1
|
Pawar SV, Paranjape SM, Kalowsky GK, Peiffer M, McCartney N, Ali JG, Felton GW. Tomato Defenses Under Stress: The Impact of Salinity on Direct Defenses Against Insect Herbivores. PLANT, CELL & ENVIRONMENT 2025; 48:3647-3659. [PMID: 39806825 PMCID: PMC11963492 DOI: 10.1111/pce.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv. Better Boy) impacts the behavior and performance of a devastating insect pest, the tomato fruitworm caterpillar (Helicoverpa zea). Through choice assays and performance experiments, we demonstrate that salt-stressed tomato plants are poor hosts for H. zea, negatively affecting caterpillar feeding preferences and growth rates. While changes in plant nutritional quality were observed, the primary factor influencing insect performance appears to be direct ionic toxicity, which significantly impairs multiple life history parameters of H. zea including survival, pupation, adult emergence, and fecundity. Plant defense responses show complex interactions between salt stress and herbivory, with two proteinase inhibitor genes - PIN2 and AspPI, showing a higher induced response to insect herbivory under salt conditions. However, plant defenses do not seem to be the main driver of reduced caterpillar performance on salt-treated plants. Furthermore, we report reduced oviposition by H. zea moths on salt-treated plants, which was correlated with altered volatile emissions. Our findings reveal that H. zea exhibits optimal host selection behaviours for both larval feeding and adult oviposition decisions, which likely contribute to its success as an agricultural pest. This research provides insights into the complex interactions between abiotic stress, plant physiology, and insect behaviour, with potential implications for pest management strategies in saline agricultural environments.
Collapse
Affiliation(s)
- Sahil V. Pawar
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Sujay M. Paranjape
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Grace K. Kalowsky
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Michelle Peiffer
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Nate McCartney
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Jared G. Ali
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Gary W. Felton
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
2
|
Liang G, Sun P, Waring BG, Fu Z, Reich PB. Alleviating Nitrogen and Phosphorus Limitation Does Not Amplify Potassium-Induced Increase in Terrestrial Biomass. GLOBAL CHANGE BIOLOGY 2025; 31:e70193. [PMID: 40269476 PMCID: PMC12018727 DOI: 10.1111/gcb.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Potassium (K) is the second most abundant nutrient element in plants after nitrogen (N), and has been shown to limit aboveground production in some contexts. However, the role of N and phosphorus (P) availability in mediating K limitation in terrestrial production remains poorly understood; and it is unknown whether K also limits belowground carbon (C) stocks, which contain at least three times more C than those aboveground stocks. By synthesizing 779 global paired observations (528, 125, and 126 for aboveground productivity, root biomass, and soil organic C [SOC], respectively), we found that K addition significantly increased aboveground production and SOC by 8% and 5%, respectively, but did not significantly affect root biomass (+9%). Moreover, enhanced N and/or P availability (through N and P addition) did not further amplify the positive effect of K on aboveground productivity. In other words, K had a positive effect on aboveground productivity only when N and/or P were limiting, indicating that K could somehow substitute for N or P when they were limiting. Climate variables mostly explained the variations in K effects; specifically, stronger positive responses of aboveground productivity and SOC to K were found in regions with high mean annual temperature and wetness. Our results suggest that K addition enhances C sequestration by increasing both aboveground productivity and SOC, contributing to climate mitigation, but the positive effects of K on terrestrial C stocks are not further amplified when N and P limitations are alleviated.
Collapse
Affiliation(s)
- Guopeng Liang
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
- Institute for Global Change Biology and School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Pengyan Sun
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
- School of StatisticsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Bonnie G. Waring
- Grantham Institute on Climate Change and the Environment and the Georgina Mace Centre for the Living PlanetImperial College LondonLondonUK
| | - Zheng Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Peter B. Reich
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
- Institute for Global Change Biology and School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| |
Collapse
|
3
|
Arriola ÍA, Costa EC, de Oliveira DC, Isaias RMDS. Soil-plant-gall relationships: from gall development to ecological patterns. Biol Rev Camb Philos Soc 2024; 99:1948-1975. [PMID: 38888220 DOI: 10.1111/brv.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The adaptive nature of the galler habit has been tentatively explained by the nutrition, microenvironment, and enemy hypotheses. Soil attributes have direct relationships with these three hypotheses at the cellular and macroecological scales, but their influence has been restricted previously to effects on the nutritional status of the host plant on gall richness and abundance. Herein, we discuss the ionome patterns within gall tissues and their significance for gall development, physiology, structure, and for the nutrition of the gallers. Previous ecological and chemical quantification focused extensively on nitrogen and carbon contents, evoking the carbon-nutrient defence hypothesis as an explanation for establishing the plant-gall interaction. Different elements are involved in cell wall composition dynamics, antioxidant activity, and regulation of plant-gall water dynamics. An overview of the different soil-plant-gall relationships highlights the complexity of the nutritional requirements of gallers, which are strongly influenced by environmental soil traits. Soil and plant chemical profiles interact to determine the outcome of plant-herbivore interactions and need to be addressed by considering not only the soil features and galler nutrition but also the host plant's physiological traits. The quantitative and qualitative results for iron metabolism in gall tissues, as well as the roles of iron as an essential element in the physiology and reproduction of gallers suggest that it may represent a key nutritional resource, aligning with the nutrition hypothesis, and providing an integrative explanation for higher gall diversity in iron-rich soils.
