1
|
Wong W, Bravo P, Yunker PJ, Ratcliff WC, Burnetti AJ. Oxygen-binding proteins aid oxygen diffusion to enhance fitness of a yeast model of multicellularity. PLoS Biol 2025; 23:e3002975. [PMID: 39883703 PMCID: PMC11781632 DOI: 10.1371/journal.pbio.3002975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/08/2024] [Indexed: 02/01/2025] Open
Abstract
Oxygen availability is a key factor in the evolution of multicellularity, as larger and more sophisticated organisms often require mechanisms allowing efficient oxygen delivery to their tissues. One such mechanism is the presence of oxygen-binding proteins, such as globins and hemerythrins, which arose in the ancestor of bilaterian animals. Despite their importance, the precise mechanisms by which oxygen-binding proteins influenced the early stages of multicellular evolution under varying environmental oxygen levels are not yet clear. We address this knowledge gap by heterologously expressing the oxygen-binding proteins myoglobin and myohemerythrin in snowflake yeast, a model system of simple, undifferentiated multicellularity. These proteins increased the depth and rate of oxygen diffusion, increasing the fitness of snowflake yeast growing aerobically. Experiments show that, paradoxically, oxygen-binding proteins confer a greater fitness benefit for larger organisms when O2 is least limiting. We show via biophysical modeling that this is because facilitated diffusion is more efficient when oxygen is abundant, transporting a greater quantity of O2 which can be used for metabolism. By alleviating anatomical diffusion limitations to oxygen consumption, the evolution of oxygen-binding proteins in the oxygen-rich Neoproterozoic may have been a key breakthrough enabling the evolution of increasingly large, complex multicellular metazoan lineages.
Collapse
Affiliation(s)
- Whitney Wong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Pablo Bravo
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Anthony J. Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
2
|
Wong W, Bravo P, Yunker PJ, Ratcliff WC, Burnetti AJ. Examining the role of oxygen-binding proteins on the early evolution of multicellularity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569647. [PMID: 38106219 PMCID: PMC10723371 DOI: 10.1101/2023.12.01.569647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oxygen availability is a key factor in the evolution of multicellularity, as larger and more sophisticated organisms often require mechanisms allowing efficient oxygen delivery to their tissues. One such mechanism is the presence of oxygen-binding proteins, such as globins and hemerythrins, which arose in the ancestor of bilaterian animals. Despite their importance, the precise mechanisms by which oxygen-binding proteins influenced the early stages of multicellular evolution under varying environmental oxygen levels are not yet clear. We addressed this knowledge gap by heterologously expressing the oxygen binding proteins myoglobin and myohemerythrin in snowflake yeast, a model system of simple, undifferentiated multicellularity. These proteins increased the depth and rate of oxygen diffusion, increasing the fitness of snowflake yeast growing aerobically. Experiments show that, paradoxically, oxygen-binding proteins confer a greater fitness benefit for larger organisms under high, not low, O2 conditions. We show via biophysical modeling that this is because facilitated diffusion is more efficient when oxygen is abundant, transporting a greater quantity of O2 which can be used for metabolism. By alleviating anatomical diffusion limitations to oxygen consumption, the evolution of O2-binding proteins in the oxygen-rich Neoproterozoic may have been a key breakthrough enabling the evolution of increasingly large, complex multicellular metazoan lineages.
Collapse
Affiliation(s)
- Whitney Wong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pablo Bravo
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anthony J Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Pentz JT, MacGillivray K, DuBose JG, Conlin PL, Reinhardt E, Libby E, Ratcliff WC. Evolutionary consequences of nascent multicellular life cycles. eLife 2023; 12:e84336. [PMID: 37889142 PMCID: PMC10611430 DOI: 10.7554/elife.84336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
A key step in the evolutionary transition to multicellularity is the origin of multicellular groups as biological individuals capable of adaptation. Comparative work, supported by theory, suggests clonal development should facilitate this transition, although this hypothesis has never been tested in a single model system. We evolved 20 replicate populations of otherwise isogenic clonally reproducing 'snowflake' yeast (Δace2/∆ace2) and aggregative 'floc' yeast (GAL1p::FLO1 /GAL1p::FLO1) with daily selection for rapid growth in liquid media, which favors faster cell division, followed by selection for rapid sedimentation, which favors larger multicellular groups. While both genotypes adapted to this regime, growing faster and having higher survival during the group-selection phase, there was a stark difference in evolutionary dynamics. Aggregative floc yeast obtained nearly all their increased fitness from faster growth, not improved group survival; indicating that selection acted primarily at the level of cells. In contrast, clonal snowflake yeast mainly benefited from higher group-dependent fitness, indicating a shift in the level of Darwinian individuality from cells to groups. Through genome sequencing and mathematical modeling, we show that the genetic bottlenecks in a clonal life cycle also drive much higher rates of genetic drift-a result with complex implications for this evolutionary transition. Our results highlight the central role that early multicellular life cycles play in the process of multicellular adaptation.
