1
|
van Benthem KJ, Bagawade R, Blüml C, Nabutanyi P, Thon FM, Wittmann MJ. Quantifying the effects of intraspecific trait variation and interspecific trait correlations on interacting populations-A nonlinear averaging approach. J Theor Biol 2025; 609:112134. [PMID: 40345432 DOI: 10.1016/j.jtbi.2025.112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/27/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Interactions between two species, e.g. between a predator species and a prey species, can often be described as the sum of many individual-by-individual interactions whose outcomes depend on the traits of the interacting individuals. These traits often vary substantially among individuals in each species, and individuals do not always interact randomly, e.g. due to plastic responses to a shared environmental factor in a heterogeneous landscape. Here we investigate the impact of intraspecific trait variation (ITV) and such interspecific trait correlations on species interactions via nonlinear averaging. Building on past models that integrate over an interaction kernel to obtain the impacts of ITV, we develop a theoretical framework allowing the modeling of arbitrary species interactions, with interspecific trait correlations as a novel feature. Based on two key ingredients, a joint trait distribution and a two-dimensional interaction function, the average interaction parameters (e.g. average predation rate) can be quantified numerically, approximated using an insightful Taylor approximation, and compared to cases without ITV. We highlight two applications of our framework. First, we study the quantitative and qualitative effects of ITV and trait correlations in a simple predator-prey model and show that even in the absence of evolution, variation and trait correlations among interacting individuals can make or break the coexistence between species. Second, we use simulated field data for a predator-prey system to show how the impact of ITV on an ecological interaction can be estimated from empirical data.
Collapse
Affiliation(s)
- Koen J van Benthem
- Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747 AG, the Netherlands; Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Rishabh Bagawade
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Chantal Blüml
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Peter Nabutanyi
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Frans M Thon
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Meike J Wittmann
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany; Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, 33615, Germany.
| |
Collapse
|
2
|
Zhang YH, Qian X, Zong X, An SH, Yan S, Shen J. Dual-role regulator of a novel miR-3040 in photoperiod-mediated wing dimorphism and wing development in green peach aphid. INSECT SCIENCE 2025; 32:80-94. [PMID: 38728615 DOI: 10.1111/1744-7917.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.
Collapse
Affiliation(s)
- Yun-Hui Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xin Qian
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Zong
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shi-Heng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Bielčik M, Schlägel UE, Schäfer M, Aguilar-Trigueros CA, Lakovic M, Sosa-Hernández MA, Hammer EC, Jeltsch F, Rillig MC. Aligning spatial ecological theory with the study of clonal organisms: the case of fungal coexistence. Biol Rev Camb Philos Soc 2024; 99:2211-2233. [PMID: 39073180 DOI: 10.1111/brv.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.
Collapse
Affiliation(s)
- Miloš Bielčik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str.84, Müncheberg, 15374, Germany
| | - Ulrike E Schlägel
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Merlin Schäfer
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
- Federal Agency for Nature Conservation, Alte Messe 6, Leipzig, 04103, Germany
| | - Carlos A Aguilar-Trigueros
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Building R2, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Seminaarinkatu 15, Jyväskylä, 40014, Finland
| | - Milica Lakovic
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Moisés A Sosa-Hernández
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Edith C Hammer
- Department of Biology, Microbial Ecology, Lund University, Ekologihuset, Sölvegatan 37, Lund, 22362, Sweden
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| |
Collapse
|
4
|
Anwer H, O'Dea RE, Mason D, Zajitschek S, Klinke A, Reid M, Hesselson D, Noble DWA, Morris MJ, Lagisz M, Nakagawa S. The effects of an obesogenic diet on behavior and cognition in zebrafish ( Danio rerio): Trait average, variability, repeatability, and behavioral syndromes. Ecol Evol 2022; 12:e9511. [PMID: 36407899 PMCID: PMC9666915 DOI: 10.1002/ece3.9511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The obesity epidemic, largely driven by the accessibility of ultra-processed high-energy foods, is one of the most pressing public health challenges of the 21st century. Consequently, there is increasing concern about the impacts of diet-induced obesity on behavior and cognition. While research on this matter continues, to date, no study has explicitly investigated the effect of obesogenic diet on variance and covariance (correlation) in behavioral traits. Here, we examined how an obesogenic versus control diet impacts means and (co-)variances of traits associated with body condition, behavior, and cognition in a laboratory population of ~160 adult zebrafish (Danio rerio). Overall, an obesogenic diet increased variation in several zebrafish traits. Zebrafish on an obesogenic diet were significantly heavier and displayed higher body weight variability; fasting blood glucose levels were similar between control and treatment zebrafish. During behavioral assays, zebrafish on the obesogenic diet displayed more exploratory behavior and were less reactive to video stimuli with conspecifics during a personality test, but these significant differences were sex-specific. Zebrafish on an obesogenic diet also displayed repeatable responses in aversive learning tests whereas control zebrafish did not, suggesting an obesogenic diet resulted in more consistent, yet impaired, behavioral responses. Where behavioral syndromes existed (inter-class correlations between personality traits), they did not differ between obesogenic and control zebrafish groups. By integrating a multifaceted, holistic approach that incorporates components of (co-)variances, future studies will greatly benefit by quantifying neglected dimensions of obesogenic diets on behavioral changes.