Collapse
Affiliation(s)
- Ígor Abba Arriola
- Department of Botany, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CP 486, Belo Horizonte, Brazil
| | - Elaine Cotrim Costa
- Institute of Biological Sciences/Botany, Universidade Federal do Rio Grande, Av. Itália Km 8, Campus Carreiros, Rio Grande, Brazil
| | - Denis Coelho de Oliveira
- Institute of Biology, Universidade Federal de Uberlândia, Campus Umuarama, Rua Ceará s/n, Uberlândia, Brazil
| | - Rosy Mary Dos Santos Isaias
- Department of Botany, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CP 486, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Kaspari M, Welti EAR. Nutrient dilution and the future of herbivore populations. Trends Ecol Evol 2024; 39:809-820. [PMID: 38876933 DOI: 10.1016/j.tree.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024]
Abstract
Nutrient dilution (ND) - the decrease in the concentration of nutritional elements in plant tissue - arises from an increase in the mass of carbohydrates and/or a decrease in the 20+ essential elements. Increasing CO2 levels and its promotion of biomass are linked to nutrient dilution. We build a case for nutrient dilution as a key driver in global declines in herbivore abundance. Herbivores must build element-rich animal tissue from nutrient-poor plant tissue, and their abundance commonly increases with fertilization of both macro- and micronutrients. We predict the global impacts of nutrient dilution will be magnified in some of Earth's most biodiverse, highly productive, and/or nutrient-poor ecosystems and should favor specific traits of herbivores, including sap-feeding and ruminant microbiomes.
Collapse
Affiliation(s)
- Michael Kaspari
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA.
| | - Ellen A R Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA
| |
Collapse
|
5
|
VanValkenburg E, Gonçalves Souza T, Sanders NJ, CaraDonna P. Sodium-enriched nectar shapes plant-pollinator interactions in a subalpine meadow. Ecol Evol 2024; 14:e70026. [PMID: 39015879 PMCID: PMC11251754 DOI: 10.1002/ece3.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Many plants have evolved nutrient rewards to attract pollinators to flowers, but most research has focused on the sugar content of floral nectar resources. Concentrations of sodium in floral nectar (a micronutrient in low concentrations in nectar) can vary substantially both among and within co-occurring species. It is hypothesized that sodium concentrations in floral nectar might play an important and underappreciated role in plant-pollinator interactions, especially because many animals, including pollinators, are sodium limited in nature. Yet, the consequences of variation in sodium concentrations in floral nectar remain largely unexplored. Here, we investigate whether enriching floral nectar with sodium influences the composition, diversity, and frequency of plant-pollinator interactions. We experimentally enriched sodium concentrations in four plant species in a subalpine meadow in Colorado, USA. We found that flowers with sodium-enriched nectar received more visits from a greater diversity of pollinators throughout the season. Different pollinator species foraged more frequently on flowers enriched with sodium and showed evidence of other changes to foraging behavior, including greater dietary evenness. These findings are consistent with the "salty nectar hypothesis," providing evidence for the importance of sodium limitation in pollinators and suggesting that even small nectar constituents can shape plant-pollinator interactions.
Collapse
Affiliation(s)
- Ethan VanValkenburg
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- Rocky Mountain Biological LaboratoryGothicColoradoUSA
| | | | - Nathan J. Sanders
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Paul CaraDonna
- Rocky Mountain Biological LaboratoryGothicColoradoUSA
- Chicago Botanic GardenGlencoeIllinoisUSA
- Program in Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
6
|
Tielens EK, Kelly J. Temperature, not net primary productivity, drives continental-scale variation in insect flight activity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230114. [PMID: 38705173 PMCID: PMC11070256 DOI: 10.1098/rstb.2023.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/08/2024] [Indexed: 05/07/2024] Open
Abstract
The amount of energy available in a system constrains large-scale patterns of abundance. Here, we test the role of temperature and net primary productivity as drivers of flying insect abundance using a novel continental-scale data source: weather surveillance radar. We use the United States NEXRAD weather radar network to generate a near-daily dataset of insect flight activity across a gradient of temperature and productivity. Insect flight activity was positively correlated with mean annual temperature, explaining 38% of variation across sites. By contrast, net primary productivity did not explain additional variation. Grassland, forest and arid-xeric shrubland biomes differed in their insect flight activity, with the greatest abundance in subtropical and temperate grasslands. The relationship between insect flight abundance and temperature varied across biome types. In arid-xeric shrublands and in forest biomes the temperature-abundance relationship was indirectly (through net primary productivity) or directly (in the form of precipitation) mediated by water availability. These results suggest that temperature constraints on metabolism, development, or flight activity shape macroecological patterns in ectotherm abundance. Assessing the drivers of continental-scale patterns in insect abundance and their variation across biomes is particularly important to predict insect community response to warming conditions. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Elske K Tielens
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019-0390, USA
| | - Jeff Kelly
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019-0390, USA
| |
Collapse
|
7
|
Vogels JJ, Van de Waal DB, WallisDeVries MF, Van den Burg AB, Nijssen M, Bobbink R, Berg MP, Olde Venterink H, Siepel H. Towards a mechanistic understanding of the impacts of nitrogen deposition on producer-consumer interactions. Biol Rev Camb Philos Soc 2023; 98:1712-1731. [PMID: 37265074 DOI: 10.1111/brv.12972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Nitrogen (N) deposition has increased substantially since the second half of the 20th century due to human activities. This increase of reactive N into the biosphere has major implications for ecosystem functioning, including primary production, soil and water chemistry and producer community structure and diversity. Increased N deposition is also linked to the decline of insects observed over recent decades. However, we currently lack a mechanistic understanding of the effects of high N deposition on individual fitness, species richness and community structure of both invertebrate and vertebrate consumers. Here, we review the effects of N deposition on producer-consumer interactions, focusing on five existing ecological frameworks: C:N:P ecological stoichiometry, trace element ecological stoichiometry, nutritional geometry, essential micronutrients and allelochemicals. We link reported N deposition-mediated changes in producer quality to life-history strategies and traits of consumers, to gain a mechanistic understanding of the direction of response in consumers. We conclude that high N deposition influences producer quality via eutrophication and acidification pathways. This makes oligotrophic poorly buffered ecosystems most vulnerable to significant changes in producer quality. Changes in producer quality between the reviewed frameworks are often interlinked, complicating predictions of the effects of high N deposition on producer quality. The degree and direction of fitness responses of consumers to changes in producer quality varies among species but can be explained by differences in life-history traits and strategies, particularly those affecting species nutrient intake regulation, mobility, relative growth rate, host-plant specialisation, ontogeny and physiology. To increase our understanding of the effects of N deposition on these complex mechanisms, the inclusion of life-history traits of consumer species in future study designs is pivotal. Based on the reviewed literature, we formulate five hypotheses on the mechanisms underlying the effects of high N deposition on consumers, by linking effects of nutritional ecological frameworks to life-history strategies. Importantly, we expect that N-deposition-mediated changes in producer quality will result in a net decrease in consumer community as well as functional diversity. Moreover, we anticipate an increased risk of outbreak events of a small subset of generalist species, with concomitant declines in a multitude of specialist species. Overall, linking ecological frameworks with consumer life-history strategies provides a mechanistic understanding of the impacts of high N deposition on producer-consumer interactions, which can inform management towards more effective mitigation strategies.
