1
|
She W, Holyoak M, Gu J, Qi J, Liu S, Jiang G. Abundant top predators increase species interaction network complexity in northeastern Chinese forests. J Anim Ecol 2025; 94:745-759. [PMID: 39985159 PMCID: PMC11962246 DOI: 10.1111/1365-2656.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 01/30/2025] [Indexed: 02/24/2025]
Abstract
Species interactions remain a cornerstone in shaping community dynamics and structure, alongside other factors, such as climate conditions and human activities. Although network structure is known to influence community stability and ecosystem functioning, the roles of top predators in shaping interaction network structure remain obscure. We examined a 5-7-year time series of species detections for mammal communities in multiple protected areas to investigate the association between top predators and interaction network structure. Our findings suggest that abundant species, day-active species and species with wide habitat breadth interact with more species, as did species that were more affected by vehicle disturbance. With increased densities of top predators, interaction networks exhibited greater complexity, with increased connectance, nestedness and average degree. An increased density of mesopredators, such as yellow-throated martens and badgers, was associated with sparser, less nested, but more centralized interaction networks. Top predators reduced the degree of highly interactive species, making them more specialized, and increased the degree of less abundant species, making them more general. In particular, this redistribution of interactions was not driven by direct changes in species density of top predators but seemingly by non-consumptive or indirect effects. Our findings emphasize the pivotal role of the main predators in structuring interactions within northeastern China's mammal communities, with large implications for conservation and management.
Collapse
Affiliation(s)
- Wen She
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected AreaNortheast Forestry UniversityHarbinChina
- Northeast Asia Biodiversity Research CenterNortheast Forestry UniversityHarbinChina
| | - Marcel Holyoak
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jiayin Gu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected AreaNortheast Forestry UniversityHarbinChina
| | - Jinzhe Qi
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected AreaNortheast Forestry UniversityHarbinChina
| | - Shuyan Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected AreaNortheast Forestry UniversityHarbinChina
| | - Guangshun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected AreaNortheast Forestry UniversityHarbinChina
- Northeast Asia Biodiversity Research CenterNortheast Forestry UniversityHarbinChina
| |
Collapse
|
2
|
Afonso AC, Gomes IB, Massano F, Saavedra MJ, Simões M, Simões LC. Coaggregation dynamics in drinking water biofilms and implications for chlorine disinfection. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135948. [PMID: 39342844 DOI: 10.1016/j.jhazmat.2024.135948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Biofilms in drinking water (DW) systems persistently challenge traditional disinfection methods due to intricate microbial interactions, with coaggregation playing a crucial role in forming multispecies biofilms. This study examined the implications of coaggregation on tolerance towards sodium hypochlorite (NaOCl) disinfection. Dual-species biofilms were formed for seven days on polyvinyl chloride coupons, comprising a strain of the emerging pathogen Stenotrophomonas maltophilia and the coaggregating strain Delftia acidovorans 005 P. For comparison, dual-species biofilms were also formed with a non-coaggregation strain (D. acidovorans 009 P). The minimum bactericidal concentration (MBC) for each planktonic strain varied (D. acidovorans: 1 mg/L, S. maltophilia: 1.5 mg/L) below the safe DW treatment limits. However, high NaOCl doses (10 ×MBC and 100 ×MBC,) showed low efficacy against dual-species biofilms, indicating significant biofilm tolerance to disinfection. Membrane damage occurred at sub-MBC without culturability loss, underscoring biofilm resilience. The biofilm analysis revealed a complex interplay between the composition of extracellular polymeric substances and the architecture, which was influenced by the presence of the coaggregating strain. Overall, coaggregation significantly influenced biofilm formation and resilience, impacting NaOCl disinfection. These findings underscore the challenges of microbial interactions in biofilms, emphasizing the need for improved disinfection strategies to control biofilms in drinking water systems.
Collapse
Affiliation(s)
- Ana C Afonso
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; CEB-LABBELS, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Francisca Massano
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J Saavedra
- CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia C Simões
- CEB-LABBELS, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
3
|
González-Gómez JC, Simone Y, Pérez LMF, Valenzuela-Rojas JC, van der Meijden A. Rapid prey manipulation and bite location preferences in three species of wandering spiders. Behav Processes 2024; 221:105083. [PMID: 39094759 DOI: 10.1016/j.beproc.2024.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Predator-prey interactions are the interspecific relationships of greatest interest in ecology. Spiders are among the most diverse and ubiquitous terrestrial predators on the planet. Their large dietary breadth is often linked with the development of specific predatory behaviors and morphological adaptations. However, studies on the predatory behavior of spiders have mostly focused on specialist species, leaving behind the ethological variability occurring in generalist species that allow them to respond to the different prey types. For three species of generalist wandering spiders, we searched images of predation events on the Internet to determine the most common prey. Subsequently, the focal predator species were then used in behavioral experiments. Using high-speed videos, handling patterns for different prey types (spider and cricket) were analyzed. Our results show a notable difference in handling patterns between prey types. We found that the spider prey was often rotated around the axis allowing the predator to bite in the ventral region of the prey and thus avoid a counterattack. Contrary, crickets were arbitrarily rotated. Our work may be an indication that these three species of generalist spiders have a preference for manipulating prey differently with a preference to rotate spiders, allowing them to exploit prey with various defensive mechanisms.
