1
|
Beugnon R, Eisenhauer N, Lochner A, Blechinger MJ, Buhr PE, Cesarz S, Farfan MA, Ferlian O, Rompeltien Howard AJ, Huang Y, Kuhlmann BS, Lienicke N, Mählmann S, Nowka A, Petereit E, Ristok C, Schädler M, Schmid JTM, Schulte LJ, Seim K, Thouvenot L, Tremmel R, Weber L, Weitowitz J, Yi H, Sünnemann M. Sustainable Land Use Enhances Soil Microbial Respiration Responses to Experimental Heat Stress. GLOBAL CHANGE BIOLOGY 2025; 31:e70214. [PMID: 40272845 PMCID: PMC12020990 DOI: 10.1111/gcb.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Soil microbial communities provide numerous ecosystem functions, such as nutrient cycling, decomposition, and carbon storage. However, global change, including land-use and climate changes, affects soil microbial communities and activity. As extreme weather events (e.g., heatwaves) tend to increase in magnitude and frequency, we investigated the effects of heat stress on the activity (e.g., respiration) of soil microbial communities that had experienced four different long-term land-use intensity treatments (ranging from extensive grassland and intensive grassland to organic and conventional croplands) and two climate conditions (ambient vs. predicted future climate). We hypothesized that both intensive land use and future climate conditions would reduce soil microbial respiration (H1) and that experimental heat stress would increase microbial respiration (H2). However, this increase would be less pronounced in soils with a long-term history of high-intensity land use and future climate conditions (H3), and soils with a higher fungal-to-bacterial ratio would show a more moderate response to warming (H4). Our study showed that soil microbial respiration was reduced under high land-use intensity (i.e., -43% between extensive grassland and conventional cropland) and future climate conditions (-12% in comparison to the ambient climate). Moreover, heat stress increased overall microbial respiration (+17% per 1°C increase), while increasing land-use intensity reduced the strength of this response (-25% slope reduction). In addition, increasing soil microbial biomass and fungal-to-bacterial ratio under low-intensity land use (i.e., extensive grassland) enhanced the microbial respiration response to heat stress. These findings show that intensive land use and climate change may compromise the activity of soil microbial communities as well as their respiration under heatwaves. In particular, soil microbial communities under high-intensity land use and future climate are less able to respond to additional stress, such as heatwaves, potentially threatening the critical ecosystem functions driven by soil microbes and highlighting the benefits of more sustainable agricultural practices.
Collapse
Affiliation(s)
- Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
- CEFE, University Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Alfred Lochner
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Paula E. Buhr
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Monica A. Farfan
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Nora Lienicke
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Selma Mählmann
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Anneke Nowka
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Christian Ristok
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Community EcologyHelmholtz‐Centre for Environmental Research – UFZHalleGermany
| | | | - Lara J. Schulte
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Kora‐Lene Seim
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Lise Thouvenot
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Raphael Tremmel
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalleGermany
| | - Lara Weber
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Jule Weitowitz
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Huimin Yi
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| |
Collapse
|
2
|
Huang W, Zhu Y, Yu H, He Y, Zhao X, Wang H, Shi S. Biodiversity drives ecosystem multifunctionality in sandy grasslands? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171765. [PMID: 38499099 DOI: 10.1016/j.scitotenv.2024.171765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Plant communities and soil microbiomes play a crucial role in regulating ecosystem multifunctionality (EMF). However, whether and how aboveground plant diversity, belowground soil microbial diversity and interactions with environmental factors affect EMF in sandy grasslands under climate change conditions is unclear. Here, we selected 15 typical grassland communities from the Horqin sandy grassland along temperature and precipitation gradients, using the mean annual temperature (AMT), mean annual precipitation (AP), soil temperature (ST), soil water content (SW) and pH as abiotic factors, and plant diversity (PD) and soil microbial diversity (SD) as biodiversity indicators. The effects of biodiversity and abiotic factors on individual ecosystem functions and EMF were studied. We found that PD and its components, plant species richness (SR), species diversity (PR) and genetic diversity (GD), had significant effects on aboveground biomass (AGB) and major factors involved in ecosystem nitrogen cycling (plant leaf nitrogen content (PLN) and soil total nitrogen content (STN)) (P < 0.05). Soil fungal diversity (FR) has a greater impact on ecosystem function than soil bacteria (BR) and archaea (ABR) in sandy grasslands and mainly promotes the accumulation of soil microbial carbon and nitrogen (MBC, MBN) (P < 0.05), STC and STN (P < 0.01). PD and two types of SD (FR and ABR) significantly regulated EMF (P < 0.01). Among the abiotic factors, soil pH and SW regulated EMF (P < 0.05), and SW and ST directly drove EMF (P < 0.05). PD drove EMF significantly and indirectly (positively) through soil pH and ST (P < 0.001), while SD drove EMF weakly and indirectly (negatively) through AP and PD (P > 0.05). PD was a stronger driving force on EMF than SD. These results improve our understanding of the drivers of multifunctionality in sandy grassland ecosystems.
Collapse
Affiliation(s)
- Wenda Huang
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.
| | - Yuanzhong Zhu
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailun Yu
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China
| | - Yuanzheng He
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Huaihai Wang
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangbin Shi
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Hisano M, Ghazoul J, Chen X, Chen HYH. Functional diversity enhances dryland forest productivity under long-term climate change. SCIENCE ADVANCES 2024; 10:eadn4152. [PMID: 38657059 PMCID: PMC11042740 DOI: 10.1126/sciadv.adn4152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Short-term experimental studies provided evidence that plant diversity increases ecosystem resilience and resistance to drought events, suggesting diversity to serve as a nature-based solution to address climate change. However, it remains unclear whether the effects of diversity are momentary or still hold over the long term in natural forests to ensure that the sustainability of carbon sinks. By analyzing 57 years of inventory data from dryland forests in Canada, we show that productivity of dryland forests decreased at an average rate of 1.3% per decade, in concert with the temporally increasing temperature and decreasing water availability. Increasing functional trait diversity from its minimum (monocultures) to maximum value increased productivity by 13%. Our results demonstrate the potential role of tree functional trait diversity in alleviating climate change impacts on dryland forests. While recognizing that nature-based climate mitigation (e.g., planting trees) can only be partial solutions, their long-term (decadal) efficacy can be improved by enhancing functional trait diversity across the forest community.
Collapse
Affiliation(s)
- Masumi Hisano
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto, 606-8501, Japan
- Ecosystem Management, Institute of Terrestrial Ecosystems, Department of Environmental System Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Jaboury Ghazoul
- Ecosystem Management, Institute of Terrestrial Ecosystems, Department of Environmental System Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Xinli Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Han Y. H. Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
4
|
Hatton IA, Mazzarisi O, Altieri A, Smerlak M. Diversity begets stability: Sublinear growth and competitive coexistence across ecosystems. Science 2024; 383:eadg8488. [PMID: 38484074 DOI: 10.1126/science.adg8488] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
The worldwide loss of species diversity brings urgency to understanding how diverse ecosystems maintain stability. Whereas early ecological ideas and classic observations suggested that stability increases with diversity, ecological theory makes the opposite prediction, leading to the long-standing "diversity-stability debate." Here, we show that this puzzle can be resolved if growth scales as a sublinear power law with biomass (exponent <1), exhibiting a form of population self-regulation analogous to models of individual ontogeny. We show that competitive interactions among populations with sublinear growth do not lead to exclusion, as occurs with logistic growth, but instead promote stability at higher diversity. Our model realigns theory with classic observations and predicts large-scale macroecological patterns. However, it makes an unsettling prediction: Biodiversity loss may accelerate the destabilization of ecosystems.
Collapse
Affiliation(s)
- Ian A Hatton
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0E8, Canada
| | - Onofrio Mazzarisi
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
- The Abdus Salam International Centre for Theoretical Physics (ICTP), 34014 Trieste, Italy
- National Institute of Oceanography and Applied Geophysics (OGS), 34014 Trieste, Italy
| | - Ada Altieri
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité CNRS, 75013 Paris, France
| | - Matteo Smerlak
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Laboratoire de Biophysique et Evolution, UMR 8231 CBI, ESPCI Paris, PSL Research University, 75005 Paris, France
- Capital Fund Management, 75007 Paris, France
| |
Collapse
|
5
|
Lv P, Sun S, Li Y, Zhao S, Zhang J, Hu Y, Yue P, Zuo X. Growing-season drought and nitrogen addition interactively impair grassland ecosystem stability by reducing species diversity, asynchrony, and stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169122. [PMID: 38065502 DOI: 10.1016/j.scitotenv.2023.169122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Aboveground net primary productivity controls the amount of energy available to sustain all living organisms, and its sustainable provision relies on the stability of grassland ecosystems. Human activities leading to global changes, such as increased nitrogen (N) deposition and the more frequent occurrence of extreme precipitation events, with N addition increasing the sensitivity of ecosystem production stability to changes in the precipitation regime. However, whether N addition, in combination with seasonal precipitation increases or severe drought, affects ecosystem stability remains unclear. In this study, we conducted a six-year environmental change monitoring experiment in a semiarid grassland in northern China to test the effects of N addition, seasonal drought, and precipitation increases on the temporal stability of ecosystem productivity. Our study revealed that an interaction between drought and N addition reduced species diversity, species asynchrony, species stability, and thus ecosystem stability. These environmental change drivers (except for precipitation increase) induced a positive relationship between species asynchrony and diversity, whereas N addition interactively with drought and precipitation increase led to a negative relationship between diversity and species stability. Only N addition interactively with drought induced a positive species diversity-ecosystem stability relationship because lower species stability was overcome by increased species asynchrony. Our study is great importance to illustrate that production temporal stability tends to be inhibited with drought, though interactively with nutrient N addition. These findings highlight the primary role of asynchronous dynamics among species in modulating the effects of environmental change on diversity-stability relationships.
