1
|
Chen J, Qiao X, Hao M, Fan C, Wang J, Zhao X, Zhang C. Climate Variability Modulates the Temporal Stability of Carbon Sequestration by Changing Multiple Facets of Biodiversity in Temperate Forests Across Scales. GLOBAL CHANGE BIOLOGY 2025; 31:e70212. [PMID: 40285733 DOI: 10.1111/gcb.70212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Climate variability poses a significant threat to ecosystem function and stability. Previous studies suggest that multiple facets of biodiversity enhance the temporal stability of forest ecosystem functioning through compensatory effects. However, as climate change intensifies, two key questions remain unresolved: (1) the mechanisms by which different biodiversity facets sustain the temporal stability of carbon sequestration across spatial scales and (2) how climate variability influences biodiversity and stability at different scales. In this study, based on data from 262 natural communities in the temperate forests of northeastern China, we aggregated metacommunities at varying spatial extents. Using ordinary-least squares regression, we examined the relationships between different facets of biodiversity and the temporal stability of carbon sequestration (hereafter, "stability") across scales. We then employed mixed-effects models to assess how multiple facets of biodiversity influence biotic stability mechanisms at different scales. Additionally, we applied piecewise structural equation modeling to disentangle the relationships among climate variability, multiple facets of biodiversity, and stability across scales. Our findings indicate that biodiversity facets (taxonomic, functional, and phylogenetic diversity) enhance ecosystem stability at multiple scales primarily through insurance effects. Temperature variability was negatively correlated with all biodiversity facets, and declines in biodiversity were associated with reduced ecosystem stability at different scales. Precipitation variability, in contrast, was negatively correlated with α diversity facets but positively correlated with β diversity facets. Unexpectedly, precipitation variability exhibited an overall positive correlation with stability across scales. These results suggest that increasing temperature variability may pose a greater threat to temperate forest ecosystems in the future. Thus, preserving multiple facets of biodiversity across spatial scales will be critical for mitigating the adverse effects of climate warming. Furthermore, the impact of precipitation variability cannot be overlooked in arid and semi-arid regions. Our study provides novel insights into biodiversity conservation under global climate change.
Collapse
Affiliation(s)
- Jiahui Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xuetao Qiao
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Minhui Hao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Chunyu Fan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Juan Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Department of Forest Ecology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Chunyu Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Liang M, Yang Q, Chase JM, Isbell F, Loreau M, Schmid B, Seabloom EW, Tilman D, Wang S. Unifying spatial scaling laws of biodiversity and ecosystem stability. Science 2025; 387:eadl2373. [PMID: 40112067 DOI: 10.1126/science.adl2373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/25/2024] [Accepted: 01/07/2025] [Indexed: 03/22/2025]
Abstract
While both species richness and ecosystem stability increase with area, how these scaling patterns are linked remains unclear. Our theoretical and empirical analyses of plant and fish communities show that the spatial scaling of ecosystem stability is determined primarily by the scaling of species asynchrony, which is in turn driven by the scaling of species richness. In wetter regions, plant species richness and ecosystem stability both exhibit faster accumulation with area, implying potentially greater declines in biodiversity and stability following habitat loss. The decline in ecosystem stability after habitat loss can be delayed, creating a stability debt mirroring the extinction debt of species. By unifying two foundational scaling laws in ecology, our work underscores that ongoing biodiversity loss may destabilize ecosystems across spatial scales.
Collapse
Affiliation(s)
- Maowei Liang
- Institute of Ecology, College of Urban and Environmental Science, and State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Peking University, Beijing, China
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, East Bethel, MN, USA
| | - Qi Yang
- Institute of Ecology, College of Urban and Environmental Science, and State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Peking University, Beijing, China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Sciences, Martin Luther University, Halle-Wittenberg, Germany
| | - Forest Isbell
- Department of Ecology., Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Michel Loreau
- Institute of Ecology, College of Urban and Environmental Science, and State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Peking University, Beijing, China
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Bernhard Schmid
- Institute of Ecology, College of Urban and Environmental Science, and State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Peking University, Beijing, China
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Eric W Seabloom
- Department of Ecology., Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - David Tilman
- Department of Ecology., Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Peking University, Beijing, China
| |
Collapse
|
3
|
Liu Z, Guo S, Wang T, Yan W, Baoyin T, Fry E. Phase-dependent grassland temporal stability is mediated by species and functional group asynchrony: A long-term mowing experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175445. [PMID: 39134279 DOI: 10.1016/j.scitotenv.2024.175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
The temporal stability of grasslands plays a key role in the stable provisioning of multiple ecosystem goods and services for humankind. Despite recent progress, our knowledge on how long-term mowing influences ecosystem stability remains unclear. Using a dataset from an 18-year-long mowing experiment with different treatment intensities (no-mowing, mowing once per year, and mowing twice per year) in grasslands of Inner Mongolia, China, we aimed to determine whether and how long-term mowing influenced grassland temporal stability in a temperate steppe. We found mowing decreased ecosystem stability in the early and intermediate periods (1-12 years of treatment), but increased stability in the later period (13-18 years of treatment), indicating responses of ecosystem stability to long-term mowing were phase dependent. Bivariate correlation and structural equation modeling analyses revealed that the degree of asynchrony both at the species and functional group levels, as well as dominant species stability, played key roles in stabilizing the whole community. In addition, portfolio effects rather than diversity made significant contributions to ecosystem stability. Our results suggest the phase-dependent temporal stability of grassland under long-term mowing is mainly mediated by species and functional group asynchrony. This finding provides a new insight for understanding how dryland grassland responds to long-term anthropogenic perturbations.
Collapse
Affiliation(s)
- Zhiying Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shuying Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tianqi Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenbin Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Taogetao Baoyin
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Ellen Fry
- Department of Biology, Edge Hill University, Lancashire L39 4QP, United Kingdom
| |
Collapse
|
4
|
van der Plas F, Hautier Y, Ceulemans T, Alard D, Bobbink R, Diekmann M, Dise NB, Dorland E, Dupré C, Gowing D, Stevens C. Atmospheric nitrogen deposition is related to plant biodiversity loss at multiple spatial scales. GLOBAL CHANGE BIOLOGY 2024; 30:e17445. [PMID: 39166455 DOI: 10.1111/gcb.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Due to various human activities, including intensive agriculture, traffic, and the burning of fossil fuels, in many parts of the world, current levels of reactive nitrogen emissions strongly exceed pre-industrial levels. Previous studies have shown that the atmospheric deposition of these excess nitrogen compounds onto semi-natural terrestrial environments has negative consequences for plant diversity. However, these previous studies mostly investigated biodiversity loss at local spatial scales, that is, at the scales of plots of typically a few square meters. Whether increased atmospheric nitrogen deposition also affects plant diversity at larger spatial scales remains unknown. Here, using grassland plant community data collected in 765 plots, across 153 different sites and 9 countries in northwestern Europe, we investigate whether relationships between atmospheric nitrogen deposition and plant biodiversity are scale-dependent. We found that high levels of atmospheric nitrogen deposition were associated with low levels of plant species richness at the plot scale but also at the scale of sites and regions. The presence of 39% of plant species was negatively associated with increasing levels of nitrogen deposition at large (site) scales, while only 1.5% of the species became more common with increasing nitrogen deposition, indicating that large-scale biodiversity changes were mostly driven by "loser" species, while "winner" species profiting from high N deposition were rare. Some of the "loser" species whose site presence was negatively associated with atmospheric nitrogen deposition are listed as "threatened" in at least some EU member states, suggesting that nitrogen deposition may be a key contributor to their threat status. Hence, reductions in reactive nitrogen emissions will likely benefit plant diversity not only at local but also at larger spatial scales.
Collapse
Affiliation(s)
- Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Didier Alard
- Université de Bordeaux, INRAE, BIOGECO, Pessac, France
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University, Nijmegen, The Netherlands
| | - Martin Diekmann
- Institute of Ecology, FB 2, University of Bremen, Bremen, Germany
| | - Nancy B Dise
- UK Centre for Ecology & Hydrology, Bush Estate, Edinburgh, UK
| | - Edu Dorland
- KWR Water Research Institute, Nieuwegein, Netherlands
| | - Cecilia Dupré
- Institute of Ecology, FB 2, University of Bremen, Bremen, Germany
| | - David Gowing
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, UK
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
5
|
Liang M, Lamy T, Reuman DC, Wang S, Bell TW, Cavanaugh KC, Castorani MCN. A marine heatwave changes the stabilizing effects of biodiversity in kelp forests. Ecology 2024; 105:e4288. [PMID: 38522859 DOI: 10.1002/ecy.4288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
Biodiversity can stabilize ecological communities through biological insurance, but climate and other environmental changes may disrupt this process via simultaneous ecosystem destabilization and biodiversity loss. While changes to diversity-stability relationships (DSRs) and the underlying mechanisms have been extensively explored in terrestrial plant communities, this topic remains largely unexplored in benthic marine ecosystems that comprise diverse assemblages of producers and consumers. By analyzing two decades of kelp forest biodiversity survey data, we discovered changes in diversity, stability, and their relationships at multiple scales (biological organizational levels, spatial scales, and functional groups) that were linked with the most severe marine heatwave ever documented in the North Pacific Ocean. Moreover, changes in the strength of DSRs during/after the heatwave were more apparent among functional groups than both biological organizational levels (population vs. ecosystem levels) and spatial scales (local vs. broad scales). Specifically, the strength of DSRs decreased for fishes, increased for mobile invertebrates and understory algae, and were unchanged for sessile invertebrates during/after the heatwave. Our findings suggest that biodiversity plays a key role in stabilizing marine ecosystems, but the resilience of DSRs to adverse climate impacts primarily depends on the functional identities of ecological communities.
