1
|
Hoff S, Hoyt JR, Langwig KE, Johnson L, Olson E, O’Dell D, Pendergast CJ, Herzog CJ, Parise KL, Foster JT, Turner WC. The importance of peripheral populations in the face of novel environmental change. Proc Biol Sci 2025; 292:20242331. [PMID: 39772955 PMCID: PMC11706656 DOI: 10.1098/rspb.2024.2331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Anthropogenically driven environmental change has imposed substantial threats on biodiversity, including the emergence of infectious diseases that have resulted in declines of wildlife globally. In response to pathogen invasion, maintaining diversity within host populations across heterogenous environments is essential to facilitating species persistence. White-nose syndrome is an emerging fungal pathogen that has caused mass mortalities of hibernating bats across North America. However, in the northeast, peripheral island populations of the endangered northern myotis (Myotis septentrionalis) appear to be persisting despite infection while mainland populations in the core of the species range have experienced sharp declines. Thus, this study investigated host and environmental factors that may contribute to divergent population responses. We compared patterns of pathogen exposure and infection intensity between populations and documented the environmental conditions and host activity patterns that may promote survival despite disease invasion. For island populations, we found lower prevalence and less severe infections, possibly due to a shorter hibernation duration compared to the mainland, which may reduce the time for disease progression. The coastal region of the northern myotis range may serve as habitat refugia that enables this species to persist despite pathogen exposure; however, conservation efforts could be critical to supporting species survival in the long term.
Collapse
Affiliation(s)
- Samantha Hoff
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, Albany, NY12222, USA
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY12223, USA
| | - Joseph R. Hoyt
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, USA
| | - Kate E. Langwig
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, USA
| | - Luanne Johnson
- BiodiversityWorks, 455 State Road PMB#179, Vineyard Haven, MA02568, USA
| | - Elizabeth Olson
- BiodiversityWorks, 455 State Road PMB#179, Vineyard Haven, MA02568, USA
| | - Danielle O’Dell
- Nantucket Conservation Foundation, 118 Cliff Road, Nantucket, MA02554, USA
| | - Casey J. Pendergast
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, Albany, NY12222, USA
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY12223, USA
| | - Carl J. Herzog
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY12223, USA
| | - Katy L. Parise
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ86011, USA
| | - Jeffrey T. Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ86011, USA
| | - Wendy C. Turner
- Department of Forest and Wildlife Ecology, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI53706, USA
| |
Collapse
|
2
|
Esmaeilbeigi M, P Duncan R, J Kefford B, Ezaz T, Clulow S. Evidence for a metal disease refuge: The amphibian-killing fungus (Batrachochytrium dendrobatidis) is inhibited by environmentally-relevant concentrations of metals tolerated by amphibians. ENVIRONMENTAL RESEARCH 2024; 261:119752. [PMID: 39117053 DOI: 10.1016/j.envres.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has caused substantial declines in Bd-susceptible amphibian species worldwide. However, some populations of Bd-susceptible frogs have managed to survive at existing metal-polluted sites, giving rise to the hypothesis that frogs might persist in the presence of Bd if Bd is inhibited by metals at concentrations that frogs can tolerate. We tested this hypothesis by measuring the survival of Bd zoospores, the life stage that infects amphibians, and calculated the LC50 after exposure to environmentally-relevant elevated concentrations of copper (Cu), zinc (Zn), and their combination (Cu + Zn) in two repeated 4-day acute exposure runs. We also measured the chronic sensitivity of Bd to these metals over three generations by measuring the number of colonies and live zoospores and calculating EC50 concentrations after 42 days of exposure. We then compared acute and chronic sensitivity of Bd with amphibian sensitivities by constructing species sensitivity distributions (SSDs) using LC50 and EC50 data obtained from the literature. Acute sensitivity data showed that Bd zoospore survival decreased with increasing metal concentrations and exposure durations relative to the control, with the highest LC50 values for Cu and Zn being 2.5 μg/L and 250 μg/L, respectively. Chronic exposures to metals resulted in decreased numbers of Bd colonies and live zoospores after 42 days, with EC50 values of 0.75 μg/L and 1.19 μg/L for Cu and Zn, respectively. Bd zoospore survival was 10 and 8 times more sensitive to Cu and Zn, respectively in acute, and 2 and 5 times more sensitive to Cu and Zn in chronic exposure experiments than the most sensitive amphibian species recorded. Our findings are consistent with the hypothesis that metals in existing metal-polluted sites may have a greater impact on Bd relative to amphibians' performance, potentially enabling Bd-susceptible amphibians to persist with Bd at these sites.
Collapse
Affiliation(s)
- Milad Esmaeilbeigi
- Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Richard P Duncan
- Center for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Ben J Kefford
- Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Tariq Ezaz
- Center for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Simon Clulow
- Center for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| |
Collapse
|
3
|
Knapp RA, Wilber MQ, Joseph MB, Smith TC, Grasso RL. Reintroduction of resistant frogs facilitates landscape-scale recovery in the presence of a lethal fungal disease. Nat Commun 2024; 15:9436. [PMID: 39543126 PMCID: PMC11564713 DOI: 10.1038/s41467-024-53608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Vast alteration of the biosphere by humans is causing a sixth mass extinction, driven in part by an increase in infectious diseases. The emergence of the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) has devastated global amphibian biodiversity. Given the lack of any broadly applicable methods to reverse these impacts, the future of many amphibians appears grim. The Sierra Nevada yellow-legged frog (Rana sierrae) is highly susceptible to Bd infection and most R. sierrae populations are extirpated following disease outbreaks. However, some populations persist and eventually recover, and frogs in these recovering populations have increased resistance against infection. Here, we conduct a 15-year reintroduction study and show that frogs collected from recovering populations and reintroduced to vacant habitats can reestablish populations despite the presence of Bd. In addition, the likelihood of establishment is influenced by site, cohort, and frog attributes. Results from viability modeling suggest that many reintroduced populations have a low probability of extinction over 50 years. These results provide a rare example of how reintroduction of resistant individuals can allow the landscape-scale recovery of disease-impacted species, and have broad implications for amphibians and other taxa that are threatened with extinction by novel pathogens.
Collapse
Affiliation(s)
- Roland A Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, 93546, USA.
- Earth Research Institute, University of California, Santa Barbara, CA, 93106-3060, USA.
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Maxwell B Joseph
- Earth Lab, University of Colorado, Boulder, CO, 80303, USA
- Planet, San Francisco, CA, 94107, USA
| | - Thomas C Smith
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, 93546, USA
- Earth Research Institute, University of California, Santa Barbara, CA, 93106-3060, USA
| | - Robert L Grasso
- Resources Management and Science Division, Yosemite National Park, El Portal, CA, 95318, USA
| |
Collapse
|
4
|
Heard GW, Scroggie MP, Hollanders M, Scheele BC. Age truncation due to disease shrinks metapopulation viability for amphibians. J Anim Ecol 2024; 93:1670-1683. [PMID: 39290048 DOI: 10.1111/1365-2656.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Metapopulations often exist in a fragile balance between local extinctions and (re)colonisations, in which case emerging threats that alter species vital rates may drastically increase metapopulation extinction risk. We combined empirical data with metapopulation simulations to examine how demographic shifts associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) have altered metapopulation viability for threatened amphibians in Australia. Comparing the ages of museum specimens collected before Bd emerged in Australia with individuals from geographically matched remnant populations revealed significant truncation of age structures post-Bd, with a halving of annual adult survival probabilities. Spatially realistic metapopulation modelling demonstrated that reduced adult survival led to major reductions in the parameter space over which persistence was possible for the focal species, with contractions to landscapes with higher landscape connectivity, lower environmental stochasticity and considerably higher recruitment rates. Metapopulation persistence post-Bd required greater landscape connectivity than pre-Bd. This arises from a landscape-level analogue of compensatory recruitment at the population level, in which higher (re)colonisation rates can offset more frequent local extinctions, enabling persistence of amphibians susceptible to Bd. Interactions between recruitment rate, environmental stochasticity and landscape connectivity were also more important for metapopulation persistence post-Bd. Higher recruitment was required to mitigate the impacts of environmental stochasticity, and higher landscape connectivity was required to mitigate the impacts of environmental stochasticity and poor recruitment. Increased reliance on these interdependencies shrunk the parameter space over which metapopulations could persist post-Bd. Our study demonstrates that emerging threats that alter species vital rates can drastically reduce the capacity of certain environments to support metapopulations. For our focal species, reductions in adult survival rates due to Bd produced major reductions in the conditions under which persistence was possible, providing a mechanistic insight into the processes underpinning observed range and niche contractions of amphibians impacted by this pathogen. More broadly, our study illustrates how environmentally mediated host resilience can enable persistence following the emergence of novel pathogens. This pathway to persistence is worthy of greater attention on both conceptual and applied grounds.
Collapse
Affiliation(s)
- Geoffrey W Heard
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
- Terrestrial Ecosystem Research Network, The University of Queensland, Long Pocket, Queensland, Australia
| | - Michael P Scroggie
- Department of Energy, Environment and Climate Action, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - Matthijs Hollanders
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
- Quantecol, Ballina, New South Wales, Australia
| | - Ben C Scheele
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
5
|
Calvo-Monge J, Arroyo-Esquivel J, Gehman A, Sanchez F. Source-Sink Dynamics in a Two-Patch SI Epidemic Model with Life Stages and No Recovery from Infection. Bull Math Biol 2024; 86:102. [PMID: 38976154 DOI: 10.1007/s11538-024-01328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers R 0 for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.
