1
|
Kay TM, Johnson BD, Glore DA, Penrose JT, Anderson BJ, Dobbels BL, Carlson BE. Effects of Sample Storage Conditions and Individual Characteristics on Innate Immune Assays in Box Turtles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025. [PMID: 40387013 DOI: 10.1002/jez.2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Immune assays are increasingly being used to study immunity in wild animals, with applications in ecology, evolution, and conservation. However, the use of immune assays is hindered by the limited taxonomic breadth of studies that validate assays in non-model organisms and by limited understanding of the variables that can affect assay results. While freezing blood samples in the field for later laboratory analysis is a common practice, the effect of storage conditions on the viability of samples is unclear. In this study, we evaluated the effect of plasma storage conditions (refrigerated or frozen) on the results of two immune assays (bacterial killing assay [BKA] and hemagglutination) in eastern box turtles (Terrapene carolina carolina), a declining species that is threatened by disease. We concurrently tested how individual identity and phenotypic or environmental variables influenced immune assay results. We found that freezing plasma samples for 3-17 days produced more repeatable BKA results than refrigerating the samples for up to 3 days, without significantly affecting average immune performance. However, BKA performance was reduced after holding samples frozen for 3-4 months. Additionally, we found that there was no significant difference in hemagglutination between frozen and refrigerated samples. Furthermore, males in general had higher hemagglutination but lower bacterial killing ability than the females. At an individual level, turtles had repeatable differences in immune activity, and the two immune measures were generally correlated with each other. Our findings indicate that freezing of plasma samples for up to 2 weeks is appropriate for both BKA and hemagglutination immune assays in T. c. carolina, and this may extend to related species. Furthermore, we found that individual and sex differences within a species can affect particular immune assays, and future work should evaluate this in other species.
Collapse
Affiliation(s)
- Thomas M Kay
- Department of Biology, Wabash College, Indiana, Crawfordsville, USA
| | | | - Daren A Glore
- Department of Biology, Wabash College, Indiana, Crawfordsville, USA
| | - Jacob T Penrose
- Department of Biology, Wabash College, Indiana, Crawfordsville, USA
| | | | - Brian L Dobbels
- Department of Biology, Wabash College, Indiana, Crawfordsville, USA
| | | |
Collapse
|
2
|
Weiler ILG, Kramp RD, Rovenolt F, Stephenson JF. Sex-dependent effects of infection on guppy reproductive fitness and offspring parasite resistance. J Anim Ecol 2025; 94:706-716. [PMID: 39939839 PMCID: PMC11962226 DOI: 10.1111/1365-2656.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025]
Abstract
Infection imposes energetic costs on hosts. Hosts typically respond by shifting resources, potentially affecting the quantity and quality of offspring they produce. As the sexes differ in their optimal reproductive strategies, the infection of mothers versus fathers may affect offspring quantity and quality in different ways. Here, we test how experimental infection of guppies Poecilia reticulata with the ectoparasite Gyrodactylus turnbulli affects parental reproductive fitness and offspring parasite resistance. We compared breeding pairs in which one or neither parent had previously been infected. In terms of reproductive fitness, pairs in which fathers had been infected produced more offspring than those in which mothers had been infected. Additionally, fathers who experienced the heaviest infections produced offspring ~55 days sooner than average. This result may represent terminal investment by males, especially those most affected by infection, or that males invest in reproduction at the expense of parasite defence. We found that offspring age, parental infection experience, and parental infection severity together strongly predicted offspring parasite resistance. Only among pairs in which one parent had been infected did older offspring, which were those born soonest after the parent's infection, tend to experience heavier infections. This result may reflect temporary infection-induced reductions in parental investment in offspring quality. Beyond this effect of offspring age, offspring of infected mothers experienced 105 fewer worm days than those of infected fathers: fathers, but not mothers, who experienced heavy infections themselves produced offspring that also experienced heavy infections. The parent-offspring regression for infected fathers is consistent with previous evidence that parasite resistance is heritable in this system and yields a narrow sense heritability estimate of 0.62 ± 0.12. By contrast, the mother-offspring regression (slope: -0.12 ± 0.14) provides novel insight that mothers may engage in transgenerational immune priming. Our results suggest that the sexes strike a different balance between offspring quantity and quality when faced with infection, with potentially broad implications for disease and host-parasite co-evolutionary dynamics in nature.
Collapse
Affiliation(s)
| | - Rachael D. Kramp
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Faith Rovenolt
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | |
Collapse
|
3
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2025; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Cooper EB, Whalen C, Beeby N, Negron-Del Valle JE, Phillips D, Snyder-Mackler N, Brent LJN, Higham JP. Associations between social behaviour and proinflammatory immune activation are modulated by age in a free-ranging primate population. Anim Behav 2025; 219:123021. [PMID: 39829684 PMCID: PMC11741183 DOI: 10.1016/j.anbehav.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The effect of the social environment on the proinflammatory immune response may mediate the relationship between social environment and fitness but remains understudied outside captive animals and human populations. Age can also influence both immune function and social behaviour, and hence may modulate their relationships. This study investigates the role of social interactions in driving the concentrations of two urinary markers of proinflammatory immune activation, neopterin and soluble urokinase plasminogen activator receptor (suPAR), in a free-ranging population of rhesus macaques, Macaca mulatta. We collected 854 urine samples from 172 adult monkeys and quantified how urinary suPAR and neopterin concentrations were related to affiliative behaviour and agonistic behaviour received over 60 days. In females, but not in males, higher rates of affiliative interactions were associated with lower neopterin concentrations, while conversely, experiencing more agonistic interactions was associated with higher neopterin concentrations. The association between affiliation and neopterin concentration was modulated by age, with older females experiencing a stronger negative association between affiliative behaviour and neopterin concentration. There were no associations between suPAR concentration and social environment for either sex. This study demonstrates that proinflammatory immune activity is a potential mechanism mediating the association between social environment and fitness under naturalistic conditions and that age can be an important modulator of the effect of social environment on the immune system.
Collapse
Affiliation(s)
- Eve B. Cooper
- Department of Anthropology, New York University, New York, NY, U.S.A
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, U.S.A
| | - Connor Whalen
- Department of Anthropology, New York University, New York, NY, U.S.A
| | - Nina Beeby
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, U.S.A
- The Graduate Center of City University of New York, New York, NY, U.S.A
| | | | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, U.S.A
| | | | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, U.S.A
- School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, U.S.A
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, U.S.A
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, U.K
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY, U.S.A
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, U.S.A
| |
Collapse
|
5
|
Woodman JP, Gokcekus S, Beck KB, Green JP, Nussey DH, Firth JA. The ecology of ageing in wild societies: linking age structure and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220464. [PMID: 39463244 PMCID: PMC11513650 DOI: 10.1098/rstb.2022.0464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 10/29/2024] Open
Abstract
The age of individuals has consequences not only for their fitness and behaviour but also for the functioning of the groups they form. Because social behaviour often changes with age, population age structure is expected to shape the social organization, the social environments individuals experience and the operation of social processes within populations. Although research has explored changes in individual social behaviour with age, particularly in controlled settings, there is limited understanding of how age structure governs sociality in wild populations. Here, we synthesize previous research into age-related effects on social processes in natural populations, and discuss the links between age structure, sociality and ecology, specifically focusing on how population age structure might influence social structure and functioning. We highlight the potential for using empirical data from natural populations in combination with social network approaches to uncover pathways linking individual social ageing, population age structure and societal functioning. We discuss the broader implications of these insights for understanding the social impacts of anthropogenic effects on animal population demography and for building a deeper understanding of societal ageing in general.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Joe P. Woodman
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Samin Gokcekus
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Kristina B. Beck
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Jonathan P. Green
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Dan H. Nussey
- Institute of Ecology & Evolution, The University of Edinburgh, EdinburghEH9 3JT, UK
| | - Josh A. Firth
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Albery GF, Hasik AZ, Morris S, Morris A, Kenyon F, McBean D, Pemberton JM, Nussey DH, Firth JA. Divergent age-related changes in parasite infection occur independently of behaviour and demography in a wild ungulate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230508. [PMID: 39463254 PMCID: PMC11513643 DOI: 10.1098/rstb.2023.0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 10/29/2024] Open
Abstract
As animals age, they exhibit a suite of phenotypic changes, often including reductions in movement and social behaviour ('behavioural ageing'). By altering an individual's exposure to parasites, behavioural ageing may influence infection status trajectories over the lifespan. However, these processes could be confounded by age-related changes in other phenotypic traits, or by selective disappearance of certain individuals owing to parasite-induced mortality. Here, we uncover contrasting age-related patterns of infection across three helminth parasites in wild adult female red deer (Cervus elaphus). Counts of strongyle nematodes (order: Strongylida) increased with age, while counts of liver fluke (Fasciola hepatica) and tissue worm (Elaphostrongylus cervi) decreased, and lungworm (Dictyocaulus) counts did not change. These relationships could not be explained by socio-spatial behaviours, spatial structuring, or selective disappearance, suggesting behavioural ageing is unlikely to be responsible for driving age trends. Instead, social connectedness and strongyle infection were positively correlated, such that direct age-infection trends were directly contrasted with the effects implied by previously documented behavioural ageing. This suggests that behavioural ageing may reduce parasite exposure, potentially countering other age-related changes. These findings demonstrate that different parasites can show contrasting age trajectories depending on diverse intrinsic and extrinsic factors, and that behaviour's role in these processes is likely to be complex and multidirectional.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Gregory F. Albery
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
- Department of Biology, Georgetown University, Washington, DC20057, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- School of Natural Sciences, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Adam Z. Hasik
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Sean Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Alison Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Fiona Kenyon
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | - David McBean
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | | | - Daniel H. Nussey
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Josh A. Firth
- Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
7
|
Siracusa ER, Pavez-Fox MA, Negron-Del Valle JE, Phillips D, Platt ML, Snyder-Mackler N, Higham JP, Brent LJN, Silk MJ. Social ageing can protect against infectious disease in a group-living primate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220462. [PMID: 39463240 PMCID: PMC11528358 DOI: 10.1098/rstb.2022.0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 10/29/2024] Open
Abstract
The benefits of social living are well established, but sociality also comes with costs, including infectious disease risk. This cost-benefit ratio of sociality is expected to change across individuals' lifespans, which may drive changes in social behaviour with age. To explore this idea, we combine data from a group-living primate for which social ageing has been described with epidemiological models to show that having lower social connectedness when older can protect against the costs of a hypothetical, directly transmitted endemic pathogen. Assuming no age differences in epidemiological characteristics (susceptibility to, severity and duration of infection), older individuals suffered lower infection costs, which was explained largely because they were less connected in their social networks than younger individuals. This benefit of 'social ageing' depended on epidemiological characteristics and was greatest when infection severity increased with age. When infection duration increased with age, social ageing was beneficial only when pathogen transmissibility was low. Older individuals benefited most from having a lower frequency of interactions (strength) and network embeddedness (closeness) and benefited less from having fewer social partners (degree). Our study provides a first examination of the epidemiology of social ageing, demonstrating the potential for pathogens to influence the evolutionary dynamics of social ageing in natural populations.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Erin R. Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Melissa A. Pavez-Fox
- Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Lauren J. N. Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Matthew J. Silk
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Siracusa ER, Pavez-Fox MA, Negron-Del Valle JE, Phillips D, Platt ML, Snyder-Mackler N, Higham JP, Brent LJN, Silk MJ. Social ageing can protect against infectious disease in a group-living primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584237. [PMID: 38559098 PMCID: PMC10979879 DOI: 10.1101/2024.03.09.584237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The benefits of social living are well established, but sociality also comes with costs, including infectious disease risk. This cost-benefit ratio of sociality is expected to change across individuals' lifespans, which may drive changes in social behaviour with age. To explore this idea, we combine data from a group-living primate for which social ageing has been described with epidemiological models to show that having lower social connectedness when older can protect against the costs of a hypothetical, directly transmitted endemic pathogen. Assuming no age differences in epidemiological characteristics (susceptibility to, severity, and duration of infection), older individuals suffered lower infection costs, which was explained largely because they were less connected in their social networks than younger individuals. This benefit of 'social ageing' depended on epidemiological characteristics and was greatest when infection severity increased with age. When infection duration increased with age, social ageing was beneficial only when pathogen transmissibility was low. Older individuals benefited most from having a lower frequency of interactions (strength) and network embeddedness (closeness) and benefited less from having fewer social partners (degree). Our study provides a first examination of the epidemiology of social ageing, demonstrating the potential for pathogens to influence evolutionary dynamics of social ageing in natural populations.