Collapse
Affiliation(s)
| | - Kathryn MacGillivray
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of TechnologyAtlantaUnited States
| | - James G DuBose
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Emma Reinhardt
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | | | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
4
|
Chen V, Johnson MS, Hérissant L, Humphrey PT, Yuan DC, Li Y, Agarwala A, Hoelscher SB, Petrov DA, Desai MM, Sherlock G. Evolution of haploid and diploid populations reveals common, strong, and variable pleiotropic effects in non-home environments. eLife 2023; 12:e92899. [PMID: 37861305 PMCID: PMC10629826 DOI: 10.7554/elife.92899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Adaptation is driven by the selection for beneficial mutations that provide a fitness advantage in the specific environment in which a population is evolving. However, environments are rarely constant or predictable. When an organism well adapted to one environment finds itself in another, pleiotropic effects of mutations that made it well adapted to its former environment will affect its success. To better understand such pleiotropic effects, we evolved both haploid and diploid barcoded budding yeast populations in multiple environments, isolated adaptive clones, and then determined the fitness effects of adaptive mutations in 'non-home' environments in which they were not selected. We find that pleiotropy is common, with most adaptive evolved lineages showing fitness effects in non-home environments. Consistent with other studies, we find that these pleiotropic effects are unpredictable: they are beneficial in some environments and deleterious in others. However, we do find that lineages with adaptive mutations in the same genes tend to show similar pleiotropic effects. We also find that ploidy influences the observed adaptive mutational spectra in a condition-specific fashion. In some conditions, haploids and diploids are selected with adaptive mutations in identical genes, while in others they accumulate mutations in almost completely disjoint sets of genes.
Collapse
Affiliation(s)
- Vivian Chen
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Milo S Johnson
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityBostonUnited States
| | - Lucas Hérissant
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Parris T Humphrey
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - David C Yuan
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Yuping Li
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Atish Agarwala
- Department of Physics, Stanford UniversityStanfordUnited States
| | | | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityBostonUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Gavin Sherlock
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
5
|
Kalambokidis M, Travisano M. Multispecies interactions shape the transition to multicellularity. Proc Biol Sci 2023; 290:20231055. [PMID: 37727086 PMCID: PMC10509594 DOI: 10.1098/rspb.2023.1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
The origin of multicellularity transformed the adaptive landscape on Earth, opening diverse avenues for further innovation. The transition to multicellular life is understood as the evolution of cooperative groups which form a new level of individuality. Despite the potential for community-level interactions, most studies have not addressed the competitive context of this transition, such as competition between species. Here, we explore how interspecific competition shapes the emergence of multicellularity in an experimental system with two yeast species, Saccharomyces cerevisiae and Kluyveromyces lactis, where multicellularity evolves in response to selection for faster settling ability. We find that the multispecies context slows the rate of the transition to multicellularity, and the transition to multicellularity significantly impacts community composition. Multicellular K. lactis emerges first and sweeps through populations in monocultures faster than in cocultures with S. cerevisiae. Following the transition, the between-species competitive dynamics shift, likely in part to intraspecific cooperation in K. lactis. Hence, we document an eco-evolutionary feedback across the transition to multicellularity, underscoring how ecological context is critical for understanding the causes and consequences of innovation. By including two species, we demonstrate that cooperation and competition across several biological scales shapes the origin and persistence of multicellularity.
Collapse
Affiliation(s)
- Maria Kalambokidis
- Department of Ecology, Evolution, University of Minnesota, St. Paul, MN 55108, USA
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Travisano
- Department of Ecology, Evolution, University of Minnesota, St. Paul, MN 55108, USA
- The BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Pineau RM, Demory D, Libby E, Lac DT, Day TC, Bravo P, Yunker PJ, Weitz JS, Bozdag GO, Ratcliff WC. Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524803. [PMID: 36711513 PMCID: PMC9882323 DOI: 10.1101/2023.01.19.524803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth’s ecosystems. Yet little is known about how early steps in the evolution of multicellularity transform eco-evolutionary dynamics, e.g., via niche expansion processes that may facilitate coexistence. Using long-term experimental evolution in the snowflake yeast model system, we show that the evolution of multicellularity drove niche partitioning and the adaptive divergence of two distinct, specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subject to selection for rapid growth in rich media, followed by selection favoring larger group size. Both small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations. These small and large sized snowflake yeast lineages specialized on divergent aspects of a trade-off between growth rate and survival, mirroring predictions from ecological theory. Through modeling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically-impactful emergent properties of this evolutionary transition.
Collapse
|
7
|
The possible modes of microbial reproduction are fundamentally restricted by distribution of mass between parent and offspring. Proc Natl Acad Sci U S A 2022; 119:e2122197119. [PMID: 35294281 PMCID: PMC8944278 DOI: 10.1073/pnas.2122197119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cells and simple cell colonies reproduce by fragmenting their bodies into pieces. Produced newborns need to grow before they can reproduce again. How big a cell or a cell colony should grow? How many offspring should be produced? Should they be of equal size or diverse? We show that the simple fact that the immediate mass of offspring cannot exceed the mass of parents restricts possible answers to these questions. For example, our theory states that, when mass is conserved in the course of fragmentation, the evolutionarily optimal reproduction mode is fragmentation into exactly two, typically equal, parts. Our theory also shows conditions which promote evolution of asymmetric division or fragmentation into multiple pieces. Multiple modes of asexual reproduction are observed among microbial organisms in natural populations. These modes are not only subject to evolution, but may drive evolutionary competition directly through their impact on population growth rates. The most prominent transition between two such modes is the one from unicellularity to multicellularity. We present a model of the evolution of reproduction modes, where a parent organism fragments into smaller parts. While the size of an organism at fragmentation, the number of offspring, and their sizes may vary a lot, the combined mass of fragments is limited by the mass of the parent organism. We found that mass conservation can fundamentally limit the number of possible reproduction modes. This has important direct implications for microbial life: For unicellular species, the interplay between cell shape and kinetics of the cell growth implies that the largest and the smallest possible cells should be rod shaped rather than spherical. For primitive multicellular species, these considerations can explain why rosette cell colonies evolved a mechanistically complex binary split reproduction. Finally, we show that the loss of organism mass during sporulation can explain the macroscopic sizes of the formally unicellular microorganism Myxomycetes plasmodium. Our findings demonstrate that a number of seemingly unconnected phenomena observed in unrelated species may be different manifestations of the same underlying process.
