1
|
Mustafa MI, Mohammed A. Nanobodies: A Game-Changer in Cell-Mediated Immunotherapy for Cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:358-364. [PMID: 37634615 DOI: 10.1016/j.slasd.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Nanobodies are small, single-domain antibodies that have emerged as a promising tool in cancer immunotherapy. These molecules can target specific antigens on cancer cells and trigger an immune response against them. In this mini-review article, we highlight the potential of nanobodies in cell-mediated immunotherapy for cancer treatment. We discuss the advantages of nanobodies over conventional antibodies, their ability to penetrate solid tumors, and their potential to enhance the efficacy of other immunotherapeutic agents. We also provide an overview of recent preclinical and clinical studies that have demonstrated the effectiveness of nanobody-based immunotherapy in various types of cancer.
Collapse
Affiliation(s)
- Mujahed I Mustafa
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan.
| | - Ahmed Mohammed
- Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic University, Omdurman, Sudan
| |
Collapse
|
2
|
Okayama M, Fujimori K, Sato M, Samata K, Kurita K, Sugiyama H, Suto Y, Iwasaki G, Yamada T, Kiuchi F, Ichikawa D, Matsushita M, Hirao M, Kunieda H, Yamazaki K, Hattori Y. GTN057, a komaroviquinone derivative, induced myeloma cells' death in vivo and inhibited c-MET tyrosine kinase. Cancer Med 2023; 12:9749-9759. [PMID: 36825580 PMCID: PMC10166914 DOI: 10.1002/cam4.5691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE Despite the development of newly developed drugs, most multiple myeloma (MM) patients with high-risk cytogenetic abnormalities such as t(4;14) or del17p relapse at anin early stage of their clinical course. We previously reported that a natural product,komaroviquinone (KQN), isolated from the perennial semi-shrub Dracocephalum komarovi, i.e., komaroviquinone (KQN) and its derivative GTN024 induced the apoptosis of MM cells by producing reactive oxygen species (ROS), but both exhibited significant hematological toxicity. Aim of this study is to clarify anti-tumor activity, safety and pharmacokinetics of GTN057, an optimization compound of KQN in vivo. METHODS ICR/SCID xenograft model of KMS11, a t(4;14) translocation-positive MM cell line, was used for in vivo study. Mice pharmacokinetics of GTN057 and the degradation products were analyzed by LC-MS/MS. RESULTS Herein, our in vitro experiments revealed that GTN057 is much less toxic to normal hematopoietic cells, induced the apoptosis of both MM cell lines andpatient samples, including those with high-risk cytogenetic changes. A xenograft model of a high-risk MM cell line demonstrated that GTN057 significantly delayed the tumor growth with no apparent hematological or systemic toxicities in vivo. The pathological examination of GTN057-treated tumors in vivoshowed revealed apoptosis of MM cells and anti-angiogenesis. In addition to the production of ROS, GTN057 inhibited the downstream signaling of c-MET, a receptor tyrosine kinase a receptor forand hepatocyte growth factor (HGF) receptor. Thus, GTN057 is less toxic and is able tomay be a candidate drug for treating MM patients, via multifunctional mechanisms. We have also extensively studied the pharmacologyical analysis of GTN057. The metabolites of GTN057, (e.g.,such as GTN054), may also have anti-tumorantitumor activity. CONCLUSION Natural products or and their derivatives can could be good sources of antineoplastic drugs even for high-risk cancer.
Collapse
Affiliation(s)
- Mikio Okayama
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan.,Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kota Fujimori
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Mariko Sato
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Koichi Samata
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Koki Kurita
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hiromu Sugiyama
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yutaka Suto
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Genji Iwasaki
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Saitama, Japan
| | - Fumiyuki Kiuchi
- Division of Natural Medicines, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Daiju Ichikawa
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Maiko Matsushita
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Maki Hirao
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Hisako Kunieda
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Kohei Yamazaki
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Yutaka Hattori
- Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan.,Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Maali A, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori S, Sharifzadeh Z. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Front Immunol 2023; 14:1012841. [PMID: 36761751 PMCID: PMC9905824 DOI: 10.3389/fimmu.2023.1012841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The immune system is essential in recognizing and eliminating tumor cells. The unique characteristics of the tumor microenvironment (TME), such as heterogeneity, reduced blood flow, hypoxia, and acidity, can reduce the efficacy of cell-mediated immunity. The primary goal of cancer immunotherapy is to modify the immune cells or the TME to enable the immune system to eliminate malignancies successfully. Nanobodies, known as single-domain antibodies, are light chain-free antibody fragments produced from Camelidae antibodies. The unique properties of nanobodies, including high stability, reduced immunogenicity, enhanced infiltration into the TME of solid tumors and facile genetic engineering have led to their promising application in cell-mediated immunotherapy. They can promote the cancer therapy either directly by bridging between tumor cells and immune cells and by targeting cancer cells using immune cell-bound nanobodies or indirectly by blocking the inhibitory ligands/receptors. The T-cell activation can be engaged through anti-CD3 and anti-4-1BB nanobodies in the bispecific (bispecific T-cell engagers (BiTEs)) and trispecific (trispecific T-cell engager (TriTEs)) manners. Also, nanobodies can be used as natural killer (NK) cell engagers (BiKEs, TriKEs, and TetraKEs) to create an immune synapse between the tumor and NK cells. Nanobodies can redirect immune cells to attack tumor cells through a chimeric antigen receptor (CAR) incorporating a nanobody against the target antigen. Various cancer antigens have been targeted by nanobody-based CAR-T and CAR-NK cells for treating both hematological and solid malignancies. They can also cause the continuation of immune surveillance against tumor cells by stopping inappropriate inhibition of immune checkpoints. Other roles of nanobodies in cell-mediated cancer immunotherapy include reprogramming macrophages to reduce metastasis and angiogenesis, as well as preventing the severe side effects occurring in cell-mediated immunotherapy. Here, we highlight the critical functions of various immune cells, including T cells, NK cells, and macrophages in the TME, and discuss newly developed immunotherapy methods based on the targeted manipulation of immune cells and TME with nanobodies.
Collapse
Affiliation(s)
- Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Monireh Gholizadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Noei
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Sheila Seyed-Motahari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,*Correspondence: Zahra Sharifzadeh,
| |
Collapse
|
4
|
The serine protease matriptase inhibits migration and proliferation in multiple myeloma cells. Oncotarget 2022; 13:1175-1186. [PMID: 36268559 PMCID: PMC9584456 DOI: 10.18632/oncotarget.28300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable malignancy of plasma cells. The serine protease matriptase is frequently dysregulated in human carcinomas, which facilitates tumor progression and metastatic dissemination. The importance of matriptase in hematological malignancies is yet to be clarified. In this study, we aimed to characterize the role of matriptase in MM. MATERIALS AND METHODS mRNA expression of matriptase and its inhibitors hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2 was studied in primary MM cells from patient samples and human myeloma cell lines (HMCLs). We further investigated the effect of matriptase on migration and proliferation of myeloma cells in vitro. By use of the CoMMpass database, we assessed the clinical relevance of matriptase in MM patients. RESULTS Matriptase was expressed in 96% of patient samples and all HMCLs tested. Overexpression of matriptase in vitro reduced proliferation, and significantly decreased cytokine-induced migration. Conversely, matriptase knockdown significantly enhanced migration. Mechanistically, overexpression of matriptase inhibited activation of Src kinase. CONCLUSIONS Our findings may suggest a novel role of matriptase as a tumor suppressor in MM pathogenesis.