Collapse
Affiliation(s)
- Erin R. Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | | | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Arizona, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, PA, USA
- Department of Psychology, University of Pennsylvania, PA, USA
- Department of Marketing, University of Pennsylvania, PA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Arizona, USA
- School of Life Sciences, Arizona State University, Arizona, USA
- School for Human Evolution and Social Change, Arizona State University, Arizona, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, USA
| | - Lauren J. N. Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Matthew J. Silk
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Lalande LD, Bourgoin G, Carbillet J, Cheynel L, Debias F, Ferté H, Gaillard JM, Garcia R, Lemaître JF, Palme R, Pellerin M, Peroz C, Rey B, Vuarin P, Gilot-Fromont E. Early-life glucocorticoids accelerate lymphocyte count senescence in roe deer. Gen Comp Endocrinol 2024; 357:114595. [PMID: 39059616 DOI: 10.1016/j.ygcen.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Immunosenescence corresponds to the progressive decline of immune functions with increasing age. Although it is critical to understand what modulates such a decline, the ecological and physiological drivers of immunosenescence remain poorly understood in the wild. Among them, the level of glucocorticoids (GCs) during early life are good candidates to modulate immunosenescence patterns because these hormones can have long-term consequences on individual physiology. Indeed, GCs act as regulators of energy allocation to ensure allostasis, are part of the stress response triggered by unpredictable events and have immunosuppressive effects when chronically elevated. We used longitudinal data collected over two decades in two populations of roe deer (Capreolus capreolus) to test whether higher baseline GC levels measured within the first year of life were associated with a more pronounced immunosenescence and parasite susceptibility. We first assessed immunosenescence trajectories in these populations facing contrasting environmental conditions. Then, we found that juvenile GC levels can modulate lymphocyte trajectory. Lymphocyte depletion was accelerated late in life when GCs were elevated early in life. Although the exact mechanism remains to be elucidated, it could involve a role of GCs on thymic characteristics. In addition, elevated GC levels in juveniles were associated with a higher abundance of lung parasites during adulthood for individuals born during bad years, suggesting short-term negative effects of GCs on juvenile immunity, having in turn long-lasting consequences on adult parasite load, depending on juvenile environmental conditions. These findings offer promising research directions in assessing the carry-over consequences of GCs on life-history traits in the wild.
Collapse
Affiliation(s)
- Lucas D Lalande
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France.
| | - Gilles Bourgoin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Jeffrey Carbillet
- Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Louise Cheynel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés UMR 5023, F-69622 Villeurbanne, France
| | - François Debias
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Hubert Ferté
- Université de Reims, Épidémio-Surveillance et Circulation de Parasites dans les Environnements UR 7510, 55100 Reims, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rebecca Garcia
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Maryline Pellerin
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Conservation et Gestion Durable des Espèces Exploités, 52210 Châteauvillain, France
| | - Carole Peroz
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Benjamin Rey
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Pauline Vuarin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France.
| |
Collapse
|
10
|
Iwińska K, Boratyński JS, Książek A, Błońska J, Borowski Z, Konarzewski M. Reproduction results in parallel changes of oxidative stress and immunocompetence in a wild long-living mammal-edible dormouse Glis glis. Biol Lett 2024; 20:20240257. [PMID: 39471836 PMCID: PMC11521591 DOI: 10.1098/rsbl.2024.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 11/01/2024] Open
Abstract
Oxidative stress (OS) and impaired immune function (IF) have been proposed as key physiological costs of reproduction. The relationship between OS and IF remains unresolved, particularly in long-living iteroparous species. We studied physiological markers of maintenance (OS, IF markers) in lactating, post-lactating and non-lactating females of edible dormice-a long-living rodent. We predicted the OS balance and IF to be compromised by lactation, especially in older females expected to face stronger trade-offs between life functions. We found that the age predictor (body size) correlated negatively with white blood cell level (WBC), positively with neutrophils to lymphocytes ratio and had no effect on OS markers. Oxidative damage markers (reactive oxygen metabolites (ROMs); but not antioxidant capacity) and body size-adjusted WBC were the lowest in lactating, higher in post-lactating and the highest in non-lactating females. Body size/age did not affect this correlation suggesting a similar age-independent allocation strategy during reproduction in this species. The path analysis testing the causal relationship between ROMs and WBC revealed that IF is more likely to affect OS than vice versa. Our study indicates the trade-off between crucial life functions during reproduction and suggests that immunosuppression reduces the risk of OS; therefore, mitigating oxidative costs of reproduction.
Collapse
Affiliation(s)
| | - Jan S. Boratyński
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Aneta Książek
- Faculty of Biology, University of Białystok, Białystok, Poland
| | - Joanna Błońska
- Doctoral School of University of Białystok, Białystok, Poland
| | | | | |
Collapse
|
11
|
Wilkinson GS, Adams DM, Rayner JG. Sex, season, age and status influence urinary steroid hormone profiles in an extremely polygynous neotropical bat. Horm Behav 2024; 164:105606. [PMID: 39059233 PMCID: PMC11330717 DOI: 10.1016/j.yhbeh.2024.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Several polygynous mammals exhibit reproductive skew in which only a few males reproduce. Successful males need strength, stamina and fighting ability to exclude competitors. Consequently, during the mating season their androgens and glucocorticoids are expected to increase to support spermatogenesis and aggressive behavior. But, during the nonmating season these hormones should decline to minimize deleterious effects, such as reduced immune function. Bats that exhibit harem polygyny in which males aggressively defend large groups of females year-round are ideal for assessing hormonal and other consequences of extreme polygyny. Here we use DNA methylation to estimate age and gas chromatography, tandem mass spectrometry to profile steroid metabolites in urine of wild greater spear-nosed bats, Phyllostomus hastatus, across seasons. We find that condition, measured by relative weight, is lower during the mating season for both sexes, although it remains high in harem males during the mating season. Average age of females is greater than males, and females exhibit substantial seasonal differences in androgens, estrogens and glucocorticoids with higher levels of all hormones during the mating season. Males, however, show little seasonal differences but substantial age-associated increases in most steroid metabolites. Harem males have larger, persistently scrotal testes and are older than bachelor males. While cortisone generally declines with age, harem males maintain higher amounts of biologically active cortisol than bachelor males all year and cortisol levels increase more quickly in response to restraint in males than in females. Taken together, these results suggest that attaining reproductive dominance requires hormone levels that reduce lifespan.
Collapse
Affiliation(s)
| | - Danielle M Adams
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Jack G Rayner
- Department of Biology, University of Maryland, College Park, MD 20742
| |
Collapse
|
12
|
Nagel R, Pohle K, Jordán L, Tuponja I, Stainfield C, Toscani C, Fox-Clarke C, Costantini D, Czirják GÁ, Forcada J, Hoffman JI. Life-history stage influences immune investment and oxidative stress in response to environmental heterogeneity in Antarctic fur seals. Commun Biol 2024; 7:788. [PMID: 38951600 PMCID: PMC11217341 DOI: 10.1038/s42003-024-06499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Immune defenses are crucial for survival but costly to develop and maintain. Increased immune investment is therefore hypothesized to trade-off with other life-history traits. Here, we examined innate and adaptive immune responses to environmental heterogeneity in wild Antarctic fur seals. In a fully crossed, repeated measures design, we sampled 100 pups and their mothers from colonies of contrasting density during seasons of contrasting food availability. Biometric and cortisol data as well as blood for the analysis of 13 immune and oxidative status markers were collected at two key life-history stages. We show that immune responses of pups are more responsive than adults to variation in food availability, but not population density, and are modulated by cortisol and condition. Immune investment is associated with different oxidative status markers in pups and mothers. Our results suggest that early life stages show greater sensitivity to extrinsic and intrinsic effectors, and that immunity may be a strong target for natural selection even in low-pathogen environments such as Antarctica.
Collapse
Affiliation(s)
- Rebecca Nagel
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany.
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany.
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK.
| | - Katja Pohle
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Lilla Jordán
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Iva Tuponja
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - Claire Stainfield
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Scotland's Rural College, Craibstone Estate, Ferguson Building, Aberdeen, AB21 9YA, UK
| | - Camille Toscani
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Cameron Fox-Clarke
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - David Costantini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Joseph I Hoffman
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Center for Biotechnology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, Bielefeld University and University of Münster, 33501, Bielefeld, Germany
| |
Collapse
|
13
|
Crosland A, Rigaud T, Develay C, Moret Y. Growth and longevity modulation through larval environment mediate immunosenescence and immune strategy of Tenebrio molitor. Immun Ageing 2024; 21:7. [PMID: 38212729 PMCID: PMC10785379 DOI: 10.1186/s12979-023-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND The Disposable Soma Theory of aging suggests a trade-off between energy allocation for growth, reproduction and somatic maintenance, including immunity. While trade-offs between reproduction and immunity are well documented, those involving growth remain under-explored. Rapid growth might deplete resources, reducing investment in maintenance, potentially leading to earlier or faster senescence and a shorter lifespan. However, rapid growth could limit exposure to parasitism before reaching adulthood, decreasing immunity needs. The insect immunity's components (cellular, enzymatic, and antibacterial) vary in cost, effectiveness, and duration. Despite overall immunity decline (immunosenescence), its components seem to age differently. We hypothesize that investment in these immune components is adjusted based on the resource cost of growth, longevity, and the associated risk of parasitism. RESULTS We tested this hypothesis using the mealworm beetle, Tenebrio molitor as our experimental subject. By manipulating the larval environment, including three different temperatures and three relative humidity levels, we achieved a wide range of growth durations and longevities. Our main focus was on the relationship between growth duration, longevity, and specific immune components: hemocyte count, phenoloxidase activity, and antibacterial activity. We measured these immune parameters both before and after exposing the individuals to a standard bacterial immune challenge, enabling us to assess immune responses. These measurements were taken in both young and older adult beetles. Upon altering growth duration and longevity by modifying larval temperature, we observed a more pronounced investment in cellular and antibacterial defenses among individuals with slow growth and extended lifespans. Intriguingly, slower-growing and long-lived beetles exhibited reduced enzymatic activity. Similar results were found when manipulating larval growth duration and adult longevity through variations in relative humidity, with a particular focus on antibacterial activity. CONCLUSION The impact of growth manipulation on immune senescence varies by the specific immune parameter under consideration. Yet, in slow-growing T. molitor, a clear decline in cellular and antibacterial immune responses with age was observed. This decline can be linked to their initially stronger immune response in early life. Furthermore, our study suggests an immune strategy favoring enhanced antibacterial activity among slow-growing and long-lived T. molitor individuals.
