1
|
Zou S, Yang X, Zhou L. Gut microbiota in epilepsy: How antibiotics induce dysbiosis and influence seizure susceptibility. Microbiol Res 2025; 298:128225. [PMID: 40398011 DOI: 10.1016/j.micres.2025.128225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/27/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Epilepsy, a widespread chronic neurological disorder, has recently come under scrutiny for its potential association with the intricate dynamics of gut microbiota. Numerous investigations into the microbiota-gut-brain axis have revealed a close relationship between gut microbiota and epilepsy, suggesting gut microbiota as a potential treatment strategy. In clinical practice, a longstanding correlation has been observed between some kinds of antibiotics and the potential to induce seizures. Consequently, we have conceived a hypothesis that antibiotics might impact seizure activity by modulating the gut microbiota and influencing the physiological processes within the microbiota-gut-brain axis. In this review, our primary objective is to present the existing evidence and theoretical foundations supporting the hypothesis that dysbiosis within the gut microbiota may play a significant role in the pathophysiology of epilepsy. Furthermore, we aim to summarize the possible mechanisms between microbiota-gut-brain axis and epilepsy, offering insights into the selection of appropriate antibiotics for long-term epilepsy management and enhancing therapeutic efficacy through modulation of the gut microbiota. Further research is necessary to fully elucidate the intricate relationship between gut microbiota ecosystem and epilepsy. Exploring these connections holds promise for advancing our understanding of epilepsy pathogenesis and improving patient treatment and care.
Collapse
Affiliation(s)
- Shangnan Zou
- Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Clinical Neuroscience Center, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Xiaofeng Yang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Basic Medicine, Guangzhou National Laboratory, Guangzhou, Guangdong, China.
| | - Liemin Zhou
- Clinical Neuroscience Center, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Neurology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Leung WL, Shad A, Perucca P, O'Brien TJ, Semple BD, Casillas-Espinosa PM. Chronic outcomes after mild-moderate traumatic brain injury in adult seizure-prone (FAST) and seizure-resistant (SLOW) rats: A model for understanding genetic contributions to acquired epileptogenesis? Epilepsy Behav 2025; 166:110347. [PMID: 40022952 DOI: 10.1016/j.yebeh.2025.110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/31/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Post-traumatic epilepsy (PTE) is a common, serious, long-term complication of traumatic brain injury (TBI). However, only a minority of individuals will develop epilepsy after a TBI, and the contribution of genetic predisposition to the risk of acquired epilepsy warrants further exploration. In this study, we examined whether innate, genetically determined differences in seizure susceptibility between seizure-prone FAST and seizure-resistant SLOW rat strains would influence chronic behavioral and PTE outcomes after experimental TBI. We hypothesized that FAST rats would show increased vulnerability to PTE and poorer neurobehavioral outcomes. Using the lateral fluid percussion injury model, we first determined the optimal injury parameters to generate a mild-moderate TBI in young adult FAST rats, which had previously shown high mortality to severe TBI. Then, FAST and SLOW rats underwent TBI or sham surgery, and a series of behavioral tests were performed either acutely (within 4 weeks) or chronically (more than 22 weeks) post-injury. Acutely, FAST rats showed an increased physiological response to TBI with a longer apnea duration, delayed pain response, and delayed self-righting, as well as increased acute seizure-like behavior compared to SLOW rats. Conversely, SLOW rats showed greater neuromotor deficits and weight loss sub-acutely compared to FAST rats. Chronically, while strain-specific phenotypes were observed (e.g., FAST rats showing increased anxiety-like behavior, altered nociceptive responses, and polydipsia), no TBI effects were detected. Analysis of continuous video-electroencephalographic recordings over a 1-month period starting at 6 months post-TBI did not reveal any spontaneous seizures. However, periodic epileptiform discharges were only found in FAST rats that had a TBI. Together, these findings reflect fundamental differences in chronic behavior and epileptiform discharges as a result of innate distinctions in epileptogenic susceptibility in FAST versus SLOW rats. However, a lack of spontaneous seizure activity or chronic neurobehavioral deficits in TBI animals confounded our ability to address the initial hypothesis, such that alternative injury models may be more suitable to study genetic contributions to the development of PTE.
Collapse
Affiliation(s)
- Wai Lam Leung
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Ali Shad
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Immunology & Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Piero Perucca
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC 3084, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC 3050, Australia
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
3
|
Rewell SSJ, Shad A, Chen L, Macowan M, Chu E, Gandasasmita N, Casillas-Espinosa PM, Li J, O'Brien TJ, Semple BD. A post-injury immune challenge with lipopolysaccharide following adult traumatic brain injury alters neuroinflammation and the gut microbiome acutely, but has little effect on chronic outcomes. Exp Neurol 2025; 386:115150. [PMID: 39842491 DOI: 10.1016/j.expneurol.2025.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Patients with a traumatic brain injury (TBI) are susceptible to hospital-acquired infections, presenting a significant challenge to an already-compromised immune system. The consequences and mechanisms by which this dual insult worsens outcomes are poorly understood. This study aimed to explore how a systemic immune stimulus (lipopolysaccharide, LPS) influences outcomes following experimental TBI in young adult mice. Male and female C57Bl/6J mice underwent controlled cortical impact or sham surgery, followed by 1 mg/kg i.p. LPS or saline-vehicle at 4 days post-TBI, before behavioral assessment and tissue collection at 6 h, 24 h, 7 days or 6 months. LPS induced acute sickness behaviors including weight loss, transient hypoactivity, and increased anxiety-like behavior. Early systemic immune activation by LPS was confirmed by increased spleen weight and serum cytokines. In brain tissue, gene expression analysis revealed a time course of inflammatory immune activation in TBI or LPS-treated mice (e.g., IL-1β, IL-6, CCL2, TNFα), which was exacerbated in TBI + LPS mice. This group also presented with fecal microbiome dysbiosis at 24 h post-LPS, with reduced bacterial diversity and changes in the relative abundance of key bacterial genera associated with sub-acute neurobehavioral and immune changes. Chronically, TBI induced hyperactivity and cognitive deficits, brain atrophy, and increased seizure susceptibility, similarly in vehicle and LPS-treated groups. Together, findings suggest that an immune challenge with LPS early after TBI, akin to a hospital-acquired infection, alters the acute neuroinflammatory response to injury, but has no lasting effects. Future studies could consider more clinically-relevant models of infection to build upon these findings.