Collapse
Affiliation(s)
- Joost J Vogels
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| | - Michiel F WallisDeVries
- De Vlinderstichting / Dutch Butterfly Conservation, P.O. Box 6700 AM, Wageningen, The Netherlands
| | | | - Marijn Nijssen
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Matty P Berg
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- GELIFES, Community and Conservation Ecology Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Harry Olde Venterink
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Shephard AM, Knudsen K, Snell-Rood EC. Anthropogenic sodium influences butterfly responses to nitrogen-enriched resources: implications for the nitrogen limitation hypothesis. Oecologia 2023; 201:941-952. [PMID: 36971819 DOI: 10.1007/s00442-023-05366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Humans are increasing the environmental availability of historically limited nutrients, which may significantly influence organismal performance and behavior. Beneficial or stimulatory responses to increases in nitrogen availability (i.e., nitrogen limitation) are generally observed in plants but less consistently in animals. One possible explanation is that animal responses to nitrogen enrichment depend on how nitrogen intake is balanced with sodium, a micronutrient crucial for animals but not plants. We tested this idea in the cabbage white butterfly (Pieris rapae), a species that frequently inhabits nutrient-enriched plants in agricultural settings and roadside verges. We asked (1) whether anthropogenic increases in sodium influence how nitrogen enrichment affects butterfly performance and (2) whether individuals can adaptively adjust their foraging behavior to such effects. Larval nitrogen enrichment enhanced growth of cabbage white larvae under conditions of low but not high sodium availability. In contrast, larval nitrogen enrichment increased egg production of adult females only when individuals developed with high sodium availability. Ovipositing females preferred nitrogen-enriched leaves regardless of sodium availability, while larvae avoided feeding on nitrogen-enriched leaves elevated in sodium. Our results show that anthropogenic increases in sodium influence whether individuals benefit from and forage on nitrogen-enriched resources. Yet, different nitrogen-to-sodium ratios are required to optimize larval and adult performance. Whether increases in sodium catalyze or inhibit benefits of nitrogen enrichment may depend on how evolved nutrient requirements vary across stages of animal development.
Collapse
Affiliation(s)
- Alexander M Shephard
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1987 Upper Buford Circle, St. Paul, MN, 55108, USA.
| | - Kyle Knudsen
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1987 Upper Buford Circle, St. Paul, MN, 55108, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1987 Upper Buford Circle, St. Paul, MN, 55108, USA
| |
Collapse
|
9
|
Clay NA, Herrmann MC, Evans-White MA, Entrekin SA, West C. Sodium as a subsidy in the spring: evidence for a phenology of sodium limitation. Oecologia 2023; 201:783-795. [PMID: 36853383 PMCID: PMC10038971 DOI: 10.1007/s00442-023-05336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Understanding the factors that mediate carbon (C) cycling is increasingly important as anthropogenic activities and climate change alter ecosystems. Decomposition rates mediate C cycling and are in part regulated by sodium (Na) where Na is limiting up to some threshold after which Na becomes stressful and reduces decomposition rates (i.e., the Sodium Subsidy-Stress hypothesis). An overlooked pathway by which decomposers encounter increased salts like NaCl is through plants, which often take up Na in proportion to soil concentrations. Here we tested the hypothesis that Na addition through litter (detritus) and water and their interaction would impact detrital processing and leachate chemistry. Laboratory riparian soil mesocosms received either artificial litter (100% cellulose sponges) soaked in 0.05% NaCl (NaClL) or just H2O (H2OL: control) and half of each litter treatment received weekly additions of 150 ml of either 0.05% NaCl water (NaClW) or just H2O (H2OW: control). After 8 weeks decomposition was higher in NaCl addition treatments (both NaClL and NaClW and their combo) than controls (H2OL + H2OW) but reflected a unimodal relationship where the saltiest treatment (NaClL + NaClW) was only marginally higher than controls indicating a subsidy-stress response. Previous studies in this system found that Na addition in either water or litter decreased decomposition. However, differences may reflect a phenology of Na demand where Na-limitation increases in the spring (this study). These results indicate that our understanding of how Na impacts detrital processes, C cycling, and aquatic-terrestrial linkages necessitates incorporation of temporal dynamics.
Collapse
Affiliation(s)
- Natalie A Clay
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA.