Collapse
Affiliation(s)
- Agathe Crosland
- Biogéosciences (UMR-CNRS 6282), Université de Bourgogne, Dijon, France.
| | - Thierry Rigaud
- Biogéosciences (UMR-CNRS 6282), Université de Bourgogne, Dijon, France
| | - Charlène Develay
- Biogéosciences (UMR-CNRS 6282), Université de Bourgogne, Dijon, France
| | - Yannick Moret
- Biogéosciences (UMR-CNRS 6282), Université de Bourgogne, Dijon, France
| |
Collapse
|
14
|
Albery GF, Sweeny AR, Webber Q. How behavioural ageing affects infectious disease. Neurosci Biobehav Rev 2023; 155:105426. [PMID: 37839673 PMCID: PMC10842249 DOI: 10.1016/j.neubiorev.2023.105426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Ageing is associated with profound changes in behaviour that could influence exposure and susceptibility to infectious disease. As well as determining emergent patterns of infection across individuals of different ages, behavioural ageing could interact with, confound, or counteract age-related changes in other traits. Here, we examine how behavioural ageing can manifest and influence patterns of infection in wild animals. We discuss a range of age-related changes that involve interactions between behaviour and components of exposure and susceptibility to infection, including social ageing and immunosenescence, acquisition of novel parasites and pathogens with age, changes in spatial behaviours, and age-related hygiene and sickness behaviours. Overall, most behavioural changes are expected to result in a reduced exposure rate, but there is relatively little evidence for this phenomenon, emerging largely from a rarity of explicit tests of exposure changes over the lifespan. This review offers a framework for understanding how ageing, behaviour, immunity, and infection interact, providing a series of hypotheses and testable predictions to improve our understanding of health in ageing societies.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Scotland, UK; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Amy R Sweeny
- School of Biosciences, University of Sheffield, Sheffield, England, UK
| | - Quinn Webber
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
15
|
Patterson SK, Petersen RM, Brent LJN, Snyder-Mackler N, Lea AJ, Higham JP. Natural Animal Populations as Model Systems for Understanding Early Life Adversity Effects on Aging. Integr Comp Biol 2023; 63:681-692. [PMID: 37279895 PMCID: PMC10503476 DOI: 10.1093/icb/icad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Adverse experiences in early life are associated with aging-related disease risk and mortality across many species. In humans, confounding factors, as well as the difficulty of directly measuring experiences and outcomes from birth till death, make it challenging to identify how early life adversity impacts aging and health. These challenges can be mitigated, in part, through the study of non-human animals, which are exposed to parallel forms of adversity and can age similarly to humans. Furthermore, studying the links between early life adversity and aging in natural populations of non-human animals provides an excellent opportunity to better understand the social and ecological pressures that shaped the evolution of early life sensitivities. Here, we highlight ongoing and future research directions that we believe will most effectively contribute to our understanding of the evolution of early life sensitivities and their repercussions.
Collapse
Affiliation(s)
- Sam K Patterson
- Department of Anthropology, New York University, New York City, 10003, USA
| | - Rachel M Petersen
- Department of Biological Science, Vanderbilt University, Nashville, 37232, USA
| | - Lauren J N Brent
- Department of Psychology, University of Exeter, Exeter, EX4 4QG, United Kingdom
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, and School of Human Evolution and Social Change, Arizona State University, Tempe, 85281, USA
| | - Amanda J Lea
- Department of Biological Science, Vanderbilt University, Nashville, 37232, USA
- Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, M5G 1M1, Canada
| | - James P Higham
- Department of Anthropology, New York University, New York City, 10003, USA
| |
Collapse
|
16
|
Jax E, Werner E, Müller I, Schaerer B, Kohn M, Olofsson J, Waldenström J, Kraus RHS, Härtle S. Evaluating Effects of AIV Infection Status on Ducks Using a Flow Cytometry-Based Differential Blood Count. Microbiol Spectr 2023; 11:e0435122. [PMID: 37318353 PMCID: PMC10434237 DOI: 10.1128/spectrum.04351-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Ducks have recently received a lot of attention from the research community due to their importance as natural reservoirs of avian influenza virus (AIV). Still, there is a lack of tools to efficiently determine the immune status of ducks. The purpose of this work was to develop an automated differential blood count for the mallard duck (Anas platyrhynchos), to assess reference values of white blood cell (WBC) counts in this species, and to apply the protocol in an AIV field study. We established a flow cytometry-based duck WBC differential based on a no-lyse no-wash single-step one-tube technique, applying a combination of newly generated monoclonal antibodies with available duck-specific as well as cross-reacting chicken markers. The blood cell count enables quantification of mallard thrombocytes, granulocytes, monocytes, B cells, CD4+ T cells (T helper) and CD8+ cytotoxic T cells. The technique is reproducible, accurate, and much faster than traditional evaluations of blood smears. Stabilization of blood samples enables analysis up to 1 week after sampling, thus allowing for evaluation of blood samples collected in the field. We used the new technique to investigate a possible influence of sex, age, and AIV infection status on WBC counts in wild mallards. We show that age has an effect on the WBC counts in mallards, as does sex in juvenile mallards. Interestingly, males naturally infected with low pathogenic AIV showed a reduction of lymphocytes (lymphocytopenia) and thrombocytes (thrombocytopenia), which are both common in influenza A infection in humans. IMPORTANCE Outbreaks of avian influenza in poultry and humans are a global public health concern. Aquatic birds are the primary natural reservoir of avian influenza viruses (AIVs), and strikingly, AIVs mainly cause asymptomatic or mild infection in these species. Hence, immunological studies in aquatic birds are important for investigating variation in disease outcome of different hosts to AIV and may aid in early recognition and a better understanding of zoonotic events. Unfortunately, immunological studies in these species were so far hampered by the lack of diagnostic tools. Here, we present a technique that enables high-throughput white blood cell (WBC) analysis in the mallard and report changes in WBC counts in wild mallards naturally infected with AIV. Our protocol permits large-scale immune status monitoring in a widespread wild and domesticated duck species and provides a tool to further investigate the immune response in an important reservoir host of zoonotic viruses.
Collapse
Affiliation(s)
- Elinor Jax
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Elena Werner
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Inge Müller
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Beatrice Schaerer
- Department of Veterinary Sciences, AG Immunology, LMU Munich, Planegg, Germany
| | - Marina Kohn
- Department of Veterinary Sciences, AG Immunology, LMU Munich, Planegg, Germany
| | - Jenny Olofsson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robert H. S. Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, AG Immunology, LMU Munich, Planegg, Germany
| |
Collapse
|
17
|
Schrom E, Kinzig A, Forrest S, Graham AL, Levin SA, Bergstrom CT, Castillo-Chavez C, Collins JP, de Boer RJ, Doupé A, Ensafi R, Feldman S, Grenfell BT, Halderman JA, Huijben S, Maley C, Moses M, Perelson AS, Perrings C, Plotkin J, Rexford J, Tiwari M. Challenges in cybersecurity: Lessons from biological defense systems. Math Biosci 2023:109024. [PMID: 37270102 DOI: 10.1016/j.mbs.2023.109024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Defending against novel, repeated, or unpredictable attacks, while avoiding attacks on the 'self', are the central problems of both mammalian immune systems and computer systems. Both systems have been studied in great detail, but with little exchange of information across the different disciplines. Here, we present a conceptual framework for structured comparisons across the fields of biological immunity and cybersecurity, by framing the context of defense, considering different (combinations of) defensive strategies, and evaluating defensive performance. Throughout this paper, we pose open questions for further exploration. We hope to spark the interdisciplinary discovery of general principles of optimal defense, which can be understood and applied in biological immunity, cybersecurity, and other defensive realms.
Collapse
Affiliation(s)
- Edward Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America
| | - Ann Kinzig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Stephanie Forrest
- Biodesign Center for Biocomputation, Security and Society, Arizona State University, Tempe, AZ 85287, United States of America; School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America.