Collapse
Affiliation(s)
- Jimmy Calvo-Monge
- Escuela de Matemática, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
| | - Jorge Arroyo-Esquivel
- Department of Global Ecology, Carnegie Institution for Science, Washington, DC, 20015, USA.
| | | | - Fabio Sanchez
- Escuela de Matemática, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
- Centro de Investigación en Matemática Pura y Aplicada, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
| |
Collapse
|
6
|
Waddle AW, Clulow S, Aquilina A, Sauer EL, Kaiser SW, Miller C, Flegg JA, Campbell PT, Gallagher H, Dimovski I, Lambreghts Y, Berger L, Skerratt LF, Shine R. Hotspot shelters stimulate frog resistance to chytridiomycosis. Nature 2024; 631:344-349. [PMID: 38926575 DOI: 10.1038/s41586-024-07582-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Many threats to biodiversity cannot be eliminated; for example, invasive pathogens may be ubiquitous. Chytridiomycosis is a fungal disease that has spread worldwide, driving at least 90 amphibian species to extinction, and severely affecting hundreds of others1-4. Once the disease spreads to a new environment, it is likely to become a permanent part of that ecosystem. To enable coexistence with chytridiomycosis in the field, we devised an intervention that exploits host defences and pathogen vulnerabilities. Here we show that sunlight-heated artificial refugia attract endangered frogs and enable body temperatures high enough to clear infections, and that having recovered in this way, frogs are subsequently resistant to chytridiomycosis even under cool conditions that are optimal for fungal growth. Our results provide a simple, inexpensive and widely applicable strategy to buffer frogs against chytridiomycosis in nature. The refugia are immediately useful for the endangered species we tested and will have broader utility for amphibian species with similar ecologies. Furthermore, our concept could be applied to other wildlife diseases in which differences in host and pathogen physiologies can be exploited. The refugia are made from cheap and readily available materials and therefore could be rapidly adopted by wildlife managers and the public. In summary, habitat protection alone cannot protect species that are affected by invasive diseases, but simple manipulations to microhabitat structure could spell the difference between the extinction and the persistence of endangered amphibians.
Collapse
Affiliation(s)
- Anthony W Waddle
- Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia.
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
- Applied BioSciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Simon Clulow
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Amy Aquilina
- Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Erin L Sauer
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Shannon W Kaiser
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Claire Miller
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jennifer A Flegg
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Patricia T Campbell
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Harrison Gallagher
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ivana Dimovski
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yorick Lambreghts
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Lee Berger
- Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | - Lee F Skerratt
- Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Chew A, West M, Berger L, Brannelly LA. The impacts of water quality on the amphibian chytrid fungal pathogen: A systematic review. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13274. [PMID: 38775382 PMCID: PMC11110485 DOI: 10.1111/1758-2229.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/06/2024] [Indexed: 05/25/2024]
Abstract
The pathogenic fungus Batrachochytrium dendrobatidis has caused declines of amphibians worldwide. Yet our understanding of how water quality influences fungal pathogenicity is limited. Here, we reviewed experimental studies on the effect of water quality on this pathogen to determine which parameters impacted disease dynamics consistently. The strongest evidence for protective effects is salinity which shows strong antifungal properties in hosts at natural levels. Although many fungicides had detrimental effects on the fungal pathogen in vitro, their impact on the host is variable and they can worsen infection outcomes. However, one fungicide, epoxiconazole, reduced disease effects experimentally and likely in the field. While heavy metals are frequently studied, there is weak evidence that they influence infection outcomes. Nitrogen and phosphorous do not appear to impact pathogen growth or infection in the amphibian host. The effects of other chemicals, like pesticides and disinfectants on infection were mostly unclear with mixed results or lacking an in vivo component. Our study shows that water chemistry does impact disease dynamics, but the effects of specific parameters require more investigation. Improving our understanding of how water chemistry influences disease dynamics will help predict the impact of chytridiomycosis, especially in amphibian populations affected by land use changes.
Collapse
Affiliation(s)
- Adeline Chew
- School of BiosciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Matt West
- School of BiosciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Lee Berger
- Melbourne Veterinary SchoolThe University of MelbourneWerribeeVictoriaAustralia
| | - Laura A. Brannelly
- Melbourne Veterinary SchoolThe University of MelbourneWerribeeVictoriaAustralia
| |
Collapse
|
8
|
Berger L, Skerratt LF, Kosch TA, Brannelly LA, Webb RJ, Waddle AW. Advances in Managing Chytridiomycosis for Australian Frogs: Gradarius Firmus Victoria. Annu Rev Anim Biosci 2024; 12:113-133. [PMID: 38358840 DOI: 10.1146/annurev-animal-021122-100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Extensive knowledge gains from research worldwide over the 25 years since the discovery of chytridiomycosis can be used for improved management. Strategies that have saved populations in the short term and/or enabled recovery include captive breeding, translocation into disease refugia, translocation from resistant populations, disease-free exclosures, and preservation of disease refuges with connectivity to previous habitat, while antifungal treatments have reduced mortality rates in the wild. Increasing host resistance is the goal of many strategies under development, including vaccination and targeted genetic interventions. Pathogen-directed strategies may be more challenging but would have broad applicability. While the search for the silver bullet solution continues, we should value targeted local interventions that stop extinction and buy time for evolution of resistance or development of novel solutions. As for most invasive species and infectious diseases, we need to accept that ongoing management is necessary. For species continuing to decline, proactive deployment and assessment of promising interventions are more valid than a hands-off, do-no-harm approach that will likely allow further extinctions.
Collapse
Affiliation(s)
- Lee Berger
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Lee F Skerratt
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Laura A Brannelly
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Rebecca J Webb
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Anthony W Waddle
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
- Applied Biosciences, Macquarie University, Sydney, New South Wales, Australia;
| |
Collapse
|
9
|
Scheele BC, Heard GW, Cardillo M, Duncan RP, Gillespie GR, Hoskin CJ, Mahony M, Newell D, Rowley JJL, Sopniewski J. An invasive pathogen drives directional niche contractions in amphibians. Nat Ecol Evol 2023; 7:1682-1692. [PMID: 37550511 DOI: 10.1038/s41559-023-02155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/07/2023] [Indexed: 08/09/2023]
Abstract
Global change is causing an unprecedented restructuring of ecosystems, with the spread of invasive species being a key driver. While population declines of native species due to invasives are well documented, much less is known about whether new biotic interactions reshape niches of native species. Here we quantify geographic range and realized-niche contractions in Australian frog species following the introduction of amphibian chytrid fungus Batrachochytrium dendrobatidis, a pathogen responsible for catastrophic amphibian declines worldwide. We show that chytrid-impacted species experienced proportionately greater contractions in niche breadth than geographic distribution following chytrid emergence. Furthermore, niche contractions were directional, with contemporary distributions of chytrid-impacted species characterized by higher temperatures, lower diurnal temperature range, higher precipitation and lower elevations. Areas with these conditions may enable host persistence with chytrid through lower pathogenicity of the fungus and/or greater demographic resilience. Nevertheless, contraction to a narrower subset of environmental conditions could increase host vulnerability to other threatening processes and should be considered in assessments of extinction risk and during conservation planning. More broadly, our results emphasize that biotic interactions can strongly shape species realized niches and that large-scale niche contractions due to new species interactions-particularly emerging pathogens-could be widespread.
Collapse
Affiliation(s)
- Ben C Scheele
- Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia.
- Macroevolution and Macroecology Group, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Geoffrey W Heard
- Terrestrial Ecosystem Research Network and Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
| | - Marcel Cardillo
- Macroevolution and Macroecology Group, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Richard P Duncan
- Centre for Conservation Ecology and Genomics, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Graeme R Gillespie
- Science, Economics and Insights Division, Department of Planning and Environment, Parramatta, New South Wales, Australia
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Michael Mahony
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - David Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Jodi J L Rowley
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- Centre for Ecosystem Science; School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jarrod Sopniewski
- Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
10
|
Callen A, Pizzatto L, Stockwell MP, Clulow S, Clulow J, Mahony MJ. The effect of salt dosing for chytrid mitigation on tadpoles of a threatened frog, Litoria aurea. J Comp Physiol B 2023; 193:239-247. [PMID: 36811723 PMCID: PMC9992028 DOI: 10.1007/s00360-023-01479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
The novel fungal pathogen Batrachochytrium dendrobatidis (chytrid) is one of the greatest threats to amphibians worldwide. Small increases in water salinity (up to ca. 4 ppt) have been shown to limit chytrid transmission between frogs, potentially providing a way to create environmental refugia to reduce its impact at a landscape scale. However, the effect of increasing water salinity on tadpoles, a life stage confined to water, is highly variable. Increased water salinity can lead to reduced size and altered growth patterns in some species, with flow-on effects to vital rates such as survival and reproduction. It is thus important to assess potential trade-offs caused by increasing salinity as a tool to mitigate chytrid in susceptible frogs. We conducted laboratory experiments to examine the effects of salinity on the survival and development of tadpoles of a threatened frog (Litoria aurea), previously demonstrated as a suitable candidate for trialling landscape manipulations to mitigate chytrid. We exposed tadpoles to salinity ranging from 1 to 6 ppt and measured survival, time to metamorphosis, body mass and locomotor performance of post-metamorphic frogs as a measure of fitness. Survival and time to metamorphosis did not differ between salinity treatments or controls reared in rainwater. Body mass was positively associated with increasing salinity in the first 14 days. Juvenile frogs from three salinity treatments also showed the same or better locomotor performance compared to rainwater controls, confirming that environmental salinity may influence life history traits in the larval stage, potentially as a hormetic response. Our research suggests that salt concentrations in the range previously shown to improve survival of frogs in the presence of chytrid are unlikely to impact larval development of our candidate threatened species. Our study lends support to the idea of manipulating salinity to create environmental refugia from chytrid for at least some salt-tolerant species.