| | - Maggie C Herrmann
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA
| | - Michelle A Evans-White
- Department of Biological Sciences, University of Arkansas, 525 Old Main, Fayetteville, AR, 72701, USA
| | - Sally A Entrekin
- Department of Entomology, Virginia Tech, 170 Drillfield Drive, Blacksburg, VA, 24061, USA
| | - Colton West
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA
| |
Collapse
|
10
|
Reich MS, Kindra M, Dargent F, Hu L, Flockhart DTT, Norris DR, Kharouba H, Talavera G, Bataille CP. Metals and metal isotopes incorporation in insect wings: Implications for geolocation and pollution exposure. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anthropogenic activities are exposing insects to elevated levels of toxic metals and are altering the bioavailability of essential metals. Metals and metal isotopes have also become promising tools for the geolocation of migratory insects. Understanding the pathways of metal incorporation in insect tissues is thus important for assessing the role of metals in insect physiology and ecology and for the development of metals and metal isotopes as geolocation tools. We conducted a diet-switching experiment on monarch butterflies [Danaus plexippus (L.)] with controlled larval and adult diets to evaluate the sources of 23 metals and metalloids, strontium isotopes, and lead isotopes to insect wing tissues over a period of 8 weeks. Concentrations of Ca, Co, Mo, and Sb differed between the sexes or with body mass. Ni and Zn bioaccumulated in the insect wing tissues over time, likely from the adult diet, while increases in Al, Cr, Cd, Cu, Fe, and Pb were, at least partially, from external sources (i.e., dust aerosols). Bioaccumulation of Pb in the monarch wings was confirmed by Pb isotopes to mainly be sourced from external anthropogenic sources, revealing the potential of Pb isotopes to become an indicator and tracer of metal pollution exposure along migratory paths. Concentrations of Ba, Cs, Mg, Na, Rb, Sr, Ti, Tl, and U appeared to be unaffected by intrinsic factors or additions of metals from adult dietary or external sources, and their potential for geolocation should be further explored. Strontium isotope ratios remained indicative of the larval diet, at least in males, supporting its potential as a geolocation tool. However, the difference in strontium isotope ratios between sexes, as well as the possibility of external contamination by wetting, requires further investigation. Our results demonstrate the complexity of metal incorporation processes in insects and the value of studying metals to develop new tools to quantify pollution exposure, metal toxicity, micronutrient uptake, and insect mobility.
Collapse
|
11
|
Kaspari M, Welti EAR. Electrolytes on the prairie: How urine-like additions of Na and K shape the dynamics of a grassland food web. Ecology 2023; 104:e3856. [PMID: 36053835 DOI: 10.1002/ecy.3856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
The electrolytes Na and K both function to maintain water balance and membrane potential. However, these elements work differently in plants-where K is the primary electrolyte-than in animals-where ATPases require a balanced supply of Na and K. Here, we use monthly factorial additions of Na and K to simulate bovine urine inputs and explore how these electrolytes ramify through a prairie food web. Against a seasonal trend of increasing grass biomass and decreasing water and elemental tissue concentrations, +K and +Na plots boosted water content and, when added together, plant biomass. Compared to control plots, +Na and +K plots increased element concentrations in above-ground plant tissue early in summer and decreased them in September. Simultaneously, invertebrate abundance on Na and K additions were sequentially higher and lower than control plots from June to September and were most suppressed when grass was most nutrient rich. K was the more effective plant electrolyte, but Na frequently promoted similar changes in grass ionomes. The soluble/leachable ions of Na and K showed significant ability to shape plant growth, water content, and the 15-element ionome, with consequences for higher trophic levels. Grasslands with high inputs of Na and K-via large mammal grazers or coastal aerosol deposition-likely enhance the ability of plants to adjust their above-ground ionomes, with dramatic consequences for the distribution of invertebrate consumers.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Ellen A R Welti
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA.,Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| |
Collapse
|
12
|
Santiago‐Rosario LY, Harms KE, Craven D. Contrasts among cationic phytochemical landscapes in the southern United States. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:226-241. [PMID: 37283990 PMCID: PMC10168053 DOI: 10.1002/pei3.10093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 06/08/2023]
Abstract
Understanding the phytochemical landscapes of essential and nonessential chemical elements to plants provides an opportunity to better link biogeochemical cycles to trophic ecology. We investigated the formation and regulation of the cationic phytochemical landscapes of four key elements for biota: Ca, Mg, K, and Na. We collected aboveground tissues of plants in Atriplex, Helianthus, and Opuntia and adjacent soils from 51, 131, and 83 sites, respectively, across the southern United States. We determined the spatial variability of these cations in plants and soils. Also, we quantified the homeostasis coefficient for each cation and genus combination, by using mixed-effect models, with spatially correlated random effects. Additionally, using random forest models, we modeled the influence of bioclimatic, soil, and spatial variables on plant cationic concentrations. Sodium variability and spatial autocorrelation were considerably greater than for Ca, Mg, or K. Calcium, Mg, and K exhibited strongly homeostatic patterns, in striking contrast to non-homeostatic Na. Even so, climatic and soil variables explained a large proportion of plants' cationic concentrations. Essential elements (Ca, Mg, and K) appeared to be homeostatically regulated, which contrasted sharply with Na, a nonessential element for most plants. In addition, we provide evidence for the No-Escape-from-Sodium hypothesis in real-world ecosystems, indicating that plant Na concentrations tend to increase as substrate Na levels increase.
Collapse
Affiliation(s)
| | - Kyle E. Harms
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Dylan Craven
- Centro de Modelación y Monitoreo de EcosistemasFacultad de Ciencias, Universidad MayorSantiago de ChileChile
| |
Collapse
|
13
|
Kaspari M, Joern A, Welti EAR. How and why grasshopper community maturation rates are slowing on a North American tall grass prairie. Biol Lett 2022; 18:20210510. [PMID: 35078328 PMCID: PMC8790374 DOI: 10.1098/rsbl.2021.0510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Invertebrate growth rates have been changing in the Anthropocene. We examine rates of seasonal maturation in a grasshopper community that has been declining annually greater than 2% a year over 34 years. As this grassland has experienced a 1°C increase in temperature, higher plant biomass and lower nutrient densities, the community is maturing more slowly. Community maturation had a nutritional component: declining in years/watersheds with lower plant nitrogen. The effects of fire frequency were consistent with effects of plant nitrogen. Principal components analysis also suggests associated changes in species composition-declines in the densities of grass feeders were associated with declines in community maturation rates. We conclude that slowed maturation rates-a trend counteracted by frequent burning-likely contribute to long-term decline of this dominant herbivore.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, University of Oklahoma, Norman, OK, USA
| | - Anthony Joern
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Ellen A. R. Welti
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| |
Collapse
|
14
|
Kaspari M. The Invisible Hand of the Periodic Table: How Micronutrients Shape Ecology. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-090118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Beyond the better-studied carbohydrates and the macronutrients nitrogen and phosphorus, a remaining 20 or so elements are essential for life and have distinct geographical distributions, making them of keen interest to ecologists. Here, I provide a framework for understanding how shortfalls in micronutrients like iodine, copper, and zinc can regulate individual fitness, abundance, and ecosystem function. With a special focus on sodium, I show how simple experiments manipulating biogeochemistry can reveal why many of the variables that ecologists study vary so dramatically from place to place. I conclude with a discussion of how the Anthropocene's changing temperature, precipitation, and atmospheric CO2 levels are contributing to nutrient dilution (decreases in the nutrient quality at the base of food webs).