Collapse
Affiliation(s)
- Peng Lv
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou 730000, China
| | - Shanshan Sun
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqiang Li
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou 730000, China
| | - Shenglong Zhao
- College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui 741000, China
| | - Jing Zhang
- Information Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ya Hu
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou 730000, China
| | - Ping Yue
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou 730000, China
| | - Xiaoan Zuo
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
6
|
Rybchak O, du Toit J, Delorme JP, Jüdt JK, Bieri M, Midgley G, Mukwashi K, Thau C, Feig G, Lucas-Moffat A, Brümmer C. Livestock grazing and biodiversity: Effects on CO 2 exchange in semi-arid Karoo ecosystems, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168517. [PMID: 37981131 DOI: 10.1016/j.scitotenv.2023.168517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Livestock use in semi-arid South African ecosystems has not been extensively studied in relation to the Net Ecosystem Exchange (NEE) of carbon dioxide (CO2). We present four years of measurements from twinned eddy-covariance towers in Nama-Karoo, South Africa, to investigate the carbon fluxes and the impact of grazing intensity on NEE. The design contrasted NEE at a long-term site grazed at recommended levels (LG) with a long-term heavily grazed (EG) site that had been rested for 10 years, and was monitored for two years after which intensive grazing was reintroduced for this experiment. This allowed for the quantification of long-term NEE trends on "recovering" vegetations (years I, II) and short-term responses to an intensified land use (years III, IV). The results showed that the net release of CO2 was slightly higher at LG than on "recovering" vegetation at the EG site, where near-neutral exchange was observed during years I and II. However, after grazing was reintroduced to the EG site, differences between sites was reduced but not eliminated. These findings suggest that there is a somewhat higher carbon sequestration potential at the resting EG site than at the LG site, apparently associated with the dominance of unpalatable drought-tolerant grass species and local elimination of many palatable shrubs. Reduction of this sink potential by reintroduction of high-intensity grazing indicates the sensitivity of C-sequestration in this "recovering" system to heavy grazing, but underlines continued resilience of NEE under far heavier grazing than in the LG system. These data suggest notable trade-offs in these ecosystems between carbon storage, biodiversity, and livestock production with rainfall variability being a critical inter-annual driver. PLAIN LANGUAGE SUMMARY: This study suggests that long-term resting of previously over-utilized southern African semi-arid vegetation supports enhanced carbon sequestration potential, even if over-utilization has transformed vegetation composition (i.e. has caused degradation through reduced plant species richness). However, this enhanced carbon sequestration potential can be quickly negated by the reintroduction of grazing, even after 10 years of resting. Achievement of carbon sequestration is dependent on average to above-average precipitation and its distribution throughout the year, with sink activity evident mainly after seasonal rains during the warm season.
Collapse
Affiliation(s)
- Oksana Rybchak
- Thünen Institute of Climate-Smart Agriculture, Braunschweig 38116, Germany.
| | - Justin du Toit
- Grootfontein Agricultural Development Institute, Middelburg 5900, South Africa
| | | | - Jens-Kristian Jüdt
- Thünen Institute of Climate-Smart Agriculture, Braunschweig 38116, Germany
| | - Mari Bieri
- Thünen Institute of Climate-Smart Agriculture, Braunschweig 38116, Germany
| | - Guy Midgley
- School for Climate Studies, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Kanisios Mukwashi
- Thünen Institute of Climate-Smart Agriculture, Braunschweig 38116, Germany
| | - Christian Thau
- Department for Earth Observation, Friedrich-Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Gregor Feig
- South African Environmental Observation Network, Colbyn, Pretoria 0083, South Africa; Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria 0002, South Africa
| | - Antje Lucas-Moffat
- Thünen Institute of Climate-Smart Agriculture, Braunschweig 38116, Germany; German Meteorological Service (DWD), Centre for Agrometeorological Research, Bundesallee 33, 38116 Braunschweig, Germany
| | - Christian Brümmer
- Thünen Institute of Climate-Smart Agriculture, Braunschweig 38116, Germany
| |
Collapse
|
7
|
Smith MD, Wilkins KD, Holdrege MC, Wilfahrt P, Collins SL, Knapp AK, Sala OE, Dukes JS, Phillips RP, Yahdjian L, Gherardi LA, Ohlert T, Beier C, Fraser LH, Jentsch A, Loik ME, Maestre FT, Power SA, Yu Q, Felton AJ, Munson SM, Luo Y, Abdoli H, Abedi M, Alados CL, Alberti J, Alon M, An H, Anacker B, Anderson M, Auge H, Bachle S, Bahalkeh K, Bahn M, Batbaatar A, Bauerle T, Beard KH, Behn K, Beil I, Biancari L, Blindow I, Bondaruk VF, Borer ET, Bork EW, Bruschetti CM, Byrne KM, Cahill Jr. JF, Calvo DA, Carbognani M, Cardoni A, Carlyle CN, Castillo-Garcia M, Chang SX, Chieppa J, Cianciaruso MV, Cohen O, Cordeiro AL, Cusack DF, Dahlke S, Daleo P, D'Antonio CM, Dietterich LH, S. Doherty T, Dubbert M, Ebeling A, Eisenhauer N, Fischer FM, Forte TGW, Gebauer T, Gozalo B, Greenville AC, Guidoni-Martins KG, Hannusch HJ, Vatsø Haugum S, Hautier Y, Hefting M, Henry HAL, Hoss D, Ingrisch J, Iribarne O, Isbell F, Johnson Y, Jordan S, Kelly EF, Kimmel K, Kreyling J, Kröel-Dulay G, Kröpfl A, Kübert A, Kulmatiski A, Lamb EG, Larsen KS, Larson J, Lawson J, Leder CV, Linstädter A, Liu J, Liu S, Lodge AG, Longo G, et alSmith MD, Wilkins KD, Holdrege MC, Wilfahrt P, Collins SL, Knapp AK, Sala OE, Dukes JS, Phillips RP, Yahdjian L, Gherardi LA, Ohlert T, Beier C, Fraser LH, Jentsch A, Loik ME, Maestre FT, Power SA, Yu Q, Felton AJ, Munson SM, Luo Y, Abdoli H, Abedi M, Alados CL, Alberti J, Alon M, An H, Anacker B, Anderson M, Auge H, Bachle S, Bahalkeh K, Bahn M, Batbaatar A, Bauerle T, Beard KH, Behn K, Beil I, Biancari L, Blindow I, Bondaruk VF, Borer ET, Bork EW, Bruschetti CM, Byrne KM, Cahill Jr. JF, Calvo DA, Carbognani M, Cardoni A, Carlyle CN, Castillo-Garcia M, Chang SX, Chieppa J, Cianciaruso MV, Cohen O, Cordeiro AL, Cusack DF, Dahlke S, Daleo P, D'Antonio CM, Dietterich LH, S. Doherty T, Dubbert M, Ebeling A, Eisenhauer N, Fischer FM, Forte TGW, Gebauer T, Gozalo B, Greenville AC, Guidoni-Martins KG, Hannusch HJ, Vatsø Haugum S, Hautier Y, Hefting M, Henry HAL, Hoss D, Ingrisch J, Iribarne O, Isbell F, Johnson Y, Jordan S, Kelly EF, Kimmel K, Kreyling J, Kröel-Dulay G, Kröpfl A, Kübert A, Kulmatiski A, Lamb EG, Larsen KS, Larson J, Lawson J, Leder CV, Linstädter A, Liu J, Liu S, Lodge AG, Longo G, Loydi A, Luan J, Curtis Lubbe F, Macfarlane C, Mackie-Haas K, Malyshev AV, Maturano-Ruiz A, Merchant T, Metcalfe DB, Mori AS, Mudongo E, Newman GS, Nielsen UN, Nimmo D, Niu Y, Nobre P, O'Connor RC, Ogaya R, Oñatibia GR, Orbán I, Osborne B, Otfinowski R, Pärtel M, Penuelas J, Peri PL, Peter G, Petraglia A, Picon-Cochard C, Pillar VD, Piñeiro-Guerra JM, Ploughe LW, Plowes RM, Portales-Reyes C, Prober SM, Pueyo Y, Reed SC, Ritchie EG, Rodríguez DA, Rogers WE, Roscher C, Sánchez AM, Santos BA, Cecilia Scarfó M, Seabloom EW, Shi B, Souza L, Stampfli A, Standish RJ, Sternberg M, Sun W, Sünnemann M, Tedder M, Thorvaldsen P, Tian D, Tielbörger K, Valdecantos A, van den Brink L, Vandvik V, Vankoughnett MR, Guri Velle L, Wang C, Wang Y, Wardle GM, Werner C, Wei C, Wiehl G, Williams JL, Wolf AA, Zeiter M, Zhang F, Zhu J, Zong N, Zuo X. Extreme drought impacts have been underestimated in grasslands and shrublands globally. Proc Natl Acad Sci U S A 2024; 121:e2309881120. [PMID: 38190514 PMCID: PMC10823251 DOI: 10.1073/pnas.2309881120] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/06/2023] [Indexed: 01/10/2024] Open
Abstract
Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.
Collapse
Affiliation(s)
- Melinda D. Smith
- Department of Biology, Colorado State University, Fort Collins, CO80523
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523
| | | | - Martin C. Holdrege
- Department of Wildland Resource and the Ecology Center, Utah State University, Logan, UT84322
| | - Peter Wilfahrt
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Scott L. Collins
- Department of Biology, University of New Mexico, Albuquerque, NM87131
| | - Alan K. Knapp
- Department of Biology, Colorado State University, Fort Collins, CO80523
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523
| | - Osvaldo E. Sala
- School of Life Sciences, Global Drylands Center, Arizona State University, Tempe, AZ85281
| | - Jeffrey S. Dukes
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA94305
| | | | - Laura Yahdjian
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), National Scientific and Technical Research Council (CONICET), Faculty of Agronomy, University of Buenos Aires, Buenos AiresC1417DSE, Argentina
| | - Laureano A. Gherardi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| | - Timothy Ohlert
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Claus Beier
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C1958, Denmark
| | - Lauchlan H. Fraser
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, BCV2C 0C8, Canada
| | - Anke Jentsch
- Department of Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth95447, Germany
| | - Michael E. Loik
- Department of Environmental Studies, University of California, Santa Cruz, CA95064
| | - Fernando T. Maestre
- Departamento de Ecologia, Universidad de Alicante, 03690 Alicante, Spain
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, 03690 Alicante, Spain
| | - Sally A. Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW2751, Australia
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing100083, China
| | - Andrew J. Felton
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT59717
| | - Seth M. Munson
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, AZ86001
| | - Yiqi Luo
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Hamed Abdoli
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor46417-76489, Iran
| | - Mehdi Abedi
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor46417-76489, Iran
| | - Concepción L. Alados
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza50059, Spain
| | - Juan Alberti
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigación Ciencia y Técnica (CONICET), CC 1260 Correo Central, Mar del PlataB7600WAG, Argentina
| | - Moshe Alon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Hui An
- School of Ecology and Environment, Ningxia University, Yinchuan750021, China
| | - Brian Anacker
- City of Boulder Open Space and Mountain Parks, Boulder, CO80301
| | - Maggie Anderson
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Harald Auge
- Department of Community Ecology, Helmholtz-Centre for Environmental Research–UFZ, Halle06120, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig04103, Germany
| | - Seton Bachle
- Division of Biology, Kansas State University, Manhattan, KS66506
- LI-COR Biosciences, 4647 Superior Street, Lincoln, NE68505
| | - Khadijeh Bahalkeh
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor46417-76489, Iran
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck6020, Austria
| | - Amgaa Batbaatar
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, ABT6G 2P5, Canada
| | - Taryn Bauerle
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Karen H. Beard
- Department of Wildland Resource and the Ecology Center, Utah State University, Logan, UT84322
| | - Kai Behn
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn53115, Germany
| | - Ilka Beil
- Institute of Botany and Landscape Ecology, Department of Experimental Plant Ecology, University of Greifswald, GreifswaldD-17498, Germany
| | - Lucio Biancari
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), National Scientific and Technical Research Council (CONICET), Faculty of Agronomy, University of Buenos Aires, Buenos AiresC1417DSE, Argentina
| | - Irmgard Blindow
- Biological Station of Hiddensee, Department of Biology, University of Greifswald, KlosterD-18565, Germany
| | - Viviana Florencia Bondaruk
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), National Scientific and Technical Research Council (CONICET), Faculty of Agronomy, University of Buenos Aires, Buenos AiresC1417DSE, Argentina
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Edward W. Bork
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, ABT6G 2P5, Canada
| | - Carlos Martin Bruschetti
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigación Ciencia y Técnica (CONICET), CC 1260 Correo Central, Mar del PlataB7600WAG, Argentina
| | - Kerry M. Byrne
- Department of Environmental Science and Management, California State Polytechnic University, Humboldt, Arcata, CA95521
| | - James F. Cahill Jr.