| | - Carl T Bergstrom
- Department of Biology, University of Washington, Seattle, WA 98195, United States of America
| | - Carlos Castillo-Chavez
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, United States of America
| | - James P Collins
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Adam Doupé
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287, United States of America; Center for Cybersecurity and Trusted Foundations, Global Security Initiative, Arizona State University, Tempe, AZ 85287, United States of America
| | - Roya Ensafi
- Department of Electrical Engineering and Computer Science, Computer Science and Engineering Division, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Stuart Feldman
- Schmidt Futures, New York, NY 10011, United States of America
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, United States of America
| | - J Alex Halderman
- Department of Electrical Engineering and Computer Science, Computer Science and Engineering Division, University of Michigan, Ann Arbor, MI 48109, United States of America; Center for Computer Security and Society, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Carlo Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, United States of America; Biodesign Center for Biocomputation, Security and Society, Arizona State University, Tempe, AZ 85287, United States of America
| | - Melanie Moses
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, United States of America; Department of Biology, University of New Mexico, Albuquerque, NM 87131, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Charles Perrings
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Joshua Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jennifer Rexford
- Department of Computer Science, Princeton University, Princeton, NJ 08540, United States of America
| | - Mohit Tiwari
- Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, United States of America
| |
Collapse
|
18
|
Siracusa ER, Pereira AS, Brask JB, Negron-Del Valle JE, Phillips D, Platt ML, Higham JP, Snyder-Mackler N, Brent LJN. Ageing in a collective: the impact of ageing individuals on social network structure. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220061. [PMID: 36802789 PMCID: PMC9939263 DOI: 10.1098/rstb.2022.0061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 02/21/2023] Open
Abstract
Ageing affects many phenotypic traits, but its consequences for social behaviour have only recently become apparent. Social networks emerge from associations between individuals. The changes in sociality that occur as individuals get older are thus likely to impact network structure, yet this remains unstudied. Here we use empirical data from free-ranging rhesus macaques and an agent-based model to test how age-based changes in social behaviour feed up to influence: (i) an individual's level of indirect connectedness in their network and (ii) overall patterns of network structure. Our empirical analyses revealed that female macaques became less indirectly connected as they aged for some, but not for all network measures examined. This suggests that indirect connectivity is affected by ageing, and that ageing animals can remain well integrated in some social contexts. Surprisingly, we did not find evidence for a relationship between age distribution and the structure of female macaque networks. We used an agent-based model to gain further understanding of the link between age-based differences in sociality and global network structure, and under which circumstances global effects may be detectable. Overall, our results suggest a potentially important and underappreciated role of age in the structure and function of animal collectives, which warrants further investigation. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Erin R. Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
| | - André S. Pereira
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Josefine Bohr Brask
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | | | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Arizona, AZ 85281, USA
| | - Cayo Biobank Research Unit
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
- Center for Evolution and Medicine, Arizona State University, Arizona, AZ 85281, USA
- School of Life Sciences, Arizona State University, Arizona, AZ 85281, USA
- School for Human Evolution and Social Change, Arizona State University, Arizona, AZ 85281, USA
- Department of Neuroscience, University of Pennsylvania, PA 19104, USA
- Department of Psychology, University of Pennsylvania, PA 19104, USA
- Department of Marketing, University of Pennsylvania, PA 19104, USA
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, PA 19104, USA
- Department of Psychology, University of Pennsylvania, PA 19104, USA
- Department of Marketing, University of Pennsylvania, PA 19104, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Arizona, AZ 85281, USA
- School of Life Sciences, Arizona State University, Arizona, AZ 85281, USA
- School for Human Evolution and Social Change, Arizona State University, Arizona, AZ 85281, USA
| | - Lauren J. N. Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
19
|
Bronikowski AM, Hedrick AR, Kutz GA, Holden KG, Reinke B, Iverson JB. Sex-specific innate immunity and ageing in long-lived fresh water turtles (Kinosternon flavescens: Kinosternidae). Immun Ageing 2023; 20:11. [PMID: 36894996 PMCID: PMC9997018 DOI: 10.1186/s12979-023-00335-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The progressive deregulation of the immune system with age, termed immunosenescence, has been well studied in mammalian systems, but studies of immune function in long-lived, wild, non-mammalian populations are scarce. In this study we leverage a 38-year mark-recapture study to quantify the relationships among age, sex, survival, reproductive output and the innate immune system in a long-lived reptile, yellow mud turtles (Kinosternon flavescens; Testudines; Kinosternidae). METHODS We estimated rates of survival and age-specific mortality by sex based on mark-recapture data for 1530 adult females and 860 adult males over 38 years of captures. We analyzed bactericidal competence (BC), and two immune responses to foreign red blood cells - natural antibody-mediated haemagglutination (NAbs), and complement-mediated haemolysis ability (Lys) - in 200 adults (102 females; 98 males) that ranged from 7 to 58 years of age captured in May 2018 during their emergence from brumation, and for which reproductive output and long-term mark-recapture data were available. RESULTS We found that females are smaller and live longer than males in this population, but the rate of accelerating mortality across adulthood is the same for both sexes. In contrast, males exhibited higher innate immunity than females for all three immune variables we measured. All immune responses also varied inversely with age, indicating immunosenescence. For females that reproduced in the preceding reproductive season, egg mass (and therefore total clutch mass) increased with age,. In addition to immunosenescence of bactericidal competence, females that produced smaller clutches also had lower bactericidal competence. CONCLUSIONS Contrary to the general vertebrate pattern of lower immune responses in males than females (possibly reflecting the suppressive effects of androgens), we found higher levels of all three immune variables in males. In addition, contrary to previous work that found no evidence of immunosenescence in painted turtles or red-eared slider turtles, we found a decrease in bactericidal competence, lysis ability, and natural antibodies with age in yellow mud turtles.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
- Department of Integrative Biology, Kellogg Biological Station, Michigan State University, 3700 E. Gull Lake Rd., Hickory Corners, MI 49060 USA
| | - Ashley R. Hedrick
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Greta A. Kutz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Kaitlyn G. Holden
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Beth Reinke
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625 USA
| | - John B. Iverson
- Department of Biology, Earlham College, Richmond, IN 47374 USA
| |
Collapse
|
20
|
Hammer TJ, Easton-Calabria A, Moran NA. Microbiome assembly and maintenance across the lifespan of bumble bee workers. Mol Ecol 2023; 32:724-740. [PMID: 36333950 PMCID: PMC9871002 DOI: 10.1111/mec.16769] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
How a host's microbiome changes over its lifespan can influence development and ageing. As these temporal patterns have only been described in detail for a handful of hosts, an important next step is to compare microbiome succession more broadly and investigate why it varies. Here we characterize the temporal dynamics and stability of the bumble bee worker gut microbiome. Bumble bees have simple and host-specific gut microbiomes, and their microbial dynamics may influence health and pollination services. We used 16S rRNA gene sequencing, quantitative PCR and metagenomics to characterize gut microbiomes over the lifespan of Bombus impatiens workers. We also sequenced gut transcriptomes to examine host factors that may control the microbiome. At the community level, microbiome assembly is highly predictable and similar to patterns of primary succession observed in the human gut. However, at the strain level, partitioning of bacterial variants among colonies suggests stochastic colonization events similar to those observed in flies and nematodes. We also find strong differences in temporal dynamics among symbiont species, suggesting ecological differences among microbiome members in colonization and persistence. Finally, we show that both the gut microbiome and host transcriptome-including expression of key immunity genes-stabilize, as opposed to senesce, with age. We suggest that in highly social groups such as bumble bees, maintenance of both microbiomes and immunity contribute to inclusive fitness, and thus remain under selection even in old age. Our findings provide a foundation for exploring the mechanisms and functional outcomes of bee microbiome succession.
Collapse
Affiliation(s)
- Tobin J. Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697,Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703,Corresponding author:
| | | | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
| |
Collapse
|
21
|
Wei X, Liu J, Zhang ZQ. Predation stress experienced as immature mites extends their lifespan. Biogerontology 2023; 24:67-79. [PMID: 36085209 PMCID: PMC9845153 DOI: 10.1007/s10522-022-09990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
The early-life experience is important in modulating the late-life performance of individuals. It has been predicted that there were trade-offs between early-life fitness and late-life success. Most of the studies on senescence have focused on the trade-offs between the reproduction and lifespan, and the influences of diet, mating, and other factors. Because the negative, non-consumptive effects of predators could also modulate the behaviour and underlying mechanisms of the prey, this study aimed to examine the different effects of predator-induced stress experienced in the early life compared with later life of the prey. The prey (Tyrophagus putrescentiae) was exposed to predation stress from the predator (Neoseiulus cucumeris) during different periods of its life (immature, oviposition period, and post-oviposition period). The results showed that the predation stress experienced during immature stages delayed development by 7.3% and prolonged lifespan by 9.7%, while predation stress experienced in the adult stage (both oviposition and post-oviposition periods) decreased lifespans of T. putrescentiae (by 24.8% and 28.7%, respectively). Predation stress experienced during immature stages also reduced female fecundity by 7.3%, whereas that experienced during the oviposition period reduced fecundity of the prey by 50.7%. This study demonstrated for the first time lifespan extension by exposure to predation stress when young and highlighted the importance of early-life experience to aging and lifespan.
Collapse
Affiliation(s)
- Xiaoying Wei
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Jianfeng Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Zhi-Qiang Zhang
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand. .,Manaaki Whenua - Landcare Research, 231 Morrin Road, St Johns, Auckland, New Zealand.
| |
Collapse
|
22
|
Ujvari B, Raven N, Madsen T, Klaassen M, Dujon AM, Schultz AG, Nunney L, Lemaître J, Giraudeau M, Thomas F. Telomeres, the loop tying cancer to organismal life-histories. Mol Ecol 2022; 31:6273-6285. [PMID: 35510763 PMCID: PMC9790343 DOI: 10.1111/mec.16488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Recent developments in telomere and cancer evolutionary ecology demonstrate a very complex relationship between the need of tissue repair and controlling the emergence of abnormally proliferating cells. The trade-off is balanced by natural and sexual selection and mediated via both intrinsic and environmental factors. Here, we explore the effects of telomere-cancer dynamics on life history traits and strategies as well as on the cumulative effects of genetic and environmental factors. We show that telomere-cancer dynamics constitute an incredibly complex and multifaceted process. From research to date, it appears that the relationship between telomere length and cancer risk is likely nonlinear with good evidence that both (too) long and (too) short telomeres can be associated with increased cancer risk. The ability and propensity of organisms to respond to the interplay of telomere dynamics and oncogenic processes, depends on the combination of its tissue environments, life history strategies, environmental challenges (i.e., extreme climatic conditions), pressure by predators and pollution, as well as its evolutionary history. Consequently, precise interpretation of telomere-cancer dynamics requires integrative and multidisciplinary approaches. Finally, incorporating information on telomere dynamics and the expression of tumour suppressor genes and oncogenes could potentially provide the synergistic overview that could lay the foundations to study telomere-cancer dynamics at ecosystem levels.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Nynke Raven
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Thomas Madsen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Marcel Klaassen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Aaron G. Schultz
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Leonard Nunney
- Department of Evolution, Ecology and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Jean‐François Lemaître
- Université de LyonLyonFrance,Laboratoire de Biométrie et Biologie ÉvolutiveUniversité Lyon 1CNRSUMR5558VilleurbanneFrance
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance,LIENSsUMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | - Frédéric Thomas
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| |
Collapse
|
23
|
Driessen MMG, Versteegh MA, Gerritsma YH, Tieleman BI, Pen IR, Verhulst S. Effects of manipulated food availability and seasonality on innate immune function in a passerine. J Anim Ecol 2022; 91:2400-2411. [PMID: 36268692 PMCID: PMC10092825 DOI: 10.1111/1365-2656.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022]
Abstract
The innate immune system is essential for survival, yet many immune traits are highly variable between and within individuals. In recent years, attention has shifted to the role of environmental factors in modulating this variation. A key environmental factor is food availability, which plays a major role in shaping life histories, and may affect resource allocation to immune function through its effect on nutritional state. We developed a technique to permanently increase foraging costs in seed-eating birds, and leveraged this technique to study the effects of food availability on the innate immune system over a 3-year period in 230 zebra finches housed in outdoor aviaries. The immune components we studied were haptoglobin, ovotransferrin, nitric oxide, natural antibodies through agglutination, complement-mediated lysis, and killing capacity of Escherichia coli and Candida albicans, covering a broad spectrum of the innate immune system. We explored the effects of food availability in conjunction with other potentially important variables: season, age, sex and manipulated natal brood size. Increased foraging costs affected multiple components of the immune system, albeit in a variable way. Nitric oxide and agglutination levels were lower under harsh foraging conditions, while Escherichia coli killing capacity was increased. Agglutination levels also varied seasonally, but only at low foraging costs. C. albicans killing capacity was lower in winter, and even more so for animals in harsh foraging conditions that were raised in large broods. Effects of food availability on ovotransferrin were also seasonal, and only apparent in males. Haptoglobin levels were independent of foraging costs and season. Males had higher levels of immune function than females for three of the measured immune traits. Innate immune function was independent of age and manipulated natal brood size. Our finding that food availability affects innate immune function suggests that fitness effects of food availability may at least partially be mediated by effects on the immune system. However, food availability effects on innate immunity varied in direction between traits, illustrating the complexity of the immune system and precluding conclusions on the level of disease resistance.