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
15
|
Prather RM, Welti EAR, Kaspari M. Trophic differences regulate grassland food webs: herbivores track food quality and predators select for habitat volume. Ecology 2021; 102:e03453. [PMID: 34165805 DOI: 10.1002/ecy.3453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
The impacts of altered biogeochemical cycles on ecological systems are likely to vary with trophic level. Predicting how these changes will affect ecological food webs is further complicated by human activities, which are simultaneously altering the availability of macronutrients like nitrogen (N) and phosphorus (P), and micronutrients such as sodium (Na). Here we contrast three hypotheses that predict how increasing nutrient availability will shape grassland food webs. We conducted a distributed factorial fertilization experiment (N and P crossed with NaCl) across four North American grasslands, quantifying the responses of aboveground plant biomass and volume, plant tissue and soil elemental concentrations, as well as the abundance of five arthropod functional groups. Fertilization with N and P increased plant biomass and foliar N and P concentrations in grasses but not forbs. Fertilization with Na had no effect on plant biomass but increased foliar Na concentrations. Consistent with the nutrient limitation hypothesis, we found strong evidence of nutrient limitation for insect herbivores across the four sites with sucking (phloem and xylem feeding) herbivores increasing in abundance with NP fertilization and chewing herbivores increasing in response to both Na and NP fertilization, and a trend for increased response of arthropods to lower plant nutrient availability. We found no evidence for an interaction of NaCl and NP on arthropod abundance as predicted by the serial colimitation hypothesis. Finally, consistent with the ecosystem size hypothesis, predator and parasitoid abundances increased with plant volume, but not fertilization. Our results suggest these functional group-specific responses to changes in plant nutrients and structure are key to predicting the future of grassland food webs in an era with increasing use of N and P fertilizers, and increasing terrestrial inputs of Na from road salt, saline irrigation water, and aerosols due to rising sea levels.
Collapse
Affiliation(s)
- Rebecca M Prather
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA.,Department of Biological Science, Florida State University, Tallahassee, Florida, 32306, USA
| | - Ellen A R Welti
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA.,Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
| | - Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
16
|
Welti EAR, Kaspari M. Sodium addition increases leaf herbivory and fungal damage across four grasslands. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ellen A. R. Welti
- Geographical Ecology Group Department of Biology University of Oklahoma Norman OK USA
- Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
| | - Michael Kaspari
- Geographical Ecology Group Department of Biology University of Oklahoma Norman OK USA
| |
Collapse
|
17
|
Peterson TN, Welti EAR, Kaspari M. Dietary sodium levels affect grasshopper growth and performance. Ecosphere 2021. [DOI: 10.1002/ecs2.3392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Taylor N. Peterson
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma73019USA
| | - Ellen A. R. Welti
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma73019USA
- Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
| | - Michael Kaspari
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma73019USA
| |
Collapse
|
18
|
Reihart RW, Angelos KP, Gawkins KM, Hurst SE, Montelongo DC, Laws AN, Pennings SC, Prather CM. Crazy ants craving calcium: macronutrients and micronutrients can limit and stress an invaded grassland brown food web. Ecology 2020; 102:e03263. [PMID: 33314072 DOI: 10.1002/ecy.3263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/12/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022]
Abstract
Nitrogen and phosphorus are thought to be the most important limiting nutrients in most terrestrial ecosystems, but little is known about how other elements may limit the abundance of arthropods. We utilized a fully factorial fertilization experiment that manipulated macronutrients (N and P, together) and micronutrients (calcium, sodium, potassium, separately), in large 30 × 30 m plots and sampled litter arthropods via pitfall trapping to determine the nutrients that limit this group. An invasive ant, Nylanderia fulva, numerically dominated the community and increased in abundance 13% in plots fertilized by Ca. Detritivores were not limited by any nutrient combination, but macronutrients increased predator abundance 43%. We also found that some combinations of macronutrients and micronutrients had toxic or stressful effects on the arthropod community: detritivores decreased in abundance 23% with the combination of macronutrients, Ca, and K, and 22% with macronutrients and K; and N. fulva decreased in abundance 24% in plots fertilized by K and 45% in plots fertilized by the combination of Na and K. Our work supports growing evidence that micronutrients, especially Ca and K, may be important in structuring grassland arthropod communities, and suggests that micronutrients may affect whether or not invasive ants reach numerical dominance.