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| | - Dianela A. Calvo
- Universidad Nacional de Río Negro, Centro de Estudios Ambientales desde la NorPatagonia (CEANPa), Sede Atlántica–CONICET, Viedma8500, Argentina
| | - Michele Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, ParmaI-43124, Italy
| | - Augusto Cardoni
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigación Ciencia y Técnica (CONICET), CC 1260 Correo Central, Mar del PlataB7600WAG, Argentina
| | - Cameron N. Carlyle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, ABT6G 2P5, Canada
| | - Miguel Castillo-Garcia
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza50059, Spain
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, ABT6G 2E3, Canada
| | - Jeff Chieppa
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW2751, Australia
| | | | - Ofer Cohen
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Amanda L. Cordeiro
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO80523
| | - Daniela F. Cusack
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO80523
| | - Sven Dahlke
- Biological Station of Hiddensee, Department of Biology, University of Greifswald, KlosterD-18565, Germany
| | - Pedro Daleo
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigación Ciencia y Técnica (CONICET), CC 1260 Correo Central, Mar del PlataB7600WAG, Argentina
| | - Carla M. D'Antonio
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA93106
| | - Lee H. Dietterich
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO80523
- US Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS39180
| | - Tim S. Doherty
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW2006, Australia
| | - Maren Dubbert
- Isotope Biogeochemistry and GasFluxes, Leibniz-Zentrum fürAgrarlandschaftsforschung (ZALF), Müncheberg15374, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena07743, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig04103, Germany
- Institute of Biology, Leipzig University, Leipzig04103, Germany
| | - Felícia M. Fischer
- Institute of Biology, Leipzig University, Leipzig04103, Germany
- Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas (CSIC)-Universitat Valencia (UV) - Generalitat Valenciana (GV),Valencia46113, Spain
| | - T'ai G. W. Forte
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, ParmaI-43124, Italy
| | - Tobias Gebauer
- Geobotany, Faculty of Biology, University of Freiburg, FreiburgD-79104, Germany
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, 03690 Alicante, Spain
| | - Aaron C. Greenville
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW2006, Australia
| | | | - Heather J. Hannusch
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX77843
| | - Siri Vatsø Haugum
- Department of Biological Sciences, University of Bergen, Bergen5007, Norway
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, 3584 CH, Netherlands
| | - Mariet Hefting
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, 3584 CH, Netherlands
| | - Hugh A. L. Henry
- Department of Biology, University of Western Ontario, London, ONN6A 5B7, Canada
| | - Daniela Hoss
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig04103, Germany
- Institute of Biology, Leipzig University, Leipzig04103, Germany
- Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre91501-970, Brazil
| | - Johannes Ingrisch
- Department of Ecology, University of Innsbruck, Innsbruck6020, Austria
| | - Oscar Iribarne
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigación Ciencia y Técnica (CONICET), CC 1260 Correo Central, Mar del PlataB7600WAG, Argentina
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Yari Johnson
- U.S. Army Corps of Engineers, Sacramento, CA95814
| | - Samuel Jordan
- School of Life Sciences, Global Drylands Center, Arizona State University, Tempe, AZ85281
| | - Eugene F. Kelly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO80523
| | - Kaitlin Kimmel
- Global Water Security Center, The University of Alabama, Tuscaloosa, AL35487
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, Department of Experimental Plant Ecology, University of Greifswald, GreifswaldD-17498, Germany
| | - György Kröel-Dulay
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót2163, Hungary
| | - Alicia Kröpfl
- Departamento de Gestión Agropecuaria, Universidad Nacional del Comahue, Centro Universitario Regional Zona Atlántica, Viedma85009, Argentina
| | - Angelika Kübert
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg79110, Germany
| | - Andrew Kulmatiski
- Department of Wildland Resource and the Ecology Center, Utah State University, Logan, UT84322
| | - Eric G. Lamb
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SKS7N5A8, Canada
| | - Klaus Steenberg Larsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C1958, Denmark
| | - Julie Larson
- Range and Meadow Forage Management Research, Eastern Oregon Agricultural Research Center, US Department of Agriculture (USDA)-Agricultural Research Service, Burns, OR97720
| | - Jason Lawson
- Brackenridge Field Laboratory, University of Texas, Austin, TX78747
| | - Cintia V. Leder
- Universidad Nacional de Río Negro, Centro de Estudios Ambientales desde la NorPatagonia (CEANPa), Sede Atlántica–CONICET, Viedma8500, Argentina
| | - Anja Linstädter
- Department of Biodiversity Research and Systematic Botany, University of Potsdam, Potsdam14469, Germany
| | - Jielin Liu
- Prataculture Research Institute, Heilongjiang Academy of Agricultural Sciences, Haerbin150086, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing100091, China
| | - Alexandra G. Lodge
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX77843
| | - Grisel Longo
- Programa de Posgrado en Desarrollo y Medio Ambiente–Universidade Federal da Paraíba, Cidade Universitária, Castelo Branco, João Pessoa, PB58051-900, Brazil
| | - Alejandro Loydi
- Centro de Recursos Naturales Renovables de la Zona Semiárida–CONICET, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur,Bahía Blanca8000FTN, Argentina
| | - Junwei Luan
- Institute of Resources and Environment, International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration and Beijing for Bamboo and Rattan Science and Technology, Beijing100102, China
| | | | - Craig Macfarlane
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Wembley, WA6913, Australia
| | - Kathleen Mackie-Haas
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences,Zollikofen3052, Switzerland
| | - Andrey V. Malyshev
- Institute of Botany and Landscape Ecology, Department of Experimental Plant Ecology, University of Greifswald, GreifswaldD-17498, Germany
| | - Adrián Maturano-Ruiz
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, 03690 Alicante, Spain
| | - Thomas Merchant
- Department of Ecology and Evolutionary Biology, Institute for Arctic and Alpine Research, University of Colorado,Boulder, CO80309
| | - Daniel B. Metcalfe
- Department of Ecology and Environmental Science, Umeå University, UmeåS-901 87, Sweden
| | - Akira S. Mori
- Research Center for Advanced Science and Technology, University of Tokyo,Meguro, Tokyo153-8904, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama240-8501, Japan
| | - Edwin Mudongo
- Conservancy-Communities Living Among Wildlife Sustainably (CLAWS) Botswana, Seronga00000, Botswana
| | - Gregory S. Newman
- School of Biological Sciences, University of Oklahoma, Norman, OK73019
| | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW2751, Australia
| | - Dale Nimmo
- Gulbali Institute, Charles Sturt University, Albury, NSW2640, Australia
| | - Yujie Niu
- Department of Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth95447, Germany
| | - Paola Nobre
- Department of Ecology, Universidade Federal de Goiás, Goiânia, GO74690-900, Brazil
| | - Rory C. O'Connor
- Range and Meadow Forage Management Research, Eastern Oregon Agricultural Research Center, US Department of Agriculture (USDA)-Agricultural Research Service, Burns, OR97720
| | - Romà Ogaya
- Global Ecology Unit Center for Ecological Research and Forestry Applications (CREAF)-National Research Council (CSIC)-Universitat Autonoma de Barcelona (UAB), National Research Council (CSIC), Bellaterra, Catalonia08194, Spain
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, Barcelona, Catalonia08193, Spain
| | - Gastón R. Oñatibia
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), National Scientific and Technical Research Council (CONICET), Faculty of Agronomy, University of Buenos Aires, Buenos AiresC1417DSE, Argentina
| | - Ildikó Orbán
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót2163, Hungary
- Department of Biodiversity Research and Systematic Botany, University of Potsdam, Potsdam14469, Germany
| | - Brooke Osborne
- Department of Environment and Society, Utah State University, Moab, UT84532
| | - Rafael Otfinowski
- Department of Biology, The University of Winnipeg, Winnipeg, MBR3B 2E9, Canada
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, TartuEE50409, Estonia
| | - Josep Penuelas
- Global Ecology Unit Center for Ecological Research and Forestry Applications (CREAF)-National Research Council (CSIC)-Universitat Autonoma de Barcelona (UAB), National Research Council (CSIC), Bellaterra, Catalonia08194, Spain
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, Barcelona, Catalonia08193, Spain
| | - Pablo L. Peri
- Instituto Nacional de Tecnología Agropecuaria–Universidad Nacional d ela Patagonia Austral–CONICET, Río Gallegos, Caleta OliviaZ9011, Argentina
| | - Guadalupe Peter
- Universidad Nacional de Río Negro, Centro de Estudios Ambientales desde la NorPatagonia (CEANPa), Sede Atlántica–CONICET, Viedma8500, Argentina
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, ParmaI-43124, Italy
| | - Catherine Picon-Cochard
- Université Clermont Auvergne, National Research Institute for Agriculture, Food and the Environment, VetAgro Sup, Research Unit for Grassland Ecosystems, Clermont-Ferrand63000, France
| | - Valério D. Pillar
- Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre91501-970, Brazil
| | - Juan Manuel Piñeiro-Guerra
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), National Scientific and Technical Research Council (CONICET), Faculty of Agronomy, University of Buenos Aires, Buenos AiresC1417DSE, Argentina
- Laboratório de Ecologia Aplicada e Conservação, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Cidade Universitária, Castelo Branco, João Pessoa, PB58051-900, Brazil
| | - Laura W. Ploughe
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Robert M. Plowes
- Brackenridge Field Laboratory, University of Texas, Austin, TX78747
| | | | - Suzanne M. Prober
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Wembley, WA6913, Australia
| | - Yolanda Pueyo
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza50059, Spain
| | - Sasha C. Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT84532
| | - Euan G. Ritchie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC3125, Australia
| | - Dana Aylén Rodríguez
- Centro de Recursos Naturales Renovables de la Zona Semiárida–CONICET, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur,Bahía Blanca8000FTN, Argentina
| | - William E. Rogers
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX77843
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig04103, Germany
- Department of Physiological Diversity, Helmholtz-Centre for Environmental Research–UFZ, Leipzig04318, Germany
| | - Ana M. Sánchez
- Department of Biology and Geology, Rey Juan Carlos University, Madrid28032, Spain
| | - Bráulio A. Santos
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Cidade Universitária, Castelo Branco, João Pessoa, PB58051-900, Brazil
| | - María Cecilia Scarfó
- Centro de Recursos Naturales Renovables de la Zona Semiárida–CONICET, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur,Bahía Blanca8000FTN, Argentina
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Baoku Shi
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun130024, China
| | - Lara Souza
- School of Biological Sciences, University of Oklahoma, Norman, OK73019
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK73019
| | - Andreas Stampfli
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences,Zollikofen3052, Switzerland
- Institute of Plant Sciences, University of Bern, Bern3013, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern3012, Switzerland
| | - Rachel J. Standish
- Institute of Plant Sciences, University of Bern, Bern3013, Switzerland
- Environmental and Conservation Sciences, Murdoch University,Murdoch, WA6150, Australia