Collapse
|
5
|
Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. Int Immunopharmacol 2022; 105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
6
|
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021; 16:2337-2356. [PMID: 33790553 PMCID: PMC7997558 DOI: 10.2147/ijn.s297631] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. However, the efficacy of antibody-based therapy is still confined and desperately needs further improvement. Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size (~15kDa), excellent solubility, superior stability, ease of manufacture, quick clearance from blood, and deep tissue penetration, which gain increasing acceptance as therapeutical tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. Thus, one of the promising novel developments that may address the deficiency of monoclonal antibody-based therapies is the utilization of nanobodies. This article provides readers the significant factors that the structural and biochemical properties of nanobodies and the research progress on nanobodies in the fields of tumor treatment, as well as their application prospect.
Collapse
Affiliation(s)
- Shuyang Sun
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ziqiang Ding
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xinyue Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minlong Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Li Gao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qu Chen
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shenxia Xie
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Aiqun Liu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shihua Yin
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoling Lu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
7
|
Verhaar ER, Woodham AW, Ploegh HL. Nanobodies in cancer. Semin Immunol 2020; 52:101425. [PMID: 33272897 DOI: 10.1016/j.smim.2020.101425] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
For treatment and diagnosis of cancer, antibodies have proven their value and now serve as a first line of therapy for certain cancers. A unique class of antibody fragments called nanobodies, derived from camelid heavy chain-only antibodies, are gaining increasing acceptance as diagnostic tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. The small size of nanobodies (∼15 kDa), their stability, ease of manufacture and modification for diverse formats, short circulatory half-life, and high tissue penetration, coupled with excellent specificity and affinity, account for their attractiveness. Here we review applications of nanobodies in the sphere of tumor biology.
Collapse
Affiliation(s)
- Elisha R Verhaar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Tsubaki M, Seki S, Takeda T, Chihara A, Arai Y, Morii Y, Imano M, Satou T, Shimomura K, Nishida S. The HGF/Met/NF-κB Pathway Regulates RANKL Expression in Osteoblasts and Bone Marrow Stromal Cells. Int J Mol Sci 2020; 21:ijms21217905. [PMID: 33114380 PMCID: PMC7663721 DOI: 10.3390/ijms21217905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM)-induced bone disease occurs through hyperactivation of osteoclasts by several factors secreted by MM cells. MM cell-secreted factors induce osteoclast differentiation and activation via direct and indirect actions including enhanced expression of receptor activator of nuclear factor κB ligand (RANKL) in osteoblasts and bone marrow stromal cells (BMSCs). Hepatocyte growth factor (HGF) is elevated in MM patients and is associated with MM-induced bone disease, although the mechanism by which HGF promotes bone disease remains unclear. In the present study, we demonstrated that HGF induces RANKL expression in osteoblasts and BMSCs, and investigated the mechanism of induction. We found that HGF and MM cell supernatants induced RANKL expression in ST2 cells, MC3T3-E1 cells, and mouse BMSCs. In addition, HGF increased phosphorylation of Met and nuclear factor κB (NF-κB) in ST2 cells, MC3T3-E1 cells, or mouse BMSCs. Moreover, Met and NF-κB inhibitors suppressed HGF-induced RANKL expression in ST2 cells, MC3T3-E1 cells, and mouse BMSCs. These results indicated that HGF promotes RANKL expression in osteoblasts and BMSCs via the Met/NF-κB signaling pathway, and Met and NF-κB inhibitors suppressed HGF-induced RANKL expression. Our findings suggest that Met and NF-κB inhibitors are potentially useful in mitigating MM-induced bone disease in patients expressing high levels of HGF.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Shiori Seki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Akiko Chihara
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Yuuko Arai
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Yuusuke Morii
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
- Department of Pharmacy, Municipal Ikeda Hospital, Ikeda 563-0025, Japan;
| | - Motohiro Imano
- Department of Surgery, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan;
| | - Takao Satou
- Department of Pathology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan;
| | - Kazunori Shimomura
- Department of Pharmacy, Municipal Ikeda Hospital, Ikeda 563-0025, Japan;
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
- Correspondence: ; Tel.: +81-6-6721-2332
| |
Collapse
|
9
|
Crauwels M, Van Vaerenbergh N, Kulaya NB, Vincke C, D'Huyvetter M, Devoogdt N, Muyldermans S, Xavier C. Reshaping nanobodies for affinity purification on protein a. N Biotechnol 2020; 57:20-28. [PMID: 32001339 DOI: 10.1016/j.nbt.2020.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Nanobodies (Nbs) are 15 kDa recombinant, single-domain, antigen-specific fragments derived from heavy-chain only antibodies (HCAbs) occurring naturally in species of Camelidae. The beneficial properties of Nbs make them suitable tracers for diagnostic and therapeutic purposes. Whereas Nbs with a terminal hexa-histidine tag (His-tag) are easily purified via immobilized metal affinity chromatography, previous studies revealed a negative impact of the His-tag on the biodistribution of Nb-based tracers. Thus, it is important to develop alternative purification methods for Nbs without a His-tag. Protein A (SpA), a surface protein of Staphylococcus aureus, binds the Fc-region of IgG molecules and also to a lesser extent human heavy chain family-3 variable (VH) regions. Nbs also belong to this VH family, although many fail to be recognized by SpA. Here it is demonstrated that non-SpA binding Nbs can be mutagenized for purification by SpA affinity chromatography and that these Nb variants retain their thermostability and antigen affinity, while biodistribution remains unaffected.
Collapse
Affiliation(s)
- Maxine Crauwels
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, 1090, Belgium.
| | - Nele Van Vaerenbergh
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Neeme Benedict Kulaya
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Catarina Xavier
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| |
Collapse
|
10
|
Yang EY, Shah K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front Oncol 2020; 10:1182. [PMID: 32793488 PMCID: PMC7390931 DOI: 10.3389/fonc.2020.01182] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The development of targeted medicine has greatly expanded treatment options and spurred new research avenues in cancer therapeutics, with monoclonal antibodies (mAbs) emerging as a prevalent treatment in recent years. With mixed clinical success, mAbs still hold significant shortcomings, as they possess limited tumor penetration, high manufacturing costs, and the potential to develop therapeutic resistance. However, the recent discovery of “nanobodies,” the smallest-known functional antibody fragment, has demonstrated significant translational potential in preclinical and clinical studies. This review highlights their various applications in cancer and analyzes their trajectory toward their translation into the clinic.