Collapse
Affiliation(s)
- Sarah S J Rewell
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Alfred Health, Prahran, VIC, Australia
| | - Ali Shad
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Alfred Health, Prahran, VIC, Australia
| | - Lingjun Chen
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Matthew Macowan
- Department of Immunology, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Erskine Chu
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Natasha Gandasasmita
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Alfred Health, Prahran, VIC, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Chauhan P, Yadav N, Wadhwa K, Ganesan S, Walia C, Rathore G, Singh G, Abomughaid MM, Ahlawat A, Alexiou A, Papadakis M, Jha NK. Animal Models of Traumatic Brain Injury and Their Relevance in Clinical Settings. CNS Neurosci Ther 2025; 31:e70362. [PMID: 40241393 PMCID: PMC12003924 DOI: 10.1111/cns.70362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant concern that often goes overlooked, resulting from various factors such as traffic accidents, violence, military services, and medical conditions. It is a major health issue affecting people of all age groups across the world, causing significant morbidity and mortality. TBI is a highly intricate disease process that causes both structural damage and functional deficits. These effects result from a combination of primary and secondary injury mechanisms. It is responsible for causing a range of negative effects, such as impairments in cognitive function, changes in social and behavioural patterns, difficulties with motor skills, feelings of anxiety, and symptoms of depression. METHODS TBI associated various animal models were reviewed in databases including PubMed, Web of Science, and Google scholar etc. The current study provides a comprehensive overview of commonly utilized animal models for TBI and examines their potential usefulness in a clinical context. RESULTS Despite the notable advancements in TBI outcomes over the past two decades, there remain challenges in evaluating, treating, and addressing the long-term effects and prevention of this condition. Utilizing experimental animal models is crucial for gaining insight into the development and progression of TBI, as it allows us to examine the biochemical impacts of TBI on brain mechanisms. CONCLUSION This exploration can assist scientists in unraveling the intricate mechanisms involved in TBI and ultimately contribute to the advancement of successful treatments and interventions aimed at enhancing outcomes for TBI patients.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Nikita Yadav
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Karan Wadhwa
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Subbulakshmi Ganesan
- Department of Chemistry and BiochemistrySchool of Sciences, JAIN (Deemed to be University)BangaloreIndia
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges JhanjheriMohaliIndia
| | - Gulshan Rathore
- Department of PharmaceuticsNIMS Institute of Pharmacy, NIMS University RajasthanJaipurIndia
| | - Govind Singh
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory SciencesCollege of Applied Medical Sciences, University of BishaBishaSaudi Arabia
| | - Abhilasha Ahlawat
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliIndia
- Department of Research & DevelopmentFunogenAthensGreece
| | | | - Niraj Kumar Jha
- Department of Biotechnology & BioengineeringSchool of Biosciences & Technology, Galgotias UniversityGreater NoidaIndia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara UniversityRajpuraIndia
- School of Bioengineering & Biosciences, Lovely Professional UniversityPhagwaraIndia
| |
Collapse
|
5
|
Mazarati A. Gut-microbiota-brain Axis and post-traumatic epilepsy. Epilepsia Open 2024. [PMID: 39688879 DOI: 10.1002/epi4.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
There has been growing evidence that perturbations in gut-microbiota-brain axis (GMBA) are involved in mechanisms of chronic sequelae of traumatic brain injury (TBI). This review discusses the connection between GMBA and post-traumatic epilepsy (PTE), the latter being a common outcome of TBI. The focus is on two aspects of post-TBI GMBA dysfunction that are relevant to epilepsy. First are impairments in intestinal permeability with subsequent translocation of gut bacteria into the bloodstream. Specifically, endotoxemia following TBI may have a serendipitous protective effect against PTE through lipopolysaccharide conditioning, which may be leveraged for the development of therapeutic interventions. Second are changes in microbial composition (i.e., dysbiosis). Here, the GMBA-PTE connection is explored from predictive biomarker perspective, whereby the risk of PTE can be stratified based on specific microbial profiles. Finally, microbiota transplantation is discussed both as a tool to examine the role of gut microbiota in PTE and as a prelude to novel approaches for PTE therapy and prevention.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of Pediatrics and Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, California, USA
| |
Collapse
|
6
|
Chen S, Jiao Y, Han C, Li Y, Zou W, Liu J. Drug-Resistant Epilepsy and Gut-Brain Axis: an Overview of a New Strategy for Treatment. Mol Neurobiol 2024; 61:10023-10040. [PMID: 38087164 DOI: 10.1007/s12035-023-03757-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2024]
Abstract
Drug-resistant epilepsy (DRE), also known as intractable epilepsy or refractory epilepsy, is a disease state with long-term poorly controlled seizures attack. Without effective treatment, patients are at an elevated risk of injury, premature death, mental disorders, and poor quality of life, increasing the need for a fresh perspective on the etiology and treatment of DRE. The gut is known to harbor a wide variety of microorganisms that can regulate the host's response to exogenous signals and participate in various physiological and pathological processes in the human body. Interestingly, emerging evidence has uncovered the changes in gut microbiota in patients with epilepsy, particularly those with DRE. In addition, both dietary interventions and specific antibiotic therapy have been proven to be effective in restoring the microecological environment and, more importantly, reducing seizures. Here, we reviewed recent studies on DRE and the involvement of gut microbiota in it, describing changes in the gut microflora composition in patients with DRE and corresponding animal models. Furthermore, the influence of the ketogenic diet, probiotics, fecal microbiota transplantation (FMT), and antibiotics as microbiome-related factors on seizure control and its possible mechanisms are broadly discussed. Finally, we highlighted the significance of gut microbiome in DRE, in order to provide a new prospect for early identification and individualized treatment of patients with DRE.