Collapse
Affiliation(s)
- Maowei Liang
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, East Bethel, Minnesota, USA
| | - Thomas Lamy
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Daniel C Reuman
- Department of Ecology and Evolutionary Biology and Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Tom W Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Kyle C Cavanaugh
- Department of Geography, University of California, Los Angeles, Los Angeles, California, USA
| | - Max C N Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Zhang H, Chen W, Dong L, Wang W. Grassland degradation amplifies the negative effect of nitrogen enrichment on soil microbial community stability. GLOBAL CHANGE BIOLOGY 2024; 30:e17217. [PMID: 38456565 DOI: 10.1111/gcb.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Although nitrogen (N) enrichment is known to threaten the temporal stability of aboveground net primary productivity, it remains unclear how it alters that of belowground microbial abundance and whether its impact can be regulated by grassland degradation. Using data from N enrichment experiments at temperate grasslands with no, moderate, severe, and extreme degradation degrees, we quantified the temporal stability of soil microbial abundance (hereafter 'microbial community stability') using the ratio of the mean quantitative PCR to its standard deviation over 4 years. Both bacterial and fungal community stability sharply decreased when N input exceeded 30 g N m-2 year-1 in non-degraded grasslands, whereas a reduction in this threshold occurred in degraded grasslands. Microbial species diversity, species asynchrony, and species associations jointly altered microbial community stability. Interestingly, the linkages between plant and microbial community stability were strengthened in degraded grasslands, suggesting that plants and soil microbes might depend on each other to keep stable communities in harsh environments. Our findings highlighted the importance of grassland degradation in regulating the responses of microbial community stability to N enrichment and provided experimental evidence for understanding the relationships between plant and microbial community stability.
Collapse
Affiliation(s)
- Hongjin Zhang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Weile Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lizheng Dong
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Wei Wang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
7
|
Chen X, Lu H, Ren Z, Zhang Y, Liu R, Zhang Y, Han X. Reproductive height determines the loss of clonal grasses with nitrogen enrichment in a temperate grassland. PLANT DIVERSITY 2024; 46:256-264. [PMID: 38807914 PMCID: PMC11128833 DOI: 10.1016/j.pld.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2024]
Abstract
Tall clonal grasses commonly display competitive advantages with nitrogen (N) enrichment. However, it is currently unknown whether the height is derived from the vegetative or reproductive module. Moreover, it is unclear whether the height of the vegetative or reproductive system regulates the probability of extinction and colonization, and determines species diversity. In this study, the impacts on clonal grasses were studied in a field experiment employing two frequencies (twice a year vs. monthly) crossing with nine N addition rates in a temperate grassland, China. We found that the N addition decreased species frequency and increased extinction probability, but did not change the species colonization probability. A low frequency of N addition decreased species frequency and colonization probability, but increased extinction probability. Moreover, we found that species reproductive height was the best index to predict the extinction probability of clonal grasses in N-enriched conditions. The low frequency of N addition may overestimate the negative effect from N deposition on clonal grass diversity, suggesting that a higher frequency of N addition is more suitable in assessing the ecological effects of N deposition. Overall, this study illustrates that reproductive height was associated with the clonal species extinction probability under N-enriched environment.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Haining Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Ruoxuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| |
Collapse
|
8
|
Zhu J, Zhang Y, Wu J, Zhang X, Yu G, Shen Z, Yang X, He Y, Jiang L, Hautier Y. Herbivore exclusion stabilizes alpine grassland biomass production across spatial scales. GLOBAL CHANGE BIOLOGY 2024; 30:e17155. [PMID: 38273528 DOI: 10.1111/gcb.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
There is growing evidence that land-use management practices such as livestock grazing can strongly impact the local diversity, functioning, and stability of grassland communities. However, whether these impacts depend on environmental condition and propagate to larger spatial scales remains unclear. Using an 8-year grassland exclosure experiment conducted at nine sites in the Tibetan Plateau covering a large precipitation gradient, we found that herbivore exclusion increased the temporal stability of alpine grassland biomass production at both the local and larger (site) spatial scales. Higher local community stability was attributed to greater stability of dominant species, whereas higher stability at the larger scale was linked to higher spatial asynchrony of productivity among local communities. Additionally, sites with higher mean annual precipitation had lower dominant species stability and lower grassland stability at both the spatial scales considered. Our study provides novel evidence that livestock grazing can impair grassland stability across spatial scales and climatic gradients.
Collapse
Affiliation(s)
- Juntao Zhu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yangjian Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianshuang Wu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Biology, Theoretical Ecology, Freie Universität Berlin, Berlin, Germany
- Department of Geography, Geography and Geology Faculty, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | - Xianzhou Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Guirui Yu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhenxi Shen
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yunlong He
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Wang Y, Wang C, Ren F, Jing X, Ma W, He JS, Jiang L. Asymmetric response of aboveground and belowground temporal stability to nitrogen and phosphorus addition in a Tibetan alpine grassland. GLOBAL CHANGE BIOLOGY 2023; 29:7072-7084. [PMID: 37795748 DOI: 10.1111/gcb.16967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Anthropogenic eutrophication is known to impair the stability of aboveground net primary productivity (ANPP), but its effects on the stability of belowground (BNPP) and total (TNPP) net primary productivity remain poorly understood. Based on a nitrogen and phosphorus addition experiment in a Tibetan alpine grassland, we show that nitrogen addition had little impact on the temporal stability of ANPP, BNPP, and TNPP, whereas phosphorus addition reduced the temporal stability of BNPP and TNPP, but not ANPP. Significant interactive effects of nitrogen and phosphorus addition were observed on the stability of ANPP because of the opposite phosphorus effects under ambient and enriched nitrogen conditions. We found that the stability of TNPP was primarily driven by that of BNPP rather than that of ANPP. The responses of BNPP stability cannot be predicted by those of ANPP stability, as the variations in responses of ANPP and BNPP to enriched nutrient, with ANPP increased while BNPP remained unaffected, resulted in asymmetric responses in their stability. The dynamics of grasses, the most abundant plant functional group, instead of community species diversity, largely contributed to the ANPP stability. Under the enriched nutrient condition, the synchronization of grasses reduced the grass stability, while the latter had a significant but weak negative impact on the BNPP stability. These findings challenge the prevalent view that species diversity regulates the responses of ecosystem stability to nutrient enrichment. Our findings also suggest that the ecological consequences of nutrient enrichment on ecosystem stability cannot be accurately predicted from the responses of aboveground components and highlight the need for a better understanding of the belowground ecosystem dynamics.
Collapse
Affiliation(s)
- Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Chao Wang
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Fei Ren
- Key Laboratory of Restoration Ecology for Cold Regions in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jin-Sheng He
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Suonan J, Lu X, Li X, Hautier Y, Wang C. Nitrogen addition strengthens the stabilizing effect of biodiversity on productivity by increasing plant trait diversity and species asynchrony in the artificial grassland communities. FRONTIERS IN PLANT SCIENCE 2023; 14:1301461. [PMID: 38053765 PMCID: PMC10694273 DOI: 10.3389/fpls.2023.1301461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Background and aims Nitrogen (N) enrichment usually weakens the stabilizing effect of biodiversity on productivity. However, previous studies focused on plant species richness and thus largely ignored the potential contributions of plant functional traits to stability, even though evidence is increasing that functional traits are stronger predictors than species richness of ecosystem functions. Methods We conducted a common garden experiment manipulating plant species richness and N addition levels to quantify effects of N addition on relations between species richness and functional trait identity and diversity underpinning the 'fast-slow' economics spectrum and community stability. Results Nitrogen addition had a minor effect on community stability but increased the positive effects of species richness on community stability. Increasing community stability was found in the species-rich communities dominated by fast species due to substantially increasing temporal mean productivity relative to its standard deviation. Furthermore, enhancement in 'fast-slow' functional diversity in species-rich communities dominated by fast species under N addition increased species asynchrony, resulting in a robust biodiversity-stability relationship under N addition the artificial grassland communities. Conclusion The findings demonstrate mechanistic links between plant species richness, 'fast-slow' functional traits, and community stability under N addition, suggesting that dynamics of biodiversity-stability relations under global changes are the results of species-specific responses of 'fast-slow' traits on the plant economics spectrum.
Collapse
Affiliation(s)
- Ji Suonan
- College of Life Sciences, Qinghai Normal University, Xining, China
| | - Xuwei Lu
- College of Life Sciences, Qinghai Normal University, Xining, China
| | - Xiaona Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
11
|
Meng Y, Li SP, Wang S, Meiners SJ, Jiang L. Scale-dependent changes in ecosystem temporal stability over six decades of succession. SCIENCE ADVANCES 2023; 9:eadi1279. [PMID: 37801504 PMCID: PMC10558118 DOI: 10.1126/sciadv.adi1279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
A widely assumed, but largely untested, tenet in ecology is that ecosystem stability tends to increase over succession. We rigorously test this idea using 60-year continuous data of old field succession across 480 plots nested within 10 fields. We found that ecosystem temporal stability increased over succession at the larger field scale (γ stability) but not at the local plot scale (α stability). Increased spatial asynchrony among plots within fields increased γ stability, while temporal increases in species stability and decreases in species asynchrony offset each other, resulting in no increase in α stability at the local scale. Furthermore, we found a notable positive diversity-stability relationship at the larger but not local scale, with the increased γ stability at the larger scale associated with increasing functional diversity later in succession. Our results emphasize the importance of spatial scale in assessing ecosystem stability over time and how it relates to biodiversity.
Collapse
Affiliation(s)
- Yani Meng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Shao-peng Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Scott J. Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
12
|
Du L, Tian S, Sun J, Zhang B, Mu XH, Tang L, Zheng X, Li Y. Ecosystem multifunctionality, maximum height, and biodiversity of shrub communities affected by precipitation fluctuations in Northwest China. FRONTIERS IN PLANT SCIENCE 2023; 14:1259858. [PMID: 37818321 PMCID: PMC10560859 DOI: 10.3389/fpls.2023.1259858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/12/2023]
Abstract
Introduction Dryland ecosystems face serious threats from climate change. Establishing the spatial pattern of ecosystem multifunctionality, maximum height and the correlation of biodiversity patterns with climate change is important for understanding changes in complex ecosystem processes. However, the understanding of their relationships across large spatial areas remains limited in drylands. Methods Accordingly, this study examined the spatial patterns of ecosystem multifunctionality, maximum height and considered a set of potential environmental drivers by investigating natural shrub communities in Northwest China. Results We found that the ecosystem multifunctionality (EMF) and maximum height of shrub communities were both affected by longitude, which was positively correlated with the precipitation gradient. Specifically, the EMF was driven by high precipitation seasonality, and the maximum height was driven by high precipitation stability during the growing season. Among the multiple biodiversity predictors, species beta diversity (SD-beta) is the most common in determining EMF, although this relationship is weak. Discussion Unlike tree life form, we did not observe biodiversity-maximum height relationships in shrub communities. Based on these results, we suggest that more attention should be paid to the climatical fluctuations mediated biodiversity mechanisms, which are tightly correlated with ecosystem's service capacity and resistance capacity under a rapid climate change scenario in the future.