Collapse
Affiliation(s)
- Emily Y Yang
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
11
|
Tianhua Y, Dianqiu L, Xuanhe Z, Zhe Z, Dongmei G. Long non-coding RNA Sox2 overlapping transcript (SOX2OT) promotes multiple myeloma progression via microRNA-143-3p/c-MET axis. J Cell Mol Med 2020; 24:5185-5194. [PMID: 32198978 PMCID: PMC7205799 DOI: 10.1111/jcmm.15171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/03/2020] [Accepted: 02/22/2020] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNA Sox2 overlapping transcript (SOX2OT) was reported to be involved in progression of multiple cancers. However, the role and mechanism of SOX2OT in multiple myeloma (MM) has yet to be unravelled. In the present study, elevated SOX2OT levels are reported in MM cell lines and patient samples as compared to normal plasma cells (nPCs) and healthy donors, respectively. Knock-down of SOX2OT led to a significant inhibition of cell proliferation, arrested cells at G0/G1 phase and induced cell apoptosis in MM samples in vitro, as well as slowed the growth of tumours in vivo. Additionally, our data indicated that SOX2OT functioned as a competing endogenous RNA (ceRNA) in MM cells that regulated miR-144-3p expression. Repression of miR-144-3p reversed the inhibition of MM development due to SOX2OT knock-down. Our data also revealed that SOX2OT regulated the expression of the cellular-mesenchymal to epithelial transition factor (c-MET, a known target of miR-143-3p) by functioning as a sponge of miR-144-3p in MM samples. These data support that SOX2OT promotes MM progression through regulating the miR-144-3p/c-MET axis, suggesting that SOX2OT might be as a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Yu Tianhua
- Departments of Blood TransfusionChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Li Dianqiu
- Ultrasonography DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | | | - Zhang Zhe
- Department of Radiation OncologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Gao Dongmei
- Department of OtorhinolaryngologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
12
|
Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations. Curr Med Chem 2019; 26:396-426. [DOI: 10.2174/0929867324666170817152554] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) are an important class of therapeutic agents approved for the therapy of many types of malignancies. However, in certain cases applications of conventional mAbs have several limitations in anticancer immunotherapy. These limitations include insufficient efficacy and adverse effects. The antigen-binding fragments of antibodies have a considerable potential to overcome the disadvantages of conventional mAbs, such as poor penetration into solid tumors and Fc-mediated bystander activation of the immune system. Fragments of antibodies retain antigen specificity and part of functional properties of conventional mAbs and at the same time have much better penetration into the tumors and a greatly reduced level of adverse effects. Recent advantages in antibody engineering allowed to produce different types of antibody fragments with improved structure and properties for efficient elimination of tumor cells. These molecules opened up new perspectives for anticancer therapy. Here, we will overview the structural features of the various types of antibody fragments and their applications for anticancer therapy as separate molecules and as part of complex conjugates or structures. Mechanisms of antitumor action of antibody fragments as well as their advantages and disadvantages for clinical application will be discussed in this review.
Collapse
Affiliation(s)
- Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Eugene D. Ponomarev
- School of Biomedical Sciences, Faculty of Medicine and Brain, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Irina V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
13
|
del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human Gastrointestinal Tract. Front Microbiol 2019. [PMCID: PMC6346216 DOI: 10.3389/fmicb.2018.03179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Su Z, Han Y, Sun Q, Wang X, Xu T, Xie W, Huang X. Anti-MET VHH Pool Overcomes MET-Targeted Cancer Therapeutic Resistance. Mol Cancer Ther 2019; 18:100-111. [PMID: 30361332 DOI: 10.1158/1535-7163.mct-18-0351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/30/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022]
Abstract
Receptor tyrosine kinase MET and its ligand hepatocyte growth factor (HGF) play crucial roles in many human malignancies. Numerous drugs have been developed against kinase center of MET or HGF-mediated activation; however, the outcomes in patients are not so promising. Increasing evidence show that MET has kinase-independent effects on tumorigenesis and dissemination, which explains the low efficacy in kinase inhibition-based strategy. VHH is the recombinant variable region of Camelid heavy-chain antibody. As a nanoscale antigen-binding unit, VHH has become an appealing drug candidate in cancer therapy. In our study, we choose a novel strategy to construct an anti-MET VHH pool against the whole ecto-domain of MET. Comparing to monoclonal antibody or single VHH, the anti-MET VHH pool strongly promotes MET degradation through Clathrin-dependent endo-lysosomal pathway. Thus, the anti-MET VHH pool not only blocks kinase activity of MET, but also reduces protein level of MET. As a consequence, anti-MET VHH pool dramatically suppresses cancer cell proliferation, viability, and colony formation in vitro, and inhibits tumorigenesis and growth in mice. Taken together, VHH pool-based strategy greatly improves MET-targeted therapeutic effects on cancer.
Collapse
Affiliation(s)
- Zhipeng Su
- The Therapeutic Antibody Research Center of SEU-Alphamab, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yunchun Han
- The Therapeutic Antibody Research Center of SEU-Alphamab, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Qichen Sun
- The Therapeutic Antibody Research Center of SEU-Alphamab, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Xiaoxiao Wang
- The Therapeutic Antibody Research Center of SEU-Alphamab, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ting Xu
- The Therapeutic Antibody Research Center of SEU-Alphamab, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Wei Xie
- The Therapeutic Antibody Research Center of SEU-Alphamab, Institute of Life Sciences, Southeast University, Nanjing, China.
| | - Xing Huang
- The Therapeutic Antibody Research Center of SEU-Alphamab, Institute of Life Sciences, Southeast University, Nanjing, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Nanobodies as novel therapeutic agents in envenomation. Biochim Biophys Acta Gen Subj 2018; 1862:2955-2965. [PMID: 30309831 DOI: 10.1016/j.bbagen.2018.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND An effective therapy against envenoming should be a priority in view of the high number scorpion stings and snakebites. Serum therapy is still widely applied to treat the envenomation victims; however this approach suffers from several shortcomings. The employment of monoclonal antibodies might be an outcome as these molecules are at the core of a variety of applications from protein structure determination to cancer treatment. The progress of activities in the twilight zone between genetic and antibody engineering have led to the development of a unique class of antibody fragments. These molecules possess several benefits and lack many possible disadvantages over classical antibodies. Within recombinant antibody formats, nanobodies or single domain antigen binding fragments derived from heavy chain only antibodies in camelids occupy a privileged position. SCOPE OF REVIEW In this paper we will briefly review the common methods of envenomation treatment and focus on details of various in vivo research activities that investigate the performance of recombinant, monoclonal nanobodies in venom neutralization. MAJOR CONCLUSIONS Nanobodies bind to their cognate target with high specificity and affinity, they can be produced in large quantities from microbial expression systems and are very robust even when challenged with harsh environmental conditions. Upon administering, they rapidly distribute throughout the body and seem to be well tolerated in humans posing low immunogenicity. GENERAL SIGNIFICANCE Scorpion and snake envenomation is a major issue in developing countries and nanobodies as a venom-neutralizing agent can be considered as a valuable and promising candidate in envenomation therapy.