Collapse
Affiliation(s)
- Shuna Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Yang Jiao
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China.
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China.
| |
Collapse
|
7
|
Liu Y, Jia N, Tang C, Long H, Wang J. Microglia in Microbiota-Gut-Brain Axis: A Hub in Epilepsy. Mol Neurobiol 2024; 61:7109-7126. [PMID: 38366306 DOI: 10.1007/s12035-024-04022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
There is growing concern about the role of the microbiota-gut-brain axis in neurological illnesses, and it makes sense to consider microglia as a critical component of this axis in the context of epilepsy. Microglia, which reside in the central nervous system, are dynamic guardians that monitor brain homeostasis. Microglia receive information from the gut microbiota and function as hubs that may be involved in triggering epileptic seizures. Vagus nerve bridges the communication in the axis. Essential axis signaling molecules, such as gamma-aminobutyric acid, 5-hydroxytryptamin, and short-chain fatty acids, are currently under investigation for their participation in drug-resistant epilepsy (DRE). In this review, we explain how vagus nerve connects the gut microbiota to microglia in the brain and discuss the emerging concepts derived from this interaction. Understanding microbiota-gut-brain axis in epilepsy brings hope for DRE therapies. Future treatments can focus on the modulatory effect of the axis and target microglia in solving DRE.
Collapse
Affiliation(s)
- Yuyang Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Ningkang Jia
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- The Second Clinical Medicine College, Southern Medical University, Guangzhou, China
| | - Chuqi Tang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Cherednichenko AS, Mozdor PV, Oleynikova TK, Khatam PA, Nastueva FM, Kovalenkov KO, Serdinova AS, Osmaeva AK, Rovchak AI, Esikova YY, Shogenova MK, Akhmedov KI, Amirgamzaev MR, Batyrshina ER. A relationship between intestinal microbiome and epilepsy: potential treatment options for drug-resistant epilepsy. EPILEPSY AND PAROXYSMAL CONDITIONS 2024; 16:250-265. [DOI: 10.17749/2077-8333/epi.par.con.2024.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background. According to the World Health Organization, about 50 million people worldwide suffer from epilepsy. Almost 1/3 of patients are diagnosed with drug-resistant epilepsy (DRE). A relationship between intestinal microbiome (IM) and the central nervous system carried out throughout life via bidirectional dynamic network exists. It has been evidenced that IM profile becomes altered in patients with DRE.Objective: to summarize the current literature data on the role for microbiome-gut-brain axis in DRE, as well as to assess an importance of IM composition changes as a prognostic marker for developing DRE.Material and methods. The authors conducted a search for publications in the electronic databases PubMed/MEDLINE and eLibrary, as well as Google Scholar search engine. The evaluation of the articles was carried out in accordance with the PRISMA recommendations. Based on the search, 4,158 publications were retrieved from PubMed/MEDLINE database, 173 – from eLibrary, and 1,100 publications found with Google Scholar. After the selection procedure, 121 studies were included in the review.Results. The review provides convincing evidence about a correlation between IM and DRE demonstrating overt differences in IM composition found in patients with epilepsy related to drug sensitivity. IM dysbiosis can be corrected by exogenous interventions such as ketogenic diet, probiotic treatment and fecal microbiota transplantation subsequently resulting in altered brain neurochemical signaling and, therefore, alleviating epileptic activity.Conclusion. A ketogenic diet, probiotics and antibiotics may have some potential to affect epilepsy by correcting IM dysbiosis, but the current studies provide no proper level of evidence. Future clinical multicenter trials should use standardized protocols and a larger-scale patient sample to provide more reliable evidence. Moreover, further fundamental investigations are required to elucidate potential mechanisms and therapeutic targets.