Collapse
Affiliation(s)
- Ryan W Reihart
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, USA
| | | | - Kaitlin M Gawkins
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, USA
| | - Shania E Hurst
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, USA
| | - Denise C Montelongo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Angela N Laws
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Chelse M Prather
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, USA.,Department of Biology, Radford, Virginia, 46556, USA
| |
Collapse
|
19
|
Muratore M, Sun Y, Prather C. Environmental Nutrients Alter Bacterial and Fungal Gut Microbiomes in the Common Meadow Katydid, Orchelimum vulgare. Front Microbiol 2020; 11:557980. [PMID: 33193141 PMCID: PMC7645228 DOI: 10.3389/fmicb.2020.557980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Insect gut microbiomes consist of bacteria, fungi, and viruses that can act as mutualists to influence the health and fitness of their hosts. While much has been done to increase understanding of the effects of environmental factors that drive insect ecology, there is less understanding of the effects of environmental factors on these gut microbial communities. For example, the effect of environmental nutrients on most insect gut microbiomes is poorly defined. To address this knowledge gap, we investigated the relationship between environmental nutrients and the gut microbial communities in a small study of katydids (n = 13) of the orthopteran species Orchelimum vulgare collected from a costal prairie system. We sampled O. vulgare from unfertilized plots, as well as from plots fertilized with added nitrogen and phosphorus or sodium separately and in combination. We found significantly higher Shannon diversity for the gut bacterial communities in O. vulgare from plots fertilized with added sodium as compared to those collected from plots without added sodium. In contrast, diversity was significantly lower in the gut fungal communities of grasshoppers collected from plots with added nitrogen and phosphorus, as well as those with added sodium, in comparison to those with no added nutrients. There was also a strong positive correlation between the gut bacterial and gut fungal community diversity within each sample. Indicator group analysis for added sodium plots included several taxa with known salt-tolerant bacterial and fungal representatives. Therefore, despite the small sample number, these results highlight the potential for the gut bacterial and fungal constituents to respond differently to changes in environmental nutrient levels. Future studies with a larger sample size will help identify mechanistic determinants driving these changes. Based on our findings and the potential contribution of gut microbes to insect fitness and function, consideration of abiotic factors like soil nutrients along with characteristic gut microbial groups is necessary for better understanding and conservation of this important insect herbivore.
Collapse
Affiliation(s)
- Melani Muratore
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Yvonne Sun
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Chelse Prather
- Department of Biology, University of Dayton, Dayton, OH, United States
| |
Collapse
|
20
|
Differential responses of macroinvertebrate ionomes across experimental N:P gradients in detritus-based headwater streams. Oecologia 2020; 193:981-993. [PMID: 32740731 PMCID: PMC7458898 DOI: 10.1007/s00442-020-04720-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
Diverse global change processes are reshaping the biogeochemistry of stream ecosystems. Nutrient enrichment is a common stressor that can modify flows of biologically important elements such as carbon (C), nitrogen (N), and phosphorus (P) through stream foodwebs by altering the stoichiometric composition of stream organisms. However, enrichment effects on concentrations of other important essential and trace elements in stream taxa are less understood. We investigated shifts in macroinvertebrate ionomes in response to changes in coarse benthic organic matter (CBOM) stoichiometry following N and P enrichment of five detritus-based headwater streams. Concentrations of most elements (17/19) differed among three insect genera (Maccaffertium sp., Pycnopsyche spp., and Tallaperla spp.) prior to enrichment. Genus-specific changes in the body content of: P, magnesium, and sodium (Na) in Tallaperla; P, Na, and cadmium in Pycnopsyche; and P in Maccaffertium were also found across CBOM N:P gradients. These elements increased in Tallaperla but decreased in the other two taxa due to growth dilution at larger body sizes. Multivariate elemental differences were found across all taxa, and ionome-wide shifts with dietary N and P enrichment were also observed in Tallaperla and Pycnopsyche. Our results show that macroinvertebrates exhibit distinct differences in elemental composition beyond C, N, and P and that the ionomic composition of common stream taxa can vary with body size and N and P enrichment. Thus, bottom-up changes in N and P supplies could potentially influence the cycling of lesser studied biologically essential elements in aquatic environments by altering their relative proportions in animal tissues.
Collapse
|
21
|
Susser JR, Pelini SL, Weintraub MN. Can we reduce phosphorus runoff from agricultural fields by stimulating soil biota? JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:933-944. [PMID: 33016483 DOI: 10.1002/jeq2.20104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
When fertilizer phosphorus (P) is applied to soils, the P can run off fields and cause harmful algal blooms. Due to its chemistry, much of the added P that does not run off can bind to soil particles and become inaccessible to plants. In natural systems, microbial and faunal decomposers can increase soil P accessibility to plants. We tested the hypothesis that this may also be true in agricultural systems, which could increase P application efficiency and reduce runoff potential. We stimulated soil fauna with sodium (Na+ ) and microbes with carbon (C) by adding corn (Zea mays L.) stover and Na+ solution to plots in conventionally managed corn fields in northwestern Ohio. Stover addition increased microbial biomass by 65 ± 12% and respiration by 400-700%. Application of stover with Na+ increased soil detritivore fauna abundance by 51 ± 20% and likely did not affect the other invertebrate guilds. However, soil biological activity was low compared with natural systems in all treatments and was not correlated with instantaneous measures of P accessibility, though cumulative P accessibility over the course of the growing season was correlated with microbial phosphatase activity (slope = 1.01, p < .01) and respiration (slope = 0.42, p = .02). Therefore, in agricultural systems, treatments to stimulate decomposers already in those systems may be ineffective at increasing soil P accessibility in the short term, but in the long term, higher microbial activities can be associated with higher soil P accessibility.