Collapse
|
16
|
Allegra A, Innao V, Gerace D, Vaddinelli D, Allegra AG, Musolino C. Nanobodies and Cancer: Current Status and New Perspectives. Cancer Invest 2018; 36:221-237. [DOI: 10.1080/07357907.2018.1458858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Demetrio Gerace
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Doriana Vaddinelli
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Hjort MA, Hov H, Abdollahi P, Vandsemb EN, Fagerli UM, Lund B, Slørdahl TS, Børset M, Rø TB. Phosphatase of regenerating liver-3 (PRL-3) is overexpressed in classical Hodgkin lymphoma and promotes survival and migration. Exp Hematol Oncol 2018; 7:8. [PMID: 29651360 PMCID: PMC5894150 DOI: 10.1186/s40164-018-0100-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 11/25/2022] Open
Abstract
Background Phosphatase of regenerating liver-3 (PRL-3) is implicated in oncogenesis of hematological and solid cancers. PRL-3 expression increases metastatic potential, invasiveness and is associated with poor prognosis. With this study, we aimed to show a possible oncogenic role of PRL-3 in classical Hodgkin lymphoma (cHL). Methods PRL-3 expression was measured in 25 cHL patients by immunohistochemistry and gene expression was analyzed from microdissected malignant cells. We knocked down PRL-3 in the cHL cell lines L1236 and HDLM2 and used small molecular inhibitors against PRL-3 to investigate proliferation, migration and cytokine production. Results PRL-3 protein was expressed in 16% of patient samples. In three different gene expression datasets, PRL-3 was significantly overexpressed compared to normal controls. PRL-3 knockdown reduced proliferation, viability and Mcl-1 expression in L1236, but not in HDLM2 cells. Thienopyridone, a small molecule inhibitor of PRL-3, reduced proliferation of both L1236 and HDLM2. PRL-3 affected IL-13 secretion and enhanced STAT6 signaling. IL-13 stimulation partially rescued proliferation in L1236 cells after knockdown of PRL-3. PRL-3 knockdown reduced migration in both L1236 and HDLM2 cells. Conclusion PRL-3 was overexpressed in a subset of cHL patients. Inhibition of PRL-3 increased IL-13 cytokine production and reduced migration, proliferation and viability. The effects could be mediated through regulation of the anti-apoptotic molecule Mcl-1 and a feedback loop of IL-13 mediated activation of STAT6. This point to a role for PRL-3 in the pathogenesis of Hodgkin lymphoma, and PRL-3 could be a possible new drug target. Electronic supplementary material The online version of this article (10.1186/s40164-018-0100-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magnus Aassved Hjort
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Hov
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,3Department of Pathology, Trondheim University Hospital, Trondheim, Norway
| | - Pegah Abdollahi
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Esten Nymoen Vandsemb
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Unn-Merete Fagerli
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,4Cancer Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Bendik Lund
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Tobias Schmidt Slørdahl
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,5Department of Hematology, Trondheim University Hospital, Trondheim, Norway
| | - Magne Børset
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,6Department of Immunology and Transfusion Medicine St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torstein Baade Rø
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
18
|
Deng C, Xiong J, Gu X, Chen X, Wu S, Wang Z, Wang D, Tu J, Xie J. Novel recombinant immunotoxin of EGFR specific nanobody fused with cucurmosin, construction and antitumor efficiency in vitro. Oncotarget 2018; 8:38568-38580. [PMID: 28445134 PMCID: PMC5503554 DOI: 10.18632/oncotarget.16930] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) overexpression is related to the increased aggressiveness, metastases, and poor prognosis in various cancers. In this study, we successfully constructed a new EGFR nanobody-based immunotoxin rE/CUS containing cucurmosin (CUS), The immunotoxin was expressed by prokaryotic system and we obtained a yield of 5 mg protein per liter expression medium. The percentage of it's binding ability totumor cell lines A549, HepG2, SW116, which highly expressed EGFR was 55.6%, 79.6% and 97.1%, respectively, but SW620 was only 4.45%. rE/CUS has the ability to bind A549, HepG2, SW116 cells specifically, and the antigen binding capability was not affected because of extra part of CUS component. The rE/CUS significantly inhibited the cell viability against EGFR over expression tumor cell lines in a dose-and time-dependent manner. Moreover, rE/CUS also induced apoptosis of HepG2 and A549 mightily. Our results demonstrate that rE/CUS is a potential therapeutic strategy for treating EGFR-positive solid tumors.
Collapse
Affiliation(s)
- Cuimin Deng
- Department of Pharmacology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiani Xiong
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiaofan Gu
- Department of Pharmacology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoying Chen
- Department of Experimental Teaching Center of Basic Medical Science, Fujian Medical University, Fuzhou, Fujian, China
| | - Shuifa Wu
- Department of Pharmacology, The 180th Hospital of PLA, Quanzhou, Fujian, China
| | - Zhe Wang
- Department of Pharmacology, Fujian Medical University, Fuzhou, Fujian, China
| | - Duanduan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jinjin Tu
- Department of Pharmacology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jieming Xie
- Department of Pharmacology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Zhou Z, Chitneni SK, Devoogdt N, Zalutsky MR, Vaidyanathan G. Fluorine-18 labeling of an anti-HER2 VHH using a residualizing prosthetic group via a strain-promoted click reaction: Chemistry and preliminary evaluation. Bioorg Med Chem 2018. [PMID: 29534937 DOI: 10.1016/j.bmc.2018.02.