Collapse
|
9
|
Ullah H, Arbab S, Tian Y, Chen Y, Liu CQ, Li Q, Li K. Crosstalk between gut microbiota and host immune system and its response to traumatic injury. Front Immunol 2024; 15:1413485. [PMID: 39144142 PMCID: PMC11321976 DOI: 10.3389/fimmu.2024.1413485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
Millions of microorganisms make up the complex microbial ecosystem found in the human gut. The immune system's interaction with the gut microbiota is essential for preventing inflammation and maintaining intestinal homeostasis. Numerous metabolic products that can cross-talk between immune cells and the gut epithelium are metabolized by the gut microbiota. Traumatic injury elicits a great and multifaceted immune response in the minutes after the initial offense, containing simultaneous pro- and anti-inflammatory responses. The development of innovative therapies that improve patient outcomes depends on the gut microbiota and immunological responses to trauma. The altered makeup of gut microbes, or gut dysbiosis, can also dysregulate immunological responses, resulting in inflammation. Major human diseases may become more common as a result of chronic dysbiosis and the translocation of bacteria and the products of their metabolism beyond the mucosal barrier. In this review, we briefly summarize the interactions between the gut microbiota and the immune system and human disease and their therapeutic probiotic formulations. We also discuss the immune response to traumatic injury.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Chang-qing Liu
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qijie Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Pease M, Gupta K, Moshé SL, Correa DJ, Galanopoulou AS, Okonkwo DO, Gonzalez-Martinez J, Shutter L, Diaz-Arrastia R, Castellano JF. Insights into epileptogenesis from post-traumatic epilepsy. Nat Rev Neurol 2024; 20:298-312. [PMID: 38570704 DOI: 10.1038/s41582-024-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Post-traumatic epilepsy (PTE) accounts for 5% of all epilepsies. The incidence of PTE after traumatic brain injury (TBI) depends on the severity of injury, approaching one in three in groups with the most severe injuries. The repeated seizures that characterize PTE impair neurological recovery and increase the risk of poor outcomes after TBI. Given this high risk of recurrent seizures and the relatively short latency period for their development after injury, PTE serves as a model disease to understand human epileptogenesis and trial novel anti-epileptogenic therapies. Epileptogenesis is the process whereby previously normal brain tissue becomes prone to recurrent abnormal electrical activity, ultimately resulting in seizures. In this Review, we describe the clinical course of PTE and highlight promising research into epileptogenesis and treatment using animal models of PTE. Clinical, imaging, EEG and fluid biomarkers are being developed to aid the identification of patients at high risk of PTE who might benefit from anti-epileptogenic therapies. Studies in preclinical models of PTE have identified tractable pathways and novel therapeutic strategies that can potentially prevent epilepsy, which remain to be validated in humans. In addition to improving outcomes after TBI, advances in PTE research are likely to provide therapeutic insights that are relevant to all epilepsies.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurosurgery, Indiana University, Bloomington, IN, USA.
| | - Kunal Gupta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Solomon L Moshé
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Paediatrics, Albert Einstein College of Medicine, New York, NY, USA
| | - Daniel J Correa
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Aristea S Galanopoulou
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lori Shutter
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
11
|
Pasam T, Dandekar MP. Fecal microbiota transplantation unveils sex-specific differences in a controlled cortical impact injury mouse model. Front Microbiol 2024; 14:1336537. [PMID: 38410824 PMCID: PMC10894955 DOI: 10.3389/fmicb.2023.1336537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 02/28/2024] Open
Abstract
Introduction Contusion type of traumatic brain injury (TBI) is a major cause of locomotor disability and mortality worldwide. While post-TBI deleterious consequences are influenced by gender and gut dysbiosis, the sex-specific importance of commensal gut microbiota is underexplored after TBI. In this study, we investigated the impact of controlled cortical impact (CCI) injury on gut microbiota signature in a sex-specific manner in mice. Methods We depleted the gut microflora of male and female C57BL/6 mice using antibiotic treatment. Thereafter, male mice were colonized by the gut microbiota of female mice and vice versa, employing the fecal microbiota transplantation (FMT) method. CCI surgery was executed using a stereotaxic impactor (Impact One™). For the 16S rRNA gene amplicon study, fecal boli of mice were collected at 3 days post-CCI (dpi). Results and discussion CCI-operated male and female mice exhibited a significant alteration in the genera of Akkermansia, Alistipes, Bacteroides, Clostridium, Lactobacillus, Prevotella, and Ruminococcus. At the species level, less abundance of Lactobacillus helveticus and Lactobacillus hamsteri was observed in female mice, implicating the importance of sex-specific bacteriotherapy in CCI-induced neurological deficits. FMT from female donor mice to male mice displayed an increase in genera of Alistipes, Lactobacillus, and Ruminococcus and species of Bacteroides acidifaciens and Ruminococcus gnavus. Female FMT-recipient mice from male donors showed an upsurge in the genus Lactobacillus and species of Lactobacillus helveticus, Lactobacillus hamsteri, and Prevotella copri. These results suggest that the post-CCI neurological complications may be influenced by the differential gut microbiota perturbation in male and female mice.