Collapse
Affiliation(s)
- Hamza Anwer
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Rose E. O'Dea
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Dominic Mason
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Susanne Zajitschek
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Liverpool John Moores UniversitySchool of Biological and Environmental SciencesLiverpoolUK
| | - Annabell Klinke
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Madeleine Reid
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Daniel Hesselson
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Centenary Institute and Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Daniel W. A. Noble
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| |
Collapse
|
5
|
Morimoto J. Parental ecological history can differentially modulate parental age effects on offspring physiological traits in Drosophila. Curr Zool 2022; 68:391-399. [PMID: 36090145 PMCID: PMC9450179 DOI: 10.1093/cz/zoab081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Parents adjust their reproductive investment over their lifespan based on their condition, age, and social environment, creating the potential for inter-generational effects to differentially affect offspring physiology. To date, however, little is known about how social environments experienced by parents throughout development and adulthood influence the effect of parental age on the expression of life-history traits in the offspring. Here, I collected data on Drosophila melanogaster offspring traits (i.e., body weight, water content, and lipid reserves) from populations where either mothers, fathers both, or neither parents experienced different social environments during development (larval crowding) and adulthood. Parental treatment modulated parental age effects on offspring lipid reserves but did not influence parental age effects on offspring water content. Importantly, parents in social environments where all individuals were raised in uncrowded larval densities produced daughters and sons lighter than parental treatments which produced the heaviest offspring. The peak in offspring body weight was delayed relative to the peak in parental reproductive success, but more strongly so for daughters from parental treatments where some or all males in the parental social environments were raised in crowded larval densities (irrespective of their social context), suggesting a potential father-to-daughter effect. Overall, the findings of this study reveal that parental ecological history (here, developmental and adult social environments) can modulate the effects of parental age at reproduction on the expression of offspring traits.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| |
Collapse
|
6
|
Holdridge EM, Vasseur DA. Intraspecific variation promotes coexistence under competition for essential resources. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Simha A, Hoz CPDL, Carley L. Moving beyond the “diversity paradox”: the limitations of competition-based frameworks in understanding species diversity. Am Nat 2022; 200:89-100. [DOI: 10.1086/720002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Li X, Zhang F, Coates B, Wei C, Zhu X, Zhang Y, Zhou X. Temporal analysis of microRNAs associated with wing development in the English grain aphid, Sitobion avenae (F.) (Homoptera: Aphidiae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103579. [PMID: 33894361 DOI: 10.1016/j.ibmb.2021.103579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Molecular mechanisms underlying wing evolution and development have been a point of scientific inquiry for decades. Phloem-feeding aphids are one of the most devastating global insect pests, where dispersal of winged morphs lead to annual movements, migrations, and range expansions. Aphids show a polyphenic wing dimorphism trait, and offer a model to study the role of environment in determining morphological plasticity of a single genotype. Despite recent progresses in the genetic understanding of wing polyphenism, the influence of environmental cues remains unclear. To investigate the involvement of miRNAs in wing development, we sequenced small RNA libraries of the English grain aphid, Sitobion avenae (F.) across six different developmental stages. As a result, we identified 113 conserved and 193 S. avenae-specific miRNAs. Gene Ontology and KEGG pathway analyses of putative target mRNAs for the six differentially expressed miRNAs are enriched for wing development processes. Dietary uptake of miR-263a, miR-316, and miR-184a agomirs and antagomirs led to significantly higher mortality (>70%) and a lower proportion of winged morphs (<5%). On the other hand, wing malformation was observed in miR-2 and miR-306 agomirs and miR-2 and miR-14 antagomirs, respectively, suggesting their involvement in S. avenae wing morphogenesis. These combined results not only shed light on the regulatory role of miRNAs in wing dimorphism, but also provide potential novel targets for the long-term sustainable management of S. avenae, a devastating global grain pest.