Collapse
Affiliation(s)
- Julio César González-Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; Programa de Doctorado en Ciencias Biológicas, Universidad del Tolima, Altos de Santa Helena, Ibagué, Colombia; Semillero de Investigación INVUSCO, Grupo GIPB, Licenciatura en Ciencias Naturales y Educación Ambiental, Universidad Surcolombiana, Neiva, Huila, Colombia.
| | - Yuri Simone
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; BIOPOLIS, CIBIO/InBio, Rua Padre Armando Quintas 7, Vairão 4485-661, Portugal.
| | - Lida Marcela Franco Pérez
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué, Colombia.
| | - Juan Carlos Valenzuela-Rojas
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; Semillero de Investigación INVUSCO, Grupo GIPB, Licenciatura en Ciencias Naturales y Educación Ambiental, Universidad Surcolombiana, Neiva, Huila, Colombia; Institución Educativa San Roque, Oporapa, Huila, Colombia.
| | - Arie van der Meijden
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; BIOPOLIS, CIBIO/InBio, Rua Padre Armando Quintas 7, Vairão 4485-661, Portugal.
| |
Collapse
|
4
|
Edwards AM, Rogers LA, Holt CA. Explaining empirical dynamic modelling using verbal, graphical and mathematical approaches. Ecol Evol 2024; 14:e10903. [PMID: 38751824 PMCID: PMC11094587 DOI: 10.1002/ece3.10903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 05/18/2024] Open
Abstract
Empirical dynamic modelling (EDM) is becoming an increasingly popular method for understanding the dynamics of ecosystems. It has been applied to laboratory, terrestrial, freshwater and marine systems, used to forecast natural populations and has addressed fundamental ecological questions. Despite its increasing use, we have not found full explanations of EDM in the ecological literature, limiting understanding and reproducibility. Here we expand upon existing work by providing a detailed introduction to EDM. We use three progressively more complex approaches. A short verbal explanation of EDM is then explicitly demonstrated by graphically working through a simple example. We then introduce a full mathematical description of the steps involved. Conceptually, EDM translates a time series of data into a path through a multi-dimensional space, whose axes are lagged values of the time series. A time step is chosen from which to make a prediction. The state of the system at that time step corresponds to a 'focal point' in the multi-dimensional space. The set (called the library) of candidate nearest neighbours to the focal point is constructed, to determine the nearest neighbours that are then used to make the prediction. Our mathematical explanation explicitly documents which points in the multi-dimensional space should not be considered as focal points. We suggest a new option for excluding points from the library that may be useful for short-term time series that are often found in ecology. We focus on the core simplex and S-map algorithms of EDM. Our new R package, pbsEDM, enhances understanding (by outputting intermediate calculations), reproduces our results and can be applied to new data. Our work improves the clarity of the inner workings of EDM, a prerequisite for EDM to reach its full potential in ecology and have wide uptake in the provision of advice to managers of natural resources.
Collapse
Affiliation(s)
- Andrew M. Edwards
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Luke A. Rogers
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
| | - Carrie A. Holt
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
| |
Collapse
|
5
|
Zhu L, Luan L, Chen Y, Wang X, Zhou S, Zou W, Han X, Duan Y, Zhu B, Li Y, Liu W, Zhou J, Zhang J, Jiang Y, Sun B. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. GLOBAL CHANGE BIOLOGY 2024; 30:e17160. [PMID: 38379454 DOI: 10.1111/gcb.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
Unraveling the influence of community assembly processes on soil ecosystem functioning presents a major challenge in the field of theoretical ecology, as it has received limited attention. Here, we used a series of long-term experiments spanning over 25 years to explore the assembly processes of bacterial, fungal, protist, and nematode communities using high-throughput sequencing. We characterized the soil microbial functional potential by the abundance of microbial genes associated with carbon, nitrogen, phosphorus, and sulfur cycling using GeoChip-based functional gene profiling, and determined how the assembly processes of organism groups regulate soil microbial functional potential through community diversity and network stability. Our results indicated that balanced fertilization (NPK) treatment improved the stochastic assembly of bacterial, fungal, and protist communities compared to phosphorus-deficient fertilization (NK) treatment. However, there was a nonsignificant increase in the normalized stochasticity ratio of the nematode community in response to fertilization across sites. Our findings emphasized that soil environmental factors influenced the assembly processes of the biotic community, which regulated soil microbial functional potential through dual mechanisms. One mechanism indicated that the high phosphorus levels and low soil nutrient stoichiometry may increase the stochasticity of bacterial, fungal, and protist communities and the determinism of the nematode community under NPK treatment, ultimately enhancing soil microbial functional potential by reinforcing the network stability of the biotic community. The other mechanism indicated that the low phosphorus levels and high soil nutrient stoichiometry may increase the stochastic process of the bacterial community and the determinism of the fungal, protist, and nematode communities under NK treatment, thereby enhancing soil microbial functional potential by improving the β-diversity of the biotic community. Taken together, these results provide valuable insights into the mechanisms underlying the assembly processes of the biotic community that regulate ecosystem functioning.
Collapse
Affiliation(s)
- Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiu Zou
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shengyang, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Yan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wenzhao Liu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
6
|
Gordon SCC, Martin JGA, Kerr JT. Dispersal mediates trophic interactions and habitat connectivity to alter metacommunity composition. Ecology 2024; 105:e4215. [PMID: 38037245 DOI: 10.1002/ecy.4215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
Dispersal contributes vitally to metacommunity structure. However, interactions between dispersal and other key processes have rarely been explored, particularly in the context of multitrophic metacommunities. We investigated such a metacommunity in naturally fragmented habitats populated by butterfly species (whose dispersal capacities were previously assessed), flowering plants, and butterfly predators. Using data on butterfly species abundance, floral abundance, and predation (on experimentally placed clay butterfly models), we asked how dispersal ability mediates interactions with predators, mutualists, and the landscape matrix. In contrast to expectations, high densities of strong dispersers were found in more isolated sites and sites with low floral resource density, while intermediate dispersers maintained similar densities across isolation and floral gradients, and higher densities of poor dispersers were found in more connected sites and sites with higher floral density. These findings raise questions about how strong dispersers experience the landscape matrix and the quality of isolated and low-resource sites. Strong dispersers were able to escape habitat patches with high predation, while intermediate dispersers maintained similar densities along a predation gradient, and poor dispersers occurred at high densities in these patches, exposing them to interactions with predators. This work demonstrates that species that vary in dispersal capacities interact differently with predators and mutualist partners in a landscape context, shaping metacommunity composition.