Collapse
Affiliation(s)
- Jessica R Susser
- Dep. of Environmental Sciences, Univ. of Toledo, 2801 W. Bancroft St., Toledo, OH, 43606, USA
| | - Shannon L Pelini
- Dep. of Biological Sciences, Bowling Green State Univ., 217 Life Sciences Building, Bowling Green, OH, 43403, USA
| | - Michael N Weintraub
- Dep. of Environmental Sciences, Univ. of Toledo, 2801 W. Bancroft St., Toledo, OH, 43606, USA
| |
Collapse
|
22
|
Mitchell TS, Agnew L, Meyer R, Sikkink KL, Oberhauser KS, Borer ET, Snell-Rood EC. Traffic influences nutritional quality of roadside plants for monarch caterpillars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138045. [PMID: 32408428 DOI: 10.1016/j.scitotenv.2020.138045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Roadside habitats are increasingly being targeted for restoration and conservation. Roadside habitats often exhibit altered soil and plant chemistry due to pollution from maintenance (e.g. de-icing salt), car deterioration, and exhaust. Roadside plants may attract animals due to elevated levels of sodium or nitrogen, but high concentrations of heavy metals and sodium can be toxic, potentially setting an ecological trap. In this study, we determine how roads influence the chemistry of common milkweed (Asclepias syriaca) as it is the primary roadside host plant for the declining monarch butterfly (Danaus plexippus) in the eastern United States. Even though road salt is applied during the winter, we detect enhanced sodium along roads the following growing season. Road salts increase soil sodium, which in turn elevates host-plant foliar sodium (occasionally to toxic levels in <10% of plants) and sodium content in monarch caterpillars feeding on these plants. Sodium levels of milkweed leaves are highest close to the edge of busy roads. Some heavy metals (lead, zinc) are also elevated in roadside soils or plants. Nitrogen content was affected by adjacent agricultural use, but not traffic volume or proximity to a road. Other potential road pollutants (e.g. nickel) were not elevated in soil or plants. Despite a clear signature of road pollution in the chemistry of milkweed, most plants are likely still suitable for developing monarchs. Nonetheless, restoration investments in snowy regions should prioritize sites with lower-traffic density that are further from the road edge to minimize toxic impacts of high sodium. To extend this research to other insects of conservation concern, future work should characterize the nutritional quality of nectar, pollen, and other species of host-plants in roadside habitats.
Collapse
Affiliation(s)
- Timothy S Mitchell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America.
| | - Lauren Agnew
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| | - Rebecca Meyer
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| | - Kristin L Sikkink
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| | - Karen S Oberhauser
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| |
Collapse
|
23
|
Kaspari M. The seventh macronutrient: how sodium shortfall ramifies through populations, food webs and ecosystems. Ecol Lett 2020; 23:1153-1168. [PMID: 32380580 DOI: 10.1111/ele.13517] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/28/2020] [Accepted: 03/17/2020] [Indexed: 11/27/2022]
Abstract
Of the 25 elements required to build most organisms, sodium has a unique set of characteristics that ramify through terrestrial ecology. In plants, sodium is found in low concentrations and has little metabolic function; in plant consumers, particularly animals, sodium is essential to running costly Na-K ATPases. Here I synthesise a diverse literature from physiology, agronomy and ecology, towards identifying sodium's place as the '7th macronutrient', one whose shortfall targets two trophic levels - herbivores and detritivores. I propose that sodium also plays a central, though unheralded role in herbivore digestion, via its importance to maintaining microbiomes and denaturing tannins. I highlight how sodium availability is a key determinant of consumer abundance and the geography of herbivory and detritivory. And I propose a re-appraisal of the assumption that, because sodium is metabolically unimportant to most plants, it is of little use. Instead, I suggest that sodium's critical role in limiting herbivore performance makes it a commodity used by plants to manipulate their herbivores and mutualists, and by consumers like bison and elephants to generate grazing lawns: dependable sources of sodium.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
24
|
Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc Natl Acad Sci U S A 2020; 117:7271-7275. [PMID: 32152101 DOI: 10.1073/pnas.1920012117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence for global insect declines mounts, increasing our need to understand underlying mechanisms. We test the nutrient dilution (ND) hypothesis-the decreasing concentration of essential dietary minerals with increasing plant productivity-that particularly targets insect herbivores. Nutrient dilution can result from increased plant biomass due to climate or CO2 enrichment. Additionally, when considering long-term trends driven by climate, one must account for large-scale oscillations including El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). We combine long-term datasets of grasshopper abundance, climate, plant biomass, and end-of-season foliar elemental content to examine potential drivers of abundance cycles and trends of this dominant herbivore. Annual grasshopper abundances in 16- and 22-y time series from a Kansas prairie revealed both 5-y cycles and declines of 2.1-2.7%/y. Climate cycle indices of spring ENSO, summer NAO, and winter or spring PDO accounted for 40-54% of the variation in grasshopper abundance, mediated by effects of weather and host plants. Consistent with ND, grass biomass doubled and foliar concentrations of N, P, K, and Na-nutrients which limit grasshopper abundance-declined over the same period. The decline in plant nutrients accounted for 25% of the variation in grasshopper abundance over two decades. Thus a warming, wetter, more CO2-enriched world will likely contribute to declines in insect herbivores by depleting nutrients from their already nutrient-poor diet. Unlike other potential drivers of insect declines-habitat loss, light and chemical pollution-ND may be widespread in remaining natural areas.
Collapse
|
25
|
Muratore M, Prather C, Sun Y. The gut bacterial communities across six grasshopper species from a coastal tallgrass prairie. PLoS One 2020; 15:e0228406. [PMID: 31999781 PMCID: PMC6992175 DOI: 10.1371/journal.pone.0228406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insect microbiomes play an important role in the health and fitness of insect hosts by contributing to nutrient absorption, immune health, and overall ecological fitness. As such, research interests in insect microbiomes have focused on agriculturally and industrially important organisms such as honey bees and termites. Orthopterans, on the other hand, have not been well explored for their resident microbial communities. Grasshoppers are an integral part of grassland ecosystems and provide important ecosystem services. Conversely, grasshoppers can be an agricultural pest requiring management with broad spectrum pesticides. However, little is known about the microbiomes of grasshoppers and their potential contribution to grasshopper biology. Here we examine the gut microbiome of six species of grasshoppers (n = 60) from a coastal tallgrass prairie ecosystem to gain a better understanding of the microbial communities present across the orthopteran order in this ecosystem. We found that there are bacterial phyla common to all six grasshopper species: Actinobacteria, Proteobacteria, Firmicutes, and to a lesser degree, Tenericutes. Although the grasshopper species shared a high relative abundance of these groups, there were notable shifts in dominant phyla depending on the grasshopper species. Moreover, measures of alpha diversity revealed a more diverse microbiome in males than females. Our observations support the hypothesis that there is a "core" group of bacterial families in these grasshopper species and factors such as trophic behaviors and the evolution of the host may contribute to the shifts in prevalence among these core microbial groups.