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a previous study, we evaluated a HER2-specific single domain antibody fragment (sdAb) 2Rs15d labeled with 18F via conjugation of a residualizing prosthetic agent that was synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC). In order to potentially increase overall efficiency and decrease the time required for labeling, we now investigate the use of a strain-promoted azide-alkyne cycloaddition (SPAAC) between the 2Rs15d sdAb, which had been pre-derivatized with an azide-containing residualizing moiety, and an 18F-labeled aza-dibenzocyclooctyne derivative. The HER2-targeted sdAb 2Rs15d and a nonspecific sdAb R3B23 were pre-conjugated with a moiety containing both azide- and guanidine functionalities. The thus derivatized sdAbs were radiolabeled with 18F using an 18F-labeled aza-dibenzocyclooctyne derivative ([18F]F-ADIBO) via SPAAC, generating the desired conjugate ([18F]RL-II-sdAb). For comparison, unmodified 2Rs15d was labeled with N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB), the prototypical residualizing agent for radioiodination. Radiochemical purity (RCP), immunoreactive fraction (IRF), HER2-binding affinity and cellular uptake of [18F]RL-II-2Rs15d were assessed in vitro. Paired label biodistribution of [18F]RL-II-2Rs15d and [125I]SGMIB-2Rs15d, and microPET/CT imaging of [18F]RL-II-2Rs15d and the [18F]RL-II-R3B23 control sdAb were performed in nude mice bearing HER2-expressing SKOV-3 xenografts. A radiochemical yield of 23.9 ± 6.9% (n = 8) was achieved for the SPAAC reaction between [18F]F-ADIBO and azide-modified 2Rs15d and the RCP of the labeled sdAb was >95%. The affinity (Kd) and IRF for the binding of [18F]RL-II-2Rs15d to HER2 were 5.6 ± 1.3 nM and 73.1 ± 22.5% (n = 3), respectively. The specific uptake of [18F]RL-II-2Rs15d by HER2-expressing BT474M1 breast carcinoma cells in vitro was 14-17% of the input dose at 1, 2, and 4 h, slightly higher than seen for co-incubated [125I]SGMIB-2Rs15d. The uptake of [18F]RL-II-2Rs15d in SKOV-3 xenografts at 1 h and 2 h p.i. were 5.54 ± 0.77% ID/g and 6.42 ± 1.70% ID/g, respectively, slightly higher than those for co-administered [125I]SGMIB-2Rs15d (4.80 ± 0.78% ID/g and 4.78 ± 1.39% ID/g). MicroPET/CT imaging with [18F]RL-II-2Rs15d at 1-3 h p.i. clearly delineated SKOV-3 tumors while no significant accumulation of activity in tumor was seen for [18F]RL-II-R3B23. With the exception of kidneys, normal tissue levels for [18F]RL-II-2Rs15d were low and cleared rapidly. To our knowledge, this is the first time SPAAC method has been used to label an sdAb with 18F, especially with residualizing functionality.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Satish K Chitneni
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, (VUB), 1090 Brussels, Belgium
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
20
|
Iezzi ME, Policastro L, Werbajh S, Podhajcer O, Canziani GA. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment. Front Immunol 2018. [PMID: 29520274 PMCID: PMC5827546 DOI: 10.3389/fimmu.2018.00273] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs), in particular those engineered from the variable heavy-chain fragment (VHH gene) found in Camelidae heavy-chain antibodies (or IgG2 and IgG3), are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR) fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.
Collapse
Affiliation(s)
- María Elena Iezzi
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Policastro
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio Nanomedicina, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Comisión Nacional de Energía Atómica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Werbajh
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Alicia Canziani
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
21
|
Hjort MA, Abdollahi P, Vandsemb EN, Fenstad MH, Lund B, Slørdahl TS, Børset M, Rø TB. Phosphatase of regenerating liver-3 is expressed in acute lymphoblastic leukemia and mediates leukemic cell adhesion, migration and drug resistance. Oncotarget 2017; 9:3549-3561. [PMID: 29423065 PMCID: PMC5790482 DOI: 10.18632/oncotarget.23186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022] Open
Abstract
Phosphatase of regenerating liver-3 (PRL-3/PTP4A3) is upregulated in multiple cancers, including BCR-ABL1- and ETV6-RUNX-positive acute lymphoblastic leukemia (ALL). With this study, we aim to characterize the biological role of PRL-3 in B cell ALL (B-ALL). Here, we demonstrate that PRL-3 expression at mRNA and protein level was higher in B-ALL cells than in normal cells, as measured by qRT-PCR or flow cytometry. Further, we demonstrate that inhibition of PRL-3 using shRNA or a small molecular inhibitor reduced cell migration towards an SDF-1α gradient in the preB-ALL cell lines Reh and MHH-CALL-4. Knockdown of PRL-3 also reduced cell adhesion towards fibronectin in Reh cells. Mechanistically, PRL-3 mediated SDF-1α stimulated calcium release, and activated focal adhesion kinase (FAK) and Src, important effectors of migration and adhesion. Finally, PRL-3 expression made Reh cells more resistance to cytarabine treatment. In conclusion, the expression level of PRL-3 was higher in B-ALL cells than in normal cells. PRL-3 promoted adhesion, migration and resistance to cytarabine. PRL-3 may represent a novel target in the treatment of B-ALL.
Collapse
Affiliation(s)
- Magnus A Hjort
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Children's Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Esten N Vandsemb
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Mona H Fenstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bendik Lund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Children's Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tobias S Slørdahl
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torstein B Rø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Children's Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
22
|
Slørdahl TS, Abdollahi P, Vandsemb EN, Rampa C, Misund K, Baranowska KA, Westhrin M, Waage A, Rø TB, Børset M. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells. Oncotarget 2017; 7:27295-306. [PMID: 27036022 PMCID: PMC5053650 DOI: 10.18632/oncotarget.8422] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/14/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma (MM) is a neoplastic proliferation of bone marrow plasma cells. PRL-3 is a phosphatase induced by interleukin (IL)-6 and other growth factors in MM cells and promotes MM-cell migration. PRL-3 has also been identified as a marker gene for a subgroup of patients with MM. In this study we found that forced expression of PRL-3 in the MM cell line INA-6 led to increased survival of cells that were depleted of IL-6. It also caused redistribution of cells in cell cycle, with an increased number of cells in G2M-phase. Furthermore, forced PRL-3 expression significantly increased phosphorylation of Signal transducer and activator of transcription (STAT) 3 both in the presence and the absence of IL-6. Knockdown of PRL-3 with shRNA reduced survival in MM cell line INA-6. A pharmacological inhibitor of PRL-3 reduced survival in the MM cell lines INA-6, ANBL-6, IH-1, OH-2 and RPMI8226. The inhibitor also reduced survival in 9 of 9 consecutive samples of purified primary myeloma cells. Treatment with the inhibitor down-regulated the anti-apoptotic protein Mcl-1 and led to activation of the intrinsic apoptotic pathway. Inhibition of PRL-3 also reduced IL-6-induced phosphorylation of STAT3. In conclusion, our study shows that PRL-3 is an important mediator of growth factor signaling in MM cells and hence possibly a good target for treatment of MM.