Collapse
Affiliation(s)
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
12
|
Zhu H, Wang W, Li Y. The interplay between microbiota and brain-gut axis in epilepsy treatment. Front Pharmacol 2024; 15:1276551. [PMID: 38344171 PMCID: PMC10853364 DOI: 10.3389/fphar.2024.1276551] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/12/2024] [Indexed: 08/12/2024] Open
Abstract
The brain-gut axis plays a vital role in connecting the cognitive and emotional centers of the brain with the intricate workings of the intestines. An imbalance in the microbiota-mediated brain-gut axis extends far beyond conditions like Irritable Bowel Syndrome (IBS) and obesity, playing a critical role in the development and progression of various neurological disorders, including epilepsy, depression, Alzheimer's disease (AD), and Parkinson's disease (PD). Epilepsy, a brain disorder characterized by unprovoked seizures, affects approximately 50 million people worldwide. Accumulating evidence suggests that rebuilding the gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and ketogenic diets (KD) can benefit drug-resistant epilepsy. The disturbances in the gut microbiota could contribute to the toxic side effects of antiepileptic drugs and the development of drug resistance in epilepsy patients. These findings imply the potential impact of the gut microbiota on epilepsy and suggest that interventions targeting the microbiota, such as the KD, hold promise for managing and treating epilepsy. However, the full extent of the importance of microbiota in epilepsy treatment is not yet fully understood, and many aspects of this field remain unclear. Therefore, this article aims to provide an overview of the clinical and animal evidence supporting the regulatory role of gut microbiota in epilepsy, and of potential pathways within the brain-gut axis that may be influenced by the gut microbiota in epilepsy. Furthermore, we will discuss the recent advancements in epilepsy treatment, including the KD, fecal microbiota transplantation, and antiseizure drugs, all from the perspective of the gut microbiota.
Collapse
Affiliation(s)
- Hanxiao Zhu
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
- Clinical Medical School, Dali University, Dali, China
| | - Wei Wang
- Neurobiology Laboratory, China Agricultural University, Beijing, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
- Clinical Medical School, Dali University, Dali, China
| |
Collapse
|
13
|
Grandizoli Saletti P, Casillas-Espinosa PM, Panagiotis Lisgaras C, Bi Mowrey W, Li Q, Liu W, Brady RD, Ali I, Silva J, Yamakawa G, Hudson M, Li C, Braine EL, Coles L, Cloyd JC, Jones NC, Shultz SR, Moshé SL, O'Brien TJ, Galanopoulou AS. Tau Phosphorylation Patterns in the Rat Cerebral Cortex After Traumatic Brain Injury and Sodium Selenate Effects: An Epibios4rx Project 2 Study. J Neurotrauma 2024; 41:222-243. [PMID: 36950806 PMCID: PMC11079442 DOI: 10.1089/neu.2022.0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Sodium selenate (SS) activates protein phosphatase 2 (PP2A) and reduces phosphorylated tau (pTAU) and late post-traumatic seizures after lateral fluid percussion injury (LFPI). In EpiBioS4Rx Project 2, a multi-center international study for post-traumatic targets, biomarkers, and treatments, we tested the target relevance and modification by SS of pTAU forms and PP2A and in the LFPI model, at two sites: Einstein and Melbourne. In Experiment 1, adult male rats were assigned to LFPI and sham (both sites) and naïve controls (Einstein). Motor function was monitored by neuroscores. Brains were studied with immunohistochemistry (IHC), Western blots (WBs), or PP2A activity assay, from 2 days to 8 weeks post-operatively. In Experiment 2, LFPI rats received SS for 7 days (SS0.33: 0.33 mg/kg/day; SS1: 1 mg/kg/day, subcutaneously) or vehicle (Veh) post-LFPI and pTAU, PR55 expression, or PP2A activity were studied at 2 days and 1 week (on treatment), or 2 weeks (1 week off treatment). Plasma selenium and SS levels were measured. In Experiment 1 IHC, LFPI rats had higher cortical pTAU-Ser202/Thr205-immunoreactivity (AT8-ir) and pTAU-Ser199/202-ir at 2 days, and pTAU-Thr231-ir (AT180-ir) at 2 days, 2 weeks, and 8 weeks, ipsilaterally to LFPI, than controls. LFPI-2d rats also had higher AT8/total-TAU5-ir in cortical extracts ipsilateral to the lesion (WB). PP2A (PR55-ir) showed time- and region-dependent changes in IHC, but not in WB. PP2A activity was lower in LFPI-1wk than in sham rats. In Experiment 2, SS did not affect neuroscores or cellular AT8-ir, AT180-ir, or PR55-ir in IHC. In WB, total cortical AT8/total-TAU-ir was lower in SS0.33 and SS1 LFPI rats than in Veh rats (2 days, 1 week); total cortical PR55-ir (WB) and PP2A activity were higher in SS1 than Veh rats (2 days). SS dose dependently increased plasma selenium and SS levels. Concordant across-sites data confirm time and pTAU form-specific cortical increases ipsilateral to LFPI. The discordant SS effects may either suggest SS-induced reduction in the numbers of cells with increased pTAU-ir, need for longer treatment, or the involvement of other mechanisms of action.
