); (M.B.); (M.M.); (D.D.); (B.H.)
| | - Magalie Mazelier
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral Infections, Univ Lyon, Institut National de la Santé et de la Recherche Médicale (Inserm), U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France; (C.M.); (M.B.); (M.M.); (D.D.); (B.H.)
| | - Didier Décimo
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral Infections, Univ Lyon, Institut National de la Santé et de la Recherche Médicale (Inserm), U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France; (C.M.); (M.B.); (M.M.); (D.D.); (B.H.)
| | - Virginie Vasseur
- Centre d’Etude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (Inserm), U1100, Faculty of Medecine, University of Tours, 37000 Tours, France; (V.V.); (M.S.-T.)
| | - Aymeric Hans
- Laboratoire de Santé Animale, Site de Normandie de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Physiopathologie et épidémiologie des maladies équines (PhEED) Unit, 14430 Goustranville, France; (A.H.); (J.-C.V.-C.)
| | - José-Carlos Valle-Casuso
- Laboratoire de Santé Animale, Site de Normandie de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Physiopathologie et épidémiologie des maladies équines (PhEED) Unit, 14430 Goustranville, France; (A.H.); (J.-C.V.-C.)
| | - Xavier de Lamballerie
- Unité des Virus Emergents (UVE), Aix Marseille Univ, Institut de Recherche pour le Développement (IRD) 190, Institut National de la Santé et de la Recherche Médicale (Inserm) U1207, IHU Méditerranée Infection, 13005 Marseille, France; (F.T.); (A.N.); (X.d.L.)
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral Infections, Univ Lyon, Institut National de la Santé et de la Recherche Médicale (Inserm), U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France; (C.M.); (M.B.); (M.M.); (D.D.); (B.H.)
| | - Patrice André
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Institut National de la Santé et de la Recherche Médicale (Inserm), U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France; (C.J.); (P.A.)
| | - Mustapha Si-Tahar
- Centre d’Etude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (Inserm), U1100, Faculty of Medecine, University of Tours, 37000 Tours, France; (V.V.); (M.S.-T.)
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Institut National de la Santé et de la Recherche Médicale (Inserm), U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France; (C.J.); (P.A.)
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Institut National de la Santé et de la Recherche Médicale (Inserm), U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France; (C.J.); (P.A.)
| |
Collapse
|
13
|
Kaur H, Sarma P, Bhattacharyya A, Sharma S, Chhimpa N, Prajapat M, Prakash A, Kumar S, Singh A, Singh R, Avti P, Thota P, Medhi B. Efficacy and safety of dihydroorotate dehydrogenase (DHODH) inhibitors "leflunomide" and "teriflunomide" in Covid-19: A narrative review. Eur J Pharmacol 2021; 906:174233. [PMID: 34111397 PMCID: PMC8180448 DOI: 10.1016/j.ejphar.2021.174233] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 01/12/2023]
Abstract
Dihydroorotate dehydrogenase (DHODH) is rate-limiting enzyme in biosynthesis of pyrimidone which catalyzes the oxidation of dihydro-orotate to orotate. Orotate is utilized in the biosynthesis of uridine-monophosphate. DHODH inhibitors have shown promise as antiviral agent against Cytomegalovirus, Ebola, Influenza, Epstein Barr and Picornavirus. Anti-SARS-CoV-2 action of DHODH inhibitors are also coming up. In this review, we have reviewed the safety and efficacy of approved DHODH inhibitors (leflunomide and teriflunomide) against COVID-19. In target-centered in silico studies, leflunomide showed favorable binding to active site of MPro and spike: ACE2 interface. In artificial-intelligence/machine-learning based studies, leflunomide was among the top 50 ligands targeting spike: ACE2 interaction. Leflunomide is also found to interact with differentially regulated pathways [identified by KEGG (Kyoto Encyclopedia of Genes and Genomes) and reactome pathway analysis of host transcriptome data] in cogena based drug-repurposing studies. Based on GSEA (gene set enrichment analysis), leflunomide was found to target pathways enriched in COVID-19. In vitro, both leflunomide (EC50 41.49 ± 8.8 μmol/L) and teriflunomide (EC50 26 μmol/L) showed SARS-CoV-2 inhibition. In clinical studies, leflunomide showed significant benefit in terms of decreasing the duration of viral shredding, duration of hospital stay and severity of infection. However, no advantage was seen while combining leflunomide and IFN alpha-2a among patients with prolonged post symptomatic viral shredding. Common adverse effects of leflunomide were hyperlipidemia, leucopenia, neutropenia and liver-function alteration. Leflunomide/teriflunomide may serve as an agent of importance to achieve faster virological clearance in COVID-19, however, findings needs to be validated in bigger sized placebo controlled studies.