Collapse
Affiliation(s)
- Tobias S Slørdahl
- K. G. Jebsen Center for Myeloma Research, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St Olavs University Hospital, Trondheim, Norway
| | - Pegah Abdollahi
- K. G. Jebsen Center for Myeloma Research, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Esten N Vandsemb
- K. G. Jebsen Center for Myeloma Research, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christoph Rampa
- K. G. Jebsen Center for Myeloma Research, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Misund
- K. G. Jebsen Center for Myeloma Research, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katarzyna A Baranowska
- K. G. Jebsen Center for Myeloma Research, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St Olavs University Hospital, Trondheim, Norway
| | - Marita Westhrin
- K. G. Jebsen Center for Myeloma Research, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Waage
- K. G. Jebsen Center for Myeloma Research, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St Olavs University Hospital, Trondheim, Norway
| | - Torstein B Rø
- K. G. Jebsen Center for Myeloma Research, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pediatrics, St Olavs University Hospital, Trondheim, Norway
| | - Magne Børset
- K. G. Jebsen Center for Myeloma Research, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
23
|
Arezumand R, Alibakhshi A, Ranjbari J, Ramazani A, Muyldermans S. Nanobodies As Novel Agents for Targeting Angiogenesis in Solid Cancers. Front Immunol 2017; 8:1746. [PMID: 29276515 PMCID: PMC5727022 DOI: 10.3389/fimmu.2017.01746] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Solid cancers are dependent on angiogenesis for sustenance. The FDA approval of Bevacizumab in 2004 inspired many scientists to develop more inhibitors of angiogenesis. Although several monoclonal antibodies (mAbs) are being administered to successfully combat various pathologies, the complexity and large size of mAbs seem to narrow the therapeutic applications. To improve the performance of cancer therapeutics, including those blocking tumor angiogenesis, attractive strategies such as miniaturization of the antibodies have been introduced. Nanobodies (Nbs), small single-domain antigen-binding antibody fragments, are becoming promising therapeutic and diagnostic proteins in oncology due to their favorable unique structural and functional properties. This review focuses on the potential and state of the art of Nbs to inhibit the angiogenic process for therapy and the use of labeled Nbs for non-invasive in vivo imaging of the tumors.
Collapse
Affiliation(s)
- Roghaye Arezumand
- Department of Biotechnology and Molecular Science, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Abbas Alibakhshi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
24
|
Bannas P, Hambach J, Koch-Nolte F. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics. Front Immunol 2017; 8:1603. [PMID: 29213270 PMCID: PMC5702627 DOI: 10.3389/fimmu.2017.01603] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibodies have revolutionized cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. The minimal target recognition module of a conventional antibody is composed of two non-covalently associated variable domains (VH and VL). The proper orientation of these domains is mediated by their hydrophobic interface and is stabilized by their linkage to disulfide-linked constant domains (CH1 and CL). VH and VL domains can be fused via a genetic linker into a single-chain variable fragment (scFv). scFv modules in turn can be fused to one another, e.g., to generate a bispecific T-cell engager, or they can be fused in various orientations to antibody hinge and Fc domains to generate bi- and multispecific antibodies. However, the inherent hydrophobic interaction of VH and VL domains limits the stability and solubility of engineered antibodies, often causing aggregation and/or mispairing of V-domains. Nanobodies (15 kDa) and nanobody-based human heavy chain antibodies (75 kDa) can overcome these limitations. Camelids naturally produce antibodies composed only of heavy chains in which the target recognition module is composed of a single variable domain (VHH or Nb). Advantageous features of nanobodies include their small size, high solubility, high stability, and excellent tissue penetration in vivo. Nanobodies can readily be linked genetically to Fc-domains, other nanobodies, peptide tags, or toxins and can be conjugated chemically at a specific site to drugs, radionuclides, photosensitizers, and nanoparticles. These properties make them particularly suited for specific and efficient targeting of tumors in vivo. Chimeric nanobody-heavy chain antibodies combine advantageous features of nanobodies and human Fc domains in about half the size of a conventional antibody. In this review, we discuss recent developments and perspectives for applications of nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics.
Collapse
Affiliation(s)
- Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
DiCara DM, Chirgadze DY, Pope AR, Karatt-Vellatt A, Winter A, Slavny P, van den Heuvel J, Parthiban K, Holland J, Packman LC, Mavria G, Hoffmann J, Birchmeier W, Gherardi E, McCafferty J. Characterization and structural determination of a new anti-MET function-blocking antibody with binding epitope distinct from the ligand binding domain. Sci Rep 2017; 7:9000. [PMID: 28827556 PMCID: PMC5567289 DOI: 10.1038/s41598-017-09460-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
The growth and motility factor Hepatocyte Growth Factor/Scatter Factor (HGF/SF) and its receptor, the product of the MET proto-oncogene, promote invasion and metastasis of tumor cells and have been considered potential targets for cancer therapy. We generated a new Met-blocking antibody which binds outside the ligand-binding site, and determined the crystal structure of the Fab in complex with its target, which identifies the binding site as the Met Ig1 domain. The antibody, 107_A07, inhibited HGF/SF-induced cell migration and proliferation in vitro and inhibited growth of tumor xenografts in vivo. In biochemical assays, 107_A07 competes with both HGF/SF and its truncated splice variant NK1 for MET binding, despite the location of the antibody epitope on a domain (Ig1) not reported to bind NK1 or HGF/SF. Overlay of the Fab-MET crystal structure with the InternalinB-MET crystal structure shows that the 107_A07 Fab comes into close proximity with the HGF/SF-binding SEMA domain when MET is in the “compact”, InternalinB-bound conformation, but not when MET is in the “open” conformation. These findings provide further support for the importance of the “compact” conformation of the MET extracellular domain, and the relevance of this conformation to HGF/SF binding and signaling.
Collapse
Affiliation(s)
- Danielle M DiCara
- MRC Centre, Hills Road, Cambridge, CB2 2QH, UK.,Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.,Genentech Inc., South San Francisco, 94080, USA
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Anthony R Pope
- IONTAS Ltd, Babraham Institute, Babraham, Cambridgeshire, CB22 3AT, UK
| | | | - Anja Winter
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.,Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Peter Slavny
- IONTAS Ltd, Babraham Institute, Babraham, Cambridgeshire, CB22 3AT, UK
| | - Joop van den Heuvel
- Helmholtz Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Kothai Parthiban
- IONTAS Ltd, Babraham Institute, Babraham, Cambridgeshire, CB22 3AT, UK
| | - Jane Holland
- Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Len C Packman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Georgia Mavria
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Jens Hoffmann
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
| | - Walter Birchmeier
- Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Ermanno Gherardi
- MRC Centre, Hills Road, Cambridge, CB2 2QH, UK. .,Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK. .,Division of Immunology and General Pathology, Department of Molecular Medicine, 1 via A Ferrata, 27100, Pavia, Italy.
| | - John McCafferty
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK. .,IONTAS Ltd, Babraham Institute, Babraham, Cambridgeshire, CB22 3AT, UK.
| |
Collapse
|
26
|
Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 2016; 21:1076-113. [DOI: 10.1016/j.drudis.2016.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
|
27
|
Van Audenhove I, Gettemans J. Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer. EBioMedicine 2016; 8:40-48. [PMID: 27428417 PMCID: PMC4919472 DOI: 10.1016/j.ebiom.2016.04.028] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/29/2022] Open
Abstract
Since their discovery, nanobodies have been used extensively in the fields of research, diagnostics and therapy. These antigen binding fragments, originating from Camelid heavy-chain antibodies, possess unusual hallmarks in terms of (small) size, stability, solubility and specificity, hence allowing cost-effective production and sometimes outperforming monoclonal antibodies. In this review, we evaluate the current status of nanobodies to study, diagnose, visualize or inhibit cancer-specific proteins and processes. Nanobodies are highly adaptable tools for cancer research as they enable specific modulation of targets, enzymatic and non-enzymatic proteins alike. Molecular imaging studies benefit from the rapid, homogeneous tumor accumulation of nanobodies and their fast blood clearance, permitting previously unattainable fast tumor visualization. Moreover, they are endowed with considerable therapeutic potential as inhibitors of receptor-ligand pairs and deliverers of drugs or drug-loaded nanoparticles towards tumors. More in vivo and clinical studies are however eagerly awaited to unleash their full potential.