Collapse
Affiliation(s)
- Patricia Grandizoli Saletti
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Pablo M. Casillas-Espinosa
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Christos Panagiotis Lisgaras
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Wenzhu Bi Mowrey
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx New York, USA
| | - Qianyun Li
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Wei Liu
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Rhys D. Brady
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Idrish Ali
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Juliana Silva
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Glenn Yamakawa
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Matt Hudson
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Crystal Li
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Emma L. Braine
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Lisa Coles
- University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - James C. Cloyd
- University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
- Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx New York, USA
| | - Terence J. O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
- Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx New York, USA
| |
Collapse
|
14
|
Brigo F, Zelano J, Abraira L, Bentes C, Ekdahl CT, Lattanzi S, Ingvar Lossius M, Redfors P, Rouhl RPW, Russo E, Sander JW, Vogrig A, Wickström R. Proceedings of the "International Congress on Structural Epilepsy & Symptomatic Seizures" (STESS, Gothenburg, Sweden, 29-31 March 2023). Epilepsy Behav 2024; 150:109538. [PMID: 38039602 DOI: 10.1016/j.yebeh.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Francesco Brigo
- Innovation, Research and Teaching Service (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Bolzano, Italy.
| | - Johan Zelano
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden; Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg University, Sweden; Wallenberg Center of Molecular and Translational Medicine, Gothenburg University, Sweden
| | - Laura Abraira
- Neurology Department, Epilepsy Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Carla Bentes
- Neurophysiological Monitoring Unit - EEG/Sleep Laboratory, Refractory Epilepsy Reference Centre (member of EpiCARE), Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Centro de Estudos Egas Moniz, Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Morten Ingvar Lossius
- National Centre for Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital, Member of the ERN EpiCARE, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Petra Redfors
- Department of Neurology, Member of the ERN EpiCARE, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Academic Centre for Epileptology Kempenhaeghe/MUMC+ Heeze and Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Emilio Russo
- Science of Health Department, University Magna Grecia of Catanzaro, Italy
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK; Centre for Epilepsy, Chalfont St Peter, Bucks., SL9 0RJ, United Kingdom; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, The Netherlands; Neurology Department, West of China Hospital, Sichuan University, Chengdu 610041, China
| | - Alberto Vogrig
- Department of Medicine (DAME), University of Udine, Udine, Italy; Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Ronny Wickström
- Neuropediatric Unit, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Du Q, Li Q, Liao G, Li J, Ye P, Zhang Q, Gong X, Yang J, Li K. Emerging trends and focus of research on the relationship between traumatic brain injury and gut microbiota: a visualized study. Front Microbiol 2023; 14:1278438. [PMID: 38029105 PMCID: PMC10654752 DOI: 10.3389/fmicb.2023.1278438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Traumatic brain injury (TBI) is one of the most serious types of trauma and imposes a heavy social and economic burden on healthcare systems worldwide. The development of emerging biotechnologies is uncovering the relationship between TBI and gut flora, and gut flora as a potential intervention target is of increasing interest to researchers. Nevertheless, there is a paucity of research employing bibliometric methodologies to scrutinize the interrelation between these two. Therefore, this study visualized the relationship between TBI and gut flora based on bibliometric methods to reveal research trends and hotspots in the field. The ultimate objective is to catalyze progress in the preclinical and clinical evolution of strategies for treating and managing TBI. Methods Terms related to TBI and gut microbiota were combined to search the Scopus database for relevant documents from inception to February 2023. Visual analysis was performed using CiteSpace and VOSviewer. Results From September 1972 to February 2023, 2,957 documents published from 98 countries or regions were analyzed. The number of published studies on the relationship between TBI and gut flora has risen exponentially, with the United States, China, and the United Kingdom being representative of countries publishing in related fields. Research has formed strong collaborations around highly productive authors, but there is a relative lack of international cooperation. Research in this area is mainly published in high-impact journals in the field of neurology. The "intestinal microbiota and its metabolites," "interventions," "mechanism of action" and "other diseases associated with traumatic brain injury" are the most promising and valuable research sites. Targeting the gut flora to elucidate the mechanisms for the development of the course of TBI and to develop precisely targeted interventions and clinical management of TBI comorbidities are of great significant research direction and of interest to researchers. Conclusion The findings suggest that close attention should be paid to the relationship between gut microbiota and TBI, especially the interaction, potential mechanisms, development of emerging interventions, and treatment of TBI comorbidities. Further investigation is needed to understand the causal relationship between gut flora and TBI and its specific mechanisms, especially the "brain-gut microbial axis."
Collapse
Affiliation(s)
- Qiujing Du
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Qijie Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiafei Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Peiling Ye
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Qi Zhang
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiaotong Gong
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Jiaju Yang
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Ka Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Dang Y, Wang T. Research Progress on the Immune-Inflammatory Mechanisms of Posttraumatic Epilepsy. Cell Mol Neurobiol 2023; 43:4059-4069. [PMID: 37889439 PMCID: PMC11407727 DOI: 10.1007/s10571-023-01429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Posttraumatic epilepsy (PTE) is a severe complication arising from a traumatic brain injury caused by various violent actions on the brain. The underlying mechanisms for the pathogenesis of PTE are complex and have not been fully defined. Approximately, one-third of patients with PTE are resistant to antiepileptic therapy. Recent research evidence has shown that neuroinflammation is critical in the development of PTE. This article reviews the immune-inflammatory mechanisms regarding microglial activation, astrocyte proliferation, inflammatory signaling pathways, chronic neuroinflammation, and intestinal flora. These mechanisms offer novel insights into the pathophysiological mechanisms of PTE and have groundbreaking implications in the prevention and treatment of PTE. Immunoinflammatory cross-talk between glial cells and gut microbiota in posttraumatic epilepsy. This graphical abstract depicts the roles of microglia and astrocytes in posttraumatic epilepsy, highlighting the influence of the gut microbiota on their function. TBI traumatic brain injury, AQP4 aquaporin-4, Kir4.1 inward rectifying K channels.