Collapse
Affiliation(s)
- Alex Callen
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Ligia Pizzatto
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Michelle P Stockwell
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, 2617, Australia
| | - John Clulow
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Michael J Mahony
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
11
|
Giraldo Ospina A, Ruiz‐Montoya L, Kendrick GA, Hovey RK. Cross‐depth connectivity shows that deep kelps may act as refugia by reseeding climate‐vulnerable shallow beds. Ecosphere 2023. [DOI: 10.1002/ecs2.4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
12
|
Bolom‐Huet R, Pineda E, Andrade‐Torres A, Díaz‐Fleischer F, Muñoz AL, Galindo‐González J. Chytrid prevalence and infection intensity in treefrogs from three environments with different degrees of conservation in Mexico. Biotropica 2022. [DOI: 10.1111/btp.13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- René Bolom‐Huet
- Centro de Investigaciones en Ciencias Biológicas Aplicadas Universidad Autónoma del Estado de México Toluca Estado de México Mexico
- Universidad Veracruzana – Instituto de Biotecnología y Ecología Aplicada (INBIOTECA) Xalapa, Veracruz Mexico
| | - Eduardo Pineda
- Instituto de Ecologia – Red de Biología y Conservación de Vertebrados Xalapa, Veracruz Mexico
| | - Antonio Andrade‐Torres
- Universidad Veracruzana – Instituto de Biotecnología y Ecología Aplicada (INBIOTECA) Xalapa, Veracruz Mexico
| | - Francisco Díaz‐Fleischer
- Universidad Veracruzana – Instituto de Biotecnología y Ecología Aplicada (INBIOTECA) Xalapa, Veracruz Mexico
| | - Antonio L. Muñoz
- ECOSUR – Conservación de la Biodiversidad San Cristobal de las Casas, Chiapas Mexico
| | - Jorge Galindo‐González
- Universidad Veracruzana – Instituto de Biotecnología y Ecología Aplicada (INBIOTECA) Xalapa, Veracruz Mexico
| |
Collapse
|
13
|
Demystifying ecological connectivity for actionable spatial conservation planning. Trends Ecol Evol 2022; 37:1079-1091. [PMID: 36182406 DOI: 10.1016/j.tree.2022.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Connectivity underpins the persistence of life; it needs to inform biodiversity conservation decisions. Yet, when prioritising conservation areas and developing actions, connectivity is not being operationalised in spatial planning. The challenge is the translation of flows associated with connectivity into conservation objectives that lead to actions. Connectivity is nebulous, it can be abstract and mean different things to different people, making it difficult to include in conservation problems. Here, we show how connectivity can be included in mathematically defining conservation planning objectives. We provide a path forward for linking connectivity to high-level conservation goals, such as increasing species' persistence. We propose ways to design spatial management areas that gain biodiversity benefit from connectivity.
Collapse
|
14
|
Hulting KA, Mason SD, Story CM, Keller GS. Wetland cohesion is associated with increased probability of infection by the amphibian chytrid fungus Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2022; 151:97-109. [PMID: 36226838 DOI: 10.3354/dao03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) poses a substantial threat to amphibian populations. Understanding the landscape conditions that facilitate Bd transmission and persistence is crucial for predicting Bd trends in amphibian populations. Here, we investigated the interactions between land use, wetland connectivity, and Bd occurrence and infection intensity. In northeastern Massachusetts, we sampled Pseudacris crucifer, Lithobates sylvaticus, L. clamitans, and L. pipiens from 24 sites. We found an overall 30.6% Bd prevalence at our sites, with prevalence differing among species. Bd occurrence increased with wetland-patch cohesion, potentially due to microclimate shifts from decreased forest or changes in host movement. Bd infection intensity was not mediated by landscape context. Overall, our results highlight the importance of landscape structure for Bd dynamics, suggesting that certain landscapes may facilitate transmission and harbor Bd more than others. To mitigate the impacts of Bd on amphibian populations, conservation efforts should account for interactions between Bd and landscape variables.
Collapse
Affiliation(s)
- Katherine A Hulting
- Landscape Ecology Lab, Department of Life, Health, and Physical Sciences, Gordon College, Wenham, MA 01984, USA
| | | | | | | |
Collapse
|
15
|
Turner A, Heard G, Hall A, Wassens S. Age structure of amphibian populations with endemic chytridiomycosis, across climatic regions with markedly different infection risk. Ecol Evol 2022; 12:e9123. [PMID: 35898428 PMCID: PMC9309026 DOI: 10.1002/ece3.9123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Threatening processes, such as disease, can drive major changes in population demographics of the host. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has led to the decline of at least 500 amphibian species across the globe and has been shown to truncate host age structure by lowering adult survival rates. This results in heavy reliance on annual recruitment and the inability to recover in the event of periodic recruitment failure. We used skeletochronology to determine the age structure, growth, and survival rates of populations of an endangered amphibian, Litoria raniformis, with endemic chytridiomycosis, across two climatically disparate regions in south-eastern Australia: semi-arid and temperate. Contrary to predictions, populations in the semi-arid region (in which chytrid prevalence is substantially lower due to high temperatures) displayed a more truncated age structure than populations in the temperate study regions. Maximum recorded age was only two years in the semi-arid region compared with up to four years in the temperate region. Wetland hydroperiod and average seasonal air temperature were correlated with age, and males had a slightly higher survival rate than females (0.31 for males and 0.27 for females). Despite the previously documented differences in chytrid prevalence between the two climatic regions, water availability and wetland hydroperiods appear the over-riding determinants of the age structure and survival rates of L. raniformis. Targeted management which ensures water availability and improves survival of 1-year-old frogs into their second and third breeding season would reduce the impact of stochastic events on L. raniformis, and this may be true for numerous frog species susceptible to chytridiomycosis.
Collapse
Affiliation(s)
- Anna Turner
- School of Agricultural, Environmental and Veterinary ScienceCharles Sturt UniversityAlburyNew South WalesAustralia
| | - Geoffrey Heard
- Terrestrial Ecosystem Research NetworkThe University of QueenslandIndooroopilyQueenslandAustralia
| | - Andrew Hall
- School of Agricultural, Environmental and Veterinary ScienceCharles Sturt UniversityAlburyNew South WalesAustralia
| | - Skye Wassens
- School of Agricultural, Environmental and Veterinary ScienceCharles Sturt UniversityAlburyNew South WalesAustralia
| |
Collapse
|
16
|
Briscoe NJ, McGregor H, Roshier D, Carter A, Wintle BA, Kearney MR. Too hot to hunt: Mechanistic predictions of thermal refuge from cat predation risk. Conserv Lett 2022. [DOI: 10.1111/conl.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Natalie J. Briscoe
- School of Ecosystem and Forest Sciences University of Melbourne Melbourne Victoria Australia
- School of BioSciences University of Melbourne Melbourne Victoria Australia
| | - Hugh McGregor
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
- National Environmental Science Program Threatened Species Recovery Hub Centre for Biodiversity and Conservation Science, University of Queensland St Lucia Queensland Australia
| | - David Roshier
- Australian Wildlife Conservancy Subiaco East Western Australia Australia
- School of Veterinary and Animal Sciences University of Adelaide Adelaide South Australia Australia
| | - Andrew Carter
- Australian Wildlife Conservancy Subiaco East Western Australia Australia
| | - Brendan A. Wintle
- School of Ecosystem and Forest Sciences University of Melbourne Melbourne Victoria Australia
| | - Michael R. Kearney
- School of BioSciences University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
17
|
Sopniewski J, Scheele BC, Cardillo M. Predicting the distribution of Australian frogs and their overlap with
Batrachochytrium dendrobatidis
under climate change. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Jarrod Sopniewski
- Macroevolution & Macroecology Research School of Biology The Australian National University Canberra Australian Capital Territory Australia
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
| | - Benjamin C. Scheele
- Macroevolution & Macroecology Research School of Biology The Australian National University Canberra Australian Capital Territory Australia
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Marcel Cardillo
- Macroevolution & Macroecology Research School of Biology The Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
18
|
Pantel JH, Lamy T, Dubart M, Pointier J, Jarne P, David P. Metapopulation dynamics of multiple species in a heterogeneous landscape. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. H. Pantel
- Ecological Modelling, Faculty of Biology University of Duisburg‐Essen, Universitätsstraße 5 Essen Germany
- CEFE UMR 5175, CNRS ‐ Université de Montpellier ‐ Université Paul‐Valéry Montpellier – IRD – EPHE, 1919 route de Mende Montpellier France
| | - T. Lamy
- CEFE UMR 5175, CNRS ‐ Université de Montpellier ‐ Université Paul‐Valéry Montpellier – IRD – EPHE, 1919 route de Mende Montpellier France
- University of California, Santa Barbara Marine Science Institute, Bldg 520 Rm 3407 Fl 3L Santa Barbara CA
| | - M. Dubart
- CEFE UMR 5175, CNRS ‐ Université de Montpellier ‐ Université Paul‐Valéry Montpellier – IRD – EPHE, 1919 route de Mende Montpellier France
| | - J.‐P. Pointier
- CRIOBE, USR 3278 CNRS–EPHE, PSL Research University, Université de Perpignan France
| | - P. Jarne
- CEFE UMR 5175, CNRS ‐ Université de Montpellier ‐ Université Paul‐Valéry Montpellier – IRD – EPHE, 1919 route de Mende Montpellier France
| | - P. David
- CEFE UMR 5175, CNRS ‐ Université de Montpellier ‐ Université Paul‐Valéry Montpellier – IRD – EPHE, 1919 route de Mende Montpellier France
| |
Collapse
|
19
|
Grimaudo AT, Hoyt JR, Yamada SA, Herzog CJ, Bennett AB, Langwig KE. Host traits and environment interact to determine persistence of bat populations impacted by white-nose syndrome. Ecol Lett 2022; 25:483-497. [PMID: 34935272 PMCID: PMC9299823 DOI: 10.1111/ele.13942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022]
Abstract
Emerging infectious diseases have resulted in severe population declines across diverse taxa. In some instances, despite attributes associated with high extinction risk, disease emergence and host declines are followed by host stabilisation for unknown reasons. While host, pathogen, and the environment are recognised as important factors that interact to determine host-pathogen coexistence, they are often considered independently. Here, we use a translocation experiment to disentangle the role of host traits and environmental conditions in driving the persistence of remnant bat populations a decade after they declined 70-99% due to white-nose syndrome and subsequently stabilised. While survival was significantly higher than during the initial epidemic within all sites, protection from severe disease only existed within a narrow environmental space, suggesting host traits conducive to surviving disease are highly environmentally dependent. Ultimately, population persistence following pathogen invasion is the product of host-pathogen interactions that vary across a patchwork of environments.