Collapse
Affiliation(s)
- Lan Du
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Shengchuan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Jing Sun
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Bin Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Xiao-Han Mu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Lisong Tang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Xinjun Zheng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Yan Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Fang Z, Yu H, Li C, Wang B, Jiao F, Huang J. Long-term phosphorus addition alters plant community composition but not ecosystem stability of a nitrogen-enriched desert steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163033. [PMID: 36966843 DOI: 10.1016/j.scitotenv.2023.163033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Under ongoing global change, whether grassland ecosystems can maintain their functions and services depends largely on their stability. However, how ecosystem stability responds to increasing phosphorus (P) inputs under nitrogen (N) loading remains unclear. We conducted a 7-year field experiment to examine the influence of elevated P inputs (ranging from 0 to 16 g P m-2 yr-1) on the temporal stability of aboveground net primary productivity (ANPP) under N addition of 5 g N·m-2·yr-1 in a desert steppe. We found that under N loading, P addition altered plant community composition but did not significantly affect ecosystem stability. Specifically, with the increase in the P addition rate, declines in the relative ANPP of legume could be compensated for by an increase in the relative ANPP of grass and forb species, yet community ANPP and diversity remained unchanged. Notably, the stability and asynchrony of dominant species tended to decrease with increasing P addition, and a significant decrease in legume stability was observed at high P rates (>8 g P m-2 yr-1). Moreover, P addition indirectly affected ecosystem stability by multiple pathways (e.g., species diversity, species asynchrony, dominant species asynchrony, and dominant species stability), as revealed by structural equation modeling results. Our results suggest that multiple mechanisms work concurrently in stabilizing the ecosystem stability of desert steppes and that increasing P inputs may not alter desert steppe ecosystem stability under future N-enriched scenarios. Our results will help improve the accuracy of vegetation dynamics assessments in arid ecosystems under future global change.
Collapse
Affiliation(s)
- Zhao Fang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in northwestern China, Yinchuan 750021, China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, Yinchuan 750021, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hailong Yu
- School of Geography and Planning, Ningxia University, Yinchuan 750021, China
| | - Chunhuan Li
- School of Geography and Planning, Ningxia University, Yinchuan 750021, China
| | - Bin Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China
| | - Feng Jiao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Juying Huang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in northwestern China, Yinchuan 750021, China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, Yinchuan 750021, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
14
|
Qiao X, Lamy T, Wang S, Hautier Y, Geng Y, White HJ, Zhang N, Zhang Z, Zhang C, Zhao X, von Gadow K. Latitudinal patterns of forest ecosystem stability across spatial scales as affected by biodiversity and environmental heterogeneity. GLOBAL CHANGE BIOLOGY 2023; 29:2242-2255. [PMID: 36630490 DOI: 10.1111/gcb.16593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 05/28/2023]
Abstract
Our planet is facing a variety of serious threats from climate change that are unfolding unevenly across the globe. Uncovering the spatial patterns of ecosystem stability is important for predicting the responses of ecological processes and biodiversity patterns to climate change. However, the understanding of the latitudinal pattern of ecosystem stability across scales and of the underlying ecological drivers is still very limited. Accordingly, this study examines the latitudinal patterns of ecosystem stability at the local and regional spatial scale using a natural assembly of forest metacommunities that are distributed over a large temperate forest region, considering a range of potential environmental drivers. We found that the stability of regional communities (regional stability) and asynchronous dynamics among local communities (spatial asynchrony) both decreased with increasing latitude, whereas the stability of local communities (local stability) did not. We tested a series of hypotheses that potentially drive the spatial patterns of ecosystem stability, and found that although the ecological drivers of biodiversity, climatic history, resource conditions, climatic stability, and environmental heterogeneity varied with latitude, latitudinal patterns of ecosystem stability at multiple scales were affected by biodiversity and environmental heterogeneity. In particular, α diversity is positively associated with local stability, while β diversity is positively associated with spatial asynchrony, although both relationships are weak. Our study provides the first evidence that latitudinal patterns of the temporal stability of naturally assembled forest metacommunities across scales are driven by biodiversity and environmental heterogeneity. Our findings suggest that the preservation of plant biodiversity within and between forest communities and the maintenance of heterogeneous landscapes can be crucial to buffer forest ecosystems at higher latitudes from the faster and more intense negative impacts of climate change in the future.
Collapse
Affiliation(s)
- Xuetao Qiao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Thomas Lamy
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Yan Geng
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Hannah J White
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Zhonghui Zhang
- Jilin Provincial Academy of Forestry Sciences, Changchun, China
| | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Klaus von Gadow
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- Faculty of Forestry and Forest Ecology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
15
|
Yang J, Diao H, Li G, Wang R, Jia H, Wang C. Higher N Addition and Mowing Interactively Improved Net Primary Productivity by Stimulating Gross Nitrification in a Temperate Steppe of Northern China. PLANTS (BASEL, SWITZERLAND) 2023; 12:1481. [PMID: 37050107 PMCID: PMC10097329 DOI: 10.3390/plants12071481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Anthropogenic disturbance, such as nitrogen (N) fertilization and mowing, is constantly changing the function and structure of grassland ecosystems during past years and will continue to affect the sustainability of arid and semiarid grassland in the future. However, how and whether the different N addition levels and the frequency of N addition, as well as the occurrence of mowing, affect the key processes of N cycling is still unclear. We designed a field experiment with five levels of N addition (0, 2, 10, 20, and 50 g N m-2 yr-1), two types of N addition frequencies (twice a year added in June/November and monthly addition), and mowing treatment in a typical grassland of northern China. The results showed that higher N addition and mowing interactively improved net primary productivity (NPP), including aboveground and belowground biomass, while different N addition frequency had no significant effects on NPP. Different N addition levels significantly improved gross ammonification (GA) and nitrification (GN) rates, which positively correlated to aboveground net primary productivity (ANPP). However, the effect of N addition frequency was differentiated with N addition levels, the highest N addition level (50 g N m-2 yr-1) with lower frequency (twice a year) significantly increased GA and GN rates. Mowing significantly increased the GA rate but decreased the GN rate both under the highest N addition level (50 g N m-2 yr-1) and lower N addition frequency (twice a year), which could improve N turnover by stimulating plant and microbial activity. However, a long-term study of the effects of N enrichment and mowing on N turnover will be needed for understanding the mechanisms by which nutrient cycling occurs in typical grassland ecosystems under global change scenarios.
Collapse
Affiliation(s)
- Jianqiang Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030810, China
| | - Huajie Diao
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
- Youyu Loess Plateau Grassland Ecosystem Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Guoliang Li
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
- Youyu Loess Plateau Grassland Ecosystem Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Rui Wang
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
- Youyu Loess Plateau Grassland Ecosystem Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Huili Jia
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
- Youyu Loess Plateau Grassland Ecosystem Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Changhui Wang
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
- Youyu Loess Plateau Grassland Ecosystem Research Station, Shanxi Agricultural University, Taigu 030801, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
16
|
Garces KR, Bell-Dereske L, Rudgers JA, Emery SM. Nitrogen addition and fungal symbiosis alter early dune plant succession. Oecologia 2023; 201:1067-1077. [PMID: 36941448 PMCID: PMC10027266 DOI: 10.1007/s00442-023-05362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Anthropogenic nitrogen (N) enrichment can have complex effects on plant communities. In low-nutrient, primary successional systems such as sand dunes, N enrichment may alter the trajectory of plant community assembly or the dominance of foundational, ecosystem-engineering plants. Predicting the consequences of N enrichment may be complicated by plant interactions with microbial symbionts because increases in a limiting resource, such as N, could alter the costs and benefits of symbiosis. To evaluate the direct and interactive effects of microbial symbiosis and N addition on plant succession, we established a long-term field experiment in Michigan, USA, manipulating the presence of the symbiotic fungal endophyte Epichloë amarillans in Ammophila breviligulata, a dominant ecosystem-engineering dune grass species. From 2016 to 2020, we implemented N fertilization treatments (control, low, high) in a subset of the long-term experiment. N addition suppressed the accumulation of plant diversity over time mainly by reducing species richness of colonizing plants. However, this suppression occurred only when the endophyte was present in Ammophila. Although Epichloë enhanced Ammophila tiller density over time, N addition did not strongly interact with Epichloë symbiosis to influence vegetative growth of Ammophila. Instead, N addition directly altered plant community composition by increasing the abundance of efficient colonizers, especially C4 grasses. In conclusion, hidden microbial symbionts can alter the consequences of N enrichment on plant primary succession.
Collapse
Affiliation(s)
- Kylea R Garces
- Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, KY, 40292, USA.
| | - Lukas Bell-Dereske
- Laboratory of Environmental Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sarah M Emery
- Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, KY, 40292, USA
| |
Collapse
|
17
|
Zhang Y, Ren Z, Lu H, Chen X, Liu R, Zhang Y. Autumn nitrogen enrichment destabilizes ecosystem biomass production in a semiarid grassland. FUNDAMENTAL RESEARCH 2023; 3:170-178. [PMID: 38932923 PMCID: PMC11197746 DOI: 10.1016/j.fmre.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Nitrogen (N) deposition decreases the temporal stability of ecosystem aboveground biomass production (ecosystem stability). However, little is known about how the responses of ecosystem stability differ based on seasonal N enrichment. By adding N in autumn, winter, or growing season, from October 2014 to May 2020, in a temperate grassland in northern China, we found that only N addition in autumn resulted in a significantly positive correlation between ecosystem mean aboveground net primary productivity (ANPP) and its standard deviation and significantly reduced ecosystem stability. Autumn N-induced reduction in ecosystem stability was associated with the vanished negative effect of community-wide species asynchrony (asynchronous dynamics among populations to environmental perturbations) on the standard deviation of ecosystem ANPP in combination with the emerged positive effect of dominance (Simpson's dominance index that indicates the relative weight of dominant species in a community). Our findings indicate that autumn N addition might overestimate the negative effect of annual atmospheric N deposition on ecosystem stability, suggesting that to better evaluate the influence of N deposition in temperate grasslands, both field experiments and global modeling should consider not only the annual N load but also its seasonal dynamics. Moreover, further studies should pay more attention to the alteration in the ecosystem temporal deviations, which might be more sensitive to human-induced environmental changes.