Collapse
Affiliation(s)
- Hardeep Kaur
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | | | | | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | - Rahul Singh
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Prasad Thota
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India.
| |
Collapse
|
14
|
Stegmann KM, Dickmanns A, Gerber S, Nikolova V, Klemke L, Manzini V, Schlösser D, Bierwirth C, Freund J, Sitte M, Lugert R, Salinas G, Meister TL, Pfaender S, Görlich D, Wollnik B, Groß U, Dobbelstein M. The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models. Virus Res 2021; 302:198469. [PMID: 34090962 PMCID: PMC8180352 DOI: 10.1016/j.virusres.2021.198469] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
The search for successful therapies of infections with the coronavirus SARS-CoV-2 is ongoing. We tested inhibition of host cell nucleotide synthesis as a promising strategy to decrease the replication of SARS-CoV-2-RNA, thus diminishing the formation of virus progeny. Methotrexate (MTX) is an established drug for cancer therapy and to induce immunosuppression. The drug inhibits dihydrofolate reductase and other enzymes required for the synthesis of nucleotides. Strikingly, the replication of SARS-CoV-2 was inhibited by MTX in therapeutic concentrations around 1 µM, leading to more than 1000-fold reductions in virus progeny in Vero C1008 (Vero E6) and ~100-fold reductions in Calu-3 cells. Virus replication was more sensitive to equivalent concentrations of MTX than of the established antiviral agent remdesivir. MTX strongly diminished the synthesis of viral structural proteins and the amount of released virus RNA. Virus replication and protein synthesis were rescued by folinic acid (leucovorin) and also by inosine, indicating that purine depletion is the principal mechanism that allows MTX to reduce virus RNA synthesis. The combination of MTX with remdesivir led to synergistic impairment of virus replication, even at 100 nM MTX. The use of MTX in treating SARS-CoV-2 infections still awaits further evaluation regarding toxicity and efficacy in infected organisms, rather than cultured cells. Within the frame of these caveats, however, our results raise the perspective of a two-fold benefit from repurposing MTX for treating COVID-19. Firstly, its previously known ability to reduce aberrant inflammatory responses might dampen respiratory distress. In addition, its direct antiviral activity described here would limit the dissemination of the virus.
Collapse
Affiliation(s)
- Kim M Stegmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Sabrina Gerber
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Vella Nikolova
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Luisa Klemke
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Valentina Manzini
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Denise Schlösser
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Cathrin Bierwirth
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Julia Freund
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Raimond Lugert
- Institute of Medical Microbiology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Toni Luise Meister
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Dirk Görlich
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.
| |
Collapse
|
15
|
Calistri A, Luganini A, Mognetti B, Elder E, Sibille G, Conciatori V, Del Vecchio C, Sainas S, Boschi D, Montserrat N, Mirazimi A, Lolli ML, Gribaudo G, Parolin C. The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms 2021; 9:microorganisms9081731. [PMID: 34442810 PMCID: PMC8398173 DOI: 10.3390/microorganisms9081731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 inhibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Elizabeth Elder
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Ali Mirazimi
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, 17177 Stockholm, Sweden
- National Veterinary Institute, 75189 Uppsala, Sweden
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
- Correspondence: ; Tel.: +39-011-6704648
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| |
Collapse
|
16
|
Guerrero-Alonso A, Antunez-Mojica M, Medina-Franco JL. Chemoinformatic Analysis of Isothiocyanates: Their Impact in Nature and Medicine. Mol Inform 2021; 40:e2100172. [PMID: 34363333 DOI: 10.1002/minf.202100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Isothiocyanates (ITCs) have a significant impact on food and natural product chemistry. Several dietary components and food chemicals contain the isothiocyanate moiety. In addition, many ITCs interact with macromolecules of biological relevance, making these compounds relevant for potential therapeutic applications and disease prevention. However, there is a lack of systematic analysis of ITCs in chemical and biological databases. Herein, we conducted a comprehensive analysis of ITCs present in public domain databases, including natural products, food chemicals, macromolecular targets of drugs, and the Protein Data Bank. A total of 154 ITCs were found, which can be classified into seven categories: acyclic, cyclic, polycyclic, aromatic, polyaromatic, indolic, and glycosylated. 24 ITCs were reported in 18 vegetable sources, mainly in cruciferous vegetables (Brassica oleracea L.). Calculated properties of pharmaceutical relevance indicated that 11 % of the 154 ITCs would be suitable to be orally absorbed and 48 % permeate the blood-brain-barrier. It was also found that seven molecular targets have been co-crystallized with ITCs and the most frequent is the macrophage migration inhibitory factor. It is expected that this work will contribute to the sub-disciplines of natural products and food informatics.