| | - Marcelo Sternberg
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun130024, China
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig04103, Germany
- Institute of Biology, Leipzig University, Leipzig04103, Germany
| | - Michelle Tedder
- School of Life Sciences, University of Kwazulu-Natal, Pietermaritzburg3201, South Africa
| | - Pål Thorvaldsen
- Norwegian Institute of Bioeconomy Research, Department of Landscape and Biodiversity, Tjøtta8860, Norway
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
| | - Katja Tielbörger
- Plant Ecology Group, Department of Biology, University of Tübingen, Tübingen72076, Germany
| | - Alejandro Valdecantos
- Departamento de Ecologia, Universidad de Alicante, 03690 Alicante, Spain
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, 03690 Alicante, Spain
| | - Liesbeth van den Brink
- Plant Ecology Group, Department of Biology, University of Tübingen, Tübingen72076, Germany
| | - Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Bergen5007, Norway
| | - Mathew R. Vankoughnett
- Nova Scotia Community College, Annapolis Valley Campus, Applied Research, Middleton,NSB0S 1P0, Canada
| | | | - Changhui Wang
- College of Grassland Science, Shanxi Agricultural University, Jinzhong030801, China
| | - Yi Wang
- Institute of Resources and Environment, International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration and Beijing for Bamboo and Rattan Science and Technology, Beijing100102, China
| | - Glenda M. Wardle
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW2006, Australia
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg79110, Germany
| | - Cunzheng Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
| | - Georg Wiehl
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Wembley, WA6913, Australia
| | - Jennifer L. Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Amelia A. Wolf
- Department of Integrative Biology, University of Texas, Austin, TX78712
| | - Michaela Zeiter
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences,Zollikofen3052, Switzerland
- Institute of Plant Sciences, University of Bern, Bern3013, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern3012, Switzerland
| | - Fawei Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai810008, China
| | - Juntao Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou730000, China
| |
Collapse
|
8
|
Ma F, Yan Y, Svenning JC, Quan Q, Peng J, Zhang R, Wang J, Tian D, Zhou Q, Niu S. Opposing effects of warming on the stability of above- and belowground productivity in facing an extreme drought event. Ecology 2024; 105:e4193. [PMID: 37882140 DOI: 10.1002/ecy.4193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Climate warming, often accompanied by extreme drought events, could have profound effects on both plant community structure and ecosystem functioning. However, how warming interacts with extreme drought to affect community- and ecosystem-level stability remains a largely open question. Using data from a manipulative experiment with three warming treatments in an alpine meadow that experienced one extreme drought event, we investigated how warming modulates resistance and recovery of community structural and ecosystem functional stability in facing with extreme drought. We found warming decreased resistance and recovery of aboveground net primary productivity (ANPP) and structural resistance but increased resistance and recovery of belowground net primary productivity (BNPP), overall net primary productivity (NPP), and structural recovery. The findings highlight the importance of jointly considering above- and belowground processes when evaluating ecosystem stability under global warming and extreme climate events. The stability of dominant species, rather than species richness and species asynchrony, was identified as a key predictor of ecosystem functional resistance and recovery, except for BNPP recovery. In addition, structural resistance of common species contributed strongly to the resistance changes in BNPP and NPP. Importantly, community structural resistance and recovery dominated the resistance and recovery of BNPP and NPP, but not for ANPP, suggesting the different mechanisms underlie the maintenance of stability of above- versus belowground productivity. This study is among the first to explain that warming modulates ecosystem stability in the face of extreme drought and lay stress on the need to investigate ecological stability at the community level for a more mechanistic understanding of ecosystem stability in response to climate extremes.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Yan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Li X, Song Z, Hu Y, Qiao J, Chen Y, Wang S, Yue P, Chen M, Ke Y, Xu C, Yu Q, Zuo X. Drought intensity and post-drought precipitation determine vegetation recovery in a desert steppe in Inner Mongolia, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167449. [PMID: 37832659 DOI: 10.1016/j.scitotenv.2023.167449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Extreme drought events are expected to increase in frequency and severity, posing significant threats to ecosystems worldwide. While considerable research has been concentrated on the effects of climate extremes on the stability of grasslands, the process by which grassland productivity may recover after extreme drought events are still not well understood. Here, we conducted a four-year (2019-2022) recovery investigation after four-year's (2015-2018) extreme drought treatments of different intensities (control, press and pulse) to explore the vegetation recovery of desert-grassland ecosystems Inner Mongolia, China. Press drought involved a 66 % reduction in natural precipitation from May to August, while pulse drought reduced it by 100 % during June and July. We found that both press and pulse droughts led to a sharp decrease in aboveground net primary productivity (ANPP) after four years, primarily due to reduced growth, density, and productivity of annual and perennial plants. However, ANPP under pulse drought could recover fully after four years of stopping of drought treatment, and it could not under press drought. Additionally, community structure (i.e., species richness, plant density, and height) fully recovered within 1 year after the end of the two extreme drought treatments. Both plant density and height contributed to the ANPP recovery after press and pulse droughts. Structural equation modeling (SEM) results further revealed that the reduction in ANPP during the extreme drought was primarily due to a decrease in plant density caused by reduced soil water content. The recovery of ANPP in pulse drought was directly caused by increased soil water content in the post-extreme drought. These results suggest that drought intensity and precipitation determine ANPP recovery in a degraded desert steppe. Our findings are crucial for deepening understanding of the processes and mechanisms of ecosystem recovery after extreme drought, as well as for the successful management and protection of grassland ecosystems.
Collapse
Affiliation(s)
- Xiangyun Li
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Zhaobin Song
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Ya Hu
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Jingjuan Qiao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Yuheng Chen
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Shaokun Wang
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Ping Yue
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Min Chen
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Yuguang Ke
- Hulunber Grassland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Chong Xu
- Hulunber Grassland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing 10008, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
10
|
Qu LP, Chen J, Xiao J, De Boeck HJ, Dong G, Jiang SC, Hu YL, Wang YX, Shao CL. The complexity of heatwaves impact on terrestrial ecosystem carbon fluxes: Factors, mechanisms and a multi-stage analytical approach. ENVIRONMENTAL RESEARCH 2024; 240:117495. [PMID: 37890820 DOI: 10.1016/j.envres.2023.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Extreme heatwaves have become more frequent and severe in recent decades, and are expected to significantly influence carbon fluxes at regional scales across global terrestrial ecosystems. Nevertheless, accurate prediction of future heatwave impacts remains challenging due to a lack of a consistent comprehension of intrinsic and extrinsic mechanisms. We approached this knowledge gap by analyzing the complexity factors in heatwave studies, including the methodology for determining heatwave events, divergent responses of individual ecosystem components at multiple ecological and temporal scales, and vegetation status and hydrothermal environment, among other factors. We found that heatwaves essentially are continuously changing compound environmental stress that can unfold into multiple chronological stages, and plant physiology and carbon flux responses differs in each of these stages. This approach offers a holistic perspective, recognizing that the impacts of heatwaves on ecosystems can be better understood when evaluated over time. These stages include instantaneous, post-heatwave, legacy, and cumulative effects, each contributing uniquely to the overall impact on the ecosystem carbon cycle. Next, we investigated the importance of the timing of heatwaves and the possible divergent consequences caused by different annual heatwave patterns. Finally, a conceptual framework is proposed to establish a united foundation for the study and comprehension of the consequences of heatwaves on ecosystem carbon cycle. This instrumental framework will assist in guiding regional assessments of heatwave impacts, shedding light on the underlying mechanisms responsible for the varied responses of terrestrial ecosystems to specific heatwave events, which are imperative for devising efficient adaptation and mitigation approaches.
Collapse
Affiliation(s)
- Lu-Ping Qu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Jiquan Chen
- Center for Global Change & Earth Observations (CGCEO), Michigan State University, East Lansing, MI, 48823, USA.
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, 03824, USA.
| | - Hans J De Boeck
- Research Group of Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Gang Dong
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; School of Life Science, Shanxi University, Taiyuan, China.
| | | | - Ya-Lin Hu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yi-Xuan Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chang-Liang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
11
|
Schärer ML, Lüscher A, Kahmen A. Post-drought compensatory growth in perennial grasslands is determined by legacy effects of the soil and not by plants. THE NEW PHYTOLOGIST 2023; 240:2265-2275. [PMID: 37789694 DOI: 10.1111/nph.19291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Grasslands recovering from drought have repeatedly been shown to outperform non-drought-stressed grasslands in biomass production. The mechanisms that lead to the unexpectedly high biomass production in grasslands recovering from drought are, however, not understood. To disentangle plant-intrinsic and plant-extrinsic (soil) drought legacy effects on grassland recovery from drought, we designed a factorial field experiment where Lolium perenne plants that were exposed to either a 2-month drought or to well-watered control conditions were transplanted into control and drought-stressed soil and rewetted thereafter. Drought and rewetting (DRW) resulted in negative drought legacy effects of formerly drought-stressed plants (DRWp ) compared with control plants (Ctrp ) when decoupled from soil-mediated DRW effects, with DRWp showing less aboveground productivity (-13%), restricted N nutrition, and higher δ13 C compared with Ctrp . However, plants grown on formerly drought-stressed soil (DRWs ) showed enhanced aboveground productivity (+82%), improved N nutrition, and higher δ13 C values relative to plants grown on control soil (Ctrs ), irrespective of the plants' pretreatment. Our study shows that the higher post-drought productivity of perennial grasslands recovering from drought relative to non-drought-stressed controls is induced by soil-mediated DRW legacy effects which improve plant N nutrition and photosynthetic capacity and that these effects countervail negative plant-intrinsic drought legacy effects.