Collapse
|
8
|
Henriques GJB, van Vliet S, Doebeli M. Multilevel selection favors fragmentation modes that maintain cooperative interactions in multispecies communities. PLoS Comput Biol 2021; 17:e1008896. [PMID: 34516543 PMCID: PMC8460008 DOI: 10.1371/journal.pcbi.1008896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/23/2021] [Accepted: 08/27/2021] [Indexed: 02/02/2023] Open
Abstract
Reproduction is one of the requirements for evolution and a defining feature of life. Yet, across the tree of life, organisms reproduce in many different ways. Groups of cells (e.g., multicellular organisms, colonial microbes, or multispecies biofilms) divide by releasing propagules that can be single-celled or multicellular. What conditions determine the number and size of reproductive propagules? In multicellular organisms, existing theory suggests that single-cell propagules prevent the accumulation of deleterious mutations (e.g., cheaters). However, groups of cells, such as biofilms, sometimes contain multiple metabolically interdependent species. This creates a reproductive dilemma: small daughter groups, which prevent the accumulation of cheaters, are also unlikely to contain the species diversity that is required for ecological success. Here, we developed an individual-based, multilevel selection model to investigate how such multi-species groups can resolve this dilemma. By tracking the dynamics of groups of cells that reproduce by fragmenting into smaller groups, we identified fragmentation modes that can maintain cooperative interactions. We systematically varied the fragmentation mode and calculated the maximum mutation rate that communities can withstand before being driven to extinction by the accumulation of cheaters. We find that for groups consisting of a single species, the optimal fragmentation mode consists of releasing single-cell propagules. For multi-species groups we find various optimal strategies. With migration between groups, single-cell propagules are favored. Without migration, larger propagules sizes are optimal; in this case, group-size dependent fissioning rates can prevent the accumulation of cheaters. Our work shows that multi-species groups can evolve reproductive strategies that allow them to maintain cooperative interactions.
Collapse
Affiliation(s)
| | - Simon van Vliet
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michael Doebeli
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Lang TA, Walker ME, Jiranek V. Disruption of ECM33 in diploid wine yeast EC1118: cell morphology and aggregation and their influence on fermentation performance. FEMS Yeast Res 2021; 21:6343052. [PMID: 34355770 DOI: 10.1093/femsyr/foab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
When investigating yeast gene function in relation to fermentation, many screens rely on haploid yeast derivatives. This, however, is not representative of industrial strains, which are typically diploid. One such example is the disruption of ECM33, which was associated with improved fermentation in the haploid wine yeast C911D, but remains uncharacterised in a diploid industrial strain background. We report on the homozygous disruption of ECM33 in Lalvin EC1118 using CRISPR/Cas9. EC1118 ecm33 resulted in a reduction of fermentation duration in a defined medium with limiting and sufficient nitrogen (-20% and -13%, respectively) when shaken. Increased cell size and aggregation, a phenotype previously unidentified in ecm33∆ as haploid yeast tend to aggregate, was also observed. This phenotype led to premature settling thereby the yeast behaving similarly to EC1118 in wine-like semi-static fermentations in a chemically defined medium. Further assessment in semi-static Riesling and Chardonnay fermentations inoculated based on cell number or biomass resulted in no significant difference or significantly slower fermentation duration in comparison the EC1118, nullifying the benefits of this mutation unless agitation is applied. This study draws attention to phenotypes being condition-dependent, highlighting the need to characterise and verify fermentation efficiency mutations in industrial yeast.
Collapse
Affiliation(s)
- Tom A Lang
- Department of Wine Science, University of Adelaide, Waite Campus, South Australia, Australia
| | - Michelle E Walker
- Department of Wine Science, University of Adelaide, Waite Campus, South Australia, Australia
| | - Vladimir Jiranek
- Department of Wine Science, University of Adelaide, Waite Campus, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production
| |
Collapse
|
10
|
Pichugin Y, Traulsen A. Evolution of multicellular life cycles under costly fragmentation. PLoS Comput Biol 2020; 16:e1008406. [PMID: 33211685 PMCID: PMC7714367 DOI: 10.1371/journal.pcbi.1008406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 12/03/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
A fascinating wealth of life cycles is observed in biology, from unicellularity to the concerted fragmentation of multicellular units. However, the understanding of factors driving their evolution is still limited. We show that costs of fragmentation have a major impact on the evolution of life cycles due to their influence on the growth rates of the associated populations. We model a group structured population of undifferentiated cells, where cell clusters reproduce by fragmentation. Fragmentation events are associated with a cost expressed by either a fragmentation delay, an additional risk, or a cell loss. The introduction of such fragmentation costs vastly increases the set of possible life cycles. Based on these findings, we suggest that the evolution of life cycles involving splitting into multiple offspring can be directly associated with the fragmentation cost. Moreover, the impact of this cost alone is strong enough to drive the emergence of multicellular units that eventually split into many single cells, even under scenarios that strongly disfavour collectives compared to solitary individuals.