Collapse
Affiliation(s)
- Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Haining Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Xu Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Ruoxuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| |
Collapse
|
18
|
van der Plas F, Hennecke J, Chase JM, van Ruijven J, Barry KE. Universal beta-diversity-functioning relationships are neither observed nor expected. Trends Ecol Evol 2023; 38:532-544. [PMID: 36806396 DOI: 10.1016/j.tree.2023.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Widespread evidence shows that local species richness (α-diversity) loss hampers the biomass production and stability of ecosystems. β-Diversity, namely the variation of species compositions among different ecological communities, represents another important biodiversity component, but studies on how it drives ecosystem functioning show mixed results. We argue that to better understand the importance of β-diversity we need to consider it across contexts. We focus on three scenarios that cause gradients in β-diversity: changes in (i) abiotic heterogeneity, (ii) habitat isolation, and (iii) species pool richness. We show that across these scenarios we should not expect universally positive relationships between β-diversity, production, and ecosystem stability. Nevertheless, predictable relationships between β-diversity and ecosystem functioning do exist in specific contexts, and can reconcile seemingly contrasting empirical relationships.
Collapse
Affiliation(s)
- Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, PO Box 47, 6700, AA, Wageningen, The Netherlands.
| | - Justus Hennecke
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen University, PO Box 47, 6700, AA, Wageningen, The Netherlands
| | - Kathryn E Barry
- Ecology and Biodiversity Group, Dept of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Ke Y, Yu Q, Wang H, Zhao Y, Jia X, Yang Y, Zhang Y, Zhou W, Wu H, Xu C, Sun T, Gao Y, Jentsch A, He N, Yu G. The potential bias of nitrogen deposition effects on primary productivity and biodiversity. GLOBAL CHANGE BIOLOGY 2023; 29:1054-1061. [PMID: 36408718 DOI: 10.1111/gcb.16530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric nitrogen (N) deposition is composed of both inorganic nitrogen (IN) and organic nitrogen (ON), and these sources of N may exhibit different impacts on ecosystems. However, our understanding of the impacts of N deposition is largely based on experimental gradients of INs or more rarely ONs. Thus, the effects of N deposition on ecosystem productivity and biodiversity may be biased. We explored the differential impacts of N addition with different IN:ON ratios (0:10, 3:7, 5:5, 7:3, and 10:0) on aboveground net primary productivity (ANPP) of plant community and plant diversity in a typical temperate grassland with a long-term N addition experiment. Soil pH, litter biomass, soil IN concentration, and light penetration were measured to examine the potential mechanisms underlying species loss with N addition. Our results showed that N addition significantly increased plant community ANPP by 68.33%-105.50% and reduced species richness by 16.20%-37.99%. The IN:ON ratios showed no significant effects on plant community ANPP. However, IN-induced species richness loss was about 2.34 times of ON-induced richness loss. Soil pH was positively related to species richness, and they exhibited very similar response patterns to IN:ON ratios. It implies that soil acidification accounts for the different magnitudes of species loss with IN and ON additions. Overall, our study suggests that it might be reasonable to evaluate the effects of N deposition on plant community ANPP with either IN or ON addition. However, the evaluation of N deposition on biodiversity might be overestimated if only IN is added or underestimated if only ON is added.
Collapse
Affiliation(s)
- Yuguang Ke
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Hongqiang Wang
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zhao
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xiaotong Jia
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yadong Yang
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunlong Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Wei Zhou
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honghui Wu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chong Xu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Sun
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yingzhi Gao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Anke Jentsch
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Macholdt J, Hadasch S, Macdonald A, Perryman S, Piepho HP, Scott T, Styczen ME, Storkey J. Long-term trends in yield variance of temperate managed grassland. AGRONOMY FOR SUSTAINABLE DEVELOPMENT 2023; 43:37. [PMID: 37124333 PMCID: PMC10133363 DOI: 10.1007/s13593-023-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
The management of climate-resilient grassland systems is important for stable livestock fodder production. In the face of climate change, maintaining productivity while minimizing yield variance of grassland systems is increasingly challenging. To achieve climate-resilient and stable productivity of grasslands, a better understanding of the climatic drivers of long-term trends in yield variance and its dependence on agronomic inputs is required. Based on the Park Grass Experiment at Rothamsted (UK), we report for the first time the long-term trends in yield variance of grassland (1965-2018) in plots given different fertilizer and lime applications, with contrasting productivity and plant species diversity. We implemented a statistical model that allowed yield variance to be determined independently of yield level. Environmental abiotic covariates were included in a novel criss-cross regression approach to determine climatic drivers of yield variance and its dependence on agronomic management. Our findings highlight that sufficient liming and moderate fertilization can reduce yield variance while maintaining productivity and limiting loss of plant species diversity. Plots receiving the highest rate of nitrogen fertilizer or farmyard manure had the highest yield but were also more responsive to environmental variability and had less plant species diversity. We identified the days of water stress from March to October and temperature from July to August as the two main climatic drivers, explaining approximately one-third of the observed yield variance. These drivers helped explain consistent unimodal trends in yield variance-with a peak in approximately 1995, after which variance declined. Here, for the first time, we provide a novel statistical framework and a unique long-term dataset for understanding the trends in yield variance of managed grassland. The application of the criss-cross regression approach in other long-term agro-ecological trials could help identify climatic drivers of production risk and to derive agronomic strategies for improving the climate resilience of cropping systems. Supplementary Information The online version contains supplementary material available at 10.1007/s13593-023-00885-w.
Collapse
Affiliation(s)
- Janna Macholdt
- Professorship of Agronomy, Institute of Agriculture and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 5, 06120 Halle (Saale), Germany
| | - Steffen Hadasch
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, Germany
| | - Andrew Macdonald
- Protecting Crops and Environment, Rothamsted Research, Harpenden, AL5 2JQ Hertfordshire UK
| | - Sarah Perryman
- Computational and Analytical Sciences Department, Rothamsted Research, Hertfordshire AL5 2JQ Harpenden, UK
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, Germany
| | - Tony Scott
- Protecting Crops and Environment, Rothamsted Research, Harpenden, AL5 2JQ Hertfordshire UK
| | - Merete Elisabeth Styczen
- Section of Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | - Jonathan Storkey
- Protecting Crops and Environment, Rothamsted Research, Harpenden, AL5 2JQ Hertfordshire UK
| |
Collapse
|
21
|
Zhang H, Zhou M, Dong L, Deng Y, Wang W. Critical transition of multifunctional stability induced by nitrogen enrichment in grasslands differing in degradation severity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157660. [PMID: 35907545 DOI: 10.1016/j.scitotenv.2022.157660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) enrichment poses a severe threat to ecosystem multifunctionality. Given increasing variability of ecosystem functioning and uncertainty under global change, a pressing question is how N enrichment affects temporal stability of multiple functions (i.e., 'multifunctional stability'). Whether the responses of multifunctional stability to N enrichment change with external disturbance, such as grasslands with different degradation statuses, remains unclear. We conducted multi-level N enrichment experiments at four grassland sites with no, moderate, severe, and extreme degradation statuses in Inner Mongolia, China. We measured temporal stability of five functions, comprising aboveground net primary productivity, soil total carbon (C) and N storage, and soil microbial biomass C and N storage, to explore how multifunctional stability responded to N enrichment. The temporal stability of most individual functions and multifunctional stability decreased sharply when N input exceeded 20 g N m-2 y-1 in the non-, moderately, and severely degraded grasslands, whereas the threshold declined to 10 g N m-2 y-1 in the extremely degraded grassland. The relative importance of plant and soil microbes in regulating multifunctional stability varied along the degradation gradient. In particular, plant species asynchrony and species richness showed strong positive relationships with multifunctional stability in the non- and moderately degraded grasslands, whereas soil microbial diversity, especially bacterial diversity, was positively associated with multifunctional stability in the severely and extremely degraded grasslands. Overall, our findings identified a critical threshold for N-induced multifunctional stability and called for context-specific biodiversity conservation strategies to buffer the negative effect of N enrichment on grassland ecosystem stability.
Collapse
Affiliation(s)
- Hongjin Zhang
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Mei Zhou
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Lizheng Dong
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Yanyu Deng
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Wei Wang
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Li X, Zhang Z, Lü X, Li Y, Jin K, van der Putten WH. Soil aggregate microbiomes steer plant community overyielding in ungrazed and intensively grazed grassland soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115919. [PMID: 36001914 DOI: 10.1016/j.jenvman.2022.115919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Plant and soil microbial community composition play a central role in maintaining ecosystem functioning. Most studies have focused on soil microbes in the bulk soil, the rhizosphere and inside plant roots, however, less is known about the soil community that exists within soil aggregates, and how these soil communities influence plant biomass production. Here, using field-conditioned soil collected from experimental ungrazed and grazed grasslands in Inner Mongolia, China, we examined the composition of microbiomes inside soil aggregates of various size classes, and determined their roles in plant-soil feedbacks (PSFs), diversity-productivity relationships, and diversity-dependent overyielding. We found that grazing induced significantly positive PSF effects, which appeared to be mediated by mycorrhizal fungi, particularly under plant monocultures. Despite this, non-additive effects of microbiomes within different soil aggregates enhanced the strength of PSF under ungrazed grassland, but decreased PSF strength under intensively grazed grassland. Plant mixture-related increases in PSF effects markedly enhanced diversity-dependent overyielding, primarily due to complementary effects. Selection effects played far less of a role. Our work suggests that PSF contributes to diversity-dependent overyielding in grasslands via non-additive effects of microbiomes within different soil aggregates. The implication of our work is that assessing the effectiveness of sustainable grassland restoration and management on soil properties requires inspection of soil aggregate size-specific microbiomes, as these are relevant determinants of the feedback interactions between soil and plant performance.