Collapse
Affiliation(s)
- Susan C C Gordon
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Julien G A Martin
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Chen L, Xin X, Li J, Han C, Xiong W, Luo Y, Sun R, Zhang J. Phosphorus Fertilization Boosts Mineral-Associated Soil Organic Carbon Formation Associated with Phagotrophic Protists. MICROBIAL ECOLOGY 2023; 86:2541-2551. [PMID: 37401933 DOI: 10.1007/s00248-023-02258-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Long-term fertilization affects soil organic C accumulation. A growing body of research has revealed critical roles of bacteria in soil organic C accumulation, particularly through mineral-associated organic C (MAOC) formation. Protists are essential components of soil microbiome, but the relationships between MAOC formation and protists under long-term fertilization remain unclear. Here, we used cropland soil from a long-term fertilization field trial and conducted two microcosm experiments with 13C-glucose addition to investigate the effects of N and P fertilizations on MAOC formation and the relationships with protists. The results showed that long-term fertilization (especially P fertilization) significantly (P < 0.05) increased 13C-MAOC content. Compared with P-deficient treatment, P replenishment enriched the number of protists (mainly Amoebozoa and Cercozoa) and bacteria (mainly Acidobacteriota, Bacteroidota, and Gammaproteobacteria), and significantly (P < 0.001) promoted the abundances of bacterial functional genes controlling C, N, P, and S metabolisms. The community composition of phagotrophic protists prominently (P < 0.001) correlated with the bacterial community composition, bacterial functional gene abundance, and 13C-MAOC content. Co-occurrence networks of phagotrophic protists and bacteria were more connected in soil with the N inoculum added than in soil with the NP inoculum added. P replenishment strengthened bacterial 13C assimilation (i.e., 13C-phospholipid fatty acid content), which negatively (P < 0.05) correlated with the number and relative abundance of phagotrophic Cercozoa. Together, these results suggested that P fertilization boosts MAOC formation associated with phagotrophic protists. Our study paves the way for future research to harness the potential of protists to promote belowground C accrual in agroecosystems.
Collapse
Affiliation(s)
- Lin Chen
- Fengqiu Experimental Station of National Ecosystem Research Network of China, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing, 210008, Jiangsu Province, China
| | - Xiuli Xin
- Fengqiu Experimental Station of National Ecosystem Research Network of China, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing, 210008, Jiangsu Province, China
| | - Jingwang Li
- Fengqiu Experimental Station of National Ecosystem Research Network of China, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing, 210008, Jiangsu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changdong Han
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Ruibo Sun
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jiabao Zhang
- Fengqiu Experimental Station of National Ecosystem Research Network of China, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing, 210008, Jiangsu Province, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
8
|
Glidden CK, Karakoç C, Duan C, Jiang Y, Beechler B, Jabbar A, Jolles AE. Distinct life history strategies underpin clear patterns of succession in microparasite communities infecting a wild mammalian host. Mol Ecol 2023; 32:3733-3746. [PMID: 37009964 PMCID: PMC10389068 DOI: 10.1111/mec.16949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Individual animals in natural populations tend to host diverse parasite species concurrently over their lifetimes. In free-living ecological communities, organismal life histories shape interactions with their environment, which ultimately forms the basis of ecological succession. However, the structure and dynamics of mammalian parasite communities have not been contextualized in terms of primary ecological succession, in part because few datasets track occupancy and abundance of multiple parasites in wild hosts starting at birth. Here, we studied community dynamics of 12 subtypes of protozoan microparasites (Theileria spp.) in a herd of African buffalo. We show that Theileria communities followed predictable patterns of succession underpinned by four different parasite life history strategies. However, in contrast to many free-living communities, network complexity decreased with host age. Examining parasite communities through the lens of succession may better inform the effect of complex within host eco-evolutionary dynamics on infection outcomes, including parasite co-existence through the lifetime of the host.
Collapse
Affiliation(s)
- Caroline K. Glidden
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Canan Karakoç
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Chenyang Duan
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Brianna Beechler
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Victoria, Australia
| | - Anna E. Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
9
|
Zhao Q, Van den Brink PJ, Xu C, Wang S, Clark AT, Karakoç C, Sugihara G, Widdicombe CE, Atkinson A, Matsuzaki SIS, Shinohara R, He S, Wang YXG, De Laender F. Relationships of temperature and biodiversity with stability of natural aquatic food webs. Nat Commun 2023; 14:3507. [PMID: 37316479 DOI: 10.1038/s41467-023-38977-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Temperature and biodiversity changes occur in concert, but their joint effects on ecological stability of natural food webs are unknown. Here, we assess these relationships in 19 planktonic food webs. We estimate stability as structural stability (using the volume contraction rate) and temporal stability (using the temporal variation of species abundances). Warmer temperatures were associated with lower structural and temporal stability, while biodiversity had no consistent effects on either stability property. While species richness was associated with lower structural stability and higher temporal stability, Simpson diversity was associated with higher temporal stability. The responses of structural stability were linked to disproportionate contributions from two trophic groups (predators and consumers), while the responses of temporal stability were linked both to synchrony of all species within the food web and distinctive contributions from three trophic groups (predators, consumers, and producers). Our results suggest that, in natural ecosystems, warmer temperatures can erode ecosystem stability, while biodiversity changes may not have consistent effects.
Collapse
Affiliation(s)
- Qinghua Zhao
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur, Namur, Belgium.
- Institute of Complex Systems (naXys), University of Namur, Namur, Belgium.
- Institute of Life, Earth and the Environment (ILEE), University of Namur, Namur, Belgium.