Collapse
Affiliation(s)
| | - Joseph R. Hoyt
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | | | - Carl J. Herzog
- New York State Department of Environmental ConservationAlbanyNew YorkUSA
| | | | - Kate E. Langwig
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
20
|
Moss WE, McDevitt-Galles T, Muths E, Bobzien S, Purificato J, Johnson PTJ. Resilience of native amphibian communities following catastrophic drought: Evidence from a decade of regional-scale monitoring. BIOLOGICAL CONSERVATION 2021; 263:109352. [PMID: 34737459 PMCID: PMC8562680 DOI: 10.1016/j.biocon.2021.109352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing frequency and severity of drought may exacerbate ongoing global amphibian declines. However, interactions between drought and coincident stressors, coupled with high interannual variability in amphibian abundances, can mask the extent and underlying mechanisms of drought impacts. We synthesized a decade (2009 - 2019) of regional-scale amphibian monitoring data (2273 surveys, 233 ponds, and seven species) from across California's Bay Area and used dynamic occupancy modeling to estimate trends and drivers of species occupancy. An extreme drought during the study period resulted in substantial habitat loss, with 51% of ponds drying in the worst year of drought, compared to <20% in pre-drought years. Nearly every species exhibited reduced breeding activity during the drought, with the occupancy of some species (American bullfrogs and California newts) declining by >25%. Invasive fishes and bullfrogs were also associated with reduced amphibian occupancy, and these taxa were locally extirpated from numerous sites during drought, without subsequent recovery-suggesting that drought may present an opportunity to remove invaders. Despite a historic, multi-year drought, native amphibians rebounded quickly to pre-drought occupancy levels, demonstrating evidence of resilience. Permanent waterbodies supported higher persistence of native species during drought years than did temporary waterbodies, and we therefore highlight the value of hydroperiod diversity in promoting amphibian stability.
Collapse
Affiliation(s)
- Wynne E. Moss
- University of Colorado, Department of Ecology & Evolutionary Biology, Boulder, CO
- Conservation Science Partners, Inc. Fort Collins, CO
| | | | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO
| | | | | | - Pieter T. J. Johnson
- University of Colorado, Department of Ecology & Evolutionary Biology, Boulder, CO
| |
Collapse
|
21
|
Genetic structure, diversity and distribution of a threatened lizard affected by widespread habitat fragmentation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01408-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Briscoe NJ, Zurell D, Elith J, König C, Fandos G, Malchow AK, Kéry M, Schmid H, Guillera-Arroita G. Can dynamic occupancy models improve predictions of species' range dynamics? A test using Swiss birds. GLOBAL CHANGE BIOLOGY 2021; 27:4269-4282. [PMID: 34037281 DOI: 10.1111/gcb.15723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Predictions of species' current and future ranges are needed to effectively manage species under environmental change. Species ranges are typically estimated using correlative species distribution models (SDMs), which have been criticized for their static nature. In contrast, dynamic occupancy models (DOMs) explicitily describe temporal changes in species' occupancy via colonization and local extinction probabilities, estimated from time series of occurrence data. Yet, tests of whether these models improve predictive accuracy under current or future conditions are rare. Using a long-term data set on 69 Swiss birds, we tested whether DOMs improve the predictions of distribution changes over time compared to SDMs. We evaluated the accuracy of spatial predictions and their ability to detect population trends. We also explored how predictions differed when we accounted for imperfect detection and parameterized models using calibration data sets of different time series lengths. All model types had high spatial predictive performance when assessed across all sites (mean AUC > 0.8), with flexible machine learning SDM algorithms outperforming parametric static and DOMs. However, none of the models performed well at identifying sites where range changes are likely to occur. In terms of estimating population trends, DOMs performed best, particularly for species with strong population changes and when fit with sufficient data, while static SDMs performed very poorly. Overall, our study highlights the importance of considering what aspects of performance matter most when selecting a modelling method for a particular application and the need for further research to improve model utility. While DOMs show promise for capturing range dynamics and inferring population trends when fitted with sufficient data, computational constraints on variable selection and model fitting can lead to reduced spatial accuracy of predictions, an area warranting more attention.
Collapse
Affiliation(s)
- Natalie J Briscoe
- School of BioSciences, University of Melbourne, Parkville, Vic., Australia
| | - Damaris Zurell
- Geography Dept., Humboldt-University Berlin, Berlin, Germany
- Inst. for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Jane Elith
- School of BioSciences, University of Melbourne, Parkville, Vic., Australia
| | - Christian König
- Geography Dept., Humboldt-University Berlin, Berlin, Germany
- Inst. for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Guillermo Fandos
- Geography Dept., Humboldt-University Berlin, Berlin, Germany
- Inst. for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Anne-Kathleen Malchow
- Geography Dept., Humboldt-University Berlin, Berlin, Germany
- Inst. for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Marc Kéry
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Hans Schmid
- Swiss Ornithological Institute, Sempach, Switzerland
| | | |
Collapse
|
23
|
TEMPERATURE AS A DRIVER OF THE PATHOGENICITY AND VIRULENCE OF AMPHIBIAN CHYTRID FUNGUS BATRACHOCHYTRIUM DENDROBATIDIS: A SYSTEMATIC REVIEW. J Wildl Dis 2021; 57:477-494. [PMID: 34019674 DOI: 10.7589/jwd-d-20-00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/10/2021] [Indexed: 11/20/2022]
Abstract
Chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), is a leading cause of global amphibian declines. Severe infections with Bd can lead to cardiac arrest, and mass deaths during epidemics have been reported. Temperature, pH, salinity, and moisture are important determinants of the survival, growth, reproduction, and pathogenicity of Bd, as well as its effect on amphibian populations. Here, we synthesize current knowledge on the role of temperature as a driver of the pathogenicity and virulence of Bd to better understand the effects of temperature on amphibian defense mechanisms against infection. This review advises on research direction and management approaches to benefit amphibian populations affected by Bd. We conclude by offering guidelines for four levels of temperature monitoring in amphibian field studies to improve consistency between studies: regional climate, habitat, microhabitat, and amphibian host.
Collapse
|
24
|
HIGHER INFECTION PREVALENCE IN AMPHIBIANS INHABITING HUMAN-MADE COMPARED TO NATURAL WETLANDS. J Wildl Dis 2021; 56:823-836. [PMID: 33600598 DOI: 10.7589/2019-09-220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/21/2020] [Indexed: 11/20/2022]
Abstract
It is unclear how suitable human-made wetlands are for supporting wildlife and how they impact wildlife disease risk. Natural wetlands (those that were created without human actions) can support more diverse and resilient communities that are at lower risk of disease outbreaks. We compared frog community composition and infection with the pathogenic fungus Batrachochytrium dendrobatidis (Bd) between human-made and natural wetlands in Tippecanoe County, Indiana, US. We conducted visual encounter surveys of frog communities and quantified Bd infection prevalence at four natural and five human-made wetlands. Water parameters associated with human practices (e.g., pH, salinity) and surrounding land use were also compared across sites. We found higher Bd infection prevalence at human-made sites than at natural sites, with monthly differences showing highest infection in spring and fall, and decreasing infection with increasing water temperature. However, we found no differences between human-made and natural sites regarding amphibian community composition, water quality, or surrounding land use. Further, we found frog density increased with distance to nearest roads among both human-made and natural sites. These findings might suggest that human-made wetlands can support frog communities similar to natural wetlands, but pose a greater risk of Bd infection.