Collapse
Affiliation(s)
- Yuriy Pichugin
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
- * E-mail:
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| |
Collapse
|
11
|
Pentz JT, Márquez-Zacarías P, Bozdag GO, Burnetti A, Yunker PJ, Libby E, Ratcliff WC. Ecological Advantages and Evolutionary Limitations of Aggregative Multicellular Development. Curr Biol 2020; 30:4155-4164.e6. [PMID: 32888478 DOI: 10.1016/j.cub.2020.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/14/2020] [Accepted: 08/03/2020] [Indexed: 01/24/2023]
Abstract
All multicellular organisms develop through one of two basic routes: they either aggregate from free-living cells, creating potentially chimeric multicellular collectives, or they develop clonally via mother-daughter cellular adhesion. Although evolutionary theory makes clear predictions about trade-offs between these developmental modes, these have never been experimentally tested in otherwise genetically identical organisms. We engineered unicellular baker's yeast (Saccharomyces cerevisiae) to develop either clonally ("snowflake"; Δace2) or aggregatively ("floc"; GAL1p::FLO1) and examined their fitness in a fluctuating environment characterized by periods of growth and selection for rapid sedimentation. When cultured independently, aggregation was far superior to clonal development, providing a 35% advantage during growth and a 2.5-fold advantage during settling selection. Yet when competed directly, clonally developing snowflake yeast rapidly displaced aggregative floc. This was due to unexpected social exploitation: snowflake yeast, which do not produce adhesive FLO1, nonetheless become incorporated into flocs at a higher frequency than floc cells themselves. Populations of chimeric clusters settle much faster than floc alone, providing snowflake yeast with a fitness advantage during competition. Mathematical modeling suggests that such developmental cheating may be difficult to circumvent; hypothetical "choosy floc" that avoid exploitation by maintaining clonality pay an ecological cost when rare, often leading to their extinction. Our results highlight the conflict at the heart of aggregative development: non-specific cellular binding provides a strong ecological advantage-the ability to quickly form groups-but this very feature leads to its exploitation.
Collapse
Affiliation(s)
- Jennifer T Pentz
- Department of Molecular Biology, Umeå University, Umeå 90187, Sweden; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pedro Márquez-Zacarías
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anthony Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå 90187, Sweden
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
12
|
Yanni D, Jacobeen S, Márquez-Zacarías P, Weitz JS, Ratcliff WC, Yunker PJ. Topological constraints in early multicellularity favor reproductive division of labor. eLife 2020; 9:e54348. [PMID: 32940598 PMCID: PMC7609046 DOI: 10.7554/elife.54348] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
Reproductive division of labor (e.g. germ-soma specialization) is a hallmark of the evolution of multicellularity, signifying the emergence of a new type of individual and facilitating the evolution of increased organismal complexity. A large body of work from evolutionary biology, economics, and ecology has shown that specialization is beneficial when further division of labor produces an accelerating increase in absolute productivity (i.e. productivity is a convex function of specialization). Here we show that reproductive specialization is qualitatively different from classical models of resource sharing, and can evolve even when the benefits of specialization are saturating (i.e. productivity is a concave function of specialization). Through analytical theory and evolutionary individual-based simulations, we demonstrate that reproductive specialization is strongly favored in sparse networks of cellular interactions that reflect the morphology of early, simple multicellular organisms, highlighting the importance of restricted social interactions in the evolution of reproductive specialization.
Collapse
Affiliation(s)
- David Yanni
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Shane Jacobeen
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Pedro Márquez-Zacarías
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Joshua S Weitz
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter J Yunker
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
13
|
Ordway SW, King DM, Friend D, Noto C, Phu S, Huelskamp H, Inglis RF, Olivas W, Bahar S. Phase transition behaviour in yeast and bacterial populations under stress. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192211. [PMID: 32874614 PMCID: PMC7428260 DOI: 10.1098/rsos.192211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Non-equilibrium phase transitions from survival to extinction have recently been observed in computational models of evolutionary dynamics. Dynamical signatures predictive of population collapse have been observed in yeast populations under stress. We experimentally investigate the population response of the budding yeast Saccharomyces cerevisiae to biological stressors (temperature and salt concentration) in order to investigate the system's behaviour in the vicinity of population collapse. While both conditions lead to population decline, the dynamical characteristics of the population response differ significantly depending on the stressor. Under temperature stress, the population undergoes a sharp change with significant fluctuations within a critical temperature range, indicative of a continuous absorbing phase transition. In the case of salt stress, the response is more gradual. A similar range of response is observed with the application of various antibiotics to Escherichia coli, with a variety of patterns of decreased growth in response to antibiotic stress both within and across antibiotic classes and mechanisms of action. These findings have implications for the identification of critical tipping points for populations under environmental stress.