Collapse
Affiliation(s)
| | | | | | | | - Ido R. Pen
- University of GroningenGroningenthe Netherlands
| | | |
Collapse
|
24
|
van Veelen HPJ, Salles JF, Matson KD, van Doorn GS, van der Velde M, Tieleman BI. The microbial environment modulates non-genetic maternal effects on egg immunity. Anim Microbiome 2022; 4:44. [PMID: 35902980 PMCID: PMC9331593 DOI: 10.1186/s42523-022-00195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background In a diverse microbial world immune function of animals is essential. Diverse microbial environments may contribute to extensive variation in immunological phenotypes of vertebrates, among and within species and individuals. As maternal effects benefit offspring development and survival, whether females use cues about their microbial environment to prime offspring immune function is unclear. To provide microbial environmental context to maternal effects, we asked if the bacterial diversity of the living environment of female zebra finches Taeniopygia guttata shapes maternal effects on egg immune function. We manipulated environmental bacterial diversity of birds and tested if females increased immunological investment in eggs in an environment with high bacterial diversity (untreated soil) versus low (gamma-sterilized soil). We quantified lysozyme and ovotransferrin in egg albumen and IgY in egg yolk and in female blood, and we used 16S rRNA gene sequencing to profile maternal cloacal and eggshell microbiotas. Results We found a maternal effect on egg IgY concentration that reflected environmental microbial diversity: females who experienced high diversity deposited more IgY in their eggs, but only if maternal plasma IgY levels were relatively high. We found no effects on lysozyme and ovotransferrin concentrations in albumen. Moreover, we uncovered that variation in egg immune traits could be significantly attributed to differences among females: for IgY concentration in yolk repeatability R = 0.80; for lysozyme concentration in albumen R = 0.27. Furthermore, a partial least squares path model (PLS-PM) linking immune parameters of females and eggs, which included maternal and eggshell microbiota structures and female body condition, recapitulated the treatment-dependent yolk IgY response. The PLS-PM additionally suggested that the microbiota and physical condition of females contributed to shaping maternal effects on egg immune function, and that (non-specific) innate egg immunity was prioritized in the environment with low bacterial diversity. Conclusions The microbial environment of birds can shape maternal effects on egg immune function. Since immunological priming of eggs benefits offspring, we highlight that non-genetic maternal effects on yolk IgY levels based on cues from the parental microbial environment may prove important for offspring to thrive in the microbial environment that they are expected to face. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00195-8.
Collapse
|
25
|
Cooper EB, Watowich MM, Beeby N, Whalen C, Montague MJ, Brent LJN, Snyder-Mackler N, Higham JP. Concentrations of urinary neopterin, but not suPAR, positively correlate with age in rhesus macaques. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1007052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Identifying biomarkers of age-related changes in immune system functioning that can be measured non-invasively is a significant step in progressing research on immunosenescence and inflammaging in free-ranging and wild animal populations. In the present study, we aimed to investigate the suitability of two urinary compounds, neopterin and suPAR, as biomarkers of age-related changes in immune activation and inflammation in a free-ranging rhesus macaque (Macaca mulatta) population. We also investigated age-associated variation in gene transcription from blood samples to understand the underlying proximate mechanisms that drive age-related changes in urinary neopterin or suPAR. Neopterin was significantly positively correlated with age, and had a moderate within-individual repeatability, indicating it is applicable as a biomarker of age-related changes. The age-related changes in urinary neopterin are not apparently driven by an age-related increase in the primary signaler of neopterin, IFN-y, but may be driven instead by an age-related increase in both CD14+ and CD14− monocytes. suPAR was not correlated with age, and had low repeatability within-individuals, indicating that it is likely better suited to measure acute inflammation rather than chronic age-related increases in inflammation (i.e., “inflammaging”). Neopterin and suPAR had a correlation of 25%, indicating that they likely often signal different processes, which if disentangled could provide a nuanced picture of immune-system function and inflammation when measured in tandem.
Collapse
|
26
|
Negrey JD, Emery Thompson M, Dunn CD, Otali E, Wrangham RW, Mitani JC, Machanda ZP, Muller MN, Langergraber KE, Goldberg TL. Female reproduction and viral infection in a long-lived mammal. J Anim Ecol 2022; 91:1999-2009. [PMID: 35988037 PMCID: PMC9532343 DOI: 10.1111/1365-2656.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 01/07/2023]
Abstract
For energetically limited organisms, life-history theory predicts trade-offs between reproductive effort and somatic maintenance. This is especially true of female mammals, for whom reproduction presents multifarious energetic and physiological demands. Here, we examine longitudinal changes in the gut virome (viral community) with respect to reproductive status in wild mature female chimpanzees Pan troglodytes schweinfurthii from two communities, Kanyawara and Ngogo, in Kibale National Park, Uganda. We used metagenomic methods to characterize viromes of individual chimpanzees while they were cycling, pregnant and lactating. Females from Kanyawara, whose territory abuts the park's boundary, had higher viral richness and loads (relative quantity of viral sequences) than females from Ngogo, whose territory is more energetically rich and located farther from large human settlements. Viral richness (total number of distinct viruses per sample) was higher when females were lactating than when cycling or pregnant. In pregnant females, viral richness increased with estimated day of gestation. Richness did not vary with age, in contrast to prior research showing increased viral abundance in older males from these same communities. Our results provide evidence of short-term physiological trade-offs between reproduction and infection, which are often hypothesized to constrain health in long-lived species.
Collapse
Affiliation(s)
- Jacob D. Negrey
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | - Christopher D. Dunn
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | | | - John C. Mitani
- Department of AnthropologyUniversity of MichiganAnn ArborMIUSA
| | | | - Martin N. Muller
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNMUSA
| | - Kevin E. Langergraber
- School of Human Evolution and Social ChangeArizona State UniversityTempeAZUSA,Institute of Human OriginsArizona State UniversityTempeAZUSA
| | - Tony L. Goldberg
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
27
|
Bichet C, Régis C, Gilot‐Fromont E, Cohas A. Variations in immune parameters with age in a wild rodent population and links with survival. Ecol Evol 2022; 12:e9094. [PMID: 35845372 PMCID: PMC9273568 DOI: 10.1002/ece3.9094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Recent findings suggest that immune functions do not unidirectionally deteriorate with age but that a potentially adaptive remodeling, where functions of the immune system get downregulated while others get upregulated with age could also occur. Scarce in wild populations, longitudinal studies are yet necessary to properly understand the patterns and consequences of age variations of the immune system in the wild. Meanwhile, it is challenging to understand if the observed variations in immune parameters with age are due to changes at the within-individual level or to selective (dis)appearance of individuals with peculiar immune phenotypes. Thanks to a long-term and longitudinal monitoring of a wild Alpine marmot population, we aimed to understand within- and between-individual variation in the immune phenotype with age, in order to improve our knowledge about the occurrence and the evolutionary consequences of such age variations in the wild. To do so, we recorded the age-specific leukocyte concentration and leukocyte profile in repeatedly sampled dominant individuals. We then tested whether the potential changes with age were attributable to within-individual variations and/or selective (dis)appearance. Finally, we investigated if the leukocyte concentration and profiles were correlated to the probability of death at a given age. The leukocyte concentration was stable with age, but the relative number of lymphocytes decreased, while the relative number of neutrophils increased, over the course of an individual's life. Moreover, between individuals of the same age, individuals with fewer lymphocytes but more neutrophils were more likely to die. Therefore, selective disappearance seems to play a role in the age variations of the immune parameters in this population. Further investigations linking age variations in immune phenotype to individual fitness are needed to understand whether remodeling of the immune system with age could or could not be adaptive.
Collapse
Affiliation(s)
- Coraline Bichet
- Centre d'Etudes Biologiques de ChizéCNRS‐La Rochelle UniversitéVilliers‐en‐BoisFrance
- Institut für Vogelforschung "Vogelwarte Helgoland" (Institute of Avian Research)WilhelmshavenGermany
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Corinne Régis
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Emmanuelle Gilot‐Fromont
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
- Université de Lyon, VetAgro SupMarcy‐l'EtoileFrance
| | - Aurélie Cohas
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
- Institut Universitaire de France (IUF)ParisFrance
| |
Collapse
|
28
|
Costantini D. A meta-analysis of impacts of immune response and infection on oxidative status in vertebrates. CONSERVATION PHYSIOLOGY 2022; 10:coac018. [PMID: 35492421 PMCID: PMC9040321 DOI: 10.1093/conphys/coac018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 05/06/2023]
Abstract
Inferring from patterns observed in biomedical research, ecoimmunological theory predicts that oxidative stress is a ubiquitous physiological cost that contributes to generating variation in immune function between individuals or species. This prediction is, however, often challenged by empirical studies testing the relationship between immune response or infection and oxidative status markers. This points out the importance of combining ecological immunology and oxidative stress ecology to further our understanding of the proximate causes and fitness consequences of individual variation in health, and adaptability to natural and anthropogenic environmental changes. I reviewed evidence and performed phylogenetic meta-analyses of changes in oxidative status markers owing to either injection of an antigen or infection in captive and free-living vertebrates (141 studies, 1262 effect sizes, 97 species). The dataset was dominated by studies on fish, birds and mammals, which provided 95.8% of effect sizes. Both antigen injection and parasite exposure were associated with changes of oxidative status. There were significant effects of taxonomic class and experimental environment (captivity vs. wild). In contrast with my predictions, age category (young vs. adult), study design (correlational vs. experimental) and proxies of pace of life (clutch size, litter size, and body mass; for birds and mammals only) were negligible in this dataset. Several methodological aspects (type of immunostimulant, laboratory assay, tissue analysed) showed significant effects on both strength and direction of effect. My results suggest that alterations of oxidative status are a widespread consequence of immune function across vertebrates. However, this work also identified heterogeneity in strength and direction of effect sizes, which suggests that immune function does not necessarily result in oxidative stress. Finally, this work identifies methodological caveats that might be relevant for the interpretation and comparability of results and for the application in conservation programs.
Collapse
Affiliation(s)
- David Costantini
- Unité Physiologie Moléculaire et Adaptation, UMR 7221, Muséum National d’Histoire Naturelle, CNRS, CP32, 57 rue Cuvier 75005 Paris, France
| |
Collapse
|
29
|
Immunity and lifespan: answering long-standing questions with comparative genomics. Trends Genet 2022; 38:650-661. [DOI: 10.1016/j.tig.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
30
|
Roast MJ, Eastwood JR, Aranzamendi NH, Fan M, Teunissen N, Verhulst S, Peters A. Telomere length declines with age, but relates to immune function independent of age in a wild passerine. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212012. [PMID: 35601455 PMCID: PMC9043702 DOI: 10.1098/rsos.212012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/01/2022] [Indexed: 05/03/2023]
Abstract
Telomere length (TL) shortens with age but telomere dynamics can relate to fitness components independent of age. Immune function often relates to such fitness components and can also interact with telomeres. Studying the link between TL and immune function may therefore help us understand telomere-fitness associations. We assessed the relationships between erythrocyte TL and four immune indices (haptoglobin, natural antibodies (NAbs), complement activity (CA) and heterophil-lymphocyte (HL) ratio; n = 477-589), from known-aged individuals of a wild passerine (Malurus coronatus). As expected, we find that TL significantly declined with age. To verify whether associations between TL and immune function were independent of parallel age-related changes (e.g. immunosenescence), we statistically controlled for sampling age and used within-subject centring of TL to separate relationships within or between individuals. We found that TL positively predicted CA at the between-individual level (individuals with longer average TL had higher CA), but no other immune indices. By contrast, age predicted the levels of NAbs and HL ratio, allowing inference that respective associations between TL and age with immune indices are independent. Any links existing between TL and fitness are therefore unlikely to be strongly mediated by innate immune function, while TL and immune indices appear independent expressions of individual heterogeneity.