Collapse
Affiliation(s)
- Melani Muratore
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Chelse Prather
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Yvonne Sun
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kaspari M, Bujan J, Roeder KA, Beurs K, Weiser MD. Species energy and Thermal Performance Theory predict 20‐yr changes in ant community abundance and richness. Ecology 2019; 100:e02888. [DOI: 10.1002/ecy.2888] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma 73019 USA
| | - Jelena Bujan
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma 73019 USA
- Department of Biology University of Louisville Louisville Kentucky 40208 USA
| | - Karl A. Roeder
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma 73019 USA
| | - Kirsten Beurs
- Department of Geography and Sustainability University of Oklahoma Norman Oklahoma 73019 USA
| | - Michael D. Weiser
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma 73019 USA
| |
Collapse
|
27
|
Butterflies do not alter oviposition or larval foraging in response to anthropogenic increases in sodium. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Borer ET, Lind EM, Firn J, Seabloom EW, Anderson TM, Bakker ES, Biederman L, La Pierre KJ, MacDougall AS, Moore JL, Risch AC, Schutz M, Stevens CJ. More salt, please: global patterns, responses and impacts of foliar sodium in grasslands. Ecol Lett 2019; 22:1136-1144. [PMID: 31074933 DOI: 10.1111/ele.13270] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Sodium is unique among abundant elemental nutrients, because most plant species do not require it for growth or development, whereas animals physiologically require sodium. Foliar sodium influences consumption rates by animals and can structure herbivores across landscapes. We quantified foliar sodium in 201 locally abundant, herbaceous species representing 32 families and, at 26 sites on four continents, experimentally manipulated vertebrate herbivores and elemental nutrients to determine their effect on foliar sodium. Foliar sodium varied taxonomically and geographically, spanning five orders of magnitude. Site-level foliar sodium increased most strongly with site aridity and soil sodium; nutrient addition weakened the relationship between aridity and mean foliar sodium. Within sites, high sodium plants declined in abundance with fertilisation, whereas low sodium plants increased. Herbivory provided an explanation: herbivores selectively reduced high nutrient, high sodium plants. Thus, interactions among climate, nutrients and the resulting nutritional value for herbivores determine foliar sodium biogeography in herbaceous-dominated systems.
Collapse
Affiliation(s)
- E T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - E M Lind
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - J Firn
- Queensland University of Technology (QUT), School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Brisbane, Qld., 4001, Australia
| | - E W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - T M Anderson
- Wake Forest University, Department of Biology, 049 Winston Hall, Winston-Salem, NC, 27109, USA
| | - E S Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - L Biederman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, Iowa, 50010, USA
| | - K J La Pierre
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD, 21037, USA
| | - A S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G2W1
| | - J L Moore
- School of Biological Sciences, Monash University, Vic, 3800, Australia
| | - A C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - M Schutz
- Swiss Federal Institute for Forest, Snow and Landscape Research, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - C J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
29
|
Sylvain ZA, Espeland EK, Rand TA, West NM, Branson DH. Oilfield Reclamation Recovers Productivity but not Composition of Arthropod Herbivores and Predators. ENVIRONMENTAL ENTOMOLOGY 2019; 48:299-308. [PMID: 30785610 DOI: 10.1093/ee/nvz012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Arthropods are key components of grassland ecosystems. Though arthropod communities are often strongly influenced by plant communities, plants and arthropods may respond differently to disturbance. Studying plant responses alone may, therefore, not fully capture altered ecosystem dynamics; thus multi-trophic approaches are critical to fully understand ecosystem responses to disturbance. Energy development is a large-scale driver of disturbance in northern Great Plains rangelands, and recovery of arthropod communities following reclamation is not well understood. We sampled Orthoptera and spiders in western North Dakota, United States, in 2016. Samples were collected from 14 reclaimed oil well sites ('reclaims') 2-33 yr since reclamation, and native prairie at two distances (50 and 150 m) from reclaim edges. Overall Orthopteran and spider abundances on reclaims and native prairie did not differ; however, Orthopteran community composition and species abundances were distinct on reclaims versus native prairie, including increased abundances of Melanoplus femurrubrum (De Geer) (Orthoptera: Acrididae) (a noted crop pest) on reclaims. In contrast, NMS analyses revealed no differences in spider community composition between reclaims and native prairie, although abundances of one group (Salticidae) strongly decreased on reclaims. We present one of the first studies to investigate impacts of energy development and reclamation on arthropod communities. While reclamation efforts successfully recovered abundances and biomass of arthropod herbivores and predators, Orthopteran (but not spider) community composition on reclaims has not recovered to match that of intact prairie even 30 yr after reclamation. These findings suggest that energy development may have long-term or potentially irreversible impacts to rangeland arthropod communities.
Collapse
|
30
|
Welti EAR, Sanders NJ, de Beurs KM, Kaspari M. A distributed experiment demonstrates widespread sodium limitation in grassland food webs. Ecology 2019; 100:e02600. [PMID: 30726560 DOI: 10.1002/ecy.2600] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023]
Abstract
Sodium (Na) has a unique role in food webs as a nutrient primarily limiting for plant consumers, but not other trophic levels. Environmental Na levels vary with proximity to coasts, local geomorphology, climate, and with anthropogenic inputs (e.g., road salt). We tested two key predictions across 54 grasslands in North America: Na shortfall commonly limits herbivore abundance, and the magnitude of this limitation varies inversely with environmental Na supplies. We tested them with a distributed pulse experiment and evaluated the relative importance of Na limitation to other classic drivers of climate, macronutrient levels, and plant productivity. Herbivore abundance increased by 45% with Na addition. Moreover, the magnitude of increase on Na addition plots decreased with increasing levels of plant Na, indicating Na satiation at sites with high Na concentrations in plant tissue. Our results demonstrate that invertebrate primary consumers are often Na limited and track local Na availability, with implications for the geography of invertebrate abundance and herbivory.
Collapse
Affiliation(s)
- Ellen A R Welti
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Nathan J Sanders
- The Environmental Program, Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
| | - Kirsten M de Beurs
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|