Collapse
Affiliation(s)
- Stephen W. Ordway
- Department of Physics and Astronomy, University of Missouri – St. Louis, Saint Louis, MO, USA
| | - Dawn M. King
- Department of Physics and Astronomy, University of Missouri – St. Louis, Saint Louis, MO, USA
| | - David Friend
- Department of Physics and Astronomy, University of Missouri – St. Louis, Saint Louis, MO, USA
- Department of Biology, University of Missouri – St. Louis, Saint Louis, MO, USA
| | - Christine Noto
- Department of Biology, University of Missouri – St. Louis, Saint Louis, MO, USA
| | - Snowlee Phu
- Department of Biology, University of Missouri – St. Louis, Saint Louis, MO, USA
| | - Holly Huelskamp
- Department of Biology, University of Missouri – St. Louis, Saint Louis, MO, USA
| | - R. Fredrik Inglis
- Department of Biology, University of Missouri – St. Louis, Saint Louis, MO, USA
| | - Wendy Olivas
- Department of Biology, University of Missouri – St. Louis, Saint Louis, MO, USA
| | - Sonya Bahar
- Department of Physics and Astronomy, University of Missouri – St. Louis, Saint Louis, MO, USA
| |
Collapse
|
14
|
Pichugin Y, Park HJ, Traulsen A. Evolution of simple multicellular life cycles in dynamic environments. J R Soc Interface 2020; 16:20190054. [PMID: 31088261 DOI: 10.1098/rsif.2019.0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mode of reproduction is a critical characteristic of any species, as it has a strong effect on its evolution. As any other trait, the reproduction mode is subject to natural selection and may adapt to the environment. When the environment varies over time, different reproduction modes could be optimal at different times. The natural response to a dynamic environment seems to be bet hedging, where multiple reproductive strategies are stochastically executed. Here, we develop a framework for the evolution of simple multicellular life cycles in a dynamic environment. We use a matrix population model of undifferentiated multicellular groups undergoing fragmentation and ask which mode maximizes the population growth rate. Counterintuitively, we find that natural selection in dynamic environments generally tends to promote deterministic, not stochastic, reproduction modes.
Collapse
Affiliation(s)
- Yuriy Pichugin
- Max Planck Institute for Evolutionary Biology , August-Thienemann-Strasse 2, Plön 24306 , Germany
| | - Hye Jin Park
- Max Planck Institute for Evolutionary Biology , August-Thienemann-Strasse 2, Plön 24306 , Germany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology , August-Thienemann-Strasse 2, Plön 24306 , Germany
| |
Collapse
|
15
|
Abstract
Flocculation or cell aggregation is a well-appreciated characteristic of industrial brewer’s strains, since it allows removal of the cells from the beer in a cost-efficient and environmentally-friendly manner. However, many industrial strains are non-flocculent and genetic interference to increase the flocculation characteristics are not appreciated by the consumers. We applied adaptive laboratory evolution (ALE) to three non-flocculent, industrial Saccharomyces cerevisiae brewer’s strains using small continuous bioreactors (ministats) to obtain an aggregative phenotype, i.e., the “snowflake” phenotype. These aggregates could increase yeast sedimentation considerably. We evaluated the performance of these evolved strains and their produced flavor during lab scale beer fermentations. The small aggregates did not result in a premature sedimentation during the fermentation and did not result in major flavor changes of the produced beer. These results show that ALE could be used to increase the sedimentation behavior of non-flocculent brewer’s strains.
Collapse
|
16
|
Gao Y, Traulsen A, Pichugin Y. Interacting cells driving the evolution of multicellular life cycles. PLoS Comput Biol 2019; 15:e1006987. [PMID: 31086369 PMCID: PMC6534324 DOI: 10.1371/journal.pcbi.1006987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/24/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023] Open
Abstract
Evolution of complex multicellular life began from the emergence of a life cycle involving the formation of cell clusters. The opportunity for cells to interact within clusters provided them with an advantage over unicellular life forms. However, what kind of interactions may lead to the evolution of multicellular life cycles? Here, we combine evolutionary game theory with a model for the emergence of multicellular groups to investigate how cell interactions can influence reproduction modes during the early stages of the evolution of multicellularity. In our model, the presence of both cell types is maintained by stochastic phenotype switching during cell division. We identify evolutionary optimal life cycles as those which maximize the population growth rate. Among all interactions captured by two-player games, the vast majority promotes two classes of life cycles: (i) splitting into unicellular propagules or (ii) fragmentation into two offspring clusters of equal (or almost equal) size. Our findings indicate that the three most important characteristics, determining whether multicellular life cycles will evolve, are the average performance of homogeneous groups, heterogeneous groups, and solitary cells. Multicellular organisms are ubiquitous. But how did the first multicellular organisms arise? It is typically argued that this occurred due to benefits coming from interactions between cells. One example of such interactions is the division of labour. For instance, colonial cyanobacteria delegate photosynthesis and nitrogen fixation to different cells within the colony. In this way, the colony gains a growth advantage over unicellular cyanobacteria. However, not all cell interactions favour multicellular life. Cheater cells residing in a colony without any contribution will outgrow other cells. Then, the growing burden of cheaters may eventually destroy the colony. Here, we ask what kinds of interactions promote the evolution of multicellularity? We investigated all interactions captured by pairwise games and for each of them, we look for the evolutionarily optimal life cycle: How big should the colony grow and how should it split into offspring cells or colonies? We found that multicellularity can evolve with interactions far beyond cooperation or division of labour scenarios. More surprisingly, most of the life cycles found fall into either of two categories: A parent colony splits into two multicellular parts, or it splits into multiple independent cells.