Collapse
|
25
|
Granados-Martínez S, Zumbado-Ulate H, Searle CL, Oliveira BF, García-Rodríguez A. Niche Contraction of an Endangered Frog Driven by the Amphibian Chytrid Fungus. ECOHEALTH 2021; 18:134-144. [PMID: 34184170 DOI: 10.1007/s10393-021-01525-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Introduced pathogens can alter the geographic distribution of susceptible host species. For example, Batrachochytrium dendrobatidis (Bd) is a fungal pathogen that has been linked to the global decline and extinction of numerous amphibian species during the last four decades. A growing number of studies have described the distribution of Bd and susceptible hosts across the globe; however, knowledge on how Bd may shape the climatic niche of susceptible species is still missing. We estimated the effect of Bd on the geographic distribution and niche dynamics of the critically endangered lowland robber frog (Craugastor ranoides) in Costa Rica. We found a reduction of 98% in the geographic range of this species by 1995, following the epizootic outbreaks of Bd that affected Costa Rica in the 1980 and early 1990s. We also quantified niche contraction and found that the species is currently restricted to dry and warm environments that have been considered unsuitable for Bd. Our results contribute to the understanding of how emerging pathogens shape the climatic niches and geographic distribution of susceptible species.
Collapse
Affiliation(s)
- Sofía Granados-Martínez
- Escuela de Biología, Universidad de Costa Rica, Montes de Oca, San Pedro, San José, 11501-2060, Costa Rica.
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Héctor Zumbado-Ulate
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Catherine L Searle
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Brunno F Oliveira
- Environmental Science and Policy Department, University of California Davis, Davis, CA, USA
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-900, Brazil
| | - Adrián García-Rodríguez
- Escuela de Biología, Universidad de Costa Rica, Montes de Oca, San Pedro, San José, 11501-2060, Costa Rica
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-900, Brazil
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| |
Collapse
|
26
|
Shapiro JT, Leboucher G, Myard-Dury AF, Girardo P, Luzzati A, Mary M, Sauzon JF, Lafay B, Dauwalder O, Laurent F, Lina G, Chidiac C, Couray-Targe S, Vandenesch F, Flandrois JP, Rasigade JP. Metapopulation ecology links antibiotic resistance, consumption, and patient transfers in a network of hospital wards. eLife 2020; 9:54795. [PMID: 33106223 PMCID: PMC7690951 DOI: 10.7554/elife.54795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global threat. A better understanding of how antibiotic use and between-ward patient transfers (or connectivity) impact population-level AMR in hospital networks can help optimize antibiotic stewardship and infection control strategies. Here, we used a metapopulation framework to explain variations in the incidence of infections caused by seven major bacterial species and their drug-resistant variants in a network of 357 hospital wards. We found that ward-level antibiotic consumption volume had a stronger influence on the incidence of the more resistant pathogens, while connectivity had the most influence on hospital-endemic species and carbapenem-resistant pathogens. Piperacillin-tazobactam consumption was the strongest predictor of the cumulative incidence of infections resistant to empirical sepsis therapy. Our data provide evidence that both antibiotic use and connectivity measurably influence hospital AMR. Finally, we provide a ranking of key antibiotics by their estimated population-level impact on AMR that might help inform antimicrobial stewardship strategies.
Collapse
Affiliation(s)
- Julie Teresa Shapiro
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Anne-Florence Myard-Dury
- Pôle de Santé Publique, Département d'Information Médicale, Hospices Civils de Lyon, Lyon, France
| | - Pascale Girardo
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Anatole Luzzati
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Mélissa Mary
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | | | - Bénédicte Lafay
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, University of Lyon, Lyon, France
| | - Olivier Dauwalder
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Gerard Lina
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Christian Chidiac
- Service des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Lyon, France
| | - Sandrine Couray-Targe
- Pôle de Santé Publique, Département d'Information Médicale, Hospices Civils de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Jean-Pierre Flandrois
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, University of Lyon, Lyon, France
| | - Jean-Philippe Rasigade
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
27
|
Brannelly LA, McCallum HI, Grogan LF, Briggs CJ, Ribas MP, Hollanders M, Sasso T, Familiar López M, Newell DA, Kilpatrick AM. Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecol Lett 2020; 24:130-148. [PMID: 33067922 DOI: 10.1111/ele.13621] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Emerging infectious diseases have caused many species declines, changes in communities and even extinctions. There are also many species that persist following devastating declines due to disease. The broad mechanisms that enable host persistence following declines include evolution of resistance or tolerance, changes in immunity and behaviour, compensatory recruitment, pathogen attenuation, environmental refugia, density-dependent transmission and changes in community composition. Here we examine the case of chytridiomycosis, the most important wildlife disease of the past century. We review the full breadth of mechanisms allowing host persistence, and synthesise research on host, pathogen, environmental and community factors driving persistence following chytridiomycosis-related declines and overview the current evidence and the information required to support each mechanism. We found that for most species the mechanisms facilitating persistence have not been identified. We illustrate how the mechanisms that drive long-term host population dynamics determine the most effective conservation management strategies. Therefore, understanding mechanisms of host persistence is important because many species continue to be threatened by disease, some of which will require intervention. The conceptual framework we describe is broadly applicable to other novel disease systems.
Collapse
Affiliation(s)
- Laura A Brannelly
- Veterinary BioSciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic, 3030, Australia
| | - Hamish I McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Laura F Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia.,Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Maria P Ribas
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia.,Wildlife Conservation Medicine Research Group, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Matthijs Hollanders
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Thais Sasso
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Mariel Familiar López
- School of Environment and Sciences, Griffith University, Gold Coast, Qld., 4215, Australia
| | - David A Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Auston M Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
28
|
Bell SC, Heard GW, Berger L, Skerratt LF. Connectivity over a disease risk gradient enables recovery of rainforest frogs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02152. [PMID: 32343856 DOI: 10.1002/eap.2152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Chytridiomycosis has been a key driver of global frog declines and extinctions, particularly for high-altitude populations across Australia and the Americas. While recent evidence shows some species are recovering, the extent of such recoveries and the mechanisms underpinning them remain poorly resolved. We surveyed the historical latitudinal and elevational range of four Australian rainforest frogs that disappeared from upland sites between 1989 and 1994 to establish their contemporary distribution and elevational limits, and investigate factors affecting population recovery. Five rainforest streams were surveyed from mountain-base to summit (30 sites in total), with swabs collected from the target species (Litoria dayi, L. nannotis, L. rheocola, and L. serrata) to determine their infection status, and data loggers deployed to measure microclimatic variation across the elevational gradient. Infection probability increased with elevation and canopy cover as it was tightly and inversely correlated with stream-side air temperature. Occupancy patterns suggest varying responses to this disease threat gradient. Two species, L. rheocola and L. serrata, were found over their full historical elevational range (≥1,000 m above sea level [asl]), while L. dayi was not detected above 400 m (formerly known up to 900 m asl) and L. nannotis was not detected above 800 m (formerly known up to 1,200 m asl). Site occupancy probability was negatively related to predicted infection prevalence for L. dayi, L. nannotis, and L. rheocola, but not L. serrata, which appears to now tolerate high fungal burdens. This study highlights the importance of environmental refuges and connectivity across disease risk gradients for the persistence and natural recovery of frogs susceptible to chytridiomycosis. Likewise, in documenting both interspecific variation in recovery rates and intraspecific differences between sites, this study suggests interactions between disease threats and host selection exist that could be manipulated. For example, translocations may be warranted where connectivity is poor or the increase in disease risk is too steep to allow recolonization, combined with assisted selection or use of founders from populations that have already undergone natural selection.
Collapse
Affiliation(s)
- Sara C Bell
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- One Health Research Group, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Geoffrey W Heard
- Institute of Land, Water and Society, Charles Sturt University, Albury, New South Wales, 2640, Australia
- Victorian Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, 3084, Australia
| | - Lee Berger
- One Health Research Group, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Lee F Skerratt
- One Health Research Group, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| |
Collapse
|
29
|
Campbell Grant EH, Miller DA, Muths E. A Synthesis of Evidence of Drivers of Amphibian Declines. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David A.W. Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| |
Collapse
|
30
|
Lymbery AJ, Lymbery SJ, Beatty SJ. Fish out of water: Aquatic parasites in a drying world. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:300-307. [PMID: 33101907 PMCID: PMC7569740 DOI: 10.1016/j.ijppaw.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 11/27/2022]
Abstract
Although freshwater ecosystems are among the most diverse and endangered in the world, little attention has been paid to either the importance of parasitic disease as a threatening process for freshwater organisms, or the co-extinction risk of freshwater parasites. In this review, we use theoretical and empirical studies of host/parasite interactions to examine these issues, particularly with respect to the threat posed by climate change to fish and parasite communities in intermittent rivers. Intermittent rivers are those that cease to flow at any point in time or space, with isolated pools providing ecological refuges for freshwater biota between streamflow events. Intermittent rivers are the dominant river type in arid, semi-arid and Mediterranean regions; areas of the world that have experienced dramatic decreases in streamflow as a result of climate change. Reduced streamflow decreases the number, size and connectivity of refuge pools in intermittent rivers, with important consequences for free-living aquatic organisms, particularly fishes, and their parasitic fauna. As a result of more frequent and sustained periods of no flow, parasite diversity within refuge pools is expected to decrease, with a concomitant increase in the prevalence and intensity of those parasite species which do survive, particularly host generalists. Decreased connectivity between refuge pool communities should increase the spatial modularity of host/parasite interactions, leading to a greater structuring of host and parasite communities along the river. This increases the probability of species loss (for both hosts and their parasites), as local extinctions cannot be reversed by colonisation from other localities. Parasites in intermittent rivers must adapt to alternating lotic and lentic conditions. A drying climate will decrease number, size and connectivity of lentic refuges. As a result, parasite α-diversity will decrease, but β-diversity will increase. Increased parasite abundance in refuge pools may drive hosts to local extinction. Increased modularity of interactions increases host and parasite extinction risk.