Collapse
Affiliation(s)
- Marie-Louise Schärer
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4057, Basel, Switzerland
- Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Andreas Lüscher
- Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4057, Basel, Switzerland
| |
Collapse
|
12
|
Hossain ML, Li J, Lai Y, Beierkuhnlein C. Long-term evidence of differential resistance and resilience of grassland ecosystems to extreme climate events. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:734. [PMID: 37231126 DOI: 10.1007/s10661-023-11269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Grassland ecosystems are affected by the increasing frequency and intensity of extreme climate events (e.g., droughts). Understanding how grassland ecosystems maintain their functioning, resistance, and resilience under climatic perturbations is a topic of current concern. Resistance is the capacity of an ecosystem to withstand change against extreme climate, while resilience is the ability of an ecosystem to return to its original state after a perturbation. Using the growing season Normalized Difference Vegetation Index (NDVIgs, an index of vegetation growth) and the Standardized Precipitation Evapotranspiration Index (a drought index), we evaluated the response, resistance, and resilience of vegetation to climatic conditions for alpine grassland, grass-dominated steppe, hay meadow, arid steppe, and semi-arid steppe in northern China for the period 1982-2012. The results show that NDVIgs varied significantly across these grasslands, with the highest (lowest) NDVIgs values in alpine grassland (semi-arid steppe). We found increasing trends of greenness in alpine grassland, grass-dominated steppe, and hay meadow, while there were no detectable changes of NDVIgs in arid and semi-arid steppes. NDVIgs decreased with increasing dryness from extreme wet to extreme dry. Alpine and steppe grasslands exhibited higher resistance to and lower resilience after extreme wet, while lower resistance to and higher resilience after extreme dry conditions. No significant differences in resistance and resilience of hay meadow under climatic conditions suggest the stability of this grassland under climatic perturbations. This study concludes that highly resistant grasslands under conditions of water surplus are low resilient, but low resistant ecosystems under conditions of water shortage are highly resilient.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
- Department of Biogeography, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Department of Environment Protection Technology, German University Bangladesh, Gazipur, Bangladesh
| | - Jianfeng Li
- Department of Geography, Hong Kong Baptist University, Hong Kong, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| | - Yangchen Lai
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- BayCEER, Bayreuth Center for Ecology and Environmental Research, Universitätsstr. 30, 95447, Bayreuth, Germany
- GIB, Geographical Institute Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| |
Collapse
|
13
|
Van Sundert K, Leuzinger S, Bader MKF, Chang SX, De Kauwe MG, Dukes JS, Langley JA, Ma Z, Mariën B, Reynaert S, Ru J, Song J, Stocker B, Terrer C, Thoresen J, Vanuytrecht E, Wan S, Yue K, Vicca S. When things get MESI: The Manipulation Experiments Synthesis Initiative-A coordinated effort to synthesize terrestrial global change experiments. GLOBAL CHANGE BIOLOGY 2023; 29:1922-1938. [PMID: 36607160 DOI: 10.1111/gcb.16585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 05/28/2023]
Abstract
Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2 , temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2 , warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible at doi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis-based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.
Collapse
Affiliation(s)
- Kevin Van Sundert
- Research Group PLECO (Plants and Ecosystems), Global Change Ecology Centre of Excellence, Biology Department, University of Antwerp, Wilrijk, Belgium
- Climate and Ecological Synthesis Lab, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, California, USA
- Ecological Synthesis Lab, School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Martin K-F Bader
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jeffrey S Dukes
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
| | - J Adam Langley
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, Pennsylvania, USA
| | - Zilong Ma
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Bertold Mariën
- Research Group PLECO (Plants and Ecosystems), Global Change Ecology Centre of Excellence, Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Simon Reynaert
- Research Group PLECO (Plants and Ecosystems), Global Change Ecology Centre of Excellence, Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jian Song
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Benjamin Stocker
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - César Terrer
- Climate and Ecological Synthesis Lab, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joshua Thoresen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- Wildland Consultants, Auckland, New Zealand
| | - Eline Vanuytrecht
- Division of Soil & Water Management, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
- Climate Change Adaptation, European Environment Agency, Copenhagen, Denmark
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, Fujian, China
| | - Sara Vicca
- Research Group PLECO (Plants and Ecosystems), Global Change Ecology Centre of Excellence, Biology Department, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
14
|
Xu Z, Liu H, Meng Y, Yin J, Ren H, Li MH, Yang S, Tang S, Jiang Y, Jiang L. Nitrogen addition and mowing alter drought resistance and recovery of grassland communities. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2217-9. [PMID: 36964460 DOI: 10.1007/s11427-022-2217-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/11/2022] [Indexed: 03/26/2023]
Abstract
Nitrogen enrichment and land use are known to influence various ecosystems, but how these anthropogenic changes influence community and ecosystem responses to disturbance remains poorly understood. Here we investigated the effects of increased nitrogen input and mowing on the resistance and recovery of temperate semiarid grassland experiencing a three-year drought. Nitrogen addition increased grassland biomass recovery but decreased structural recovery after drought, whereas annual mowing increased grassland biomass recovery and structural recovery but reduced structural resistance to drought. The treatment effects on community biomass/structural resistance and recovery were largely modulated by the stability of the dominant species and asynchronous dynamics among species, and the community biomass resistance and recovery were also greatly driven by the stability of grasses. Community biomass resistance/recovery in response to drought was positively associated with its corresponding structural stability. Our study provides important experimental evidence that both nitrogen addition and mowing could substantially change grassland stability in both functional and structural aspects. Our findings emphasize the need to study changes across levels of ecological organization for a more complete understanding of ecosystem responses to disturbances under widespread environmental changes.
Collapse
Affiliation(s)
- Zhuwen Xu
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, USA.
- Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China.
| | - Heyong Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yani Meng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jinfei Yin
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Haiyan Ren
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Mai-He Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Shan Yang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shiming Tang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Yong Jiang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
- School of Life Sciences, Hebei University, Baoding, 071002, China.
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, USA.
| |
Collapse
|
15
|
Luo W, Muraina TO, Griffin-Nolan RJ, Ma W, Song L, Fu W, Yu Q, Knapp AK, Wang Z, Han X, Collins SL. Responses of a semiarid grassland to recurrent drought are linked to community functional composition. Ecology 2023; 104:e3920. [PMID: 36416074 DOI: 10.1002/ecy.3920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
Abstract
Recurrent droughts are an inevitable consequence of climate change, yet how grasslands respond to such events is unclear. We conducted a 6-year rainfall manipulation experiment in a semiarid grassland that consisted of an initial 2-year drought (2015-2016), followed by a recovery period (2017-2018) and, finally, a second 2-year drought (2019-2020). In each year, we estimated aboveground net primary productivity (ANPP), species richness, community-weighted mean (CWM) plant traits, and several indices of functional diversity. The initial drought led to reduced ANPP, which was primarily driven by limited growth of forbs in the first year and grasses in the second year. Total ANPP completely recovered as the rapid recovery of grass productivity compensated for the slow recovery of forb productivity. The subsequent drought led to a greater reduction in total ANPP than the initial drought due to the greater decline of both grass and forb productivity. The structural equation models revealed that soil moisture influenced ANPP responses directly during the initial drought, and indirectly during the subsequent drought by lowering functional diversity, which resulted in reduced total ANPP. Additionally, ANPP was positively influenced by CWM plant height and leaf nitrogen during the recovery period and recurrent drought, respectively. Overall, the greater impact of the second drought on ecosystem function than the initial drought, as well as the underlying differential mechanism, underscores the need for an understanding of how increased drought frequency may alter semiarid grassland functioning.
Collapse
Affiliation(s)
- Wentao Luo
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Taofeek O Muraina
- Department of Animal Health and Production, Oyo State College of Agriculture and Technology, Igbo-Ora, Nigeria
| | | | - Wang Ma
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Lin Song
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Alan K Knapp
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Zhengwen Wang
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xingguo Han
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
16
|
Urbanization and plant diversity influence different aspects of floral phenology. Urban Ecosyst 2023. [DOI: 10.1007/s11252-022-01326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Xu Q, Yang X, Song J, Ru J, Xia J, Wang S, Wan S, Jiang L. Nitrogen enrichment alters multiple dimensions of grassland functional stability via changing compositional stability. Ecol Lett 2022; 25:2713-2725. [DOI: 10.1111/ele.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Qianna Xu
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology Sun Yat‐sen University Guangzhou P. R. China
| | - Jian Song
- School of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding P. R. China
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding P. R. China
| | - Jianyang Xia
- Research Center for Global Change and Complex Ecosystems, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences East China Normal University Shanghai China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University Beijing P. R. China
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding P. R. China
| | - Lin Jiang
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| |
Collapse
|
18
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
19
|
Peters JS, Aguirre BA, DiPaola A, Power AG. Ecology of Yellow Dwarf Viruses in Crops and Grasslands: Interactions in the Context of Climate Change. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:283-305. [PMID: 36027939 DOI: 10.1146/annurev-phyto-020620-101848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Our understanding of the ecological interactions between plant viruses, their insect vectors, and their host plants has increased rapidly over the past decade. The suite of viruses known collectively as the yellow dwarf viruses infect an extensive range of cultivated and noncultivated grasses worldwide and is one of the best-studied plant virus systems. The yellow dwarf viruses are ubiquitous in cereal crops, where they can significantly limit yields, and there is growing recognition that they are also ubiquitous in grassland ecosystems, where they can influence community dynamics. Here, we discuss recent research that has explored (a) the extent and impact of yellow dwarf viruses in a diversity of plant communities, (b) the role of vector behavior in virus transmission, and (c) the prospects for impacts of climate change-including rising temperatures, drought, and elevated CO2-on the epidemiology of yellow dwarf viruses.