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
- Wageningen Environmental Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Chi Xu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Adam T Clark
- Institute of Biology, University of Graz, Holteigasse 6, 8010, Graz, Austria
| | - Canan Karakoç
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN, 47405, USA
| | - George Sugihara
- Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA, USA
| | | | - Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13DH, UK
| | | | | | - Shuiqing He
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Yingying X G Wang
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur, Namur, Belgium
- Institute of Complex Systems (naXys), University of Namur, Namur, Belgium
- Institute of Life, Earth and the Environment (ILEE), University of Namur, Namur, Belgium
| |
Collapse
|
10
|
Zhu L, Chen Y, Sun R, Zhang J, Hale L, Dumack K, Geisen S, Deng Y, Duan Y, Zhu B, Li Y, Liu W, Wang X, Griffiths BS, Bonkowski M, Zhou J, Sun B. Resource-dependent biodiversity and potential multi-trophic interactions determine belowground functional trait stability. MICROBIOME 2023; 11:95. [PMID: 37127665 PMCID: PMC10150482 DOI: 10.1186/s40168-023-01539-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND For achieving long-term sustainability of intensive agricultural practices, it is pivotal to understand belowground functional stability as belowground organisms play essential roles in soil biogeochemical cycling. It is commonly believed that resource availability is critical for controlling the soil biodiversity and belowground organism interactions that ultimately lead to the stabilization or collapse of terrestrial ecosystem functions, but evidence to support this belief is still limited. Here, we leveraged field experiments from the Chinese National Ecosystem Research Network (CERN) and two microcosm experiments mimicking high and low resource conditions to explore how resource availability mediates soil biodiversity and potential multi-trophic interactions to control functional trait stability. RESULTS We found that agricultural practice-induced higher resource availability increased potential cross-trophic interactions over 316% in fields, which in turn had a greater effect on functional trait stability, while low resource availability made the stability more dependent on the potential within trophic interactions and soil biodiversity. This large-scale pattern was confirmed by fine-scale microcosm systems, showing that microcosms with sufficient nutrient supply increase the proportion of potential cross-trophic interactions, which were positively associated with functional stability. Resource-driven belowground biodiversity and multi-trophic interactions ultimately feedback to the stability of plant biomass. CONCLUSIONS Our results indicated the importance of potential multi-trophic interactions in supporting belowground functional trait stability, especially when nutrients are sufficient, and also suggested the ecological benefits of fertilization programs in modern agricultural intensification. Video Abstract.
Collapse
Affiliation(s)
- Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| | - Ruibo Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| | - Lauren Hale
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- United States Department of Agriculture, Agricultural Research Service (ARS), Washington, DC, 20250, USA
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6700AB, The Netherlands
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Wenzhao Liu
- Institute of Soil and Water Conservation, Chine, Academy of Sciences and Ministry of Water Resources , Yangling, 712100, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China
| | - Bryan S Griffiths
- SRUC, Crop and Soil System Research Group, West Mains Road, Edinburgh, EH93JG, UK
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| |
Collapse
|
11
|
Gibert JP, Wieczynski DJ, Han Z, Yammine A. Rapid eco-phenotypic feedback and the temperature response of biomass dynamics. Ecol Evol 2023; 13:e9685. [PMID: 36644704 PMCID: PMC9831973 DOI: 10.1002/ece3.9685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
Biomass dynamics capture information on population dynamics and ecosystem-level processes (e.g., changes in production over time). Understanding how rising temperatures associated with global climate change influence biomass dynamics is thus a pressing issue in ecology. The total biomass of a species depends on its density and its average mass. Consequently, disentangling how biomass dynamics responds to increasingly warm and variable temperatures ultimately depends on understanding how temperature influences both density and mass dynamics. Here, we address this issue by keeping track of experimental microbial populations growing to carrying capacity for 15 days at two different temperatures, and in the presence and absence of temperature variability. We develop a simple mathematical expression to partition the contribution of changes in density and mass to changes in biomass and assess how temperature responses in either one influence biomass shifts. Moreover, we use time-series analysis (Convergent Cross Mapping) to address how temperature and temperature variability influence reciprocal effects of density on mass and vice versa. We show that temperature influences biomass through its effects on density and mass dynamics, which have opposite effects on biomass and can offset each other. We also show that temperature variability influences biomass, but that effect is independent of any effects on density or mass dynamics. Last, we show that reciprocal effects of density and mass shift significantly across temperature regimes, suggesting that rapid and environment-dependent eco-phenotypic dynamics underlie biomass responses. Overall, our results connect temperature effects on population and phenotypic dynamics to explain how biomass responds to temperature regimes, thus shedding light on processes at play in cosmopolitan and abundant microbes as the world experiences increasingly warm and variable temperatures.
Collapse
Affiliation(s)
- Jean P. Gibert
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Ze‐Yi Han
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Andrea Yammine
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
12
|
Yang R, Sun W, Guo L, Li B, Wang Q, Huang D, Gao W, Xu R, Li Y. Response of soil protists to antimony and arsenic contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120387. [PMID: 36223853 DOI: 10.1016/j.envpol.2022.120387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms can mediate antimony (Sb) and arsenic (As) transformation and thus change their mobility and toxicity. Having similar geochemical behavior, Sb and As are generally considered to exert similar environmental pressure on microbiome. However, it needs further validation, especially for protists. In this study, the responses of protistan communities to Sb and As were investigated by collecting soils from Xikuangshan Sb mine and Shimen As mine in China. Antimony and As contamination taxonomically and functionally (consumer and phototroph) changed the alpha and beta diversities of protistan communities, but exerted different impacts on the parasitic community. Based on multiple statistical tools, As contamination had a greater impact on protistan communities than Sb. The ecological networks of highly contaminated sites were less complex but highly positively connected compared to less contaminated sites. High As contamination raised the ratio of consumers and decreased the ratio of phototrophs in ecological networks, while the opposite tendency was observed in Sb contaminated soils. High Sb and As contamination enriched different keystone taxa resistant to Sb and As. These results demonstrate that protistan community respond differently to Sb and As.
Collapse
Affiliation(s)
- Rui Yang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Lifang Guo
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Qi Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Duanyi Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Wenlong Gao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, PR China
| | - Rui Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China; Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Yongbin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China.