Collapse
Affiliation(s)
- Xiliang Li
- Key Laboratory of Grassland Ecology and Restoration, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6700AB, the Netherlands
| | - Zhen Zhang
- Key Laboratory of Grassland Ecology and Restoration, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Xiaotao Lü
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuanheng Li
- Key Laboratory of Grassland Ecology and Restoration, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China.
| | - Ke Jin
- Key Laboratory of Grassland Ecology and Restoration, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6700AB, the Netherlands; Department of Nematology, Wageningen University & Research, Wageningen 6700 ES, the Netherlands
| |
Collapse
|
23
|
Xu Q, Yang X, Song J, Ru J, Xia J, Wang S, Wan S, Jiang L. Nitrogen enrichment alters multiple dimensions of grassland functional stability via changing compositional stability. Ecol Lett 2022; 25:2713-2725. [DOI: 10.1111/ele.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Qianna Xu
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology Sun Yat‐sen University Guangzhou P. R. China
| | - Jian Song
- School of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding P. R. China
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding P. R. China
| | - Jianyang Xia
- Research Center for Global Change and Complex Ecosystems, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences East China Normal University Shanghai China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University Beijing P. R. China
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding P. R. China
| | - Lin Jiang
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| |
Collapse
|
24
|
Wang Y, Wang S, Zhao L, Liang C, Miao B, Zhang Q, Niu X, Ma W, Schmid B. Stability and asynchrony of local communities but less so diversity increase regional stability of Inner Mongolian grassland. eLife 2022; 11:74881. [PMID: 36206306 PMCID: PMC9545536 DOI: 10.7554/elife.74881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
Extending knowledge on ecosystem stability to larger spatial scales is urgently needed because present local-scale studies are generally ineffective in guiding management and conservation decisions of an entire region with diverse plant communities. We investigated stability of plant productivity across spatial scales and hierarchical levels of organization and analyzed impacts of dominant species, species diversity, and climatic factors using a multisite survey of Inner Mongolian grassland. We found that regional stability across distant local communities was related to stability and asynchrony of local communities. Using only dominant instead of all-species dynamics explained regional stability almost equally well. The diversity of all or only dominant species had comparatively weak effects on stability and synchrony, whereas a lower mean and higher variation of precipitation destabilized regional and local communities by reducing population stability and synchronizing species dynamics. We demonstrate that, for semi-arid temperate grassland with highly uneven species abundances, the stability of regional communities is increased by stability and asynchrony of local communities and these are more affected by climate rather than species diversity. Reduced amounts and increased variation of precipitation in the future may compromise the sustainable provision of ecosystem services to human well-being in this region.
Collapse
Affiliation(s)
- Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University
| | - Liqing Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Bailing Miao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Xiaxia Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich
| |
Collapse
|
25
|
Liang M, Baiser B, Hallett LM, Hautier Y, Jiang L, Loreau M, Record S, Sokol ER, Zarnetske PL, Wang S. Consistent stabilizing effects of plant diversity across spatial scales and climatic gradients. Nat Ecol Evol 2022; 6:1669-1675. [PMID: 36123533 DOI: 10.1038/s41559-022-01868-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022]
Abstract
Biodiversity has widely been documented to enhance local community stability but whether such stabilizing effects of biodiversity extend to broader scales remains elusive. Here, we investigated the relationships between biodiversity and community stability in natural plant communities from quadrat (1 m2) to plot (400 m2) and regional (5-214 km2) scales and across broad climatic conditions, using an extensive plant community dataset from the National Ecological Observatory Network. We found that plant diversity provided consistent stabilizing effects on total community abundance across three nested spatial scales and climatic gradients. The strength of the stabilizing effects of biodiversity increased modestly with spatial scale and decreased as precipitation seasonality increased. Our findings illustrate the generality of diversity-stability theory across scales and climatic gradients, which provides a robust framework for understanding ecosystem responses to biodiversity and climate changes.
Collapse
Affiliation(s)
- Maowei Liang
- Institute of Ecology, College of Urban and Environmental Science and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, P. R. China
| | - Benjamin Baiser
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Lauren M Hallett
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, OR, USA
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Sydne Record
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME, USA
| | - Eric R Sokol
- National Ecological Observatory Network (NEON), Battelle, Boulder, CO, USA.,Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO, USA
| | - Phoebe L Zarnetske
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, P. R. China.
| |
Collapse
|
26
|
Li W, Gan X, Jiang Y, Cao F, Lü XT, Ceulemans T, Zhao C. Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119720. [PMID: 35810985 DOI: 10.1016/j.envpol.2022.119720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Human-induced nitrogen (N) and phosphorus (P) enrichment have profound effects on grassland net primary production (NPP) and species richness. However, a comprehensive understanding of the relative contribution of N vs. P addition and their interaction on grassland NPP increase and species loss remains elusive. We compiled data from 80 field manipulative studies and conducted a meta-analysis (2107 observations world-wide) to evaluate the individual and combined effects of N and P addition on grassland NPP and species richness. We found that both N addition and P addition significantly enhanced grassland above-ground NPP (ANPP; 33.2% and 14.2%, respectively), but did not affect total NPP, below-ground NPP (BNPP), and species evenness. Species richness significantly decreased with N addition (11.7%; by decreasing forbs) probably due to strong decreased soil pH, but not with P addition. The combined effects of N and P addition were generally stronger than the individual effects of N or P addition, and we found the synergistic effects on ANPP, and additive effects on total NPP, BNPP, species richness, and evenness within the combinations of N and P addition. In addition, N and P addition effects were strongly affected by moderator variables (e.g. climate and fertilization type, duration and amount of fertilizer addition). These results demonstrate a higher relative contribution of N than P addition to grassland NPP increase and species loss, although the effects varied across climate and fertilization types. The existing data also reveals that more long-term (≥5 years) experimental studies that combine N and P and test multifactor effects in different climate zones (particularly in boreal grasslands) are needed to provide a more solid basis for forecasting grassland community response and C sequestration response to nutrient enrichment at the global scale.
Collapse
Affiliation(s)
- Weibin Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Xiaoling Gan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuan Jiang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fengfeng Cao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Tobias Ceulemans
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| | - Chuanyan Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
27
|
Jia X, Tao D, Ke Y, Li W, Yang T, Yang Y, He N, Smith MD, Yu Q. Dominant species control effects of nitrogen addition on ecosystem stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156060. [PMID: 35618129 DOI: 10.1016/j.scitotenv.2022.156060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Increased nitrogen (N) deposition is known to reduce the ecosystem stability, while the underlying mechanisms are still controversial. We conducted an 8-year multi-level N addition experiment in a temperate semi-arid grassland to identify the mechanisms (biodiversity, species asynchrony, population stability and dominant species stability) driving the N-induced loss of temporal stability of aboveground net primary productivity (ANPP). We found that N addition decreased ecosystem, population, and dominant species stability; decreased species richness and phylogenetic diversity; increased species dominance; but had nonsignificant effects on community-wide species asynchrony. Structural equation model revealed that N-induced loss of ecosystem stability was mainly driven by the loss of dominant species stability and the reduction in population stability. Moreover, species relative instability was negatively related with species relative production and the slopes increase with N addition, indicating that N addition weakened the stabilizing effect of dominant species on ecosystem function. Overall, our results highlight that the dominant species control the temporal stability of ANPP in grassland ecosystem under N addition, and support 'dominance management' as an effective strategy for conserving ecosystem functioning in grassland under N deposition.
Collapse
Affiliation(s)
- Xiaotong Jia
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongxue Tao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuguang Ke
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjin Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Melinda D Smith
- Department of Biology, Colorado State University, CO 80523, USA
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
28
|
Jiang LM, Sattar K, Lü GH, Hu D, Zhang J, Yang XD. Different contributions of plant diversity and soil properties to the community stability in the arid desert ecosystem. FRONTIERS IN PLANT SCIENCE 2022; 13:969852. [PMID: 36092411 PMCID: PMC9453452 DOI: 10.3389/fpls.2022.969852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
As a one of the focuses of ecological research, understanding the regulation of plant diversity on community stability is helpful to reveal the adaption of plant to environmental changes. However, the relationship between plant diversity and community stability is still controversial due to the scale effect of its influencing factors. In this study, we compared the changes in community stability and different plant diversity (i.e., species, functional, and phylogenetic diversities) between three communities (i.e., riparian forest, ecotone community, and desert shrubs), and across three spatial scales (i.e., 100, 400, and 2500 m2), and then quantified the contribution of soil properties and plant diversity to community stability by using structural equation model (SEM) in the Ebinur Lake Basin Nature Reserve of the Xinjiang Uygur Autonomous Region in the NW China. The results showed that: (1) community stability differed among three communities (ecotone community > desert shrubs > riparian forest). The stability of three communities all decreased with the increase of spatial scale (2) species diversity, phylogenetic richness and the mean pairwise phylogenetic distance were higher in ecotone community than that in desert shrubs and riparian forest, while the mean nearest taxa distance showed as riparian forest > ecotone community > desert shrubs. (3) Soil ammonium nitrogen and total phosphorus had the significant direct negative and positive effects on the community stability, respectively. Soil ammonium nitrogen and total phosphorus also indirectly affected community stability by adjusting plant diversity. The interaction among species, functional and phylogenetic diversities also regulated the variation of community stability across the spatial scales. Our results suggested that the effect of plant diversities on community stability were greater than that of soil factors. The asynchronous effect caused by the changes in species composition and functional traits among communities had a positive impact on the stability. Our study provided a theoretical support for the conservation and management of biodiversity and community functions in desert areas.