Collapse
Affiliation(s)
- Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fangmei Zhang
- Henan Provincial South Henan Crop Pest Green Prevention and Control Academician Workstation, Xinyang Agriculture and Forestry University, Xinyang, 46400, China
| | - Brad Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Changping Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA.
| |
Collapse
|
9
|
Stump SM, Song C, Saavedra S, Levine JM, Vasseur DA. Synthesizing the effects of individual‐level variation on coexistence. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Simon Maccracken Stump
- Department of Ecology & Evolutionary Biology Yale University New Haven Connecticut 06511 USA
| | - Chuliang Song
- Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Jonathan M. Levine
- Department of Ecology & Evolutionary Biology Princeton University Princeton New Jersey 08544 USA
| | - David A. Vasseur
- Department of Ecology & Evolutionary Biology Yale University New Haven Connecticut 06511 USA
| |
Collapse
|
10
|
Chaves R, Ferrandis P, Escudero A, Luzuriaga AL. Diverse phylogenetic neighborhoods enhance community resistance to drought in experimental assemblages. Sci Rep 2021; 11:22499. [PMID: 34795359 PMCID: PMC8602379 DOI: 10.1038/s41598-021-01991-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
Although the role played by phylogeny in the assembly of plant communities remains as a priority to complete the theory of species coexistence, experimental evidence is lacking. It is still unclear to what extent phylogenetic diversity is a driver or a consequence of species assembly processes. We experimentally explored how phylogenetic diversity can drive the community level responses to drought conditions in annual plant communities. We manipulated the initial phylogenetic diversity of the assemblages and the water availability in a common garden experiment with two irrigation treatments: average natural rainfall and drought, formed with annual plant species of gypsum ecosystems of Central Spain. We recorded plant survival and the numbers of flowering and fruiting plants per species in each assemblage. GLMMs were performed for the proportion of surviving, flowering, fruiting plants per species and for total proportion of surviving species and plants per pot. In water limited conditions, high phylogenetic diversity favored species coexistence over time with higher plant survival and more flowering and fruiting plants per species and more species and plants surviving per pot. Our results agree with the existence of niche complementarity and the convergence of water economy strategies as major mechanisms for promoting species coexistence in plant assemblages in semiarid Mediterranean habitats. Our findings point to high phylogenetic diversity among neighboring plants as a plausible feature underpinning the coexistence of species, because the success of each species in terms of surviving and producing offspring in drought conditions was greater when the initial phylogenetic diversity was higher. Our study is a step forward to understand how phylogenetic relatedness is connected to the mechanisms determining the maintenance of biodiversity.
Collapse
Affiliation(s)
- Rocío Chaves
- Department of Biology and Geology, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - Pablo Ferrandis
- Botanic Institute of the University of Castilla-La Mancha, Castilla-La Mancha Botanic Garden, Avda. de La Mancha s/n, 02006, Albacete, Spain
| | - Adrián Escudero
- Department of Biology and Geology, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - Arantzazu L Luzuriaga
- Department of Biology and Geology, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
11
|
Yu AO, Goldman EA, Brooks JT, Golomb BL, Yim IS, Gotcheva V, Angelov A, Kim EB, Marco ML. Strain diversity of plant-associated Lactiplantibacillus plantarum. Microb Biotechnol 2021; 14:1990-2008. [PMID: 34171185 PMCID: PMC8449665 DOI: 10.1111/1751-7915.13871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/05/2023] Open
Abstract
Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a lactic acid bacteria species found on plants that is essential for many plant food fermentations. In this study, we investigated the intraspecific phenotypic and genetic diversity of 13 L. plantarum strains isolated from different plant foods, including fermented olives and tomatoes, cactus fruit, teff injera, wheat boza and wheat sourdough starter. We found that strains from the same or similar plant food types frequently exhibited similar carbohydrate metabolism and stress tolerance responses. The isolates from acidic, brine‐containing ferments (olives and tomatoes) were more resistant to MRS adjusted to pH 3.5 or containing 4% w/v NaCl, than those recovered from grain fermentations. Strains from fermented olives grew robustly on raffinose as the sole carbon source and were better able to grow in the presence of ethanol (8% v/v or sequential exposure of 8% (v/v) and then 12% (v/v) ethanol) than most isolates from other plant types and the reference strain NCIMB8826R. Cell free culture supernatants from the olive‐associated strains were also more effective at inhibiting growth of an olive spoilage strain of Saccharomyces cerevisiae. Multi‐locus sequence typing and comparative genomics indicated that isolates from the same source tended to be genetically related. However, despite these similarities, other traits were highly variable between strains from the same plant source, including the capacity for biofilm formation and survival at pH 2 or 50°C. Genomic comparisons were unable to resolve strain differences, with the exception of the most phenotypically impaired and robust isolates, highlighting the importance of utilizing phenotypic studies to investigate differences between strains of L. plantarum. The findings show that L. plantarum is adapted for growth on specific plants or plant food types, but that intraspecific variation may be important for ecological fitness and strain coexistence within individual habitats.