Collapse
Affiliation(s)
- Alan J Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Samuel J Lymbery
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Stephen J Beatty
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| |
Collapse
|
31
|
Wang R, Zhang X, Shi YS, Li YY, Wu J, He F, Chen XY. Habitat fragmentation changes top-down and bottom-up controls of food webs. Ecology 2020; 101:e03062. [PMID: 32239497 DOI: 10.1002/ecy.3062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/25/2020] [Indexed: 11/07/2022]
Abstract
Top-down and bottom-up controls regulate the structure and stability of ecosystems, but their relative roles in terrestrial systems have been debated. Here we studied a hydro-inundated land-bridge system in subtropical China and tested the relative importance of these two controls in determining the rodent-mediated regeneration of a locally dominant tree species. Our results showed that both controls operated in terrestrial habitats and that their relative importance switched as habitat size changed. Habitat loss initially removed predators of rodents that released rodent populations and triggered massive seed predation (top-down control), leading to reduced seedling establishment. A further reduction in habitat size led to decrease in rodent population that was supposed to increase seedling survival of the tree species, but the decline in habitat size deteriorated the abiotic environments (bottom-up control) that severely prevented seedling recruitment. As the ongoing global land use change is creating increasing number of small-sized forest fragments, our findings provide novel insights into the restoration of seriously fragmented forests.
Collapse
Affiliation(s)
- Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xin Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi-Su Shi
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuan-Yuan Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianguo Wu
- School of Life Sciences & Global Institute of Sustainability, Arizona State University, Tempe, Arizona, 85287-4501, USA
| | - Fangliang He
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.,Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
32
|
Takahashi K, Sato T. Spatial variation in breeding phenology at small spatial scales: A stochastic effect of population size. POPUL ECOL 2020. [DOI: 10.1002/1438-390x.12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kae Takahashi
- Department of Biology, Graduate school of Science Kobe University Kobe Japan
| | - Takuya Sato
- Department of Biology, Graduate school of Science Kobe University Kobe Japan
| |
Collapse
|
33
|
Goldingay RL, Newell DA, McHugh D, Bolitho L. Population stability in an unmanaged population of the green and golden bell frog in northern New South Wales, Australia. AUST J ZOOL 2020. [DOI: 10.1071/zo20101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Population monitoring is required to guide conservation programs. We conducted a capture–mark–recapture study of a population of the vulnerable green and golden bell frog (Litoria aurea) at the northern end of its range. Frogs were captured and marked over three breeding seasons (2015/16, 2016/17, 2017/18) in a large coastal lagoon. We aimed to: (1) produce annual estimates of population size to describe population trajectory, and (2) investigate monthly variation in abundance, capture probability, and temporary emigration to understand how these factors change at a finer temporal scale. Frog abundance varied across the three annual breeding seasons: 60–280 adult males, 120–190 adult females, and 90–420 subadults. We infer that the population is stable because adult abundance estimates were higher after 2015/16. Because our study sampled only half the available breeding habitat, the overall population may number 350–850 adults. Our modelling revealed >40 males but <20 females were detected in the sample area in our monthly samples. Estimates of temporary emigration were high (males: 0.54; females: 0.79), suggesting behaviour that made frogs unavailable for capture between months. Our results suggest that monitoring at greater than annual intervals should be adequate to monitor the future trend of this population.
Collapse
|
34
|
Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T, Catenazzi A, De la Riva I, Fisher MC, Flechas SV, Foster CN, Frías-Álvarez P, Garner TWJ, Gratwicke B, Guayasamin JM, Hirschfeld M, Kolby JE, Kosch TA, La Marca E, Lindenmayer DB, Lips KR, Longo AV, Maneyro R, McDonald CA, Mendelson J, Palacios-Rodriguez P, Parra-Olea G, Richards-Zawacki CL, Rödel MO, Rovito SM, Soto-Azat C, Toledo LF, Voyles J, Weldon C, Whitfield SM, Wilkinson M, Zamudio KR, Canessa S. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 2019; 363:1459-1463. [PMID: 30923224 DOI: 10.1126/science.aav0379] [Citation(s) in RCA: 626] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.
Collapse
Affiliation(s)
- Ben C Scheele
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia. .,National Environmental Science Programme, Threatened Species Recovery Hub, Canberra, ACT 2601, Australia.,One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Lee F Skerratt
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Lee Berger
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Wouter Beukema
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Aldemar A Acevedo
- Programa de Doctorado en Ciencias Biológicas, Laboratorio de Biología Evolutiva, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile.,Grupo de Investigación en Ecología y Biogeografía, Universidad de Pamplona, Barrio El Buque, Km 1, Vía a Bucaramanga, Pamplona, Colombia
| | - Patricia A Burrowes
- Department of Biology, University of Puerto Rico, P.O. Box 23360, San Juan, Puerto Rico
| | - Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Ignacio De la Riva
- Museo Nacional de Ciencias Naturales-CSIC, C/ José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Sandra V Flechas
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.,Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Sede Venado de Oro, Paseo Bolívar 16-20, Bogotá, Colombia
| | - Claire N Foster
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia
| | - Patricia Frías-Álvarez
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society London, Regents Park, London NW1 4RY, UK.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Brian Gratwicke
- Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC 20008, USA
| | - Juan M Guayasamin
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Investigaciones Biológicas y Ambientales BIOSFERA, Laboratorio de Biología Evolutiva, Campus Cumbayá, Quito, Ecuador.,Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Ingeniería en Biodiversidad y Cambio Climático, Facultad de Medio Ambiente, Universidad Tecnológica Indoamérica, Calle Machala y Sabanilla, Quito, Ecuador.,Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mareike Hirschfeld
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, Berlin 10115, Germany
| | - Jonathan E Kolby
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia.,Honduras Amphibian Rescue and Conservation Center, Lancetilla Botanical Garden and Research Center, Tela, Honduras.,The Conservation Agency, Jamestown, RI 02835, USA
| | - Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia.,AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North 4442, New Zealand
| | - Enrique La Marca
- School of Geography, Faculty of Forestry Engineering and Environmental Sciences, University of Los Andes, Merida, Venezuela
| | - David B Lindenmayer
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia.,National Environmental Science Programme, Threatened Species Recovery Hub, Canberra, ACT 2601, Australia
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ana V Longo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Raúl Maneyro
- Laboratorio de Sistemática e Historia Natural de Vertebrados. Facultad de Ciencias, Universidad de la República. Igua 4225, CP 11400, Montevideo, Uruguay
| | - Cait A McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joseph Mendelson
- Zoo Atlanta, Atlanta, GA 30315, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Gabriela Parra-Olea
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | | | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, Berlin 10115, Germany
| | - Sean M Rovito
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato CP36824, México
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Ché Weldon
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Steven M Whitfield
- Zoo Miami, Conservation and Research Department, Miami, FL 33177, USA.,Florida International University School of Earth, Environment, and Society, 11200 SW 8th St., Miami, FL 33199, USA
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Stefano Canessa
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| |
Collapse
|
35
|
Brady SP, Zamora‐Camacho FJ, Eriksson FAA, Goedert D, Comas M, Calsbeek R. Fitter frogs from polluted ponds: The complex impacts of human-altered environments. Evol Appl 2019; 12:1360-1370. [PMID: 31417620 PMCID: PMC6691218 DOI: 10.1111/eva.12751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/14/2023] Open
Abstract
Human-modified habitats rarely yield outcomes that are aligned with conservation ideals. Landscapes that are subdivided by roads are no exception, precipitating negative impacts on populations due to fragmentation, pollution, and road kill. Although many populations in human-modified habitats show evidence for local adaptation, rarely does environmental change yield outright benefits for populations of conservation interest. Contrary to expectations, we report surprising benefits experienced by amphibian populations breeding and dwelling in proximity to roads. We show that roadside populations of the wood frog, Rana sylvatica, exhibit better locomotor performance and higher measures of traits related to fitness compared with frogs from less disturbed environments located further away from roads. These results contrast previous evidence for maladaptation in roadside populations of wood frogs studied elsewhere. Our results indicate that altered habitats might not be unequivocally detrimental and at times might contribute to metapopulation success. While the frequency of such beneficial outcomes remains unknown, their occurrence underscores the complexity of inferring consequences of environmental change.
Collapse
Affiliation(s)
- Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenConnecticut
| | - Francisco J. Zamora‐Camacho
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | | | - Debora Goedert
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| | - Mar Comas
- Estación Biológica de Doñana (EBD‐CSIC)SevilleSpain
| | - Ryan Calsbeek
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| |
Collapse
|
36
|
Sterrett SC, Katz RA, Fields WR, Campbell Grant EH. The contribution of road‐based citizen science to the conservation of pond‐breeding amphibians. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean C. Sterrett
- United States Geological SurveyPatuxent Wildlife Research Center Turners Falls Massachusetts
| | - Rachel A. Katz
- U.S. Fish and Wildlife ServiceNational Wildlife Refuge System Hadley Massachusetts
| | - William R. Fields
- United States Geological SurveyPatuxent Wildlife Research Center Turners Falls Massachusetts
| | - Evan H. Campbell Grant
- United States Geological SurveyPatuxent Wildlife Research Center Turners Falls Massachusetts
| |
Collapse
|
37
|
White ER, Smith AT. The role of spatial structure in the collapse of regional metapopulations. Ecology 2018; 99:2815-2822. [PMID: 30347111 DOI: 10.1002/ecy.2546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 11/10/2022]
Abstract
Many wildlife populations are either naturally, or as a result of human land use, patchily distributed in space. The degree of fragmentation-specifically the remaining patch sizes and habitat configuration-is an important part of population dynamics. Demographic stochasticity is also likely to play an important role in patchy habitats that host small local populations. We develop a simulation model to evaluate the significance of demographic stochasticity and the role fragmentation plays in the determination of population dynamics and the risk of extinction of populations on habitat patches. Our model is formulated as a Markov-chain stochastic process on a finite, spatially explicit array of patches in which probability of successful dispersal is a function of interpatch distance. Unlike past work, we explicitly model local population dynamics and examine how these scale up to the entire population. As a test case, we apply the model to the American pika (Ochotona princeps) population living on the ore dumps in the ghost mining town of Bodie, California. This population has been studied nearly continuously for over four decades and has been of conservation concern as the southern half of the population declined precipitously beginning in 1989. Our model suggests that both the specific configuration of habitat and landscape heterogeneity are necessary and sufficient predictors of the eventual extinction of the southern constellation of patches. This example has important implications, as it suggests that fragmentation alone can lead to regional extinctions within metapopulations.