Collapse
Affiliation(s)
- Jasmine S Peters
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | - Beatriz A Aguirre
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | - Anna DiPaola
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | - Alison G Power
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
20
|
Vilonen L, Ross M, Smith MD. What happens after drought ends: synthesizing terms and definitions. THE NEW PHYTOLOGIST 2022; 235:420-431. [PMID: 35377474 PMCID: PMC9322664 DOI: 10.1111/nph.18137] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
Drought is intensifying globally with climate change, creating an urgency to understand ecosystem response to drought both during and after these events end to limit loss of ecosystem functioning. The literature is replete with studies of how ecosystems respond during drought, yet there are far fewer studies focused on ecosystem dynamics after drought ends. Furthermore, while the terms used to describe drought can be variable and inconsistent, so can those that describe ecosystem responses following drought. With this review, we sought to evaluate and create clear definitions of the terms that ecologists use to describe post-drought responses. We found that legacy effects, resilience and recovery were used most commonly with respect to post-drought ecosystem responses, but the definitions used to describe these terms were variable. Based on our review of the literature, we propose a framework for generalizing ecosystem responses after drought ends, which we refer to as 'the post-drought period'. We suggest that future papers need to clearly describe characteristics of the imposed drought, and we encourage authors to use the term post-drought period as a general term that encompasses responses after drought ends and use other terms as more specific descriptors of responses during the post-drought period.
Collapse
Affiliation(s)
- Leena Vilonen
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Maggie Ross
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Melinda D. Smith
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| |
Collapse
|
21
|
Hossain ML, Li J, Hoffmann S, Beierkuhnlein C. Biodiversity showed positive effects on resistance but mixed effects on resilience to climatic extremes in a long-term grassland experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154322. [PMID: 35257775 DOI: 10.1016/j.scitotenv.2022.154322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Understanding the role of biodiversity in maintaining ecosystem functioning and stability under increasing frequency and magnitude of climatic extremes has fascinated ecologists for decades. Although growing evidence suggests that biodiversity affects ecosystem productivity and buffers ecosystem against climatic extremes, it remains unclear whether the stability of an ecosystem is caused by its resistance against disturbances or resilience towards perturbations or both. In attempting to explore how species richness affects resistance and resilience of above-ground net primary productivity (ANPP) against climatic extremes, we analyzed the grassland ANPP of the long-running (1997-2020) Bayreuth Biodiversity experiment in Germany. We used the Standardized Precipitation Evapotranspiration Index to identify climatic conditions based on 5- and 7-class classifications of climatic conditions. Mixed-effects models and post-hoc test show that ANPP varied significantly among different intensities (e.g. moderate or extreme) and directions (e.g. dry or wet) of climatic conditions, with the highest ANPP in extreme wet and the lowest in extreme dry conditions. Resistance and resilience of ANPP to climatic extremes in different intensities were examined by linear-mixed effects models and we found that species richness increased ecosystem resistance against all dry and wet climatic extremes, but decreased ecosystem resilience towards all dry climatic extremes. Species richness had no effects on ecosystem resilience towards wet climatic extremes. When the five level of species richness treatment (i.e., 1, 2, 4, 8, and 16 species) were considered, the relationships between species richness and resistance and resilience of ANPP under extreme wet and dry conditions remained similar. Our study emphasizes that plant communities with greater species richness need to be maintained to stabilize ecosystem productivity and increase resistance against different climatic extremes.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Department of Geography, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China; Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany; Department of Environment Protection Technology, German University Bangladesh, 1702 Gazipur, Bangladesh
| | - Jianfeng Li
- Department of Geography, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Samuel Hoffmann
- Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany; BayCEER, Bayreuth Center for Ecology and Environmental Research, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
22
|
Sun Y, Yuan Y, Luo Y, Ji W, Bian Q, Zhu Z, Wang J, Qin Y, He XZ, Li M, Yi S. An Improved Method for Monitoring Multiscale Plant Species Diversity of Alpine Grassland Using UAV: A Case Study in the Source Region of the Yellow River, China. FRONTIERS IN PLANT SCIENCE 2022; 13:905715. [PMID: 35755669 PMCID: PMC9218072 DOI: 10.3389/fpls.2022.905715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Plant species diversity (PSD) is essential in evaluating the function and developing the management and conservation strategies of grassland. However, over a large region, an efficient and high precision method to monitor multiscale PSD (α-, β-, and γ-diversity) is lacking. In this study, we proposed and improved an unmanned aerial vehicle (UAV)-based PSD monitoring method (UAVB) and tested the feasibility, and meanwhile, explored the potential relationship between multiscale PSD and precipitation on the alpine grassland of the source region of the Yellow River (SRYR), China. Our findings showed that: (1) UAVB was more representative (larger monitoring areas and more species identified with higher α- and γ-diversity) than the traditional ground-based monitoring method, though a few specific species (small in size) were difficult to identify; (2) UAVB is suitable for monitoring the multiscale PSD over a large region (the SRYR in this study), and the improvement by weighing the dominance of species improved the precision of α-diversity (higher R 2 and lower P values of the linear regressions); and (3) the species diversity indices (α- and β-diversity) increased first and then they tended to be stable with the increase of precipitation in SRYR. These findings conclude that UAVB is suitable for monitoring multiscale PSD of an alpine grassland community over a large region, which will be useful for revealing the relationship of diversity-function, and helpful for conservation and sustainable management of the alpine grassland.
Collapse
Affiliation(s)
- Yi Sun
- School of Geographic Science, Institute of Fragile Eco-Environment, Nantong University, Nantong, China
| | - Yaxin Yuan
- School of Geographic Science, Institute of Fragile Eco-Environment, Nantong University, Nantong, China
| | - Yifei Luo
- School of Geographic Science, Institute of Fragile Eco-Environment, Nantong University, Nantong, China
| | - Wenxiang Ji
- School of Geographic Science, Institute of Fragile Eco-Environment, Nantong University, Nantong, China
| | - Qingyao Bian
- School of Geographic Science, Institute of Fragile Eco-Environment, Nantong University, Nantong, China
| | - Zequn Zhu
- School of Geographic Science, Institute of Fragile Eco-Environment, Nantong University, Nantong, China
| | - Jingru Wang
- School of Geographic Science, Institute of Fragile Eco-Environment, Nantong University, Nantong, China
| | - Yu Qin
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiong Zhao He
- School of Agriculture and Environment, College of Science, Massey University, Palmerston North, New Zealand
| | - Meng Li
- School of Geographic Science, Institute of Fragile Eco-Environment, Nantong University, Nantong, China
| | - Shuhua Yi
- School of Geographic Science, Institute of Fragile Eco-Environment, Nantong University, Nantong, China
| |
Collapse
|
23
|
Wang C, Vera-Vélez R, Lamb EG, Wu J, Ren F. Global pattern and associated drivers of grassland productivity sensitivity to precipitation change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151224. [PMID: 34728201 DOI: 10.1016/j.scitotenv.2021.151224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Precipitation is a primary climatic determinant of grassland productivity, with many global change experiments manipulating precipitation. Here we examine the impacts of precipitation addition and reduction treatment intensity and duration on grassland above- (ANPP) and below- (BNPP) ground net primary productivity in a large-scale meta-analysis. We tested, 1) the double asymmetry model of sensitivity, specifically whether the sensitivity of productivity decreases with treatment intensity under increased precipitation and increases with treatment intensity under decreased precipitation, 2) whether the sensitivity of productivity to precipitation change decreases with treatment length, and 3) how the sensitivity of productivity changes with climate conditions. ANPP showed higher sensitivity than BNPP under increased precipitation but similar sensitivity to BNPP under decreased precipitation. The sensitivity of ANPP and BNPP decreased with increasing treatment intensity (e.g., percentage change in precipitation, ΔPPT) and leveled off in the long-term. With increased precipitation, the sensitivity of productivity decreased with increasing treatment length (e.g., experimental duration) and leveled off in the long-term, whereas the sensitivity increased with increasing treatment length under reduced precipitation. Furthermore, the sensitivity of productivity to precipitation change decreased with increasing mean annual precipitation and temperature. Finally, our meta-analysis shows that above- and belowground net primary productivity have asymmetric responses to precipitation change. Together these results highlight the complex mechanisms underlying the impacts of precipitation change, particularly the intensity and duration of such changes, on grassland productivity.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China.
| | - Roy Vera-Vélez
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Eric G Lamb
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Juying Wu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China
| | - Fei Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China
| |
Collapse
|
24
|
Climate variability supersedes grazing to determine the anatomy and physiology of a dominant grassland species. Oecologia 2022; 198:345-355. [PMID: 35018484 PMCID: PMC8858925 DOI: 10.1007/s00442-022-05106-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/03/2022] [Indexed: 10/29/2022]
Abstract
Grassland ecosystems are historically shaped by climate, fire, and grazing which are essential ecological drivers. These grassland drivers influence morphology and productivity of grasses via physiological processes, resulting in unique water and carbon-use strategies among species and populations. Leaf-level physiological responses in plants are constrained by the underlying anatomy, previously shown to reflect patterns of carbon assimilation and water-use in leaf tissues. However, the magnitude to which anatomy and physiology are impacted by grassland drivers remains unstudied. To address this knowledge gap, we sampled from three locations along a latitudinal gradient in the mesic grassland region of the central Great Plains, USA during the 2018 (drier) and 2019 (wetter) growing seasons. We measured annual biomass and forage quality at the plot level, while collecting physiological and anatomical traits at the leaf-level in cattle grazed and ungrazed locations at each site. Effects of ambient drought conditions superseded local grazing treatments and reduced carbon assimilation and total productivity in A. gerardii. Leaf-level anatomical traits, particularly those associated with water-use, varied within and across locations and between years. Specifically, xylem area increased when water was more available (2019), while xylem resistance to cavitation was observed to increase in the drier growing season (2018). Our results highlight the importance of multi-year studies in natural systems and how trait plasticity can serve as vital tool and offer insight to understanding future grassland responses from climate change as climate played a stronger role than grazing in shaping leaf physiology and anatomy.