Collapse
Affiliation(s)
- Annabelle O Yu
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Elissa A Goldman
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Jason T Brooks
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Benjamin L Golomb
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Irene S Yim
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Velitchka Gotcheva
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Angel Angelov
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Eun Bae Kim
- Department of Applied Animal Science, Kangwon National University, Chuncheon, Gangwon-Do, South Korea
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
12
|
Haas PA, Goldstein RE. Turing's Diffusive Threshold in Random Reaction-Diffusion Systems. PHYSICAL REVIEW LETTERS 2021; 126:238101. [PMID: 34170176 DOI: 10.1103/physrevlett.126.238101] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/29/2021] [Indexed: 05/03/2023]
Abstract
Turing instabilities of reaction-diffusion systems can only arise if the diffusivities of the chemical species are sufficiently different. This threshold is unphysical in most systems with N=2 diffusing species, forcing experimental realizations of the instability to rely on fluctuations or additional nondiffusing species. Here, we ask whether this diffusive threshold lowers for N>2 to allow "true" Turing instabilities. Inspired by May's analysis of the stability of random ecological communities, we analyze the probability distribution of the diffusive threshold in reaction-diffusion systems defined by random matrices describing linearized dynamics near a homogeneous fixed point. In the numerically tractable cases N⩽6, we find that the diffusive threshold becomes more likely to be smaller and physical as N increases, and that most of these many-species instabilities cannot be described by reduced models with fewer diffusing species.
Collapse
Affiliation(s)
- Pierre A Haas
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
13
|
Henriques JF, Lacava M, Guzmán C, Gavín-Centol MP, Ruiz-Lupión D, De Mas E, Magalhães S, Moya-Laraño J. The sources of variation for individual prey-to-predator size ratios. Heredity (Edinb) 2021; 126:684-694. [PMID: 33452465 PMCID: PMC8115045 DOI: 10.1038/s41437-020-00395-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
The relative body size at which predators are willing to attack prey, a key trait for predator-prey interactions, is usually considered invariant. However, this ratio can vary widely among individuals or populations. Identifying the range and origin of such variation is key to understanding the strength and constraints on selection in both predators and prey. Still, these sources of variation remain largely unknown. We filled this gap by measuring the genetic, maternal and environmental variation of the maximum prey-to-predator size ratio (PPSRmax) in juveniles of the wolf spider Lycosa fasciiventris using a paternal half-sib split-brood design, in which each male was paired with two females and the offspring reared in two food environments: poor and rich. Each juvenile spider was then sequentially offered crickets of decreasing size and the maximum prey size killed was determined. We also measured body size and body condition of spiders upon emergence and just before the trial. We found low, but significant heritability (h2 = 0.069) and dominance and common environmental variance (d2 + 4c2 = 0.056). PPSRmax was also partially explained by body condition (during trial) but there was no effect of the rearing food environment. Finally, a maternal correlation between body size early in life and PPSRmax indicated that offspring born larger were less predisposed to feed on larger prey later in life. Therefore, PPSRmax, a central trait in ecosystems, can vary widely and this variation is due to different sources, with important consequences for changes in this trait in the short and long terms.