Collapse
Affiliation(s)
- La-Mei Jiang
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Kunduz Sattar
- Xinjiang Uygur Autonomous Region Forestry Planning Institute, Ürümqi, China
| | - Guang-Hui Lü
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Dong Hu
- College of Life Science, Northwest University, Xi’an, China
| | - Jie Zhang
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Xiao-Dong Yang
- College of Geography and Tourism Culture, Ningbo University, Ningbo, China
| |
Collapse
|
29
|
Li W, Luo S, Wang J, Zheng X, Zhou X, Xiang Z, Liu X, Fang X. Nitrogen deposition magnifies destabilizing effects of plant functional group loss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155419. [PMID: 35483460 DOI: 10.1016/j.scitotenv.2022.155419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Terrestrial ecosystems are under threat by the co-occurring biodiversity loss and nitrogen (N) deposition. Awareness is growing that the stabilizing effects of plant diversity on productivity depend on environmental context, but it remains unknown about how the loss of plant functional groups and N deposition interactively influence species richness and community stability. Here we carried out an eight-year experiment of plant functional groups removal and N addition experiment in subalpine meadow. We found that the removal of plant functional groups and N addition interactively affected averaged plant species richness and community stability. Without N addition, the absence of forbs, but not other functional groups, significantly decreased average species richness and community stability through decreasing species asynchrony (i.e., asynchronous dynamics among species under fluctuating conditions). Under N addition, the absence of forbs, grasses and legumes all led to significant declines in average species richness, causing a decrease in community stability by decreasing species asynchrony, among which the absence of forbs had the greatest negative effects on community stability. Moreover, N addition reinforced the destabilizing effects caused by the loss of functional groups. Our findings show that the diverse forbs maintain plant community stability through asynchronous dynamics among species, especially under N deposition scenario. Therefore, we suggest that conservation and restoration of plant communities and their stability would benefit from a functional-group specific strategy by considering the largely ignored forb species, while helps guide conservation management efforts to reduce temporal variability for ecosystem service in the face of uncertain species extinction and N deposition scenarios.
Collapse
Affiliation(s)
- Wenjin Li
- State Key Laboratory of Grassland Agro-ecosystems, Gannan Grassland Ecosystem National Observation and Research Station, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Shan Luo
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Junfeng Wang
- Institute of Grassland Science, Key Laboratory of Vegetation, Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, Jilin, China
| | - Xinyi Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xi Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Gannan Grassland Ecosystem National Observation and Research Station, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Zhiqiang Xiang
- State Key Laboratory of Grassland Agro-ecosystems, Gannan Grassland Ecosystem National Observation and Research Station, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiang Liu
- State Key Laboratory of Grassland Agro-ecosystems, Gannan Grassland Ecosystem National Observation and Research Station, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiangwen Fang
- State Key Laboratory of Grassland Agro-ecosystems, Gannan Grassland Ecosystem National Observation and Research Station, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
30
|
Liu W, Yang X, Jiang L, Guo L, Chen Y, Yang S, Liu L. Partitioning of beta-diversity reveals distinct assembly mechanisms of plant and soil microbial communities in response to nitrogen enrichment. Ecol Evol 2022; 12:e9016. [PMID: 35784037 PMCID: PMC9205676 DOI: 10.1002/ece3.9016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 11/11/2022] Open
Abstract
Nitrogen (N) deposition poses a serious threat to terrestrial biodiversity and alters plant and soil microbial community composition. Species turnover and nestedness reflect the underlying mechanisms of variations in community composition. However, it remains unclear how species turnover and nestedness contribute to different responses of taxonomic groups (plants and soil microbes) to N enrichment. Here, based on a 13-year consecutive multi-level N addition experiment in a semiarid steppe, we partitioned community β-diversity into species turnover and nestedness components and explored how and why plant and microbial communities reorganize via these two processes following N enrichment. We found that plant, soil bacterial, and fungal β-diversity increased, but their two components showed different patterns with increasing N input. Plant β-diversity was mainly driven by species turnover under lower N input but by nestedness under higher N input, which may be due to a reduction in forb species, with low tolerance to soil Mn2+, with increasing N input. However, turnover was the main contributor to differences in soil bacterial and fungal communities with increasing N input, indicating the phenomenon of microbial taxa replacement. The turnover of bacteria increased greatly whereas that of fungi remained within a narrow range with increasing N input. We further found that the increased soil Mn2+ concentration was the best predictor for increasing nestedness of plant communities under higher N input, whereas increasing N availability and acidification together contributed to the turnover of bacterial communities. However, environmental factors could explain neither fungal turnover nor nestedness. Our findings reflect two different pathways of community changes in plants, soil bacteria, and fungi, as well as their distinct community assembly in response to N enrichment. Disentangling the turnover and nestedness of plant and microbial β-diversity would have important implications for understanding plant-soil microbe interactions and seeking conservation strategies for maintaining regional diversity.
Collapse
Affiliation(s)
- Weixing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of EcologySun Yat‐sen UniversityGuangzhouChina
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Lulu Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaru Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sen Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
31
|
Chen Q, Wang S, Seabloom EW, MacDougall AS, Borer ET, Bakker JD, Donohue I, Knops JMH, Morgan JW, Carroll O, Crawley M, Bugalho MN, Power SA, Eskelinen A, Virtanen R, Risch AC, Schütz M, Stevens C, Caldeira MC, Bagchi S, Alberti J, Hautier Y. Nutrients and herbivores impact grassland stability across spatial scales through different pathways. GLOBAL CHANGE BIOLOGY 2022; 28:2678-2688. [PMID: 35038782 DOI: 10.1111/gcb.16086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.
Collapse
Affiliation(s)
- Qingqing Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xi'an Jiaotong liverpool University, Suzhou, China
| | - John W Morgan
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, Victoria, Australia
| | - Oliver Carroll
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mick Crawley
- Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Miguel N Bugalho
- Centre for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Anu Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Risto Virtanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Yang GJ, Hautier Y, Zhang ZJ, Lü XT, Han XG. Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. GLOBAL CHANGE BIOLOGY 2022; 28:2711-2720. [PMID: 35098614 DOI: 10.1111/gcb.16090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 01/14/2022] [Indexed: 05/17/2023]
Abstract
Temporal stability of net primary productivity (NPP) is important for predicting the reliable provisioning of ecosystem services under global changes. Although nitrogen (N) addition is known to affect the temporal stability of aboveground net primary productivity (ANPP), it is unclear how it impacts that of belowground net primary productivity (BNPP) and NPP, and whether such effects are scale dependent. Here, using experimental N addition in a grassland, we found different responses of ANPP and BNPP stability to N addition at the local scale and that these responses propagated to the larger spatial scale. That is, N addition significantly decreased the stability of ANPP but did not affect the stability of BNPP and NPP at the two scales investigated. Additionally, spatial asynchrony of both ANPP and BNPP among communities provided greater stability at the larger scale and was not affected by N addition. Our findings challenge the traditional view that N addition would reduce ecosystem stability based on results from aboveground dynamics, thus highlighting the importance of viewing ecosystem stability from a whole system perspective.
Collapse
Affiliation(s)
- Guo-Jiao Yang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Zi-Jia Zhang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xing-Guo Han
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- State Key Laboratory of Vegetation of Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Assessing the roles of nitrogen, biomass, and niche dimensionality as drivers of species loss in grassland communities. Proc Natl Acad Sci U S A 2022; 119:e2112010119. [PMID: 35235460 PMCID: PMC8915794 DOI: 10.1073/pnas.2112010119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nutrient enrichment of natural ecosystems is a primary characteristic of the Anthropocene and a known cause of biodiversity loss, particularly in grasslands. In a global meta-analysis of 630 resource addition experiments, we conduct a simultaneous test of the three most prominent explanations of this phenomenon. Our results conclusively indicate that nitrogen is the leading cause of species loss. This result is important because of the increase in nitrogen deposition and the frequent use of nitrogen-based fertilizers worldwide. Our findings provide global-scale, experimental evidence that minimizing nitrogen inputs to ecological systems may help to conserve the diversity of grassland ecosystems. Eutrophication is a major driver of species loss in plant communities worldwide. However, the underlying mechanisms of this phenomenon are controversial. Previous studies have raised three main explanations: 1) High levels of soil resources increase standing biomass, thereby intensifying competitive interactions (the “biomass-driven competition hypothesis”). 2) High levels of soil resources reduce the potential for resource-based niche partitioning (the “niche dimension hypothesis”). 3) Increasing soil nitrogen causes stress by changing the abiotic or biotic conditions (the “nitrogen detriment hypothesis”). Despite several syntheses of resource addition experiments, so far, no study has tested all of the hypotheses together. This is a major shortcoming, since the mechanisms underlying the three hypotheses are not independent. Here, we conduct a simultaneous test of the three hypotheses by integrating data from 630 resource addition experiments located in 99 sites worldwide. Our results provide strong support for the nitrogen detriment hypothesis, weaker support for the biomass-driven competition hypothesis, and negligible support for the niche dimension hypothesis. The results further show that the indirect effect of nitrogen through its effect on biomass is minor compared to its direct effect and is much larger than that of all other resources (phosphorus, potassium, and water). Thus, we conclude that nitrogen-specific mechanisms are more important than biomass or niche dimensionality as drivers of species loss under high levels of soil resources. This conclusion is highly relevant for future attempts to reduce biodiversity loss caused by global eutrophication.
Collapse
|
34
|
Zhou Z, Zheng M, Xia J, Wang C. Nitrogen addition promotes soil microbial beta diversity and the stochastic assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150569. [PMID: 34597552 DOI: 10.1016/j.scitotenv.2021.150569] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) deposition is one of major environmental concerns and alters the microbial communities in the pedosphere. A central debate in governing microbial community is on the relative importance of deterministic (ecological selection) vs. stochastic processes (dispersal, drift, diversification or speciation), which consequently limited our understanding of microbial assembly in response to N addition. Here, we conducted a global analysis of high-throughput sequencing data to reveal the mechanisms of N-addition effects on soil microbial communities. The results show that N addition significantly shifted the microbial community structure and promoted microbial beta diversity, particularly in the N-limited ecosystems. Changes in microbial structure and beta diversity increased significantly as the N addition rate, study duration, and the degree of soil acidification increased. The stochastic processes are more important than the deterministic processes for microbial community assembly, while N addition significantly increase the importance of stochastic processes whether the phylogenetic relationship is considered or not. Overall, the current study highlights the important of ecological stochasticity in regulating microbial assembly under N deposition scenarios.