Collapse
Affiliation(s)
- Easton R White
- Center for Population Biology, University of California-Davis, Davis, California, 95616, USA
| | - Andrew T Smith
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287-4501, USA
| |
Collapse
|
38
|
Kärvemo S, Meurling S, Berger D, Höglund J, Laurila A. Effects of host species and environmental factors on the prevalence of Batrachochytrium dendrobatidis in northern Europe. PLoS One 2018; 13:e0199852. [PMID: 30359384 PMCID: PMC6201871 DOI: 10.1371/journal.pone.0199852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/09/2018] [Indexed: 11/18/2022] Open
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (Bd) poses a major threat to amphibian populations. To assist efforts to address such threats, we examined differences in Bd host infection prevalence among amphibian species and its relations to both local environmental factors in breeding habitats and landscape variables measured at three scales (500, 2000 and 5000 m radii) around breeding sites in southernmost Sweden. We sampled 947 anurans of six species in 31 ponds and assessed their infection status. We then examined correlations of infection prevalence with canopy cover, pond perimeter and pH (treated as local-scale pond characteristics), and the number of ponds, area of arable land, area of mature forest, number of resident people and presence of sea within the three radii (treated as landscape variables). The Bd infection prevalence was very low, 0.5–1.0%, in two of the six anuran species (Bufo bufo and Rana temporaria), and substantially higher (13–64%) in the other four (Bombina bombina, Bufotes variabilis, Epidalea calamita, Rana arvalis). In the latter four species Bd infection prevalence was positively associated with ponds’ pH (site range: 5.3–8.1), and negatively associated with areas of mature forest and/or wetlands in the surroundings. Our results show that the infection dynamics of Bd are complex and associated with host species, local pond characteristics and several landscape variables at larger spatial scales. Knowledge of environmental factors associated with Bd infections and differences in species’ susceptibility may help to counter further spread of the disease and guide conservation action plans, especially for the most threatened species.
Collapse
Affiliation(s)
- Simon Kärvemo
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Sara Meurling
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Jacob Höglund
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Anssi Laurila
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Lilley TM, Anttila J, Ruokolainen L. Landscape structure and ecology influence the spread of a bat fungal disease. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13183] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Thomas M. Lilley
- Institute of Integrative BiologyUniversity of Liverpool Liverpool UK
- Finnish Museum of Natural HistoryUniversity of Helsinki Helsinki Finland
| | - Jani Anttila
- Department of BiosciencesUniversity of Helsinki Helsinki Finland
| | | |
Collapse
|
40
|
Existing ecological theory applies to urban environments. LANDSCAPE AND ECOLOGICAL ENGINEERING 2018. [DOI: 10.1007/s11355-018-0351-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Thorpe CJ, Lewis TR, Fisher MC, Wierzbicki CJ, Kulkarni S, Pryce D, Davies L, Watve A, Knight ME. Climate structuring of Batrachochytrium dendrobatidis infection in the threatened amphibians of the northern Western Ghats, India. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180211. [PMID: 30110422 PMCID: PMC6030269 DOI: 10.1098/rsos.180211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/04/2018] [Indexed: 05/08/2023]
Abstract
Batrachochytrium dendrobatidis (Bd) is a pathogen killing amphibians worldwide. Its impact across much of Asia is poorly characterized. This study systematically surveyed amphibians for Bd across rocky plateaus in the northern section of the Western Ghats biodiversity hotspot, India, including the first surveys of the plateaus in the coastal region. These ecosystems offer an epidemiological model system since they are characterized by differing levels of connectivity, edaphic and climatic conditions, and anthropogenic stressors. One hundred and eighteen individuals of 21 species of Anura and Apoda on 13 plateaus ranging from 67 to 1179 m above sea level and 15.89 to 17.92° North latitude were sampled. Using qPCR protocols, 79% of species and 27% of individuals tested were positive for Bd. This is the first record of Bd in caecilians in India, the Critically Endangered Xanthophryne tigerina and Endangered Fejervarya cf. sahyadris. Mean site prevalence was 28.15%. Prevalence below the escarpment was 31.2% and 25.4% above. The intensity of infection (GE) showed the reverse pattern. Infection may be related to elevational temperature changes, thermal exclusion, inter-site connectivity and anthropogenic disturbance. Coastal plateaus may be thermal refuges from Bd. Infected amphibians represented a wide range of ecological traits posing interesting questions about transmission routes.
Collapse
Affiliation(s)
- Christopher J. Thorpe
- Ecology, Behaviour and Evolution Research Group, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - Todd R. Lewis
- Westfield, 4 Worgret Road, Wareham, Dorset BH20 4PJ, UK
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Claudia J. Wierzbicki
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Siddharth Kulkarni
- Department of Biological Sciences, George Washington University, 2121 I St NW, Washington, DC 20052, USA
| | - David Pryce
- Ecology, Behaviour and Evolution Research Group, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - Lewis Davies
- Ecology, Behaviour and Evolution Research Group, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - Aparna Watve
- Tata Institute of Social Sciences, Apsinga Road, PO Box No. 09, Tuljapur 413 601, District-Osmanabad, Maharashtra, India
| | - Mairi E. Knight
- Ecology, Behaviour and Evolution Research Group, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| |
Collapse
|
42
|
Howell PE, Muths E, Hossack BR, Sigafus BH, Chandler RB. Increasing connectivity between metapopulation ecology and landscape ecology. Ecology 2018; 99:1119-1128. [PMID: 29453767 DOI: 10.1002/ecy.2189] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 11/06/2022]
Abstract
Metapopulation ecology and landscape ecology aim to understand how spatial structure influences ecological processes, yet these disciplines address the problem using fundamentally different modeling approaches. Metapopulation models describe how the spatial distribution of patches affects colonization and extinction, but often do not account for the heterogeneity in the landscape between patches. Models in landscape ecology use detailed descriptions of landscape structure, but often without considering colonization and extinction dynamics. We present a novel spatially explicit modeling framework for narrowing the divide between these disciplines to advance understanding of the effects of landscape structure on metapopulation dynamics. Unlike previous efforts, this framework allows for statistical inference on landscape resistance to colonization using empirical data. We demonstrate the approach using 11 yr of data on a threatened amphibian in a desert ecosystem. Occupancy data for Lithobates chiricahuensis (Chiricahua leopard frog) were collected on the Buenos Aires National Wildlife Refuge (BANWR), Arizona, USA from 2007 to 2017 following a reintroduction in 2003. Results indicated that colonization dynamics were influenced by both patch characteristics and landscape structure. Landscape resistance increased with increasing elevation and distance to the nearest streambed. Colonization rate was also influenced by patch quality, with semi-permanent and permanent ponds contributing substantially more to the colonization of neighboring ponds relative to intermittent ponds. Ponds that only hold water intermittently also had the highest extinction rate. Our modeling framework can be widely applied to understand metapopulation dynamics in complex landscapes, particularly in systems in which the environment between habitat patches influences the colonization process.
Collapse
Affiliation(s)
- Paige E Howell
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, 30602, USA
| | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, 80526, USA
| | - Blake R Hossack
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Aldo Leopold Wilderness Research Institute, Missoula, Montana, 59801, USA
| | - Brent H Sigafus
- U.S. Geological Survey, Southwest Biological Science Center, Tucson, Arizona, 85719, USA
| | - Richard B Chandler
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
43
|
Southwell DM, Heard GW, McCarthy MA. Optimal timing of biodiversity offsetting for metapopulations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:508-521. [PMID: 29266594 DOI: 10.1002/eap.1666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 09/14/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Biodiversity offsetting schemes permit habitat destruction, provided that losses are compensated by gains elsewhere. While hundreds of offsetting schemes are used around the globe, the optimal timing of habitat creation in such projects is poorly understood. Here, we developed a spatially explicit metapopulation model for a single species subject to a habitat compensation scheme. Managers could compensate for destruction of a patch by creating a new patch either before, at the time of, or after patch loss. Delaying patch creation is intuitively detrimental to species persistence, but allowed managers to invest financial compensation, accrue interest, and create a larger patch at a later date. Using stochastic dynamic programming, we found the optimal timing of patch creation that maximizes the number of patches occupied at the end of a 50-yr habitat compensation scheme when a patch is destroyed after 10 yr. Two case studies were developed for Australian species subject to habitat loss but with very different traits: the endangered growling grass frog (Litoria raniformis) and the critically endangered Mount Lofty Ranges Southern Emu-wren (Spititurus malachurus intermedius). Our results show that adding a patch either before or well after habitat destruction can be optimal, depending on the occupancy state of the metapopulation, the interest rate, the area of the destroyed patch and metapopulation parameters of the focal species. Generally, it was better to delay patch creation when the interest rate was high, when the species had a relatively high colonization rate, when the patch nearest the new patch was occupied, and when the destroyed patch was small. Our framework can be applied to single-species metapopulations subject to habitat loss, and demonstrates that considering the timing of habitat compensation could improve the effectiveness of offsetting schemes.