Collapse
Affiliation(s)
- Michael J. Roast
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Justin R. Eastwood
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | | | - Marie Fan
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Niki Teunissen
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anne Peters
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
31
|
Lemaître J, Rey B, Gaillard J, Régis C, Gilot‐Fromont E, Débias F, Duhayer J, Pardonnet S, Pellerin M, Haghani A, Zoller JA, Li CZ, Horvath S. DNA methylation as a tool to explore ageing in wild roe deer populations. Mol Ecol Resour 2022; 22:1002-1015. [PMID: 34665921 PMCID: PMC9297961 DOI: 10.1111/1755-0998.13533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation-based biomarkers of ageing (epigenetic clocks) promise to lead to new insights into evolutionary biology of ageing. Relatively little is known about how the natural environment affects epigenetic ageing effects in wild species. In this study, we took advantage of a unique long-term (>40 years) longitudinal monitoring of individual roe deer (Capreolus capreolus) living in two wild populations (Chizé and Trois-Fontaines, France) facing different ecological contexts, to investigate the relationship between chronological age and levels of DNA methylation (DNAm). We generated novel DNA methylation data from n = 94 blood samples, from which we extracted leucocyte DNA, using a custom methylation array (HorvathMammalMethylChip40). We present three DNA methylation-based estimators of age (DNAm or epigenetic age), which were trained in males, females, and both sexes combined. We investigated how sex differences influenced the relationship between DNAm age and chronological age using sex-specific epigenetic clocks. Our results highlight that old females may display a lower degree of biological ageing than males. Further, we identify the main sites of epigenetic alteration that have distinct ageing patterns between the two sexes. These findings open the door to promising avenues of research at the crossroads of evolutionary biology and biogerontology.
Collapse
Affiliation(s)
- Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Corinne Régis
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Emmanuelle Gilot‐Fromont
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
- Université de LyonVetAgro SupMarcy‐l'EtoileFrance
| | - François Débias
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jeanne Duhayer
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Sylvia Pardonnet
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Maryline Pellerin
- Direction de la Recherche et de l'Appui ScientifiqueOffice Français de la BiodiversitéUnité Ongulés SauvagesGapFrance
| | - Amin Haghani
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
| | - Joseph A. Zoller
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Caesar Z. Li
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Steve Horvath
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
32
|
Siracusa ER, Higham JP, Snyder-Mackler N, Brent LJN. Social ageing: exploring the drivers of late-life changes in social behaviour in mammals. Biol Lett 2022; 18:20210643. [PMID: 35232274 PMCID: PMC8889194 DOI: 10.1098/rsbl.2021.0643] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Social interactions help group-living organisms cope with socio-environmental challenges and are central to survival and reproductive success. Recent research has shown that social behaviour and relationships can change across the lifespan, a phenomenon referred to as 'social ageing'. Given the importance of social integration for health and well-being, age-dependent changes in social behaviour can modulate how fitness changes with age and may be an important source of unexplained variation in individual patterns of senescence. However, integrating social behaviour into ageing research requires a deeper understanding of the causes and consequences of age-based changes in social behaviour. Here, we provide an overview of the drivers of late-life changes in sociality. We suggest that explanations for social ageing can be categorized into three groups: changes in sociality that (a) occur as a result of senescence; (b) result from adaptations to ameliorate the negative effects of senescence; and/or (c) result from positive effects of age and demographic changes. Quantifying the relative contribution of these processes to late-life changes in sociality will allow us to move towards a more holistic understanding of how and why these patterns emerge and will provide important insights into the potential for social ageing to delay or accelerate other patterns of senescence.
Collapse
Affiliation(s)
- Erin R Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Lauren J N Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| |
Collapse
|
33
|
Raven N, Klaassen M, Madsen T, Thomas F, Hamede R, Ujvari B. Transmissible cancer influences immune gene expression in an endangered marsupial, the Tasmanian devil (Sarcophilus harrisii). Mol Ecol 2022; 31:2293-2311. [PMID: 35202488 PMCID: PMC9310804 DOI: 10.1111/mec.16408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Understanding the effects of wildlife diseases on populations requires insight into local environmental conditions, host defence mechanisms, host life‐history trade‐offs, pathogen population dynamics, and their interactions. The survival of Tasmanian devils (Sarcophilus harrisii) is challenged by a novel, fitness limiting pathogen, Tasmanian devil facial tumour disease (DFTD), a clonally transmissible, contagious cancer. In order to understand the devils’ capacity to respond to DFTD, it is crucial to gain information on factors influencing the devils’ immune system. By using RT‐qPCR, we investigated how DFTD infection in association with intrinsic (sex and age) and environmental (season) factors influences the expression of 10 immune genes in Tasmanian devil blood. Our study showed that the expression of immune genes (both innate and adaptive) differed across seasons, a pattern that was altered when infected with DFTD. The expression of immunogbulins IgE and IgM:IgG showed downregulation in colder months in DFTD infected animals. We also observed strong positive association between the expression of an innate immune gene, CD16, and DFTD infection. Our results demonstrate that sampling across seasons, age groups and environmental conditions are beneficial when deciphering the complex ecoevolutionary interactions of not only conventional host‐parasite systems, but also of host and diseases with high mortality rates, such as transmissible cancers.
Collapse
Affiliation(s)
- N Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - M Klaassen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - T Madsen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - F Thomas
- CREEC/CANECEV (CREES), Montpellier, France.,MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - R Hamede
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia.,School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - B Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| |
Collapse
|
34
|
Corripio-Miyar Y, Hayward A, Lemon H, Sweeny AR, Bal X, Kenyon F, Pilkington JG, Pemberton JM, Nussey DH, McNeilly TN. Functionally distinct T-helper cell phenotypes predict resistance to different types of parasites in a wild mammal. Sci Rep 2022; 12:3197. [PMID: 35210503 PMCID: PMC8873199 DOI: 10.1038/s41598-022-07149-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/31/2022] Open
Abstract
The adaptive immune system is critical to an effective response to infection in vertebrates, with T-helper (Th) cells pivotal in orchestrating these responses. In natural populations where co-infections are the norm, different Th responses are likely to play an important role in maintaining host health and fitness, a relationship which remains poorly understood in wild animals. In this study, we characterised variation in functionally distinct Th responses in a wild population of Soay sheep by enumerating cells expressing Th-subset specific transcription factors and quantifying Th-associated cytokines. We tested the prediction that raised Th1 and Th2 responses should predict reduced apicomplexan and helminth parasite burdens, respectively. All measures of Th-associated cytokine production increased with age, while Th17- and regulatory Th-associated cytokine production increased more rapidly with age in males than females. Independent of age, sex, and each other, IL-4 and Gata3 negatively predicted gastro-intestinal nematode faecal egg count, while IFN-γ negatively predicted coccidian faecal oocyst count. Our results provide important support from outside the laboratory that Th1 and Th2 responses predict resistance to different kinds of parasites, and illustrate how harnessing specific reagents and tools from laboratory immunology will illuminate our understanding of host-parasite interactions in the wild.
Collapse
Affiliation(s)
- Yolanda Corripio-Miyar
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK.
| | - Adam Hayward
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Hannah Lemon
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Amy R Sweeny
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Xavier Bal
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Fiona Kenyon
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| |
Collapse
|
35
|
Enterocytozoon schreckii n. sp. Infects the Enterocytes of Adult Chinook Salmon ( Oncorhynchus tshawytscha) and May Be a Sentinel of Immunosenescence. mSphere 2022; 7:e0090821. [PMID: 34986317 PMCID: PMC8730814 DOI: 10.1128/msphere.00908-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A novel Enterocytozoon infection was identified in the intestines of sexually mature Chinook salmon. While microsporidian parasites are common across a diverse range of animal hosts, this novel species is remarkable because it demonstrates biological, pathological, and genetic similarity with Enterocytozoon bieneusi, the most common causative agent of microsporidiosis in AIDS patients. There are similarities in the immune and endocrine processes of sexually mature Pacific salmon and immunocompromised humans, suggesting possible common mechanisms of susceptibility in these two highly divergent host species. The discovery of Enterocytozoon schreckii n. sp. contributes to clarifying the phylogenetic relationships within family Enterocytozoonidae. The phylogenetic and morphological features of this species support the redescription of Enterocytozoon to include Enterospora as a junior synonym. Furthermore, the discovery of this novel parasite may have important implications for conservation, as it could be a sentinel of immune suppression, disease, and prespawning mortality in threatened populations of salmonids. IMPORTANCE In this work, we describe a new microsporidian species that infects the enterocytes of Chinook salmon. This novel pathogen is closely related to Enterocytozoon bieneusi, an opportunistic pathogen commonly found in AIDS patients and other severely immunocompromised humans. The discovery of this novel pathogen is of interest because it has only been found in sexually mature Chinook salmon, which have compromised immune systems due to the stresses of migration and maturation and which share similar pathological features with immunocompromised and senescent humans. The discovery of this novel pathogen could lead to new insights regarding how microsporidiosis relates to immunosuppression across animal hosts.
Collapse
|
36
|
Roast MJ, Hidalgo Aranzamendi N, Teunissen N, Fan M, Verhulst S, Peters A. No Evidence for Constitutive Innate Immune Senescence in a Longitudinal Study of a Wild Bird. Physiol Biochem Zool 2021; 95:54-65. [PMID: 34870562 DOI: 10.1086/717937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAging is associated with declines in physiological performance; declining immune defenses particularly could have consequences for age-related fitness and survival. In aging vertebrates, adaptive (memory-based) immune responses typically become impaired, innate (nonspecific) responses undergo lesser declines, and inflammation increases. Longitudinal studies of immune functions in wild animals are rare, yet they are needed to understand immunosenescence under evolutionarily relevant conditions. Using longitudinal data from a tropical passerine (Malurus coronatus) population, we investigate how population trends emerge from within-individual changes and between-individual heterogeneity (e.g., selective disappearance) in immune status. We quantified constitutive immune indexes (haptoglobin [inflammation associated], natural antibodies, complement [lytic] activity, and heterophil-lymphocyte ratio; n=505-631) in individuals sampled one to seven times over 5 yr. Unexpectedly, longitudinal analyses showed no age-related change within individuals in any immune index, despite sufficient power to detect within-individual change. Between individuals, we found age-related declines in natural antibodies and increases in heterophil-lymphocyte ratios. However, selective disappearance could not adequately explain between-individual age effects, and longitudinal models could not explain our data better than cross-sectional analyses. The lack of clear within-individual immunosenescence is itself notable. Persistent levels of haptoglobin, complement activity, and natural antibodies into old age suggests that these immune components are maintained, potentially with adaptive significance.