Collapse
Affiliation(s)
- Yuanxiao Gao
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Yuriy Pichugin
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
- * E-mail:
| |
Collapse
|
17
|
Gulli JG, Herron MD, Ratcliff WC. Evolution of altruistic cooperation among nascent multicellular organisms. Evolution 2019; 73:1012-1024. [PMID: 30941746 PMCID: PMC6685537 DOI: 10.1111/evo.13727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Cooperation is a classic solution to hostile environments that limit individual survival. In extreme cases this may lead to the evolution of new types of biological individuals (e.g., eusocial super-organisms). We examined the potential for interindividual cooperation to evolve via experimental evolution, challenging nascent multicellular "snowflake yeast" with an environment in which solitary multicellular clusters experienced low survival. In response, snowflake yeast evolved to form cooperative groups composed of thousands of multicellular clusters that typically survive selection. Group formation occurred through the creation of protein aggregates, only arising in strains with high (>2%) rates of cell death. Nonetheless, it was adaptive and repeatable, although ultimately evolutionarily unstable. Extracellular protein aggregates act as a common good, as they can be exploited by cheats that do not contribute to aggregate production. These results highlight the importance of group formation as a mechanism for surviving environmental stress, and underscore the remarkable ease with which even simple multicellular entities may evolve-and lose-novel social traits.
Collapse
Affiliation(s)
- Jordan G. Gulli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Matthew D. Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
18
|
Olejarz J, Kaveh K, Veller C, Nowak MA. Selection for synchronized cell division in simple multicellular organisms. J Theor Biol 2018; 457:170-179. [PMID: 30172691 PMCID: PMC6169303 DOI: 10.1016/j.jtbi.2018.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/30/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023]
Abstract
The evolution of multicellularity was a major transition in the history of life on earth. Conditions under which multicellularity is favored have been studied theoretically and experimentally. But since the construction of a multicellular organism requires multiple rounds of cell division, a natural question is whether these cell divisions should be synchronous or not. We study a population model in which there compete simple multicellular organisms that grow by either synchronous or asynchronous cell divisions. We demonstrate that natural selection can act differently on synchronous and asynchronous cell division, and we offer intuition for why these phenotypes are generally not neutral variants of each other.
Collapse
Affiliation(s)
- Jason Olejarz
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA.
| | - Kamran Kaveh
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA.
| | - Carl Veller
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
19
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
20
|
Jacobeen S, Graba EC, Brandys CG, Day TC, Ratcliff WC, Yunker PJ. Geometry, packing, and evolutionary paths to increased multicellular size. Phys Rev E 2018; 97:050401. [PMID: 29906891 DOI: 10.1103/physreve.97.050401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Indexed: 01/09/2023]
Abstract
The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018)10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ∼13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.
Collapse
Affiliation(s)
- Shane Jacobeen
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Elyes C Graba
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Colin G Brandys
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Thomas C Day
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Ratcliff WC, Herron M, Conlin PL, Libby E. Nascent life cycles and the emergence of higher-level individuality. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0420. [PMID: 29061893 DOI: 10.1098/rstb.2016.0420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Evolutionary transitions in individuality (ETIs) occur when formerly autonomous organisms evolve to become parts of a new, 'higher-level' organism. One of the first major hurdles that must be overcome during an ETI is the emergence of Darwinian evolvability in the higher-level entity (e.g. a multicellular group), and the loss of Darwinian autonomy in the lower-level units (e.g. individual cells). Here, we examine how simple higher-level life cycles are a key innovation during an ETI, allowing this transfer of fitness to occur 'for free'. Specifically, we show how novel life cycles can arise and lead to the origin of higher-level individuals by (i) mitigating conflicts between levels of selection, (ii) engendering the expression of heritable higher-level traits and (iii) allowing selection to efficiently act on these emergent higher-level traits. Further, we compute how canonical early life cycles vary in their ability to fix beneficial mutations via mathematical modelling. Life cycles that lack a persistent lower-level stage and develop clonally are far more likely to fix 'ratcheting' mutations that limit evolutionary reversion to the pre-ETI state. By stabilizing the fragile first steps of an evolutionary transition in individuality, nascent higher-level life cycles may play a crucial role in the origin of complex life.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter L Conlin
- Department of Biology and BEACON Center for the Study of Evolution in Action, University of Washington, Seattle, WA 98195, USA
| | - Eric Libby
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
22
|
Quintero-Galvis JF, Paleo-López R, Solano-Iguaran JJ, Poupin MJ, Ledger T, Gaitan-Espitia JD, Antoł A, Travisano M, Nespolo RF. Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach. Ecol Evol 2018; 8:4619-4630. [PMID: 29760902 PMCID: PMC5938455 DOI: 10.1002/ece3.3979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 01/23/2018] [Accepted: 02/11/2018] [Indexed: 01/27/2023] Open
Abstract
There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts (Sacharomyces cerevisiae) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions-promoting multicellularity.