| |
Collapse
|
13
|
Zhang S, Zhang H, Liu H, Wang H, Xiu W, Li G, Zhang G, Zhou Z, Jiang N, Zhang H, Zhao J, Yang D. Fertilization drives distinct biotic and abiotic factors in regulating functional groups of protists in a 5-year fertilization system. Front Microbiol 2022; 13:1036362. [PMID: 36545203 PMCID: PMC9760849 DOI: 10.3389/fmicb.2022.1036362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Protists play an important role in nutrient cycling, microbiome stability and soil fertility maintenance. However, the driving force of protistan functional groups remains poorly understood in agricultural ecosystems. METHODS We investigated the impacts of fertilization regimes on the diversity, composition and functional groups of protists and further disentangled the effects of multiple factors shaping the community composition of functional groups in a 5-year fertilization regime (CK, no fertilization; M, organic fertilization; MNPK, combined inorganic and organic fertilization; NPK, inorganic fertilization). RESULTS Fertilization significantly changed the community composition of protists rather than diversity. The MNPK treatment significantly increased the relative abundance of phototrophs and decreased that of the parasites and consumers. Partial least squares path modeling indicated that fertilization indirectly regulated protistan consumers via changes in the P content, which affected the composition of consumers mainly by regulating fungal community composition. Soil moisture (SM) and available phosphorus (AP) were identified as the top predictors for the composition of parasites, and the composition of phototrophs was mainly affected by SM, indicating that parasites and phototrophs were more sensitive to abiotic factors in the fertilization system. DISCUSSION Taken together, our findings highlight that fertilization significantly affects the composition of functional groups of protists and their biotic or abiotic regulatory processes, which have implications for the potential changes in their ecosystem functions for soil management systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jianning Zhao
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, Tianjin, China
| | - Dianlin Yang
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, Tianjin, China
| |
Collapse
|
14
|
Mühlbauer LK, Harpole WS, Clark AT. Differences in initial abundances reveal divergent dynamic structures in Gause's predator-prey experiments. Ecol Evol 2022; 12:e9638. [PMID: 36545367 PMCID: PMC9760897 DOI: 10.1002/ece3.9638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Improved understanding of complex dynamics has revealed insights across many facets of ecology, and has enabled improved forecasts and management of future ecosystem states. However, an enduring challenge in forecasting complex dynamics remains the differentiation between complexity and stochasticity, that is, to determine whether declines in predictability are caused by stochasticity, nonlinearity, or chaos. Here, we show how to quantify the relative contributions of these factors to prediction error using Georgii Gause's iconic predator-prey microcosm experiments, which, critically, include experimental replicates that differ from one another only in initial abundances. We show that these differences in initial abundances interact with stochasticity, nonlinearity, and chaos in unique ways, allowing us to identify the impacts of these factors on prediction error. Our results suggest that jointly analyzing replicate time series across multiple, distinct starting points may be necessary for understanding and predicting the wide range of potential dynamic types in complex ecological systems.
Collapse
Affiliation(s)
| | - William Stanley Harpole
- Department of Physiological DiversityHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyMartin Luther UniversityHalleGermany
| | | |
Collapse
|
15
|
Yang D, Kato H, Kawatsu K, Osada Y, Azuma T, Nagata Y, Kondoh M. Reconstruction of a Soil Microbial Network Induced by Stress Temperature. Microbiol Spectr 2022; 10:e0274822. [PMID: 35972265 PMCID: PMC9602341 DOI: 10.1128/spectrum.02748-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023] Open
Abstract
The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis.
Collapse
Affiliation(s)
- Dailin Yang
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kazutaka Kawatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yutaka Osada
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Li Y, Gao P, Sun X, Li B, Guo L, Yang R, Su X, Gao W, Xu Z, Yan G, Wang Q, Sun W. Primary Succession Changes the Composition and Functioning of the Protist Community on Mine Tailings, Especially Phototrophic Protists. ACS ENVIRONMENTAL AU 2022; 2:396-408. [PMID: 37101458 PMCID: PMC10125303 DOI: 10.1021/acsenvironau.1c00066] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Primary succession in mine tailings is a prerequisite for tailing vegetation. Microorganisms, including bacteria, fungi, and protists, play an important role in this process in the driving force for improving the nutritional status. Compared to bacteria and fungi, protist populations have rarely been investigated regarding their role in mine tailings, especially for those inhabiting tailings associated with primary succession. Protists are the primary consumers of fungi and bacteria, and their predatory actions promote the release of nutrients immobilized in the microbial biomass, as well as the uptake and turnover of nutrients, affecting the functions of the wider ecosystems. In this study, three different types of mine tailings associated with three successional stages (original tailings, biological crusts, and Miscanthus sinensis grasslands) were selected to characterize the protistan community diversity, structure, and function during primary succession. Some members classified as consumers dominated the network of microbial communities in the tailings, especially in the original bare land tailings. The keystone phototrophs of Chlorophyceae and Trebouxiophyceae showed the highest relative abundance in the biological crusts and grassland rhizosphere, respectively. In addition, the co-occurrences between protist and bacterial taxa demonstrated that the proportion of protistan phototrophs gradually increased during primary succession. Further, the metagenomic analysis of protistan metabolic potential showed that abundances of many functional genes associated with photosynthesis increased during the primary succession of tailings. Overall, these results suggest that the primary succession of mine tailings drives the changes observed in the protistan community, and in turn, the protistan phototrophs facilitate the primary succession of tailings. This research offers an initial insight into the changes in biodiversity, structure, and function of the protistan community during ecological succession on tailings.