Collapse
Affiliation(s)
- Zhenghu Zhou
- Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chuankuan Wang
- Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
35
|
Wang R, Yang J, Liu H, Sardans J, Zhang Y, Wang X, Wei C, Lü X, Dijkstra FA, Jiang Y, Han X, Peñuelas J. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology 2021; 103:e3616. [PMID: 34923633 DOI: 10.1002/ecy.3616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022]
Abstract
Phosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pi ) and organic matter (Po ). Here we assessed whether transformations of these P pools can increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10-year field N-addition experiment and a 3700-km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that can affect soil P status in grasslands. Nitrogen addition promoted dissolution of immobile Pi (mainly Ca-bound recalcitrant P) to more available forms of Pi (including Al- and Fe-bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect Po . Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg-1 , while available-P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg-1 after 10-year N addition, associated with an increase in Pi mobilization, plant uptake, and leaching. Similar to the N-addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile Pi and immobile Pi . Our results provide a new mechanistic understanding of the important role of soil Pi mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P-limitation or even causes P eutrophication but will extensively deplete soil P pools in the long run. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ruzhen Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Heyong Liu
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain.,CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaobo Wang
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Cunzheng Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaotao Lü
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Feike A Dijkstra
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camden, New South Wales, Australia
| | - Yong Jiang
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain.,CREAF, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
36
|
Zhang Y, Ren Z, Zhang Y. Winter nitrogen enrichment does not alter the sensitivity of plant communities to precipitation in a semiarid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148264. [PMID: 34380248 DOI: 10.1016/j.scitotenv.2021.148264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) deposition often promotes aboveground net primary productivity (ANPP), but has adverse effects on terrestrial ecosystem biodiversity. It is unclear, however, whether biomass production and biodiversity are equally altered by seasonal N enrichment, as there is a temporal pattern to atmospheric N deposition. By adding N in autumn, winter, or growing season from October 2014 to May 2019 in a temperate grassland in China, we found that N addition promoted peak plant community ANPP, but tended to decrease plant richness. Regardless of seasonal N additions, precipitation was positively correlated with plant community ANPP, confirming that precipitation is the primary limiting factor in this semiarid grassland. Unexpectedly, N addition in autumn or growing season, but not in winter, increased the sensitivity of plant communities to precipitation (i.e., the slope of the positive relationship between community ANPP and precipitation), indicating that precipitation determines the influence of seasonal N enrichment on plant community biomass production. These findings suggest that previous studies in which N was added in a single season, e.g., the growing season, have likely overestimated the effects of N deposition on ecosystem primary productivity, especially during wet years. This study illustrates that multi-season N addition in agreement with predicted seasonal patterns of N deposition needs to be evaluated to precisely assess ecosystem responses.
Collapse
Affiliation(s)
- Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China.
| |
Collapse
|
37
|
A Classification Framework to Assess Ecological, Biogeochemical, and Hydrologic Synchrony and Asynchrony. Ecosystems 2021; 25:989-1005. [DOI: 10.1007/s10021-021-00700-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Liu W, Liu L, Yang X, Deng M, Wang Z, Wang P, Yang S, Li P, Peng Z, Yang L, Jiang L. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. GLOBAL CHANGE BIOLOGY 2021; 27:3939-3950. [PMID: 33993594 DOI: 10.1111/gcb.15681] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic nitrogen (N) input is known to alter plant and microbial α-diversity, but how N enrichment influences β-diversity of plant and microbial communities remains poorly understood. Using a long-term multilevel N addition experiment in a temperate steppe, we show that plant, soil bacterial and fungal communities exhibited different responses in their β-diversity to N input. Plant β-diversity decreased linearly as N addition increased, as a result of increased directional environmental filtering, where soil environmental properties largely explained variation in plant β-diversity. Soil bacterial β-diversity first increased then decreased with increasing N input, which was best explained by corresponding changes in soil environmental heterogeneity. Soil fungal β-diversity, however, remained largely unchanged across the N gradient, with plant β-diversity, soil environmental properties, and heterogeneity together explaining an insignificant fraction of variation in fungal β-diversity, reflecting the importance of stochastic community assembly. Our study demonstrates the divergent effect of N enrichment on the assembly of plant, soil bacterial and fungal communities, emphasizing the need to examine closely associated fundamental components (i.e., plants and microorganisms) of ecosystems to gain a more complete understanding of ecological consequences of anthropogenic N enrichment.
Collapse
Affiliation(s)
- Weixing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Meifeng Deng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhou Wang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Sen Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ziyang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
39
|
Meng B, Li J, Maurer GE, Zhong S, Yao Y, Yang X, Collins SL, Sun W. Nitrogen addition amplifies the nonlinear drought response of grassland productivity to extended growing-season droughts. Ecology 2021; 102:e03483. [PMID: 34287849 DOI: 10.1002/ecy.3483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 11/09/2022]
Abstract
Understanding the response of grassland production and carbon exchange to intra-annual variation in precipitation and nitrogen addition is critical for sustainable grassland management and ecosystem restoration. We introduced growing-season drought treatments of different lengths (15, 30, 45 and 60 d drought) by delaying growing-season precipitation in a long-term nitrogen addition experiment in a low diversity meadow steppe in northeast China. Response variables included aboveground biomass (AGB), ecosystem net carbon exchange (NEE), and leaf net carbon assimilation rate (A). In unfertilized plots drought decreased AGB by 13.7% after a 45-d drought and 31.7% after a 60-d drought (47.6% in fertilized plots). Progressive increases in the drought response of NEE were also observed. The effects of N addition on the drought response of productivity increased as drought duration increased, and these responses were a function of changes in AGB and biomass allocation, particularly root to shoot ratio. However, no significant effects of drought occurred in fertilized or unfertilized plots in the growing season a year after the experiment, N addition did limit the recovery of AGB from severe drought during the remainder of the current growing season. Our results imply that chronic N enrichment could exacerbate the effects of growing-season drought on grassland productivity caused by altered precipitation seasonality under climate change, but that these effects do not carry over to the next growing season.
Collapse
Affiliation(s)
- Bo Meng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.,Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Gregory E Maurer
- Jornada Basin LTER Program, New Mexico State University, Las Cruces, New Mexico, 88003, USA
| | - Shangzhi Zhong
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 255109, China
| | - Yuan Yao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Xuechen Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.,Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
40
|
Yang G, Ryo M, Roy J, Hempel S, Rillig MC. Plant and soil biodiversity have non-substitutable stabilising effects on biomass production. Ecol Lett 2021; 24:1582-1593. [PMID: 34053155 DOI: 10.1111/ele.13769] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 04/04/2021] [Indexed: 01/02/2023]
Abstract
The stability of plant biomass production in the face of environmental change is fundamental for maintaining terrestrial ecosystem functioning, as plant biomass is the ultimate source of energy for nearly all life forms. However, most studies have focused on the stabilising effect of plant diversity, neglecting the effect of soil biodiversity, the largest reservoir of biodiversity on Earth. Here we investigated the effects of plant and soil biodiversity on the temporal stability of biomass production under varying simulated precipitation in grassland microcosms. Soil biodiversity loss reduced temporal stability by suppressing asynchronous responses of plant functional groups. Greater plant diversity, especially in terms of functional diversity, promoted temporal stability, but this effect was independent of soil biodiversity loss. Moreover, multitrophic biodiversity, plant and soil biodiversity combined, was positively associated with temporal stability. Our study highlights the importance of maintaining both plant and soil biodiversity for sustainable biomass production.
Collapse
Affiliation(s)
- Gaowen Yang
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Masahiro Ryo
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.,Leibniz Centre for Agricultural Landscape Research (ZALF, Müncheberg, Germany.,Environment and Natural Science, Brandenburg University of Technology, Cottbus-Senftenberg (BTU, Cottbus, Germany
| | - Julien Roy
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stefan Hempel
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
41
|
Wu J, Shen F, Thompson J, Liu W, Duan H, Bardgett RD. Stoichiometric traits (N:P) of understory plants contribute to reductions in plant diversity following long-term nitrogen addition in subtropical forest. Ecol Evol 2021; 11:4243-4251. [PMID: 33976807 PMCID: PMC8093670 DOI: 10.1002/ece3.7319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Nitrogen enrichment is pervasive in forest ecosystems, but its influence on understory plant communities and their stoichiometric characteristics is poorly understood. We hypothesize that when forest is enriched with nitrogen (N), the stoichiometric characteristics of plant species explain changes in understory plant diversity. A 13-year field experiment was conducted to explore the effects of N addition on foliar carbon (C): N: phosphorus (P) stoichiometry, understory plant species richness, and intrinsic water use efficiency (iWUE) in a subtropical Chinese fir forest. Four levels of N addition were applied: 0, 6, 12, and 24 g m-2 year-1. Individual plant species were categorized into resistant plants, intermediate resistant plants, and sensitive plants based on their response to nitrogen addition. Results showed that N addition significantly decreased the number of species, genera, and families of herbaceous plants. Foliar N:P ratios were greater in sensitive plants than resistant or intermediate resistant plants, while iWUE showed an opposite trend. However, no relationship was detected between soil available N and foliar N, and soil N:P and foliar N:P ratios. Our results indicated that long-term N addition decreased the diversity of understory plants in a subtropical forest. Through regulating water use efficiency with N addition, sensitive plants change their N:P stoichiometry and have a higher risk of mortality, while resistant plants maintain a stable N:P stoichiometry, which contributes to their survival. These findings suggest that plant N:P stoichiometry plays an important role in understory plant performance in response to environmental change of N.
Collapse
Affiliation(s)
- Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary EcologyYunnan UniversityKunmingChina
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan ProvinceCollege of Ecology and Environmental SciencesYunnan UniversityKunmingChina
| | - Fangfang Shen
- Jiangxi Key Laboratory for Restoration of Degraded Ecosystems & Watershed EcohydrologyNanchang Institute of TechnologyNanchangChina
| | | | - Wenfei Liu
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan ProvinceCollege of Ecology and Environmental SciencesYunnan UniversityKunmingChina
| | - Honglang Duan
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan ProvinceCollege of Ecology and Environmental SciencesYunnan UniversityKunmingChina
| | - Richard D. Bardgett
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
42
|
Yang G, Roy J, Veresoglou SD, Rillig MC. Soil biodiversity enhances the persistence of legumes under climate change. THE NEW PHYTOLOGIST 2021; 229:2945-2956. [PMID: 33152109 DOI: 10.1111/nph.17065] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Global environmental change poses threats to plant and soil biodiversity. Yet, whether soil biodiversity loss can further influence plant community's response to global change is still poorly understood. We created a gradient of soil biodiversity using the dilution-to-extinction approach, and investigated the effects of soil biodiversity loss on plant communities during and following manipulations simulating global change disturbances in experimental grassland microcosms. Grass and herb biomass was decreased by drought and promoted by nitrogen deposition, and a fast recovery was observed following disturbances, independently of soil biodiversity loss. Warming promoted herb biomass during and following disturbance only when soil biodiversity was not reduced. However, legumes biomass was suppressed by these disturbances, and there were more detrimental effects with reduced soil biodiversity. Moreover, soil biodiversity loss suppressed the recovery of legumes following these disturbances. Similar patterns were found for the response of plant diversity. The changes in legumes might be partly attributed to the loss of mycorrhizal soil mutualists. Our study shows that soil biodiversity is crucial for legume persistence and plant diversity maintenance when faced with environmental change, highlighting the importance of soil biodiversity as a potential buffering mechanism for plant diversity and community composition in grasslands.