Collapse
Affiliation(s)
- Darren M Southwell
- Australian Research Council Centre of Excellence for Environmental Decisions, School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Geoffrey W Heard
- School of Environmental Sciences, Charles Sturt University, Elizabeth Mitchell Drive, Albury, 2640, Australia
| | - Michael A McCarthy
- Australian Research Council Centre of Excellence for Environmental Decisions, School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
44
|
Daversa DR, Manica A, Bosch J, Jolles JW, Garner TWJ. Routine habitat switching alters the likelihood and persistence of infection with a pathogenic parasite. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- David R. Daversa
- Institute of Integrative BiologyUniversity of Liverpool Liverpool UK
- Department of ZoologyUniversity of Cambridge Cambridge UK
- Institute of ZoologyZoological Society of London London UK
| | - Andrea Manica
- Department of ZoologyUniversity of Cambridge Cambridge UK
| | - Jaime Bosch
- Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
- Centro de InvestigaciónSeguimiento y EvaluaciónParque Nacional de la Sierra de Guadarrama Rascafría Spain
| | - Jolle W. Jolles
- Department of ZoologyUniversity of Cambridge Cambridge UK
- Department of Collective BehaviourMax Planck Institute for Ornithology Konstanz Germany
| | | |
Collapse
|
45
|
Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol 2017; 15:e2003355. [PMID: 29182630 PMCID: PMC5705071 DOI: 10.1371/journal.pbio.2003355] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Australia’s iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS), losing much of its coral cover in the process. This raises the question of the ecosystem’s systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1) are highly connected by ocean currents to the wider reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3) have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these ‘robust source reefs’, which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change. Australia’s Great Barrier Reef is a large coral ecosystem consisting of more than 3,800 reefs. Coral populations inhabiting these reefs are connected by larvae that are dispersed by ocean currents. Modelling regional connectivity patterns reveals reefs that can act as prominent larval sources and supply larvae to other coral populations in the area. Coral populations on reefs are also subject to various disturbances, such as bleaching and outbreaks of the coral-eating crown-of-thorns starfish. These disturbances tend to have spatially explicit patterns, resulting in different levels of impact among reefs. In this study, we first use high-resolution dispersal simulations of larvae to identify the reefs most likely to support regional recovery processes due to their high connectivity. We then use oceanographic and climate models to show which reefs are likely to have a lower risk of exposure to coral bleaching and starfish outbreaks. Finally, we combine these results to find reefs that are not only likely to be good sources by being well connected but also more likely to have adult breeding stocks needed to provide the necessary larval supply. This information can support decision-making that aims to allocate management resources and prioritise sites important for the resilience of the entire reef system.
Collapse
|
46
|
White LA, Forester JD, Craft ME. Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges. J Anim Ecol 2017; 87:559-580. [PMID: 28944450 DOI: 10.1111/1365-2656.12761] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 09/07/2017] [Indexed: 01/26/2023]
Abstract
Individual differences in contact rate can arise from host, group and landscape heterogeneity and can result in different patterns of spatial spread for diseases in wildlife populations with concomitant implications for disease control in wildlife of conservation concern, livestock and humans. While dynamic disease models can provide a better understanding of the drivers of spatial spread, the effects of landscape heterogeneity have only been modelled in a few well-studied wildlife systems such as rabies and bovine tuberculosis. Such spatial models tend to be either purely theoretical with intrinsic limiting assumptions or individual-based models that are often highly species- and system-specific, limiting the breadth of their utility. Our goal was to review studies that have utilized dynamic, spatial models to answer questions about pathogen transmission in wildlife and identify key gaps in the literature. We begin by providing an overview of the main types of dynamic, spatial models (e.g., metapopulation, network, lattice, cellular automata, individual-based and continuous-space) and their relation to each other. We investigate different types of ecological questions that these models have been used to explore: pathogen invasion dynamics and range expansion, spatial heterogeneity and pathogen persistence, the implications of management and intervention strategies and the role of evolution in host-pathogen dynamics. We reviewed 168 studies that consider pathogen transmission in free-ranging wildlife and classify them by the model type employed, the focal host-pathogen system, and their overall research themes and motivation. We observed a significant focus on mammalian hosts, a few well-studied or purely theoretical pathogen systems, and a lack of studies occurring at the wildlife-public health or wildlife-livestock interfaces. Finally, we discuss challenges and future directions in the context of unprecedented human-mediated environmental change. Spatial models may provide new insights into understanding, for example, how global warming and habitat disturbance contribute to disease maintenance and emergence. Moving forward, better integration of dynamic, spatial disease models with approaches from movement ecology, landscape genetics/genomics and ecoimmunology may provide new avenues for investigation and aid in the control of zoonotic and emerging infectious diseases.
Collapse
Affiliation(s)
- Lauren A White
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, USA
| | - James D Forester
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
47
|
Heard GW, Scroggie MP, Ramsey DSL, Clemann N, Hodgson JA, Thomas CD. Can Habitat Management Mitigate Disease Impacts on Threatened Amphibians? Conserv Lett 2017. [DOI: 10.1111/conl.12375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Geoffrey W. Heard
- School of BioSciences; University of Melbourne; Parkville VIC 3010 Australia
| | - Michael P. Scroggie
- Department of Environment, Land, Water and Planning; Arthur Rylah Institute for Environmental Research; P.O. Box 137 Heidelberg VIC 3084 Australia
| | - David S. L. Ramsey
- Department of Environment, Land, Water and Planning; Arthur Rylah Institute for Environmental Research; P.O. Box 137 Heidelberg VIC 3084 Australia
| | - Nick Clemann
- Department of Environment, Land, Water and Planning; Arthur Rylah Institute for Environmental Research; P.O. Box 137 Heidelberg VIC 3084 Australia
| | - Jenny A. Hodgson
- Department of Evolution, Ecology and Behaviour; University of Liverpool; Liverpool L69 7ZB UK
| | - Chris D. Thomas
- Department of Biology; University of York; Heslington York YO10 5DD UK
| |
Collapse
|
48
|
Richardson JL, Brady SP, Wang IJ, Spear SF. Navigating the pitfalls and promise of landscape genetics. Mol Ecol 2016; 25:849-63. [PMID: 26756865 DOI: 10.1111/mec.13527] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/12/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Abstract
The field of landscape genetics has been evolving rapidly since its emergence in the early 2000s. New applications, techniques and criticisms of techniques appear like clockwork with each new journal issue. The developments are an encouraging, and at times bewildering, sign of progress in an exciting new field of study. However, we suggest that the rapid expansion of landscape genetics has belied important flaws in the development of the field, and we add an air of caution to this breakneck pace of expansion. Specifically, landscape genetic studies often lose sight of the fundamental principles and complex consequences of gene flow, instead favouring simplistic interpretations and broad inferences not necessarily warranted by the data. Here, we describe common pitfalls that characterize such studies, and provide practical guidance to improve landscape genetic investigation, with careful consideration of inferential limits, scale, replication, and the ecological and evolutionary context of spatial genetic patterns. Ultimately, the utility of landscape genetics will depend on translating the relationship between gene flow and landscape features into an understanding of long-term population outcomes. We hope the perspective presented here will steer landscape genetics down a more scientifically sound and productive path, garnering a field that is as informative in the future as it is popular now.
Collapse
Affiliation(s)
- Jonathan L Richardson
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI, 02918, USA
| | - Steven P Brady
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Ian J Wang
- Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, 94720, USA
| | - Stephen F Spear
- The Orianne Society, 100 Phoenix Rd., Athens, GA, 30605, USA
| |
Collapse
|
49
|
Hamer AJ, Heard GW, Urlus J, Ricciardello J, Schmidt B, Quin D, Steele WK. Manipulating wetland hydroperiod to improve occupancy rates by an endangered amphibian: modelling management scenarios. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew J. Hamer
- Australian Research Centre for Urban Ecology; Royal Botanic Gardens Victoria c/o School of BioSciences; University of Melbourne; Parkville Vic. 3010 Australia
| | - Geoffrey W. Heard
- Quantitative and Applied Ecology Group; School of BioSciences; University of Melbourne; Parkville Vic. 3010 Australia
| | - Jake Urlus
- Ecology Australia Pty. Ltd.; 88 B Station Street Fairfield Vic. 3078 Australia
| | | | - Bernadette Schmidt
- Ecology Australia Pty. Ltd.; 88 B Station Street Fairfield Vic. 3078 Australia
| | - Darren Quin
- Ecology Australia Pty. Ltd.; 88 B Station Street Fairfield Vic. 3078 Australia
| | - William K. Steele
- Integrated Planning Group; Melbourne Water; PO Box 4342 Melbourne Vic. 3001 Australia
| |
Collapse
|
50
|
Abiotic and biotic interactions determine whether increased colonization is beneficial or detrimental to metapopulation management. Theor Popul Biol 2016; 109:44-53. [DOI: 10.1016/j.tpb.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/15/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022]
|