Collapse
Affiliation(s)
- Araceli Guerrero-Alonso
- Centro de Investigaciones Químicas IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, MOR, 62209, México
| | - Mayra Antunez-Mojica
- CONACYT-Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209, Morelos, México
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
17
|
Low cytotoxic quinoline-4-carboxylic acids derived from vanillin precursors as potential human dihydroorotate dehydrogenase inhibitors. Bioorg Med Chem Lett 2021; 46:128194. [PMID: 34116160 DOI: 10.1016/j.bmcl.2021.128194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022]
Abstract
Twenty novel 2-substituted quinoline-4-carboxylic acids bearing amide moiety were designed and synthesized by Doebner reaction. Human dihydroorotate dehydrogenase (hDHODH) was recognized as a biological target and all compounds were screened as potential hDHODH inhibitors in an enzyme inhibition assay. The prepared heterocycles were also evaluated for their cytotoxic effects on the healthy HaCaT cell line while lipophilic properties were considered on the basis of experimentally determined logD values at physiological pH. The most promising compound 5j, with chlorine at para-position of terminal phenyl ring, showed good hDHODH inhibitory activity, low cytotoxicity, and optimal lipophilicity. The bioactive conformation of 5j on the hDHODH, determined by means of molecular docking, revealed the compound's pharmacology and provide guidelines for further lead optimization.
Collapse
|
18
|
Renz A, Widerspick L, Dräger A. Genome-Scale Metabolic Model of Infection with SARS-CoV-2 Mutants Confirms Guanylate Kinase as Robust Potential Antiviral Target. Genes (Basel) 2021; 12:796. [PMID: 34073716 PMCID: PMC8225150 DOI: 10.3390/genes12060796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
The current SARS-CoV-2 pandemic is still threatening humankind. Despite first successes in vaccine development and approval, no antiviral treatment is available for COVID-19 patients. The success is further tarnished by the emergence and spreading of mutation variants of SARS-CoV-2, for which some vaccines have lower efficacy. This highlights the urgent need for antiviral therapies even more. This article describes how the genome-scale metabolic model (GEM) of the host-virus interaction of human alveolar macrophages and SARS-CoV-2 was refined by incorporating the latest information about the virus's structural proteins and the mutant variants B.1.1.7, B.1.351, B.1.28, B.1.427/B.1.429, and B.1.617. We confirmed the initially identified guanylate kinase as a potential antiviral target with this refined model and identified further potential targets from the purine and pyrimidine metabolism. The model was further extended by incorporating the virus' lipid requirements. This opened new perspectives for potential antiviral targets in the altered lipid metabolism. Especially the phosphatidylcholine biosynthesis seems to play a pivotal role in viral replication. The guanylate kinase is even a robust target in all investigated mutation variants currently spreading worldwide. These new insights can guide laboratory experiments for the validation of identified potential antiviral targets. Only the combination of vaccines and antiviral therapies will effectively defeat this ongoing pandemic.
Collapse
Affiliation(s)
- Alina Renz
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Lina Widerspick
- Bernhard Nocht Institute for Tropical Medicine, Virus Immunology, 20359 Hamburg, Germany;
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Sainas S, Giorgis M, Circosta P, Gaidano V, Bonanni D, Pippione AC, Bagnati R, Passoni A, Qiu Y, Cojocaru CF, Canepa B, Bona A, Rolando B, Mishina M, Ramondetti C, Buccinnà B, Piccinini M, Houshmand M, Cignetti A, Giraudo E, Al-Karadaghi S, Boschi D, Saglio G, Lolli ML. Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold: SAR of the Biphenyl Moiety. J Med Chem 2021; 64:5404-5428. [PMID: 33844533 PMCID: PMC8279415 DOI: 10.1021/acs.jmedchem.0c01549] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 02/08/2023]
Abstract
The connection with acute myelogenous leukemia (AML) of dihydroorotate dehydrogenase (hDHODH), a key enzyme in pyrimidine biosynthesis, has attracted significant interest from pharma as a possible AML therapeutic target. We recently discovered compound 1, a potent hDHODH inhibitor (IC50 = 1.2 nM), able to induce myeloid differentiation in AML cell lines (THP1) in the low nM range (EC50 = 32.8 nM) superior to brequinar's phase I/II clinical trial (EC50 = 265 nM). Herein, we investigate the 1 drug-like properties observing good metabolic stability and no toxic profile when administered at doses of 10 and 25 mg/kg every 3 days for 5 weeks (Balb/c mice). Moreover, in order to identify a backup compound, we investigate the SAR of this class of compounds. Inside the series, 17 is characterized by higher potency in inducing myeloid differentiation (EC50 = 17.3 nM), strong proapoptotic properties (EC50 = 20.2 nM), and low cytotoxicity toward non-AML cells (EC30(Jurkat) > 100 μM).