Collapse
Affiliation(s)
- Yangbin Dang
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China
| | - Tiancheng Wang
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
17
|
Leung WL, Dill LK, Perucca P, O'Brien TJ, Casillas-Espinosa PM, Semple BD. Inherent Susceptibility to Acquired Epilepsy in Selectively Bred Rats Influences the Acute Response to Traumatic Brain Injury. J Neurotrauma 2023; 40:2174-2192. [PMID: 37221897 DOI: 10.1089/neu.2022.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Traumatic brain injury (TBI) often causes seizures associated with a neuroinflammatory response and neurodegeneration. TBI responses may be influenced by differences between individuals at a genetic level, yet this concept remains understudied. Here, we asked whether inherent differences in one's vulnerability to acquired epilepsy would determine acute physiological and neuroinflammatory responses acutely after experimental TBI, by comparing selectively bred "seizure-prone" (FAST) rats with "seizure-resistant" (SLOW) rats, as well as control parental strains (Long Evans and Wistar rats). Eleven-week-old male rats received a moderate-to-severe lateral fluid percussion injury (LFPI) or sham surgery. Rats were assessed for acute injury indicators and neuromotor performance, and blood was serially collected. At 7 days post-injury, brains were collected for quantification of tissue atrophy by cresyl violet (CV) histology, and immunofluorescent staining of activated inflammatory cells. FAST rats showed an exacerbated physiological response acutely post-injury, with a 100% seizure rate and mortality within 24 h. Conversely, SLOW rats showed no acute seizures and a more rapid neuromotor recovery compared with controls. Brains from SLOW rats also showed only modest immunoreactivity for microglia/macrophages and astrocytes in the injured hemisphere compared with controls. Further, group differences were apparent between the control strains, with greater neuromotor deficits observed in Long Evans rats compared with Wistars post-TBI. Brain-injured Long Evans rats also showed the most pronounced inflammatory response to TBI across multiple brain regions, whereas Wistar rats showed the greatest extent of regional brain atrophy. These findings indicate that differential genetic predisposition to develop acquired epilepsy (i.e., FAST vs. SLOW rat strains) determines acute responses after experimental TBI. Differences in the neuropathological response to TBI between commonly used control rat strains is also a novel finding, and an important consideration for future study design. Our results support further investigation into whether genetic predisposition to acute seizures predicts the chronic outcomes after TBI, including the development of post-traumatic epilepsy.
Collapse
Affiliation(s)
- Wai Lam Leung
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- The Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Mengoli M, Conti G, Fabbrini M, Candela M, Brigidi P, Turroni S, Barone M. Microbiota-gut-brain axis and ketogenic diet: how close are we to tackling epilepsy? MICROBIOME RESEARCH REPORTS 2023; 2:32. [PMID: 38045924 PMCID: PMC10688818 DOI: 10.20517/mrr.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 12/05/2023]
Abstract
The microbiota-gut-brain axis refers to the intricate bidirectional communication between commensal microorganisms residing in the digestive tract and the central nervous system, along neuroendocrine, metabolic, immune, and inflammatory pathways. This axis has been suggested to play a role in several neurological disorders, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and epilepsy, paving the way for microbiome-based intervention strategies for the mitigation and treatment of symptoms. Epilepsy is a multifaceted neurological condition affecting more than 50 million individuals worldwide, 30% of whom do not respond to conventional pharmacological therapies. Among the first-hand microbiota modulation strategies, nutritional interventions represent an easily applicable option in both clinical and home settings. In this narrative review, we summarize the mechanisms underlying the microbiota-gut-brain axis involvement in epilepsy, discuss the impact of antiepileptic drugs on the gut microbiome, and then the impact of a particular dietary pattern, the ketogenic diet, on the microbiota-gut-brain axis in epileptic patients. The investigation of the microbiota response to non-pharmacological therapies is an ever-expanding field with the potential to allow the design of increasingly accessible and successful intervention strategies.