Collapse
Affiliation(s)
- Isabel Van Audenhove
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
| |
Collapse
|
28
|
Yuan DD, Zhu ZX, Zhang X, Liu J. Targeted therapy for gastric cancer: Current status and future directions (Review). Oncol Rep 2016; 35:1245-54. [PMID: 26718131 DOI: 10.3892/or.2015.4528] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/18/2015] [Indexed: 11/06/2022] Open
Abstract
According to the 2012 statistics of the International Agency for Research on Cancer (IARC), gastric cancer is the fifth most common malignancy, and the third leading cause of cancer-related deaths worldwide. Conventional chemotherapy and radiation have shown limited efficacy for advanced gastric cancer, showing an overall survival (OS) rate of ~10 months. Trastuzumab, a monoclonal antibody against human epidermal growth factor receptor 2 (HER2), is the first approved molecularly targeted agent for HER2-overexpressing gastric cancer, which was found to prolong the OS and the progression-free survival (PFS) of patients. However, HER2 overexpression is present only in a minority of patients with gastric cancer. Hence, other targeted agents are urgently needed. Ramucirumab, a novel human IgG1 monoclonal antibody that selectively targets the extracellular domain of VEGF receptor 2 (VEGFR2), is regarded as a new standard second-line treatment for patients with advanced gastric cancer. The combination of two or more targeted agents directed against two different molecular targets may improve the survival of patients with advanced gastric cancer. Although great efforts have been made, the effect of targeted therapy for gastric cancer is limited. One key reason is that participants in clinical trials for new targeted agents were not selected by detection of the targeted molecule. Here, we review clinical trials related to molecular targets such as anti-epidermal growth factor receptor signaling including anti-HER2 and anti-EGFR1, anti-VEGF signaling, anti-mammalian target of rapamycin (mTOR), tyrosine kinase inhibitors (TKIs) and anti-MET.
Collapse
Affiliation(s)
- Dan-Dan Yuan
- Department of Internal Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhong-Xiu Zhu
- Department of Internal Oncology Ward 7, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Xia Zhang
- Department of Internal Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jie Liu
- Department of Internal Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
29
|
Zaman S, Shentu S, Yang J, He J, Orlowski RZ, Stellrecht CM, Gandhi V. Targeting the pro-survival protein MET with tivantinib (ARQ 197) inhibits growth of multiple myeloma cells. Neoplasia 2015; 17:289-300. [PMID: 25810013 PMCID: PMC4372650 DOI: 10.1016/j.neo.2015.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 12/29/2022] Open
Abstract
The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth, survival, and migration. MET is mutated or amplified in several malignancies. In myeloma, MET is not mutated, but patients have high plasma concentrations of HGF, high levels of MET expression, and gene copy number, which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study, we tested tivantinib (ARQ 197), a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations, tivantinib induced apoptosis by > 50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan, dexamethasone, bortezomib, and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138 + plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data, we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion, MET inhibitors may be an attractive target-based strategy for the treatment of MM.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shujun Shentu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Yang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin He
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Z Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine M Stellrecht
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX, USA; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
30
|
Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PMP. Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond) 2015; 10:161-74. [PMID: 25597775 DOI: 10.2217/nnm.14.178] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The development of tumor-targeted therapies using monoclonal antibodies has been successful during the last 30 years. Nevertheless, the efficacy of antibody-based therapy is still limited and further improvements are eagerly awaited. One of the promising novel developments that may overcome the drawbacks of monoclonal antibody-based therapies is the employment of nanobodies. Current nanobody-based therapeutics can be divided into three different platforms with nanobodies functioning as: receptor antagonists; targeting moieties of effector domains; or targeting molecules on the surface of nanoparticles. In this article, we describe factors that affect their performance at three different stages: their systemic circulation upon intravenous injection; their extravasation and tumor penetration; and, finally, their interaction with target molecules.
Collapse
Affiliation(s)
- Marta Kijanka
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
31
|
Hong DS, Rosen P, Lockhart AC, Fu S, Janku F, Kurzrock R, Khan R, Amore B, Caudillo I, Deng H, Hwang YC, Loberg R, Ngarmchamnanrith G, Beaupre DM, Lee P. A first-in-human study of AMG 208, an oral MET inhibitor, in adult patients with advanced solid tumors. Oncotarget 2015; 6:18693-706. [PMID: 26155941 PMCID: PMC4621921 DOI: 10.18632/oncotarget.4472] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/30/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This first-in-human study evaluated AMG 208, a small-molecule MET inhibitor, in patients with advanced solid tumors. METHODS Three to nine patients were enrolled into one of seven AMG 208 dose cohorts (25, 50, 100, 150, 200, 300, and 400 mg). Patients received AMG 208 orally on days 1 and days 4-28 once daily. The primary objectives were to evaluate the safety, tolerability, pharmacokinetics, and maximum tolerated dose (MTD) of AMG 208. RESULTS Fifty-four patients were enrolled. Six dose-limiting toxicities were observed: grade 3 increased aspartate aminotransferase (200 mg), grade 3 thrombocytopenia (200 mg), grade 4 acute myocardial infarction (300 mg), grade 3 prolonged QT (300 mg), and two cases of grade 3 hypertension (400 mg). The MTD was not reached. The most frequent grade ≥3 treatment-related adverse event was anemia (n = 3) followed by hypertension, prolonged QT, and thrombocytopenia (two patients each). AMG 208 exposure increased linearly with dose; mean plasma half-life estimates were 21.4-68.7 hours. One complete response (prostate cancer) and three partial responses (two in prostate cancer, one in kidney cancer) were observed. CONCLUSIONS In this study, AMG 208 had manageable toxicities and showed evidence of antitumor activity, particularly in prostate cancer.
Collapse
Affiliation(s)
| | - Peter Rosen
- Tower Cancer Research Foundation, Beverly Hills, CA, USA
| | | | - Siqing Fu
- MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Rabia Khan
- MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | - Peter Lee
- Tower Cancer Research Foundation, Beverly Hills, CA, USA
| |
Collapse
|
32
|
Gambella M, Palumbo A, Rocci A. MET/HGF pathway in multiple myeloma: from diagnosis to targeted therapy? Expert Rev Mol Diagn 2015; 15:881-93. [PMID: 25967746 DOI: 10.1586/14737159.2015.1046436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interaction between neoplastic cells and the microenvironment is critical in several cancers and plays a central role in multiple myeloma. Microenvironmental stimuli support plasma cell proliferation, survival, motility and can determine drug resistance. The network between plasma cells and surrounding cells is also responsible for increasing angiogenesis, unbalancing bone formation and bony lesions. The MET/HGF pathway is a key player in this interaction and has been found to be abnormally active in both malignant plasma cells and surrounding cells. Patients with abnormal MET and/or HGF levels usually have a poor outcome even when treated with novel drugs. This review addresses the role of MET/HGF in the pathogenesis of myeloma and describes the role of MET/HGF signaling as a prognostic factor. The different techniques to detect MET/HGF abnormalities are examined and a description of compounds targeting MET/HGF is also provided.