Collapse
|
25
|
White HJ, Gaul W, León‐Sánchez L, Sadykova D, Emmerson MC, Caplat P, Yearsley JM. Ecosystem stability at the landscape scale is primarily associated with climatic history. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hannah J. White
- School of Life Sciences Anglia Ruskin University Cambridge UK
- School of Biology and Environmental Science University College Dublin Dublin Ireland
- Earth Institute University College Dublin Dublin Ireland
| | - Willson Gaul
- School of Biology and Environmental Science University College Dublin Dublin Ireland
- Earth Institute University College Dublin Dublin Ireland
| | | | - Dinara Sadykova
- School of Biological Sciences Queen's University Belfast Belfast UK
- Centre for Ecology and Hydrology Wallingford UK
| | - Mark C. Emmerson
- School of Biological Sciences Queen's University Belfast Belfast UK
- Institute of Global Food Security (IGFS) Queen's University Belfast Belfast UK
| | - Paul Caplat
- School of Biological Sciences Queen's University Belfast Belfast UK
- Institute of Global Food Security (IGFS) Queen's University Belfast Belfast UK
- Centre for Environmental and Climate Research Lund University Lund Sweden
| | - Jon M. Yearsley
- School of Biology and Environmental Science University College Dublin Dublin Ireland
- Earth Institute University College Dublin Dublin Ireland
| |
Collapse
|
26
|
Hossain ML, Li J. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
27
|
Hossain ML, Kabir MH, Nila MUS, Rubaiyat A. Response of grassland net primary productivity to dry and wet climatic events in four grassland types in Inner Mongolia. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:250-262. [PMID: 37284512 PMCID: PMC10168099 DOI: 10.1002/pei3.10064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/11/2021] [Accepted: 09/27/2021] [Indexed: 06/08/2023]
Abstract
Increasing frequency and intensity of climate extremes have profound impacts on grassland biodiversity functioning and stability. Using Moderate Resolution Imaging Spectroradiometer (MODIS) net primary productivity (NPP) data and standardized precipitation evapotranspiration index, we assessed the response of NPP to growing-season and annual climate extremes and time-lag of climatic conditions across four grassland types (meadow steppe, typical steppe, steppe desert, and desert steppe) in Inner Mongolia, China from the period 2000 to 2019. Results showed that annual NPP varied significantly across four grassland types, with the highest NPP in meadow steppe and the lowest in desert steppe. Annual NPP of all grassland types increased over the past 20 years, but NPP in meadow steppe and typical steppe decreased for the period 2012-2019. Irrespective of grassland type, the 1- and 2-month time-lag of climatic conditions showed significant effects on annual NPP. Growing-season climate was found the better predictor of annual NPP in all grassland types than the annual climate. Compared with growing-season normal climates, annual NPP was lowest in extreme dry events in all grasslands, while highest in extreme wet events in meadow steppe and typical steppe, and in moderate wet events in steppe desert and desert steppe. Typical steppe and steppe desert are highly vulnerable to the increasing intensity of climate extremes, as we found that the losses of NPP in these grasslands in extreme dry were almost double than that of moderate dry events. Surprisingly, for meadow steppe and desert steppe, the losses of NPP for both moderate and extreme dry events were almost the same, which highlights that a low-intensity drought may have profound impacts on the annual NPP of these grasslands. The study provides the key insight in scientific basis to improve our understanding of the effects of climate extremes on grassland NPP, which is critical to sustainable management of grassland and maintain ecosystem stability.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Department of Environment Protection TechnologyGerman University BangladeshGazipurBangladesh
- Department of GeographyHong Kong Baptist UniversityHong Kong
| | - Md Humayain Kabir
- Institute of Forestry and Environmental SciencesUniversity of ChittagongChittagongBangladesh
- Wegener Center for Climate and Global ChangeUniversity of GrazGrazAustria
| | - Mst Umme Salma Nila
- CEN Centre for Earth System Research and SustainabilityInstitute of GeographyUniversity of HamburgHamburgGermany
| | - Ashik Rubaiyat
- Burckhardt Institute, Tropical Silviculture and Forest Ecology, Faculty of Forest Sciences and Forest EcologyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
28
|
Wilfahrt PA, Schweiger AH, Abrantes N, Arfin‐Khan MAS, Bahn M, Berauer BJ, Bierbaumer M, Djukic I, Dusseldorp M, Eibes P, Estiarte M, Hessberg A, Holub P, Ingrisch J, Schmidt IK, Kesic L, Klem K, Kröel‐Dulay G, Larsen KS, Lõhmus K, Mänd P, Orbán I, Orlovic S, Peñuelas J, Reinthaler D, Radujković D, Schuchardt M, Schweiger JM, Stojnic S, Tietema A, Urban O, Vicca S, Jentsch A. Disentangling climate from soil nutrient effects on plant biomass production using a multispecies phytometer. Ecosphere 2021. [DOI: 10.1002/ecs2.3719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
29
|
Schuchardt MA, Berauer BJ, Heßberg A, Wilfahrt P, Jentsch A. Drought effects on montane grasslands nullify benefits of advanced flowering phenology due to warming. Ecosphere 2021. [DOI: 10.1002/ecs2.3661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Max A. Schuchardt
- Department of Disturbance Ecology Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany
| | - Bernd J. Berauer
- Department of Disturbance Ecology Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany
- Department of Plant Ecology Institute of Landscape and Plant Ecology University of Hohenheim Hohenheim Germany
| | - Andreas Heßberg
- Department of Disturbance Ecology Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany
| | - Peter Wilfahrt
- Department of Disturbance Ecology Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota USA
| | - Anke Jentsch
- Department of Disturbance Ecology Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany
| |
Collapse
|
30
|
Liu Y, Bortier MF, Nijs I, Fu Y, Li Z, Hou F, De Boeck HJ. Three‐dimensional soil heterogeneity modulates responses of grassland mesocosms to an experimentally imposed drought extreme. OIKOS 2021. [DOI: 10.1111/oik.07810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongjie Liu
- State Key Laboratory of Grassland Agro‐ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou Univ. Lanzhou China
- Plants and Ecosystems, Dept of Biology, Univ. of Antwerp Wilrijk Belgium
| | - Michiel F. Bortier
- Plants and Ecosystems, Dept of Biology, Univ. of Antwerp Wilrijk Belgium
| | - Ivan Nijs
- Plants and Ecosystems, Dept of Biology, Univ. of Antwerp Wilrijk Belgium
| | - Yongshuo Fu
- College of Water Sciences, Beijing Normal Univ. Beijing China
| | - Zhenqing Li
- State Key Laboratory of Vegetation and Environmental Change, Inst. of Botany, Chinese Academy of Sciences Beijing China
- Univ. of Chinese Academy of Sciences Beijing China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro‐ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou Univ. Lanzhou China
| | - Hans J. De Boeck
- Plants and Ecosystems, Dept of Biology, Univ. of Antwerp Wilrijk Belgium
| |
Collapse
|
31
|
Reynaert S, De Boeck HJ, Verbruggen E, Verlinden M, Flowers N, Nijs I. Risk of short-term biodiversity loss under more persistent precipitation regimes. GLOBAL CHANGE BIOLOGY 2021; 27:1614-1626. [PMID: 33355970 DOI: 10.1111/gcb.15501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Recent findings indicate that atmospheric warming increases the persistence of weather patterns in the mid-latitudes, resulting in sequences of longer dry and wet periods compared to historic averages. The alternation of progressively longer dry and wet extremes could increasingly select for species with a broad environmental tolerance. As a consequence, biodiversity may decline. Here we explore the relationship between the persistence of summer precipitation regimes and plant diversity by subjecting experimental grassland mesocosms to a gradient of dry-wet alternation frequencies whilst keeping the total precipitation constant. The gradient varied the duration of consecutive wet and dry periods, from 1 up to 60 days with or without precipitation, over a total of 120 days. An alternation of longer dry and wet spells led to a severe loss of species richness (up to -75% relative to the current rainfall pattern in W-Europe) and functional diversity (enhanced dominance of grasses relative to nitrogen (N)-fixers and non-N-fixing forbs). Loss of N-fixers and non-N-fixing forbs in severe treatments was linked to lower baseline competitive success and higher physiological sensitivity to changes in soil moisture compared to grasses. The extent of diversity losses also strongly depended on the timing of the dry and wet periods. Regimes in which long droughts (≥20 days) coincided with above-average temperatures showed significantly more physiological plant stress over the experimental period, greater plant mortality, and impoverished communities by the end of the season. Across all regimes, the duration of the longest period below permanent wilting point was an accurate predictor of mortality across the communities, indicating that increasingly persistent precipitation regimes may reduce opportunities for drought stress alleviation. We conclude that without recruitment, which was precluded in this experiment, summer precipitation regimes with longer dry and wet spells will likely diminish plant diversity, at least in the short term.
Collapse
Affiliation(s)
- Simon Reynaert
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Hans J De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Erik Verbruggen
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Maya Verlinden
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Nina Flowers
- Institute of Population Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Ivan Nijs
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
32
|
Hossain ML, Li J. Disentangling the effects of climatic variability and climate extremes on the belowground biomass of C 3- and C 4-dominated grasslands across five ecoregions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143894. [PMID: 33341628 DOI: 10.1016/j.scitotenv.2020.143894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Elucidating the variation in grassland belowground biomass (BGB) and its response to changes in climatic variables are key issues in plant ecology research. In this study, BGB data for five ecoregions (cold steppe, temperate dry steppe, savanna, humid savanna, and humid temperate) were used to examine the effects of climatic variability and extremes on the BGB of C3- and C4-dominated grasslands. Results showed that BGB varied significantly across the ecoregions, with the highest levels in cold steppe and the lowest in savanna. The results indicated that growing-season temperature, maximum and minimum temperatures and their interactions had significantly positive effects on the single-harvest BGB of C3 plants in colder ecoregions (i.e., humid temperate and cold steppe) and of C4 plants in arid ecoregions (i.e., temperate dry steppe and savanna). The single-harvest BGB of C3 plants in arid ecoregions and C4 plants in humid savanna ecoregion declined with increasing temperature during the growing season. Growing-season precipitation exerted significant positive effects on the single-harvest BGB of C4 plants in arid ecoregions. Annual temperature variables negatively impacted the annual BGB of humid temperate ecoregion, because of the dominance of C3 plants. Increasing cumulative growing-season precipitation elevated and the mean annual temperature reduced the annual BGB of both categories of plants in arid ecoregions. Compared with normal climates, extreme dry events during the growing season enhanced single-harvest BGB in colder ecoregions. The single-harvest BGB of C4 plants in savanna tended to increase during extreme wet and decrease during moderate dry events compared to normal climates. This study suggests that the differential effects of climatic variability and extremes on BGB can be explained by differences in plant types, and ecoregions. These findings on the responses of the BGB to climatic variability and extremes constitute important scientific evidence emphasizing the need to maintain ecosystem stability across ecoregions.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Department of Geography, Hong Kong Baptist University, Hong Kong, China; Department of Environmental Protection Technology, German University Bangladesh, Gazipur, Bangladesh
| | - Jianfeng Li
- Department of Geography, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
33
|
Guo T. Grazing Exclusion Effects on the Relationship between Species Richness and Vegetation Cover in Mongolian Grasslands. POLISH JOURNAL OF ECOLOGY 2020. [DOI: 10.3161/15052249pje2020.68.3.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tong Guo
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China e-mail:
| |
Collapse
|
34
|
Vetter VMS, Kreyling J, Dengler J, Apostolova I, Arfin-Khan MAS, Berauer BJ, Berwaers S, De Boeck HJ, Nijs I, Schuchardt MA, Sopotlieva D, von Gillhausen P, Wilfahrt PA, Zimmermann M, Jentsch A. Invader presence disrupts the stabilizing effect of species richness in plant community recovery after drought. GLOBAL CHANGE BIOLOGY 2020; 26:3539-3551. [PMID: 32011046 DOI: 10.1111/gcb.15025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Higher biodiversity can stabilize the productivity and functioning of grassland communities when subjected to extreme climatic events. The positive biodiversity-stability relationship emerges via increased resistance and/or recovery to these events. However, invader presence might disrupt this diversity-stability relationship by altering biotic interactions. Investigating such disruptions is important given that invasion by non-native species and extreme climatic events are expected to increase in the future due to anthropogenic pressure. Here we present one of the first multisite invader × biodiversity × drought manipulation experiment to examine combined effects of biodiversity and invasion on drought resistance and recovery at three semi-natural grassland sites across Europe. The stability of biomass production to an extreme drought manipulation (100% rainfall reduction; BE: 88 days, BG: 85 days, DE: 76 days) was quantified in field mesocosms with a richness gradient of 1, 3, and 6 species and three invasion treatments (no invader, Lupinus polyphyllus, Senecio inaequidens). Our results suggest that biodiversity stabilized community productivity by increasing the ability of native species to recover from extreme drought events. However, invader presence turned the positive and stabilizing effects of diversity on native species recovery into a neutral relationship. This effect was independent of the two invader's own capacity to recover from an extreme drought event. In summary, we found that invader presence may disrupt how native community interactions lead to stability of ecosystems in response to extreme climatic events. Consequently, the interaction of three global change drivers, climate extremes, diversity decline, and invasive species, may exacerbate their effects on ecosystem functioning.