Collapse
Affiliation(s)
- Yongbin Li
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pin Gao
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoxu Sun
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Baoqin Li
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lifang Guo
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Yang
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xianfa Su
- School
of Environment, Key Laboratory of Yellow River and Huai River Water
Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P.R. China
| | - Wenlong Gao
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhimin Xu
- Engineering
and Technology Research Center for Agricultural Land Pollution Prevention
and Control of Guangdong Higher Education Institutes, College of Resources
and Environment, Zhongkai University of
Agriculture and Engineering, Guangzhou 510225, China
| | - Geng Yan
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- School
of Environment, Key Laboratory of Yellow River and Huai River Water
Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P.R. China
- . Fax: 86-020-87024123. Phone: 86-020-87024633
| |
Collapse
|
17
|
Song C, Simmons BI, Fortin MJ, Gonzalez A. Generalism drives abundance: A computational causal discovery approach. PLoS Comput Biol 2022; 18:e1010302. [PMID: 36173959 PMCID: PMC9521805 DOI: 10.1371/journal.pcbi.1010302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
A ubiquitous pattern in ecological systems is that more abundant species tend to be more generalist; that is, they interact with more species or can occur in wider range of habitats. However, there is no consensus on whether generalism drives abundance (a selection process) or abundance drives generalism (a drift process). As it is difficult to conduct direct experiments to solve this chicken-and-egg dilemma, previous studies have used a causal discovery method based on formal logic and have found that abundance drives generalism. Here, we refine this method by correcting its bias regarding skewed distributions, and employ two other independent causal discovery methods based on nonparametric regression and on information theory, respectively. Contrary to previous work, all three independent methods strongly indicate that generalism drives abundance when applied to datasets on plant-hummingbird communities and reef fishes. Furthermore, we find that selection processes are more important than drift processes in structuring multispecies systems when the environment is variable. Our results showcase the power of the computational causal discovery approach to aid ecological research.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Benno I. Simmons
- Department of Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Andrew Gonzalez
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada
| |
Collapse
|
18
|
Jarillo J, Cao-García FJ, De Laender F. Spatial and Ecological Scaling of Stability in Spatial Community Networks. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.861537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are many scales at which to quantify stability in spatial and ecological networks. Local-scale analyses focus on specific nodes of the spatial network, while regional-scale analyses consider the whole network. Similarly, species- and community-level analyses either account for single species or for the whole community. Furthermore, stability itself can be defined in multiple ways, including resistance (the inverse of the relative displacement caused by a perturbation), initial resilience (the rate of return after a perturbation), and invariability (the inverse of the relative amplitude of the population fluctuations). Here, we analyze the scale-dependence of these stability properties. More specifically, we ask how spatial scale (local vs. regional) and ecological scale (species vs. community) influence these stability properties. We find that regional initial resilience is the weighted arithmetic mean of the local initial resiliences. The regional resistance is the harmonic mean of local resistances, which makes regional resistance particularly vulnerable to nodes with low stability, unlike regional initial resilience. Analogous results hold for the relationship between community- and species-level initial resilience and resistance. Both resistance and initial resilience are “scale-free” properties: regional and community values are simply the biomass-weighted means of the local and species values, respectively. Thus, one can easily estimate both stability metrics of whole networks from partial sampling. In contrast, invariability generally is greater at the regional and community-level than at the local and species-level, respectively. Hence, estimating the invariability of spatial or ecological networks from measurements at the local or species level is more complicated, requiring an unbiased estimate of the network (i.e., region or community) size. In conclusion, we find that scaling of stability depends on the metric considered, and we present a reliable framework to estimate these metrics.
Collapse
|
19
|
Li Y, Yang R, Guo L, Gao W, Su P, Xu Z, Xiao H, Ma Z, Liu X, Gao P, Li B, Sun X, Yan G, Sun W. The composition, biotic network, and assembly of plastisphere protistan taxonomic and functional communities in plastic-mulching croplands. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128390. [PMID: 35152106 DOI: 10.1016/j.jhazmat.2022.128390] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The increasing use of plastic film mulching has caused the accumulation of plastic film residue in soil. To date, most researches on the plastisphere have focused on bacterial and fungal communities, with few on protistan community, especially in terrestrial ecosystems. To understand plastisphere protistan communities, we collected plastic film residues from plastic-mulching croplands. The plastisphere significantly altered the alpha-diversity, structure, and composition of taxonomic and functional (consumers, phototrophs, and parasites) communities. In both the plastisphere and surrounding soil, although some consumers dominated the protistan community network, while their performance was weakened by mulch application. The ecological networks of the plastisphere community presented higher modularity, less complexity, and a lower proportion of positive connections than the networks of surrounding soil. In addition, the enriched plant pathogens (e.g., Spongospora) and keystone taxa classified as plant pathogens (e.g., Pythium) in the plastisphere imply that plastic film residues may pose a risk to soil health and plant performance. Neutral-based processes dominated the assembly of the plastisphere protistan communities, whereas niche-based processes governed the protistan community assembly of surrounding soil. This study reveals that plastic film residues generate a unique niche for protistan colonization, which disturbs protistan communities and threatens agricultural ecosystem health and function.
Collapse
Affiliation(s)
- Yongbin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lifang Guo
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenlong Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pingzhou Su
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhimin Xu
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Huan Xiao
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhixiong Ma
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiang Liu
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Geng Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
20
|
Gibert JP, Han Z, Wieczynski DJ, Votzke S, Yammine A. Feedbacks between size and density determine rapid eco‐phenotypic dynamics. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ze‐Yi Han
- Department of Biology Duke University Durham NC USA
| | | | | | | |
Collapse
|
21
|
Gordon SCC, Kerr JT. Floral diversity increases butterfly diversity in a multitrophic metacommunity. Ecology 2022; 103:e3735. [PMID: 35446439 DOI: 10.1002/ecy.3735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
The impact of multitrophic interactions on metacommunity structure, despite extensive theory and modelling/manipulative studies, has remained largely unexplored within naturally occurring metacommunities. We investigated the impacts of mutualistic partners and predators on a butterfly metacommunity, as well as the impacts that local and landscape characteristics have across three trophic levels: flowering plants, butterflies, and butterfly predators. Using data for butterfly diversity/richness, flowering plant diversity/richness, and butterfly predation (on clay butterfly models) across 15 grassland sites, we asked 3 questions: 1) How do mutualist metacommunity structure, predation pressure, and local and regional habitat characteristics affect butterfly metacommunity structure? 2) How do local and regional habitat characteristics affect flowering plant metacommunity structure? 3) How do local and regional habitat characteristics affect predation pressure? Floral diversity and richness had a positive effect on butterfly diversity and richness (Question 1). Site size positively affected floral diversity and richness (Question 2), and through this relationship site size had an indirect positive effect on butterfly diversity and richness (Question 1). In contrast with previous work, no other variables impacted butterfly diversity/richness. This result was particularly surprising for predation pressure: our results suggest that within our study system butterfly community diversity and richness is not strongly impacted by predation. Predator attacks occurred more in larger and more isolated sites (Question 3), suggesting that predators respond more strongly to landscape characteristics than abundance or diversity of butterfly prey species. This decoupling of predation pressure and butterfly communities suggests that conserving and restoring healthy predator populations may not negatively impact butterfly communities. If diverse plant communities are maintained, even small and isolated habitat patches can be valuable for butterfly conservation, which may influence reserve design and habitat restoration strategies.