Collapse
Affiliation(s)
- Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
19
|
Munley JA, Kirkpatrick SL, Gillies GS, Bible LE, Efron PA, Nagpal R, Mohr AM. The Intestinal Microbiome after Traumatic Injury. Microorganisms 2023; 11:1990. [PMID: 37630549 PMCID: PMC10459834 DOI: 10.3390/microorganisms11081990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
The intestinal microbiome plays a critical role in host immune function and homeostasis. Patients suffering from-as well as models representing-multiple traumatic injuries, isolated organ system trauma, and various severities of traumatic injury have been studied as an area of interest in the dysregulation of immune function and systemic inflammation which occur after trauma. These studies also demonstrate changes in gut microbiome diversity and even microbial composition, with a transition to a pathobiome state. In addition, sex has been identified as a biological variable influencing alterations in the microbiome after trauma. Therapeutics such as fecal transplantation have been utilized to ameliorate not only these microbiome changes but may also play a role in recovery postinjury. This review summarizes the alterations in the gut microbiome that occur postinjury, either in isolated injury or multiple injuries, along with proposed mechanisms for these changes and future directions for the field.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Stacey L. Kirkpatrick
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Gwendolyn S. Gillies
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Letitia E. Bible
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL 32306, USA;
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| |
Collapse
|
20
|
Medel-Matus JS, Simpson CA, Ahdoot AI, Shin D, Sankar R, Jacobs JP, Mazarati AM. Modification of post-traumatic epilepsy by fecal microbiota transfer. Epilepsy Behav 2022; 134:108860. [PMID: 35914438 DOI: 10.1016/j.yebeh.2022.108860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
It has been well established that traumatic brain injury (TBI) modifies the composition of gut microbiome. Epilepsy, which represents one of the common sequelae of TBI, has been associated with dysbiosis. Earlier study showed that the risk of post-traumatic epilepsy (PTE) after lateral fluid percussion injury (LFPI) in rats can be stratified based on pre-existing (i.e., pre-TBI) gut microbiome profile. In the present study, we examined whether fecal microbiota transfer (FMT) from naïve rats with different prospective histories of PTE would affect the trajectory of PTE in recipients. Fecal samples were collected from naïve adult male Sprague-Dawley rats, followed by LFPI. Seven months later, upon four weeks of vide-EEG monitoring (vEEG), the rats were categorized as those with and without PTE. Recipients were subjected to LFPI, followed by FMT from donors with and without impending PTE. Control groups included auto-FMT and no-FMT subjects. Seven month after LFPI, recipients underwent four-week vEEG to detect spontaneous seizures. After completing vEEG, rats of all groups underwent kindling of basolateral amygdala. Fecal microbiota transfer from donors with impending PTE exerted mild-to-moderate pro-epileptic effects in recipients, evident as marginal increase in multiple spontaneous seizure incidence, and facilitation of kindling. Analysis of fecal samples in selected recipients and their respective donors confirmed that FMT modified microbiota in recipients along the donors' lines, albeit without full microbiome conversion. The findings provide further evidence that gut microbiome may actively modulate the susceptibility to epilepsy.
Collapse
Affiliation(s)
- Jesus-Servando Medel-Matus
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA
| | - Carra A Simpson
- Department of Medicine, DGSOM UCLA, USA; Microbiome Center, DGSOM UCLA, USA
| | - Aaron I Ahdoot
- Department of Medicine, DGSOM UCLA, USA; Microbiome Center, DGSOM UCLA, USA
| | - Don Shin
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA
| | - Raman Sankar
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA; Children's Discovery and Innovation Institute, DGSOM UCLA, USA
| | - Jonathan P Jacobs
- Department of Medicine, DGSOM UCLA, USA; Microbiome Center, DGSOM UCLA, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Andrey M Mazarati
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA; Microbiome Center, DGSOM UCLA, USA; Children's Discovery and Innovation Institute, DGSOM UCLA, USA.
| |
Collapse
|
21
|
Santiago-Castañeda C, Huerta de la Cruz S, Martínez-Aguirre C, Orozco-Suárez SA, Rocha L. Cannabidiol Reduces Short- and Long-Term High Glutamate Release after Severe Traumatic Brain Injury and Improves Functional Recovery. Pharmaceutics 2022; 14:pharmaceutics14081609. [PMID: 36015236 PMCID: PMC9414526 DOI: 10.3390/pharmaceutics14081609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to determine if orally administered cannabidiol (CBD) lessens the cortical over-release of glutamate induced by a severe traumatic brain injury (TBI) and facilitates functional recovery. The short-term experiment focused on identifying the optimal oral pretreatment of CBD. Male Wistar rats were pretreated with oral administration of CBD (50, 100, or 200 mg/kg) daily for 7 days. Then, extracellular glutamate concentration was estimated by cortical microdialysis before and immediately after a severe TBI. The long-term experiment focused on evaluating the effect of the optimal treatment of CBD (pre- vs. pre- and post-TBI) 30 days after trauma. Sensorimotor function, body weight, and mortality rate were evaluated. In the short term, TBI induced a high release of glutamate (738% ± 173%; p < 0.001 vs. basal). Oral pretreatment with CBD at all doses tested reduced glutamate concentration but with higher potency at when animals received 100 mg/kg (222 ± 33%, p < 0.01 vs. TBI), an effect associated with a lower mortality rate (22%, p < 0.001 vs. TBI). In the long-term experiment, the TBI group showed a high glutamate concentration (149% p < 0.01 vs. SHAM). In contrast, animals receiving the optimal treatment of CBD (pre- and pre/post-TBI) showed glutamate concentrations like the SHAM group (p > 0.05). This effect was associated with high sensorimotor function improvement. CBD pretreatment, but not pre-/post-treatment, induced a higher body weight gain (39% ± 2.7%, p < 0.01 vs. TBI) and lower mortality rate (22%, p < 0.01 vs. TBI). These results support that orally administered CBD reduces short- and long-term TBI-induced excitotoxicity and facilitated functional recovery. Indeed, pretreatment with CBD was sufficient to lessen the adverse sequelae of TBI.
Collapse
Affiliation(s)
- Cindy Santiago-Castañeda
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Saúl Huerta de la Cruz
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Christopher Martínez-Aguirre
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Sandra Adela Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, Specialties Hospital, National Medical Center SXXI (CMN-SXXI), Mexico City 06720, Mexico;
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
- Correspondence: ; Tel.: +52-55-5483-2800
| |
Collapse
|