Collapse
Affiliation(s)
- Vanessa M S Vetter
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
- Geoecology/Physical Geography, Institute for Environmental Sciences (iES), University of Koblenz-Landau, Landau, Germany
| | - Juergen Kreyling
- Experimental Plant Ecology, Greifswald University, Greifswald, Germany
| | - Jürgen Dengler
- Plant Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
- Vegetation Ecology Group, Institute of Natural Resource Management (IUNR), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Iva Apostolova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammed A S Arfin-Khan
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Bernd J Berauer
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Sigi Berwaers
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Hans J De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ivan Nijs
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Max A Schuchardt
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Desislava Sopotlieva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Philipp von Gillhausen
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Peter A Wilfahrt
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Maja Zimmermann
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anke Jentsch
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
35
|
Li M, Zhang X, Niu B, He Y, Wang X, Wu J. Changes in plant species richness distribution in Tibetan alpine grasslands under different precipitation scenarios. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2019.e00848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
36
|
Bharath S, Borer ET, Biederman LA, Blumenthal DM, Fay PA, Gherardi LA, Knops JMH, Leakey ADB, Yahdjian L, Seabloom EW. Nutrient addition increases grassland sensitivity to droughts. Ecology 2020; 101:e02981. [PMID: 31960948 DOI: 10.1002/ecy.2981] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/16/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
Grasslands worldwide are expected to experience an increase in extreme events such as drought, along with simultaneous increases in mineral nutrient inputs as a result of human industrial activities. These changes are likely to interact because elevated nutrient inputs may alter plant diversity and increase the sensitivity to droughts. Dividing a system's sensitivity to drought into resistance to change during the drought and rate of recovery after the drought generates insights into different dimensions of the system's resilience in the face of drought. Here, we examine the effects of experimental nutrient fertilization and the resulting diversity loss on the resistance to and recovery from severe regional droughts. We do this at 13 North American sites spanning gradients of aridity, five annual grasslands in California, and eight perennial grasslands in the Great Plains. We measured rate of resistance as the change in annual aboveground biomass (ANPP) per unit change in growing season precipitation as conditions declined from normal to drought. We measured recovery as the change in ANPP during the postdrought period and the return to normal precipitation. Resistance and recovery did not vary across the 400-mm range of mean growing season precipitation spanned by our sites in the Great Plains. However, chronic nutrient fertilization in the Great Plains reduced drought resistance and increased drought recovery. In the California annual grasslands, arid sites had a greater recovery postdrought than mesic sites, and nutrient addition had no consistent effects on resistance or recovery. Across all study sites, we found that predrought species richness in natural grasslands was not consistently associated with rates of resistance to or recovery from the drought, in contrast to earlier findings from experimentally assembled grassland communities. Taken together, these results suggest that human-induced eutrophication may destabilize grassland primary production, but the effects of this may vary across regions and flora, especially between perennial and annual-dominated grasslands.
Collapse
Affiliation(s)
- Siddharth Bharath
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, 55108, Minnesota, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, 55108, Minnesota, USA
| | - Lori A Biederman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 251 Bessey Hall, 2200 Osborn Drive, Ames, 50011, Iowa, USA
| | - Dana M Blumenthal
- Rangeland Resources & Systems Research Unit, USDA-ARS, 1701 Center Ave., Fort Collins, 80526, Colorado, USA
| | - Philip A Fay
- Grassland, Soil, and Water Lab, USDA-ARS, 808 East Blackland Road, Temple, 76502, Texas, USA
| | - Laureano A Gherardi
- School of Life Sciences, Global Drylands Center, Arizona State University, 427 E Tyler Mall, Life Sciences Building A, Tempe, 85287, Arizona, USA
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, HSG06 (ES341), No. 8 Chongwen Road, Suzhou, 215123, Jiangsu Province, China
| | - Andrew D B Leakey
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 1402 Institute for Genomic Biology, 1206 W Gregory Dr
- M/C 195, Urbana, 61801, Illinois, USA
| | - Laura Yahdjian
- Facultad de Agronomía, Catedra de Ecología, CONICET, Instituto de Investigaciones Fisiológicas y Ecológicas vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Av. San Martin 4453. CABA, Buenos Aires, 1417, Argentina
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, 55108, Minnesota, USA
| |
Collapse
|
37
|
O'Keefe K, Nippert JB, McCulloh KA. Plant water uptake along a diversity gradient provides evidence for complementarity in hydrological niches. OIKOS 2019. [DOI: 10.1111/oik.06529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Sonkoly J, Kelemen A, Valkó O, Deák B, Kiss R, Tóth K, Miglécz T, Tóthmérész B, Török P. Both mass ratio effects and community diversity drive biomass production in a grassland experiment. Sci Rep 2019; 9:1848. [PMID: 30755623 PMCID: PMC6372655 DOI: 10.1038/s41598-018-37190-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/03/2018] [Indexed: 11/09/2022] Open
Abstract
The maintenance of biodiversity is crucial for ecosystem processes such as plant biomass production, as higher species richness is associated with increased biomass production in plant communities. However, the effects of evenness and functional diversity on biomass production are understudied. We manipulated the composition of an experimental grassland by sowing various seed mixtures and examined the effects of diversity and evenness on biomass production after three years. We found that biomass production increased with greater species and functional richness but decreased with greater species and functional evenness. Standing biomass increased but species number and functional richness decreased with increasing proportion of perennial grasses. Our findings emphasise the importance of productive dominant species, as the proportion of perennial grasses had a positive effect on standing biomass, while species and functional evenness had a negative effect on it. Thus, our findings support the theory that, besides diversity, dominance effects and the so-called mass ratio hypothesis may also play a key role in explaining primary biomass production.
Collapse
Affiliation(s)
- Judit Sonkoly
- MTA-DE Lendület Functional and Restoration Ecology Research Group, Egyetem tér 1, Debrecen, H-4032, Hungary
- University of Debrecen, Department of Ecology, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - András Kelemen
- University of Debrecen, Department of Ecology, Egyetem tér 1, Debrecen, H-4032, Hungary
- MTA's Premium Postdoctoral Research Programme, MTA TKI Nádor utca 7, Budapest, H-1051, Hungary
| | - Orsolya Valkó
- University of Debrecen, Department of Ecology, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Balázs Deák
- MTA-DE Biodiversity and Ecosystem Services Research Group, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Réka Kiss
- University of Debrecen, Department of Ecology, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Katalin Tóth
- University of Debrecen, Department of Ecology, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Tamás Miglécz
- University of Debrecen, Department of Ecology, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Béla Tóthmérész
- University of Debrecen, Department of Ecology, Egyetem tér 1, Debrecen, H-4032, Hungary.
- MTA-DE Biodiversity and Ecosystem Services Research Group, Egyetem tér 1, Debrecen, H-4032, Hungary.
| | - Péter Török
- MTA-DE Lendület Functional and Restoration Ecology Research Group, Egyetem tér 1, Debrecen, H-4032, Hungary
- University of Debrecen, Department of Ecology, Egyetem tér 1, Debrecen, H-4032, Hungary
| |
Collapse
|
39
|
Yang G, Wagg C, Veresoglou SD, Hempel S, Rillig MC. How Soil Biota Drive Ecosystem Stability. TRENDS IN PLANT SCIENCE 2018; 23:1057-1067. [PMID: 30287162 DOI: 10.1016/j.tplants.2018.09.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 05/04/2023]
Abstract
High biodiversity aboveground tends to increase the stability of ecosystem functioning when faced with a changing environment. However, whether and how soil biota affect ecosystem stability is less clear. Here, we introduce a framework for understanding the effects of soil biota on variation in ecosystem functioning under environmental changes. We conclude that soil biota may be a neglected factor determining ecosystem stability through their direct and indirect effects on plant diversity, the net productivity of an ecosystem, and compensatory dynamics among plant species, and via altering ecosystem resistance and resilience. Furthermore, future research needs to consider that effects of soil biota on ecosystem stability will vary depending on extrinsic factors, and for a given perturbation and ecosystem function.
Collapse
Affiliation(s)
- Gaowen Yang
- Institut für Biologie, Freie Universität Berlin, D-14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany; College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich CH 8057, Switzerland; Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, P.O. Box 20280, Fredericton, E3B 4Z7 New Brunswick, Canada
| | - Stavros D Veresoglou
- Institut für Biologie, Freie Universität Berlin, D-14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Stefan Hempel
- Institut für Biologie, Freie Universität Berlin, D-14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, D-14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| |
Collapse
|
40
|
Towards a Comparable Quantification of Resilience. Trends Ecol Evol 2018; 33:251-259. [DOI: 10.1016/j.tree.2018.01.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 11/20/2022]
|