Collapse
Affiliation(s)
| | - Rocío Paleo-López
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | | | - María Josefina Poupin
- Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Laboratorio de Bioingeniería Facultad de Ingeniería y Ciencias Universidad Adolfo Ibáñez Santiago Chile
| | - Thomas Ledger
- Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Laboratorio de Bioingeniería Facultad de Ingeniería y Ciencias Universidad Adolfo Ibáñez Santiago Chile
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong Hong Kong China.,CSIRO Oceans & Atmosphere Hobart TAS Australia
| | - Andrzej Antoł
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis MN USA
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile.,Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB) Santiago Chile
| |
Collapse
|
23
|
Jacobeen S, Pentz JT, Graba EC, Brandys CG, Ratcliff WC, Yunker PJ. Cellular packing, mechanical stress and the evolution of multicellularity. NATURE PHYSICS 2018; 14:286-290. [PMID: 31723354 PMCID: PMC6853058 DOI: 10.1038/s41567-017-0002-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks (~291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size-a fundamental step in the evolution of multicellularity.
Collapse
Affiliation(s)
- Shane Jacobeen
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jennifer T. Pentz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Elyes C. Graba
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Colin G. Brandys
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
24
|
Tungtur SK, Nishimune N, Radel J, Nishimune H. Mouse Behavior Tracker: An economical method for tracking behavior in home cages. Biotechniques 2017; 63:215-220. [PMID: 29185921 PMCID: PMC5910027 DOI: 10.2144/000114607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 10/06/2017] [Indexed: 02/02/2023] Open
Abstract
Analysis of mouse behavior often requires expensive equipment and transfer of the mice to new test environments, which could trigger confounding behavior alterations. Here, we describe a system for tracking mouse behavior in home cages using a low-cost USB webcam and free software (Fiji and wrMTrck). We demonstrate the effectiveness of this method by tracking differences in distance traveled, speed, and movement tracks between wild-type mice and amyotrophic lateral sclerosis (ALS) model mice (SOD1G93A).
Collapse
Affiliation(s)
- Sudheer K. Tungtur
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Natsuko Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Jeff Radel
- Department of Occupational Therapy Education, University of Kansas School of Health Professions, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| |
Collapse
|
25
|
Hope EA, Amorosi CJ, Miller AW, Dang K, Heil CS, Dunham MJ. Experimental Evolution Reveals Favored Adaptive Routes to Cell Aggregation in Yeast. Genetics 2017; 206:1153-1167. [PMID: 28450459 PMCID: PMC5499169 DOI: 10.1534/genetics.116.198895] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/06/2017] [Indexed: 02/02/2023] Open
Abstract
Yeast flocculation is a community-building cell aggregation trait that is an important mechanism of stress resistance and a useful phenotype for brewers; however, it is also a nuisance in many industrial processes, in clinical settings, and in the laboratory. Chemostat-based evolution experiments are impaired by inadvertent selection for aggregation, which we observe in 35% of populations. These populations provide a testing ground for understanding the breadth of genetic mechanisms Saccharomyces cerevisiae uses to flocculate, and which of those mechanisms provide the biggest adaptive advantages. In this study, we employed experimental evolution as a tool to ask whether one or many routes to flocculation are favored, and to engineer a strain with reduced flocculation potential. Using a combination of whole genome sequencing and bulk segregant analysis, we identified causal mutations in 23 independent clones that had evolved cell aggregation during hundreds of generations of chemostat growth. In 12 of those clones, we identified a transposable element insertion in the promoter region of known flocculation gene FLO1, and, in an additional five clones, we recovered loss-of-function mutations in transcriptional repressor TUP1, which regulates FLO1 and other related genes. Other causal mutations were found in genes that have not been previously connected to flocculation. Evolving a flo1 deletion strain revealed that this single deletion reduces flocculation occurrences to 3%, and demonstrated the efficacy of using experimental evolution as a tool to identify and eliminate the primary adaptive routes for undesirable traits.
Collapse
Affiliation(s)
- Elyse A Hope
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Clara J Amorosi
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Aaron W Miller
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Kolena Dang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Caiti Smukowski Heil
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
26
|
Gherardi M, Amato A, Bouly JP, Cheminant S, Ferrante MI, d'Alcalá MR, Iudicone D, Falciatore A, Cosentino Lagomarsino M. Regulation of chain length in two diatoms as a growth-fragmentation process. Phys Rev E 2016; 94:022418. [PMID: 27627344 DOI: 10.1103/physreve.94.022418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/07/2022]
Abstract
Chain formation in diatoms is relevant because of several aspects of their adaptation to the ecosystem. However, the tools to quantify the regulation of their assemblage and infer specific mechanisms in a laboratory setting are scarce. To address this problem, we define an approach based on a statistical physics model of chain growth and separation in combination with experimental evaluation of chain-length distributions. Applying this combined analysis to data from Chaetoceros decipiens and Phaeodactylum tricornutum, we find that cells of the first species control chain separation, likely through a cell-to-cell communication process, while the second species only modulates the separation rate. These results promote quantitative methods for characterizing chain formation in several chain-forming species and in diatoms in particular.