Collapse
Affiliation(s)
- Jorge F. Henriques
- grid.9983.b0000 0001 2181 4263cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal ,grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Mariángeles Lacava
- grid.11630.350000000121657640CENUR Noreste Sede Rivera, Universidad de la República, Ituzaingó, 667 Rivera Uruguay
| | - Celeste Guzmán
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Maria Pilar Gavín-Centol
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Dolores Ruiz-Lupión
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Eva De Mas
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Sara Magalhães
- grid.9983.b0000 0001 2181 4263cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Jordi Moya-Laraño
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| |
Collapse
|
14
|
Chavarie L, Voelker S, Hansen MJ, Bronte CR, Muir AM, Zimmerman MS, Krueger CC. Temporal instability of lake charr phenotypes: Synchronicity of growth rates and morphology linked to environmental variables? Evol Appl 2021; 14:1159-1177. [PMID: 33897827 PMCID: PMC8061271 DOI: 10.1111/eva.13188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Pathways through which phenotypic variation among individuals arise can be complex. One assumption often made in relation to intraspecific diversity is that the stability or predictability of the environment will interact with expression of the underlying phenotypic variation. To address biological complexity below the species level, we investigated variability across years in morphology and annual growth increments between and within two sympatric lake charr Salvelinus namaycush ecotypes in Rush Lake, USA. A rapid phenotypic shift in body and head shape was found within a decade. The magnitude and direction of the observed phenotypic change were consistent in both ecotypes, which suggests similar pathways caused the variation over time. Over the same time period, annual growth increments declined for both lake charr ecotypes and corresponded with a consistent phenotypic shift of each ecotype. Despite ecotype-specific annual growth changes in response to winter conditions, the observed annual growth shift for both ecotypes was linked, to some degree, with variation in the environment. Particularly, a declining trend in regional cloud cover was associated with an increase of early-stage (ages 1-3) annual growth for lake charr of Rush Lake. Underlying mechanisms causing changes in growth rates and constrained morphological modulation are not fully understood. An improved knowledge of the biology hidden within the expression of phenotypic variation promises to clarify our understanding of temporal morphological diversity and instability.
Collapse
Affiliation(s)
- Louise Chavarie
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
- Beaty Biodiversity Research CenterUniversity of British ColumbiaVancouverBCCanada
- Scottish Centre for Ecology and the Natural EnvironmentIBAHCM, Rowardennan, Loch LomondGlasgowUK
| | - Steve Voelker
- SUNY College of Environmental Science and ForestrySyracuseNYUSA
| | | | - Charles R. Bronte
- U.S. Fish and Wildlife ServiceGreen Bay Fish and Wildlife Conservation OfficeNew FrankenWIUSA
| | | | | | - Charles C. Krueger
- Department of Fisheries and WildlifeCenter for Systems Integration and SustainabilityMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
15
|
|
16
|
Schirmer A, Hoffmann J, Eccard JA, Dammhahn M. My niche: individual spatial niche specialization affects within- and between-species interactions. Proc Biol Sci 2020; 287:20192211. [PMID: 31937229 DOI: 10.1098/rspb.2019.2211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Intraspecific trait variation is an important determinant of fundamental ecological interactions. Many of these interactions are mediated by behaviour. Therefore, interindividual differences in behaviour should contribute to individual niche specialization. Comparable with variation in morphological traits, behavioural differentiation between individuals should limit similarity among competitors and thus act as a mechanism maintaining within-species variation in ecological niches and facilitating species coexistence. Here, we aimed to test whether interindividual differences in boldness covary with spatial interactions within and between two ecologically similar, co-occurring rodent species (Myodes glareolus, Apodemus agrarius). In five subpopulations in northeast Germany, we quantified individual differences in boldness via repeated standardized tests and spatial interaction patterns via capture-mark-recapture (n = 126) and automated VHF telemetry (n = 36). We found that boldness varied with space use in both species. Individuals of the same population occupied different spatial niches, which resulted in non-random patterns of within- and between-species spatial interactions. Behavioural types mainly differed in the relative importance of intra- versus interspecific competition. Within-species variation along this competition gradient could contribute to maintaining individual niche specialization. Moreover, behavioural differentiation between individuals limits similarity among competitors, which might facilitate the coexistence of functionally equivalent species and, thus, affect community dynamics and local biodiversity.
Collapse
Affiliation(s)
- Annika Schirmer
- Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, 14469 Potsdam, Germany
| | - Julia Hoffmann
- Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, 14469 Potsdam, Germany
| | - Jana A Eccard
- Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, 14469 Potsdam, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195 Berlin, Germany
| | - Melanie Dammhahn
- Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, 14469 Potsdam, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195 Berlin, Germany
| |
Collapse
|