Collapse
|
37
|
Beaumelle C, Redman EM, de Rijke J, Wit J, Benabed S, Debias F, Duhayer J, Pardonnet S, Poirel MT, Capron G, Chabot S, Rey B, Yannic G, Gilleard JS, Bourgoin G. Metabarcoding in two isolated populations of wild roe deer (Capreolus capreolus) reveals variation in gastrointestinal nematode community composition between regions and among age classes. Parasit Vectors 2021; 14:594. [PMID: 34863264 PMCID: PMC8642965 DOI: 10.1186/s13071-021-05087-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Background Gastrointestinal nematodes are ubiquitous for both domestic and wild ungulates and have varying consequences for health and fitness. They exist as complex communities of multiple co-infecting species, and we have a limited understanding of how these communities vary in different hosts, regions and circumstances or of how this affects their impacts. Methods We have undertaken ITS2 rDNA nemabiome metabarcoding with next-generation sequencing on populations of nematode larvae isolated from 149 fecal samples of roe deer of different sex and age classes in the two isolated populations of Chizé and Trois Fontaines in France not co-grazing with any domestic ungulate species. Results We identified 100 amplified sequence variants (ASVs) that were assigned to 14 gastrointestinal nematode taxa overall at either genus (29%) or species (71%) level. These taxa were dominated by parasites classically found in cervids—e.g. Ostertagia leptospicularis, Spiculopteragia spp. Higher parasite species diversity was present in the Trois Fontaines population than in the Chizé population including the presence of species more typically seen in domestic livestock (Haemonchus contortus, Bunostomum sp., Cooperia punctata, Teladorsagia circumcincta). No differences in parasite species diversity or community composition were seen in the samples collected from three zones of differing habitat quality within the Chizé study area. Young roe deer hosted the highest diversity of gastrointestinal nematodes, with more pronounced effects of age apparent in Trois Fontaines. The effect of host age differed between gastrointestinal nematode species, e.g. there was little effect on O. leptospicularis but a large effect on Trichostrongylus spp. No effect of host sex was detected in either site. Conclusions The presence of some livestock parasite species in the Trois Fontaines roe deer population was unexpected given the isolation of this population away from grazing domestic livestock since decades. Overall, our results illustrate the influence of host traits and the local environment on roe deer nemabiome and demonstrate the power of the nemabiome metabarcoding approach to elucidate the composition of gastrointestinal nematode communities in wildlife. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05087-5.
Collapse
Affiliation(s)
- Camille Beaumelle
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France. .,Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Elizabeth M Redman
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jill de Rijke
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Janneke Wit
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Slimania Benabed
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France.,VetAgro Sup, Campus Vétérinaire de Lyon, Université de Lyon, 69280, Marcy l'Etoile, France
| | - François Debias
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Jeanne Duhayer
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Sylvia Pardonnet
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Marie-Thérèse Poirel
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France.,VetAgro Sup, Campus Vétérinaire de Lyon, Université de Lyon, 69280, Marcy l'Etoile, France
| | - Gilles Capron
- Office Français de la Biodiversité, 75008, Paris, France
| | | | - Benjamin Rey
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Glenn Yannic
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - John S Gilleard
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gilles Bourgoin
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France.,VetAgro Sup, Campus Vétérinaire de Lyon, Université de Lyon, 69280, Marcy l'Etoile, France
| |
Collapse
|
38
|
Bichet C, Moiron M, Matson KD, Vedder O, Bouwhuis S. Immunosenescence in the wild? A longitudinal study in a long-lived seabird. J Anim Ecol 2021; 91:458-469. [PMID: 34850397 DOI: 10.1111/1365-2656.13642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Longitudinal studies of various vertebrate populations have demonstrated senescent declines in reproductive performance and survival probability to be almost ubiquitous. Longitudinal studies of potential underlying proximate mechanisms, however, are still scarce. Due to its critical function in the maintenance of health and viability, the immune system is among the potential (mediators of) proximate mechanisms that could underlie senescence. Here, we studied three innate immune parameters-haemagglutination titre, haemolysis titre and haptoglobin concentration-in a population of common terns (Sterna hirundo) known to undergo actuarial senescence. We repeatedly sampled birds of known sex and age across 11 years and used random regression models to (a) quantify how immune parameters vary among individuals and (b) describe within-individual age-specific changes in, and potential trade-offs between, immune parameters. Our models revealed no differences between males and females in haemagglutination titre and haptoglobin concentration, and very low among-individual variation in these parameters in general. Within individuals, haemagglutination titre increased with age, while haptoglobin concentration did not change. We found no indication for selective (dis)appearance in relation to haemagglutination titre or haptoglobin concentration, nor for the existence of a trade-off between them. Haemolysis was absent in the majority (76%) of samples. Common terns do not exhibit clear senescence in haemagglutination titre and haptoglobin concentration and show very little among-individual variation in these parameters in general. This may be explained by canalisation of the immune parameters or by the colonial breeding behaviour of our study species, but more longitudinal studies are needed to facilitate investigation of links between species' characteristics and immunosenescence in wild animals.
Collapse
Affiliation(s)
- Coraline Bichet
- Institute of Avian Research, Wilhelmshaven, Germany.,Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR-7372, Villiers-en-Bois, France
| | - Maria Moiron
- Institute of Avian Research, Wilhelmshaven, Germany.,CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Kevin D Matson
- Wildlife Ecology and Conservation, Environmental Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Oscar Vedder
- Institute of Avian Research, Wilhelmshaven, Germany
| | | |
Collapse
|
39
|
Těšický M, Krajzingrová T, Świderská Z, Syslová K, Bílková B, Eliáš J, Velová H, Svobodová J, Bauerová P, Albrecht T, Vinkler M. Longitudinal evidence for immunosenescence and inflammaging in free-living great tits. Exp Gerontol 2021; 154:111527. [PMID: 34428476 DOI: 10.1016/j.exger.2021.111527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
The first-line effector mechanisms of immune defence, including inflammation and oxidative burst, contribute significantly to host-pathogen resistance. Whether these immune responses undergo age-related changes in birds remains unknown. Here, we tracked selected inflammatory parameters in 54 free-living great tits (Parus major) of known age, captured repeatedly over three consecutive years, with the aims to investigate long-term repeatability and age-dependent changes in cellular oxidative burst responsiveness upon in vitro stimulation with bacterial lipopolysaccharide (LPS), and to identify its relationships with leukotriene B4 (LTB4) levels and haematological traits. In addition, we linked these immunological traits to selected physiological markers (antioxidants and oxidative stress markers). LTB4 levels increased with age and we have shown a similar non-significant tendency also for absolute granulocyte counts, indicating propagating chronic inflammation over the bird's lifetime, consistent with the inflammaging hypothesis. In contrast, cellular oxidative burst followed a quadratic trend of dependency on age with a peak in midlife individuals, in line with the immunosenescence hypothesis. Interestingly, LTB4 levels were positively associated with general oxidative damage, but negatively with antioxidant glutathione peroxidase activity, indicating links to redox balance. This longitudinal study demonstrates the contrasting patterns of age-related changes in background and acute markers of pro-inflammatory immunity contributing to immunosenescence in birds and thus provides basis for interpretation of the tested inflammatory markers in cross-cohort datasets.
Collapse
Affiliation(s)
- Martin Těšický
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43 Prague, Czech Republic.
| | - Tereza Krajzingrová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43 Prague, Czech Republic
| | - Zuzana Świderská
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43 Prague, Czech Republic; Charles University, Faculty of Science, Department of Cell Biology, Viničná 7, 128 43 Prague, Czech Republic
| | - Kamila Syslová
- Laboratory of Medicinal Diagnostics, Department of Organic Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Barbora Bílková
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43 Prague, Czech Republic
| | - Jiří Eliáš
- Czech University of Life Sciences, Department of Ecology, Faculty of Environmental Sciences, Kamýcká 129, Prague, Czech Republic
| | - Hana Velová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43 Prague, Czech Republic
| | - Jana Svobodová
- Czech University of Life Sciences, Department of Ecology, Faculty of Environmental Sciences, Kamýcká 129, Prague, Czech Republic
| | - Petra Bauerová
- Czech Hydrometeorological Institute, Tušimice Observatory, Tušimice 6, Kadaň 432 01, Czech Republic
| | - Tomáš Albrecht
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43 Prague, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno 603 65, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43 Prague, Czech Republic.
| |
Collapse
|
40
|
Tang SQ, Yao WL, Wang YZ, Zhang YY, Zhao HY, Wen Q, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. Improved function and balance in T cell modulation by endothelial cells in young people. Clin Exp Immunol 2021; 206:196-207. [PMID: 34382213 DOI: 10.1111/cei.13654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Elderly individuals exhibit unbalanced bone marrow (BM) effector T cell subset differentiation, such as increased T helper type 1 (Th1) and T cytotoxic type 1 (Tc1) cell frequencies, but the underlying mechanism is still unclear. Endothelial cells (ECs), which are instructive components of the BM microenvironment, exhibit the phenotype of semi-professional antigen-presenting cells and regulate T cell recruitment and activation. Thus, we compared the frequency and function of BM ECs, especially their capacity to regulate effector T cell subsets, between young and elderly healthy individuals, and explored the underlying mechanism of this immunomodulatory discrepancy. Although the young and elderly EC percentages were comparable, young ECs showed fewer reactive oxygen species and better migratory and tube-forming abilities than elderly ECs. Notably, increased T cell activation molecules and inflammatory cytokines were found in elderly ECs which regulated T cells to differentiate into more proinflammatory T cells, including Th1 and Tc1 cells, than young ECs.
Collapse
Affiliation(s)
- Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Wei-Li Yao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Hong-Yan Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qi Wen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
41
|
Driessen MMG, Versteegh MA, Gerritsma YH, Tieleman BI, Pen I, Verhulst S. Effects of early-life conditions on innate immune function in adult zebra finches. J Exp Biol 2021; 224:269007. [PMID: 34087935 PMCID: PMC8214827 DOI: 10.1242/jeb.242158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/20/2021] [Indexed: 01/31/2023]
Abstract
Early life conditions can affect individuals for life, with harsh developmental conditions resulting in lower fitness, but the underlying mechanisms are not well understood. We hypothesized that immune function may be part of the underlying mechanism, when harsh developmental conditions result in less effective immune function. We tested this hypothesis by comparing innate immune function between zebra finches (Taeniopygia guttata) in adulthood (n=230; age 108–749 days) that were reared in either small or large broods. We used this experimental background to follow up our earlier finding that finches reared in large broods have a shorter lifespan. To render a broad overview of innate immune function, we used an array of six measures: bacterial killing capacity, hemagglutination, hemolysis, haptoglobin, nitric oxide and ovotransferrin. We found no convincing evidence for effects of natal brood size on any of the six measures of innate immune function. This raised the question whether the origin of variation in immune function was genetic, and we therefore estimated heritabilities using animal models. However, we found heritability estimates to be low (range 0.04–0.11) for all measured immune variables, suggesting variation in innate immune function can largely be attributed to environmental effects independent of early-life conditions as modified by natal brood size. Summary: Developmental hardship has many long-term implications, but its effects on adult immune function are unknown. We found no effects of a developmental manipulation on innate immune function during adulthood in zebra finches.