Collapse
Affiliation(s)
- Susan C C Gordon
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Li Y, Wang C, Chen S. Biofertilization containing
Paenibacillus triticisoli
BJ‐18 alters the composition and interaction of the protistan community in the wheat rhizosphere under field conditions. J Appl Microbiol 2022; 132:3746-3757. [DOI: 10.1111/jam.15485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yongbin Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences China Agricultural University Beijing People’s Republic of China
| | - Caixia Wang
- National‐Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro‐environmental Pollution Control and Management Institute of Eco‐environmental and Soil Sciences Guangdong Guangzhou China
| | - Sanfeng Chen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences China Agricultural University Beijing People’s Republic of China
| |
Collapse
|
23
|
Ye L, Tan L, Wu X, Cai Q, Li BL. Nonlinear causal analysis reveals an effective water level regulation approach for phytoplankton blooms controlling in reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150948. [PMID: 34655635 DOI: 10.1016/j.scitotenv.2021.150948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Reservoirs are a rapidly increasing water body providing water supply, irrigation, and many other benefits for human societies globally. However, due to changes in hydrological conditions, building reservoirs tends to bring adverse effects such as eutrophication and phytoplankton blooms, reducing the ecosystem service values. This study focuses on using the empirical dynamic modeling (EDM), an emerging approach for nonlinear analysis, to investigate the nonlinear causal relationship of water level fluctuation (WLF) on phytoplankton biomass and then develop a quantitative model guiding effective phytoplankton blooms controlling based on water level regulations in reservoirs. Specifically, with 9-year continued daily observed data in the Three Gorges Reservoir, we examined the causal effects of different WLF parameters on the dynamics of phytoplankton blooms for the first time. We found that the water level change in the past 24 h (ΔWL) has the strongest causal effect on the daily dynamics of phytoplankton biomass among all WLF parameters (ΔWL, |ΔWL|, and the water level), with a time lag of 2 days. Moreover, EDM revealed a nonlinear relationship between ΔWL and daily dynamics of phytoplankton biomass and achieved a successful prediction for the chlorophyll a concentration 2-day ahead. Further scenario analyses found that both the rise and fall of water level will significantly reduce the chlorophyll a concentration when phytoplankton blooms occur. Nevertheless, on the whole, the rising water level has a more substantial effect on phytoplankton blooms than falling the water level. This result reveals that regulating ΔWL is a simple and effective approach in controlling phytoplankton blooms in reservoirs. Our study reported the nonlinear causal effect of ΔWL on the dynamics of chlorophyll a and provided a quantitative approach guiding effective phytoplankton blooms controlling based on the water level regulation, which might have a broad application in algal blooms controlling in reservoirs and similar waterbodies.
Collapse
Affiliation(s)
- Lin Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lu Tan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xinghua Wu
- China Three Gorges Corporation, Beijing 100038, China
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - B Larry Li
- Ecological Complexity and Modeling Laboratory, University of California at Riverside, Riverside, CA 92521-0124, USA
| |
Collapse
|
24
|
Lester EK, Langlois TJ, McCormick MI, Simpson SD, Bond T, Meekan MG. Relative influence of predators, competitors and seascape heterogeneity on behaviour and abundance of coral reef mesopredators. OIKOS 2021. [DOI: 10.1111/oik.08463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Emily K. Lester
- School of Biological Sciences and the UWA Oceans Inst., Univ. of Western Australia Crawley WA Australia
- Australian Inst. of Marine Science, UWA Oceans Inst. Crawley WA Australia
| | - Tim J. Langlois
- School of Biological Sciences and the UWA Oceans Inst., Univ. of Western Australia Crawley WA Australia
| | - Mark I. McCormick
- Coastal Marine Field Station, School of Science, Univ of Waikato Tauranga New Zealand
| | | | - Todd Bond
- School of Biological Sciences and the UWA Oceans Inst., Univ. of Western Australia Crawley WA Australia
| | - Mark G. Meekan
- Australian Inst. of Marine Science, UWA Oceans Inst. Crawley WA Australia
| |
Collapse
|
25
|
Clark AT, Arnoldi JF, Zelnik YR, Barabas G, Hodapp D, Karakoç C, König S, Radchuk V, Donohue I, Huth A, Jacquet C, de Mazancourt C, Mentges A, Nothaaß D, Shoemaker LG, Taubert F, Wiegand T, Wang S, Chase JM, Loreau M, Harpole S. General statistical scaling laws for stability in ecological systems. Ecol Lett 2021; 24:1474-1486. [PMID: 33945663 DOI: 10.1111/ele.13760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 01/03/2023]
Abstract
Ecological stability refers to a family of concepts used to describe how systems of interacting species vary through time and respond to disturbances. Because observed ecological stability depends on sampling scales and environmental context, it is notoriously difficult to compare measurements across sites and systems. Here, we apply stochastic dynamical systems theory to derive general statistical scaling relationships across time, space, and ecological level of organisation for three fundamental stability aspects: resilience, resistance, and invariance. These relationships can be calibrated using random or representative samples measured at individual scales, and projected to predict average stability at other scales across a wide range of contexts. Moreover deviations between observed vs. extrapolated scaling relationships can reveal information about unobserved heterogeneity across time, space, or species. We anticipate that these methods will be useful for cross-study synthesis of stability data, extrapolating measurements to unobserved scales, and identifying underlying causes and consequences of heterogeneity.