Collapse
Affiliation(s)
- Gaowen Yang
- Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| | - Julien Roy
- Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| | - Stavros D Veresoglou
- Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| |
Collapse
|
43
|
Li Y, Hou L, Yang L, Yue M. Transgenerational effect alters the interspecific competition between two dominant species in a temperate steppe. Ecol Evol 2021; 11:1175-1186. [PMID: 33598122 PMCID: PMC7863671 DOI: 10.1002/ece3.7066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
One of the key aims of global change studies is to predict more accurately how plant community composition responds to future environmental changes. Although interspecific relationship is one of the most important forces structuring plant communities, it remains a challenge to integrate long-term consequences at the plant community level. As an increasing number of studies have shown that maternal environment affects offspring phenotypic plasticity as a response to global environment change through transgenerational effects, we speculated that the transgenerational effect would influence offspring competitive relationships. We conducted a 10-year field experiment and a greenhouse experiment in a temperate grassland in an Inner Mongolian grassland to examine the effects of maternal and immediate nitrogen addition (N) and increased precipitation (Pr) on offspring growth and the interspecific relationship between the two dominant species, Stipa krylovii and Artemisia frigida. According to our results, Stipa kryloii suppressed A. frigida growth and population development when they grew in mixture, although immediate N and Pr stimulated S. kryloii and A. frigida growth simultaneously. Maternal N and Pr declined S. krylovii dominance and decreased A. frigida competitive suppression to some extent. The transgenerational effect should further facilitate the coexistence of the two species under scenarios of increased nitrogen input and precipitation. If we predicted these species' interspecific relationships based only on immediate environmental effects, we would overestimate S. krylovii's competitive advantage and population development, and underestimate competitive outcome and population development of A. frigida. In conclusion, our results demonstrated that the transgenerational effect of maternal environment on offspring interspecific competition must be considered when evaluating population dynamics and community composition under the global change scenario.
Collapse
Affiliation(s)
- Yang Li
- Xi’an Botanical Garden of Shaanxi ProvinceInstitute of Botany of Shaanxi ProvinceXi’anChina
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical ResourcesXi’anChina
| | - Longyu Hou
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Liuyi Yang
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Ming Yue
- Xi’an Botanical Garden of Shaanxi ProvinceInstitute of Botany of Shaanxi ProvinceXi’anChina
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical ResourcesXi’anChina
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi’anChina
| |
Collapse
|
44
|
Zhang J, Ren T, Yang J, Xu L, Li M, Zhang Y, Han X, He N. Leaf Multi-Element Network Reveals the Change of Species Dominance Under Nitrogen Deposition. FRONTIERS IN PLANT SCIENCE 2021; 12:580340. [PMID: 33552115 PMCID: PMC7862345 DOI: 10.3389/fpls.2021.580340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/04/2021] [Indexed: 05/13/2023]
Abstract
Elements are important functional traits reflecting plant response to climate change. Multiple elements work jointly in plant physiology. Although a large number of studies have focused on the variation and allocation of multiple elements in plants, it remains unclear how these elements co-vary to adapt to environmental change. We proposed a novel concept of the multi-element network including the mutual effects between element concentrations to more effectively explore the alterations in response to long-term nitrogen (N) deposition. Leaf multi-element networks were constructed with 18 elements (i.e., six macronutrients, six micronutrients, and six trace elements) in this study. Multi-element networks were species-specific, being effectively discriminated irrespective of N deposition level. Different sensitive elements and interactions to N addition were found in different species, mainly concentrating on N, Ca, Mg, Mn, Li, Sr, Ba, and their related stoichiometry. Interestingly, high plasticity of multi-element network increased or maintained relative aboveground biomass (species dominance) in community under simulated N deposition, which developed the multi-element network hypothesis. In summary, multi-element networks provide a novel approach for exploring the adaptation strategies of plants and to better predict the change of species dominance under altering nutrient availability or environmental stress associated with future global climate change.
Collapse
Affiliation(s)
- Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Institute of Grassland Science, Northeast Normal University and Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| |
Collapse
|
45
|
Yang G, Zhang Y, Yang X, Liu N, Rillig MC, Veresoglou SD, Wagg C. Mycorrhizal suppression and phosphorus addition influence the stability of plant community composition and function in a temperate steppe. OIKOS 2021. [DOI: 10.1111/oik.07610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gaowen Yang
- College of Grassland Science and Technology, China Agricultural Univ. Beijing PR China
- Inst. für Biologie, Freie Univ. Berlin Berlin Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - Yingjun Zhang
- College of Grassland Science and Technology, China Agricultural Univ. Beijing PR China
| | - Xin Yang
- College of Grassland Science and Technology, China Agricultural Univ. Beijing PR China
| | - Nan Liu
- College of Grassland Science and Technology, China Agricultural Univ. Beijing PR China
| | - Matthias C. Rillig
- Inst. für Biologie, Freie Univ. Berlin Berlin Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - Stavros D. Veresoglou
- Inst. für Biologie, Freie Univ. Berlin Berlin Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - Cameron Wagg
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich Zürich Switzerland
- Fredericton Research and Development Centre, Agriculture and Agri‐Food Canada Fredericton NB Canada
| |
Collapse
|
46
|
Long-Term Enclosure Can Benefit Grassland Community Stability on the Loess Plateau of China. SUSTAINABILITY 2020. [DOI: 10.3390/su13010213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fertilization and grazing are two common anthropogenic disturbances that can lead to unprecedented changes in biodiversity and ecological stability of grassland ecosystems. A few studies, however, have explored the effects of fertilization and grazing on community stability and the underlying mechanisms. We conducted a six-year field experiment to assess the influence of nitrogen (N) fertilization and grazing on the community stability in a long-term enclosure and grazing grassland ecosystems on the Loess Plateau. A structural equation modeling method was used to evaluate how fertilization and grazing altered community stability. Our results indicated that the community stability decreased in the enclosure and grazing grassland ecosystems with the addition of N. The community stability began to decline significantly at 4.68 and 9.36 N g m−2 year−1 for the grazing and enclosure grassland ecosystems, respectively. We also found that the addition of N reduced the community stability through decreasing species richness, but a long-term enclosure can alleviate its negative effect. Overall, species diversity can be a useful predictor of the stability of ecosystems confronted with disturbances. Also, our results showed that long-term enclosure was an effective grassland management practice to ensure community stability on the Loess Plateau of China.
Collapse
|
47
|
General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nat Commun 2020; 11:5375. [PMID: 33097736 PMCID: PMC7585434 DOI: 10.1038/s41467-020-19252-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/05/2020] [Indexed: 11/12/2022] Open
Abstract
Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities. Eutrophication has been shown to weaken diversity-stability relationships in grasslands, but it is unclear whether the effect depends on scale. Analysing a globally distributed network of grassland sites, the authors show a positive role of beta diversity and spatial asynchrony as drivers of stability but find that nitrogen enrichment weakens the diversity-stability relationships at different spatial scales.
Collapse
|
48
|
Common Species Stability and Species Asynchrony Rather than Richness Determine Ecosystem Stability Under Nitrogen Enrichment. Ecosystems 2020. [DOI: 10.1007/s10021-020-00543-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Liu W, Jiang L, Yang S, Wang Z, Tian R, Peng Z, Chen Y, Zhang X, Kuang J, Ling N, Wang S, Liu L. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology 2020; 101:e03053. [PMID: 32242918 DOI: 10.1002/ecy.3053] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 02/27/2020] [Indexed: 11/09/2022]
Abstract
Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m-2 ·yr-1 , but decreased substantially when N input exceeded 32 g N·m-2 ·yr-1 . A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m-2 ·yr-1 . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state.
Collapse
Affiliation(s)
- Weixing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Sen Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Zhou Wang
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China.,Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, 510650, China
| | - Rui Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ziyang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Yongliang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-ecosystems SKLGAE, Lanzhou University, Lanzhou, China
| | - Jialiang Kuang
- Institute of Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73109, USA
| | - Ning Ling
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| |
Collapse
|
50
|
Wang Y, Niu X, Zhao L, Liang C, Miao B, Zhang Q, Zhang J, Schmid B, Ma W. Biotic stability mechanisms in Inner Mongolian grassland. Proc Biol Sci 2020; 287:20200675. [PMID: 32486982 DOI: 10.1098/rspb.2020.0675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biotic mechanisms associated with species diversity are expected to stabilize communities in theoretical and experimental studies but may be difficult to detect in natural communities exposed to large environmental variation. We investigated biotic stability mechanisms in a multi-site study across Inner Mongolian grassland characterized by large spatial variations in species richness and composition and temporal fluctuations in precipitation. We used a new additive-partitioning method to separate species synchrony and population dynamics within communities into different species-abundance groups. Community stability was independent of species richness but was regulated by species synchrony and population dynamics, especially of abundant species. Precipitation fluctuations synchronized population dynamics within communities, reducing their stability. Our results indicate generality of biotic stability mechanisms in natural ecosystems and suggest that for accurate predictions of community stability in changing environments uneven species composition should be considered by partitioning stabilizing mechanisms into different species-abundance groups.
Collapse
Affiliation(s)
- Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xiaxia Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Liqing Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Bailing Miao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jinghui Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Bernhard Schmid
- Department of Geography, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|