Collapse
Affiliation(s)
- Stefano Sainas
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Paola Circosta
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Valentina Gaidano
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology, AO SS Antonio e Biagio e
Cesare Arrigo, Via Venezia
16, Alessandria 15121, Italy
| | - Davide Bonanni
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Agnese C. Pippione
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Renzo Bagnati
- Department
of Environmental Health Sciences, Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano 20156, Italy
| | - Alice Passoni
- Department
of Environmental Health Sciences, Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano 20156, Italy
| | - Yaqi Qiu
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
- Higher
Education Mega Center, Institutes for Life Sciences, South China University of Technology, Guangzhou 510641, China
| | - Carina Florina Cojocaru
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
| | - Barbara Canepa
- Gem
Forlab srl, Via Ribes,
5, Colleretto Giacosa, Turin 10010, Italy
| | - Alessandro Bona
- Gem
Chimica srl, Via Maestri
del Lavoro, 25, Busca, Cuneo 12022, Italy
| | - Barbara Rolando
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Mariia Mishina
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Cristina Ramondetti
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Barbara Buccinnà
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Marco Piccinini
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Mohammad Houshmand
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Alessandro Cignetti
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo Turati, 62, Turin 10128, Italy
| | - Enrico Giraudo
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
| | - Salam Al-Karadaghi
- Department
of Biochemistry and Structural Biology, Lund University, Naturvetarvägen 14, Box 124, Lund 221 00, Sweden
| | - Donatella Boschi
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Giuseppe Saglio
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo Turati, 62, Turin 10128, Italy
| | - Marco L. Lolli
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| |
Collapse
|
20
|
Bahat A, MacVicar T, Langer T. Metabolism and Innate Immunity Meet at the Mitochondria. Front Cell Dev Biol 2021; 9:720490. [PMID: 34386501 PMCID: PMC8353256 DOI: 10.3389/fcell.2021.720490] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are master regulators of metabolism and have emerged as key signalling organelles of the innate immune system. Each mitochondrion harbours potent agonists of inflammation, including mitochondrial DNA (mtDNA), which are normally shielded from the rest of the cell and extracellular environment and therefore do not elicit detrimental inflammatory cascades. Mitochondrial damage and dysfunction can lead to the cytosolic and extracellular exposure of mtDNA, which triggers inflammation in a number of diseases including autoimmune neurodegenerative disorders. However, recent research has revealed that the extra-mitochondrial exposure of mtDNA is not solely a negative consequence of mitochondrial damage and pointed to an active role of mitochondria in innate immunity. Metabolic cues including nucleotide imbalance can stimulate the release of mtDNA from mitochondria in order to drive a type I interferon response. Moreover, important effectors of the innate immune response to pathogen infection, such as the mitochondrial antiviral signalling protein (MAVS), are located at the mitochondrial surface and modulated by the cellular metabolic status and mitochondrial dynamics. In this review, we explore how and why metabolism and innate immunity converge at the mitochondria and describe how mitochondria orchestrate innate immune signalling pathways in different metabolic scenarios. Understanding how cellular metabolism and metabolic programming of mitochondria are translated into innate immune responses bears relevance to a broad range of human diseases including cancer.
Collapse
Affiliation(s)
- Amir Bahat
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas MacVicar
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- *Correspondence: Thomas Langer,
| |
Collapse
|
21
|
Carro B. SARS-CoV-2 mechanisms of action and impact on human organism, risk factors and potential treatments. An exhaustive survey. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1977186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Belén Carro
- Department of Signal Theory and Communications, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|