Collapse
Affiliation(s)
- Adam Thomas Clark
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,Institute of Biology, University of Graz, Graz, Austria.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Yuval R Zelnik
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - György Barabas
- Division of Theoretical Biology, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
| | - Dorothee Hodapp
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany.,Alfred-Wegener-Institute Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Canan Karakoç
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Environmental Microbiology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Sara König
- Department of Soil System Science, Helmholtz Centre for Environmental Research (UFZ), Halle (Saale), Germany
| | - Viktoriia Radchuk
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Ian Donohue
- Zoology Department, Trinity College Dublin, Dublin, Ireland
| | - Andreas Huth
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Claire Jacquet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | - Claire de Mazancourt
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Andrea Mentges
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle, Germany
| | - Dorian Nothaaß
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | | | - Franziska Taubert
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Thorsten Wiegand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle, Germany
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Stanley Harpole
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Martin Luther University, Halle, Germany
| |
Collapse
|
26
|
Song C, Saavedra S. Bridging parametric and nonparametric measures of species interactions unveils new insights of non‐equilibrium dynamics. OIKOS 2021. [DOI: 10.1111/oik.08060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chuliang Song
- Dept of Biology, McGill Univ. Montreal Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto Toronto Canada
| | - Serguei Saavedra
- Dept of Civil and Environmental Engineering, MIT Cambridge MA USA
| |
Collapse
|
27
|
Saraiva JP, Worrich A, Karakoç C, Kallies R, Chatzinotas A, Centler F, Nunes da Rocha U. Mining Synergistic Microbial Interactions: A Roadmap on How to Integrate Multi-Omics Data. Microorganisms 2021; 9:microorganisms9040840. [PMID: 33920040 PMCID: PMC8070991 DOI: 10.3390/microorganisms9040840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
Mining interspecies interactions remain a challenge due to the complex nature of microbial communities and the need for computational power to handle big data. Our meta-analysis indicates that genetic potential alone does not resolve all issues involving mining of microbial interactions. Nevertheless, it can be used as the starting point to infer synergistic interspecies interactions and to limit the search space (i.e., number of species and metabolic reactions) to a manageable size. A reduced search space decreases the number of additional experiments necessary to validate the inferred putative interactions. As validation experiments, we examine how multi-omics and state of the art imaging techniques may further improve our understanding of species interactions’ role in ecosystem processes. Finally, we analyze pros and cons from the current methods to infer microbial interactions from genetic potential and propose a new theoretical framework based on: (i) genomic information of key members of a community; (ii) information of ecosystem processes involved with a specific hypothesis or research question; (iii) the ability to identify putative species’ contributions to ecosystem processes of interest; and, (iv) validation of putative microbial interactions through integration of other data sources.
Collapse
Affiliation(s)
- Joao Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Rene Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- Correspondence:
| |
Collapse
|
28
|
Sun A, Jiao XY, Chen Q, Trivedi P, Li Z, Li F, Zheng Y, Lin Y, Hu HW, He JZ. Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environ Microbiol 2021; 23:2169-2183. [PMID: 33400366 DOI: 10.1111/1462-2920.15385] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022]
Abstract
Crop plants carry an enormous diversity of microbiota that provide massive benefits to hosts. Protists, as the main microbial consumers and a pivotal driver of biogeochemical cycling processes, remain largely understudied in the plant microbiome. Here, we characterized the diversity and composition of protists in sorghum leaf phyllosphere, and rhizosphere and bulk soils, collected from an 8-year field experiment with multiple fertilization regimes. Phyllosphere was an important habitat for protists, dominated by Rhizaria, Alveolata and Amoebozoa. Rhizosphere and bulk soils had a significantly higher diversity of protists than the phyllosphere, and the protistan community structure significantly differed among the three plant-soil compartments. Fertilization significantly altered specific functional groups of protistan consumers and parasites. Variation partitioning models revealed that soil properties, bacteria and fungi predicted a significant proportion of the variation in the protistan communities. Changes in protists may in turn significantly alter the compositions of bacterial and fungal communities from the top-down control in food webs. Altogether, we provide novel evidence that fertilization significantly affects the functional groups of protistan consumers and parasites in crop-associated microbiomes, which have implications for the potential changes in their ecological functions under intensive agricultural managements.
Collapse
Affiliation(s)
- Anqi Sun
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao-Yan Jiao
- College of Resource and Environment, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Qinglin Chen
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Zixin Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Fangfang Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yong Zheng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yongxin Lin
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hang-Wei Hu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| |
Collapse
|
29
|
Mühlbauer LK, Schulze M, Harpole WS, Clark AT. gauseR: Simple methods for fitting Lotka-Volterra models describing Gause's "Struggle for Existence". Ecol Evol 2020; 10:13275-13283. [PMID: 33304536 PMCID: PMC7713957 DOI: 10.1002/ece3.6926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Point 1: The ecological models of Alfred J. Lotka and Vito Volterra have had an enormous impact on ecology over the past century. Some of the earliest-and clearest-experimental tests of these models were famously conducted by Georgy Gause in the 1930s. Although well known, the data from these experiments are not widely available and are often difficult to analyze using standard statistical and computational tools. Point 2: Here, we introduce the gauseR package, a collection of tools for fitting Lotka-Volterra models to time series data of one or more species. The package includes several methods for parameter estimation and optimization, and includes 42 datasets from Gause's species interaction experiments and related work. Additionally, we include with this paper a short blog post discussing the historical importance of these data and models, and an R vignette with a walk-through introducing the package methods. The package is available for download at github.com/adamtclark/gauseR. Point 3: To demonstrate the package, we apply it to several classic experimental studies from Gause, as well as two other well-known datasets on multi-trophic dynamics on Isle Royale, and in spatially structured mite populations. In almost all cases, models fit observations closely and fitted parameter values make ecological sense. Point 4: Taken together, we hope that the methods, data, and analyses that we present here provide a simple and user-friendly way to interact with complex ecological data. We are optimistic that these methods will be especially useful to students and educators who are studying ecological dynamics, as well as researchers who would like a fast tool for basic analyses.
Collapse
Affiliation(s)
| | | | - W. Stanley Harpole
- Institute of BiologyMartin Luther UniversityHalleGermany
- Department of Physiological DiversityHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Adam T. Clark
- Department of Physiological DiversityHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Synthesis Centre for Biodiversity Sciences (sDiv)LeipzigGermany
- Institute of BiologyKarl‐Franzens‐University of GrazHolteigasse 6, Graz, 8010Austria
| |
Collapse
|
30
|
Thakur MP, Putten WH, Apon F, Angelini E, Vreš B, Geisen S. Resilience of rhizosphere microbial predators and their prey communities after an extreme heat event. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Madhav P. Thakur
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Terrestrial Ecology Group Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Wim H. Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Laboratory of Nematology Wageningen University Wageningen The Netherlands
| | - Fariha Apon
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Ezio Angelini
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Branko Vreš
- Biološki inštitut Jovana Hadžija ZRC SAZU Ljubljana Slovenia
| | - Stefan Geisen
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Laboratory of Nematology Wageningen University Wageningen The Netherlands
| |
Collapse
|