Collapse
Affiliation(s)
- Manuela Gambella
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | | | | |
Collapse
|
33
|
Bradley ME, Dombrecht B, Manini J, Willis J, Vlerick D, De Taeye S, Van den Heede K, Roobrouck A, Grot E, Kent TC, Laeremans T, Steffensen S, Van Heeke G, Brown Z, Charlton SJ, Cromie KD. Potent and efficacious inhibition of CXCR2 signaling by biparatopic nanobodies combining two distinct modes of action. Mol Pharmacol 2015; 87:251-62. [PMID: 25468882 DOI: 10.1124/mol.114.094821] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Chemokines and chemokine receptors are key modulators in inflammatory diseases and malignancies. Here, we describe the identification and pharmacologic characterization of nanobodies selectively blocking CXCR2, the most promiscuous of all chemokine receptors. Two classes of selective monovalent nanobodies were identified, and detailed epitope mapping showed that these bind to distinct, nonoverlapping epitopes on the CXCR2 receptor. The N-terminal-binding or class 1 monovalent nanobodies possessed potencies in the single-digit nanomolar range but lacked complete efficacy at high agonist concentrations. In contrast, the extracellular loop-binding or class 2 monovalent nanobodies were of lower potency but were more efficacious and competitively inhibited the CXCR2-mediated functional response in both recombinant and neutrophil in vitro assays. In addition to blocking CXCR2 signaling mediated by CXCL1 (growth-related oncogene α) and CXCL8 (interleukin-8), both classes of nanobodies displayed inverse agonist behavior. Bivalent and biparatopic nanobodies were generated, respectively combining nanobodies from the same or different classes via glycine/serine linkers. Interestingly, receptor mutation and competition studies demonstrated that the biparatopic nanobodies were able to avidly bind epitopes within one or across two CXCR2 receptor molecules. Most importantly, the biparatopic nanobodies were superior over their monovalent and bivalent counterparts in terms of potency and efficacy.
Collapse
Affiliation(s)
- M E Bradley
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - B Dombrecht
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - J Manini
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - J Willis
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - D Vlerick
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - S De Taeye
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - K Van den Heede
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - A Roobrouck
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - E Grot
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - T C Kent
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - T Laeremans
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - S Steffensen
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - G Van Heeke
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - Z Brown
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - S J Charlton
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| | - K D Cromie
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (M.E.B., J.M., J.W., E.G., T.C.K., G.V.H., Z.B., S.J.C.); Ablynx NV, Zwijnaarde, Belgium (B.D., D.V., S.D.T., K.V.H., A.R., S.S., K.D.C.); and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium (T.L.)
| |
Collapse
|
34
|
Prat M, Oltolina F, Basilico C. Monoclonal Antibodies against the MET/HGF Receptor and Its Ligand: Multitask Tools with Applications from Basic Research to Therapy. Biomedicines 2014; 2:359-383. [PMID: 28548076 PMCID: PMC5344273 DOI: 10.3390/biomedicines2040359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies can be seen as valuable tools for many aspects of basic as well as applied sciences. In the case of MET/HGFR, they allowed the identification of truncated isoforms of the receptor, as well as the dissection of different epitopes, establishing structure-function relationships. Antibodies directed against MET extracellular domain were found to be full or partial receptor agonists or antagonists. The agonists can mimic the effects of the different isoforms of the natural ligand, but with the advantage of being more stable than the latter. Thus, some agonist antibodies promote all the biological responses triggered by MET activation, including motility, proliferation, morphogenesis, and protection from apoptosis, while others can induce only a migratory response. On the other hand, antagonists can inhibit MET-driven biological functions either by competing with the ligand or by removing the receptor from the cell surface. Since MET/HGFR is often over-expressed and/or aberrantly activated in tumors, monoclonal antibodies can be used as probes for MET detection or as "bullets" to target MET-expressing tumor cells, thus pointing to their use in diagnosis and therapy.
Collapse
Affiliation(s)
- Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Francesca Oltolina
- Department of Health Sciences, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Cristina Basilico
- Laboratory of Exploratory Research, Candiolo Cancer Institute, Str. Prov. 142, 10060 Candiolo, Italy.
| |
Collapse
|
35
|
The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms? Cancers (Basel) 2014; 6:1631-69. [PMID: 25119536 PMCID: PMC4190560 DOI: 10.3390/cancers6031631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022] Open
Abstract
Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs).
Collapse
|
36
|
Vigna E, Comoglio PM. Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene 2014; 34:1883-9. [PMID: 24882574 DOI: 10.1038/onc.2014.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
The receptor for hepatocyte growth factor (HGF), a tyrosine kinase encoded by the Met oncogene, has a crucial role in cancer growth, invasion and metastasis. It is a validated therapeutic target for 'personalized' treatment of a number of malignancies. Therapeutic tools prompting selective, robust and highly effective Met inhibition potentially represent a major step in the battle against cancer. Antibodies targeting either Met or its ligand HGF, although challenging, demonstrate to be endowed with promising features. Here we briefly review and discuss the state of the art in the field.
Collapse
Affiliation(s)
- E Vigna
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - P M Comoglio
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| |
Collapse
|
37
|
GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. Trends Pharmacol Sci 2014; 35:247-55. [PMID: 24690241 DOI: 10.1016/j.tips.2014.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/11/2022]
Abstract
G-protein-coupled receptors (GPCRs) represent a major therapeutic target class. A large proportion of marketed drugs exert their effect through modulation of GPCR function, and GPCRs have been successfully targeted with small molecules. Yet, the number of small new molecular entities targeting GPCRs that has been approved as therapeutics in the past decade has been limited. With new and improved immunization-related technologies and advances in GPCR purification and expression techniques, antibody-based targeting of GPCRs has gained attention. The serendipitous discovery of a unique class of heavy chain antibodies (hcAbs) in the sera of camelids may provide novel GPCR-directed therapies. Antigen-binding fragments of hcAbs, also referred to as nanobodies, combine the advantages of both small molecules (e.g., molecular cavity binding, low production costs) and monoclonal antibodies (e.g., high affinity and specificity). Nanobodies are gaining ground as therapeutics and are also starting to find application as diagnostics and as high-quality tools in GPCR research. Herein, we review recent advances in the use of nanobodies in GPCR research.
Collapse
|