Collapse
Affiliation(s)
- Merijn M G Driessen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Maaike A Versteegh
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Yoran H Gerritsma
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Ido Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
42
|
Behringer V, Deimel C, Stevens JMG, Kreyer M, Lee SM, Hohmann G, Fruth B, Heistermann M. Cell-Mediated Immune Ontogeny Is Affected by Sex but Not Environmental Context in a Long-Lived Primate Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.629094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ecoimmunology conceptualizes the role of immunity in shaping life history in a natural context. Within ecoimmunology, macroimmunology is a framework that explains the effects of habitat and spatial differences on variation in immune phenotypes across populations. Within these frameworks, immune ontogeny—the development of the immune system across an individual life span—has received little attention. Here, we investigated how immune ontogeny from birth until adulthood is affected by age, sex, and developmental environment in a long-lived primate species, the bonobo. We found a progressive, significant decline of urinary neopterin levels, a marker for the cell-mediated immune response, from birth until 5 years of age in both sexes. The overall pattern of age-related neopterin changes was sex-specific, with males having higher urinary neopterin levels than females in the first 3 years of life, and females having higher levels than males between 6 and 8 years. Environmental condition (zoo-housed vs. wild) did not influence neopterin levels, nor did age-related changes in neopterin levels differ between environments. Our data suggest that the post-natal development of cell-mediated immune ontogeny is sex-specific but does not show plasticity in response to environmental conditions in this long-lived primate species. This indicates that cell-mediated immune ontogeny in the bonobo follows a stereotypic and maybe a genetically determined pattern that is not affected by environmental differences in pathogen exposure and energy availability, but that sex is an important, yet often overlooked factor shaping patterns of immune ontogeny. Investigating the causes and consequences of variation in immunity throughout life is critical for our understanding of life-history evolution and strategies, mechanisms of sexual selection, and population dynamics with respect to pathogen susceptibility. A general description of sex-specific immune ontogeny as done here is a crucial step in this direction, particularly when it is considered in the context of a species’ ecology and evolutionary history.
Collapse
|
43
|
Resende PS, Viana‐Junior AB, Young RJ, Azevedo CS. What is better for animal conservation translocation programmes: Soft‐ or hard‐release? A phylogenetic meta‐analytical approach. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Paloma S. Resende
- Universidade Federal de São João del‐ReiPós‐graduação em Ecologia Minas Gerais Brazil
| | - Arleu B. Viana‐Junior
- Laboratório de Ecologia de Insetos Programa de Pós‐graduação em Biodiversidade e EvoluçãoCoordenação de ZoologiaMuseu Paraense Emílio Goeldi Belém Brazil
| | | | - Cristiano S. Azevedo
- Universidade Federal de Ouro PretoPós‐graduação em Ecologia de Biomas TropicaisDepartamento de BiodiversidadeEvolução e Meio Ambiente Ouro Preto Brazil
| |
Collapse
|
44
|
Negrey JD, Behringer V, Langergraber KE, Deschner T. Urinary neopterin of wild chimpanzees indicates that cell-mediated immune activity varies by age, sex, and female reproductive status. Sci Rep 2021; 11:9298. [PMID: 33927233 PMCID: PMC8085242 DOI: 10.1038/s41598-021-88401-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
The study of free-living animal populations is necessary to understand life history trade-offs associated with immune investment. To investigate the role of life history strategies in shaping proinflammatory cell-mediated immune function, we analyzed age, sex, and reproductive status as predictors of urinary neopterin in 70 sexually mature chimpanzees (Pan troglodytes) at Ngogo, Kibale National Park, Uganda. In the absence of clinical signs of acute infectious disease, neopterin levels significantly increased with age in both male and female chimpanzees, as observed in humans and several other vertebrate species. Furthermore, males exhibited higher neopterin levels than females across adulthood. Finally, females with full sexual swellings, pregnant females, and post-reproductive females, the oldest individuals in our sample, exhibited higher neopterin levels than lactating females and cycling females without full swellings. Variation in females' neopterin levels by reproductive status is consistent with post-ovulatory and pregnancy-related immune patterns documented in humans. Together, our results provide evidence of ample variation in chimpanzee immune activity corresponding to biodemographic and physiological variation. Future studies comparing immune activity across ecological conditions and social systems are essential for understanding the life histories of primates and other mammals.
Collapse
Affiliation(s)
- Jacob D Negrey
- Department of Anthropology, Boston University, Boston, MA, 02215, USA.
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA.
| | - Verena Behringer
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA
| | - Tobias Deschner
- Interim Group Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| |
Collapse
|
45
|
LASKOW T, LANGDON J, ABADIR P, XUE QL, WALSTON J. Lactoferrin for the treatment of age-associated inflammation - A pilot study. Physiol Int 2021:10.1556/2060.2021.00010. [PMID: 33844642 PMCID: PMC9211386 DOI: 10.1556/2060.2021.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Chronic inflammation (CI) is a common trait of aging associated with adverse outcomes including mortality. We hypothesized that recombinant human Lactoferrin (rhLf) would reduce chronic inflammation of aging. METHODS Thirty-six community dwelling older adults were randomly assigned to rhLf or placebo treatment in 1:1 ratio for 3 months. IL-6, sTNFR1, Comprehensive Metabolic Panel (CMP), and Complete Blood Count (CBC) were measured at baseline, 1 month, 3 months, and 6 months. Physical and cognitive measures were completed at same timepoints, including 4-m walking speed (m/s), grip strength (kg), 6-min walking distance (m), home activity measured by accelerometer, trail making test - Part A (s) and - Part B (s), and Digit symbol substitution test (number correctly coded). Primary outcomes were differences in IL-6 and sTNFR1 concentrations evaluated by generalized linear model with log-link and gamma family distribution, controlling for baseline cytokine concentrations. RESULTS rhLF was well-tolerated. There were a significant number of abdominal complaints and increased drop-out rate in placebo group. Participants in rhLf arm had non-significant lower mean percent increase in IL6 at 3 months (rhLf mean IL-6 6% lower than control, P = 0.843), and sTNFaR1 (rhLf mean 2% lower than control, P = 0.36). No significant changes were observed for the cognitive or physical measures. CONCLUSION Treatment with rhLf did not significantly alter serum IL6 or sTNFR1 concentrations of older adults. This study may have been underpowered to detect difference, but provided evidence that a larger sample-size could more definitively determine the effect of rhLF on age-associated CI.
Collapse
Affiliation(s)
- T. LASKOW
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J. LANGDON
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P. ABADIR
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Q.-L. XUE
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J. WALSTON
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Briga M, Verhulst S. Mosaic metabolic ageing: Basal and standard metabolic rates age in opposite directions and independent of environmental quality, sex and life span in a passerine. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael Briga
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| |
Collapse
|
47
|
Delgobo M, Heinrichs M, Hapke N, Ashour D, Appel M, Srivastava M, Heckel T, Spyridopoulos I, Hofmann U, Frantz S, Ramos GC. Terminally Differentiated CD4 + T Cells Promote Myocardial Inflammaging. Front Immunol 2021; 12:584538. [PMID: 33679735 PMCID: PMC7935504 DOI: 10.3389/fimmu.2021.584538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4+ T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4+ T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4+ T cell compartment was primarily composed of naïve cells defined as CCR7+CD45RO-. However, when transplanted into young lymphocyte-deficient mice, CD4+ T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7- CD45RO+) and terminally-differentiated phenotypes (CCR7-CD45RO-), as typically seen in elderly. Differentiated CD4+ T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4+ T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4+ T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice.
Collapse
Affiliation(s)
- Murilo Delgobo
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Margarete Heinrichs
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Nils Hapke
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - DiyaaElDin Ashour
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Marc Appel
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Mugdha Srivastava
- Core Unit Systems Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Heckel
- Core Unit Systems Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ioakim Spyridopoulos
- Freeman Hospital, Department of Cardiology, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Cardiovascular Biology and Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ulrich Hofmann
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Gustavo Campos Ramos
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Hund AK, Hubbard JK, Krausová S, Munclinger P, Safran RJ. Different underlying mechanisms drive associations between multiple parasites and the same sexual signal. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Valdebenito JO, Liker A, Halimubieke N, Figuerola J, Székely T. Mortality cost of sex-specific parasitism in wild bird populations. Sci Rep 2020; 10:20983. [PMID: 33268803 PMCID: PMC7710712 DOI: 10.1038/s41598-020-77410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
Sex-specific mortality is frequent in animals although the causes of different male versus female mortalities remain poorly understood. Parasitism is ubiquitous in nature with widespread detrimental effects to hosts, making parasitism a likely cause of sex-specific mortalities. Using sex-specific blood and gastrointestinal parasite prevalence from 96 and 54 avian host species, respectively, we test the implications of parasites for annual mortality in wild bird populations using phylogenetic comparative methods. First, we show that parasite prevalence is not different between adult males and females, although Nematodes showed a statistically significant but small male-biased parasite prevalence. Second, we found no correlation between sex-biased host mortalities and sex-biased parasite prevalence. These results were consistent in both blood and gastrointestinal parasites. Taken together, our results show little evidence for sex-dependent parasite prevalence in adults in wild bird populations, and suggest that parasite prevalence is an unlikely predictor of sex difference in adult mortalities, not withstanding sampling limitations. We propose that to understand causes of sex-biased mortalities, more complex analyses are needed that incorporate various ecological and life history components of animals life that may include sex differences in exposure to predators, immune capacity and cost of reproduction.
Collapse
Affiliation(s)
- José O Valdebenito
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - András Liker
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, Hungary.,Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary
| | - Naerhulan Halimubieke
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - Tamás Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK. .,Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
50
|
Angell CS, Oudin MJ, Rode NO, Mautz BS, Bonduriansky R, Rundle HD. Development time mediates the effect of larval diet on ageing and mating success of male antler flies in the wild. Proc Biol Sci 2020; 287:20201876. [PMID: 33143587 DOI: 10.1098/rspb.2020.1876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-quality developmental environments often improve individual performance into adulthood, but allocating toward early life traits, such as growth, development rate and reproduction, may lead to trade-offs with late-life performance. It is, therefore, uncertain how a rich developmental environment will affect the ageing process (senescence), particularly in wild insects. To investigate the effects of early life environmental quality on insect life-history traits, including senescence, we reared larval antler flies (Protopiophila litigata) on four diets of varying nutrient concentration, then recorded survival and mating success of adult males released in the wild. Declining diet quality was associated with slower development, but had no effect on other life-history traits once development time was accounted for. Fast-developing males were larger and lived longer, but experienced more rapid senescence in survival and lower average mating rate compared to slow developers. Ultimately, larval diet, development time and body size did not predict lifetime mating success. Thus, a rich environment led to a mixture of apparent benefits and costs, mediated by development time. Our results indicate that 'silver spoon' effects can be complex and that development time mediates the response of adult life-history traits to early life environmental quality.
Collapse
Affiliation(s)
| | - Mathieu J Oudin
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Nicolas O Rode
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Brian S Mautz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Howard D Rundle
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|