Collapse
Affiliation(s)
- Marco Gherardi
- Dipartimento di Fisica, University of Milano, Via Celoria 16, Milano, Italy.,INFN, Milano, Italy.,Sorbonne Universités, UPMC Université Paris 6, UMR 7238, Computational and Quantitative Biology, 15 rue de l'École de Médecine, Paris, France
| | - Alberto Amato
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, Naples, Italy
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC Université Paris 6, UMR 7238, Computational and Quantitative Biology, 15 rue de l'École de Médecine, Paris, France
| | - Soizic Cheminant
- Sorbonne Universités, UPMC Université Paris 6, UMR 7238, Computational and Quantitative Biology, 15 rue de l'École de Médecine, Paris, France
| | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, Naples, Italy
| | - Maurizio Ribera d'Alcalá
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, Naples, Italy
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, Naples, Italy
| | - Angela Falciatore
- Sorbonne Universités, UPMC Université Paris 6, UMR 7238, Computational and Quantitative Biology, 15 rue de l'École de Médecine, Paris, France.,CNRS, UMR 7238, Paris, France
| | - Marco Cosentino Lagomarsino
- Sorbonne Universités, UPMC Université Paris 6, UMR 7238, Computational and Quantitative Biology, 15 rue de l'École de Médecine, Paris, France.,CNRS, UMR 7238, Paris, France
| |
Collapse
|
27
|
Lachapelle J, Bell G, Colegrave N. Experimental adaptation to marine conditions by a freshwater alga. Evolution 2015; 69:2662-75. [PMID: 26299442 DOI: 10.1111/evo.12760] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The marine-freshwater boundary has been suggested as one of the most difficult to cross for organisms. Salt is a major ecological factor and provides an unequalled range of ecological opportunity because marine habitats are much more extensive than freshwater habitats, and because salt strongly affects the structure of microbial communities. We exposed experimental populations of the freshwater alga Chlamydomonas reinhardtii to steadily increasing concentrations of salt. About 98% of the lines went extinct. The ones that survived now thrive in growth medium with 36 g⋅L(-1) NaCl, and in seawater. Our results indicate that adaptation to marine conditions proceeded first through genetic assimilation of an inducible response to relatively low salt concentrations that was present in the ancestors, and subsequently by the evolution of an enhanced inducible response to high salt concentrations. These changes appear to have evolved through reversible and irreversible modifications, respectively. The evolution of marine from freshwater lineages is an example that clearly indicates the possibility of studying certain aspects of major ecological transitions in the laboratory.
Collapse
Affiliation(s)
- Josianne Lachapelle
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom.
| | - Graham Bell
- Biology Department, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| |
Collapse
|
28
|
Duran-Nebreda S, Solé R. Emergence of multicellularity in a model of cell growth, death and aggregation under size-dependent selection. J R Soc Interface 2015; 12:20140982. [PMID: 25551152 DOI: 10.1098/rsif.2014.0982] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
How multicellular life forms evolved from unicellular ones constitutes a major problem in our understanding of the evolution of our biosphere. A recent set of experiments involving yeast cell populations have shown that selection for faster sedimenting cells leads to the appearance of stable aggregates of cells that are able to split into smaller clusters. It was suggested that the observed evolutionary patterns could be the result of evolved programmes affecting cell death. Here, we show, using a simple model of cell-cell interactions and evolving adhesion rates, that the observed patterns in cluster size and localized mortality can be easily interpreted in terms of waste accumulation and toxicity-driven apoptosis. This simple mechanism would have played a key role in the early evolution of multicellular life forms based on both aggregative and clonal development. The potential extensions of this work and its implications for natural and synthetic multicellularity are discussed.
Collapse
|
29
|
Ratcliff WC, Fankhauser JD, Rogers DW, Greig D, Travisano M. Origins of multicellular evolvability in snowflake yeast. Nat Commun 2015; 6:6102. [PMID: 25600558 PMCID: PMC4309424 DOI: 10.1038/ncomms7102] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 12/15/2014] [Indexed: 12/02/2022] Open
Abstract
Complex life has arisen through a series of ‘major transitions’ in which collectives of formerly autonomous individuals evolve into a single, integrated organism. A key step in this process is the origin of higher-level evolvability, but little is known about how higher-level entities originate and gain the capacity to evolve as an individual. Here we report a single mutation that not only creates a new level of biological organization, but also potentiates higher-level evolvability. Disrupting the transcription factor ACE2 in Saccharomyces cerevisiae prevents mother–daughter cell separation, generating multicellular ‘snowflake’ yeast. Snowflake yeast develop through deterministic rules that produce geometrically defined clusters that preclude genetic conflict and display a high broad-sense heritability for multicellular traits; as a result they are preadapted to multicellular adaptation. This work demonstrates that simple microevolutionary changes can have profound macroevolutionary consequences, and suggests that the formation of clonally developing clusters may often be the first step to multicellularity. The first steps in the transition to multicellularity remain poorly understood. Here, the authors demonstrate that disrupting a single gene in yeast results in multicellular clusters that develop clonally and possess a high degree of multicellular heritability, predisposing them to multicellular adaptation.
Collapse
Affiliation(s)
- William C Ratcliff
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | - David W Rogers
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Duncan Greig
- 1] Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany [2] Department of Genetics, Evolution, and Environment, University College London, London WC1N 6BT, UK
| | - Michael Travisano
- 1] Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota 55108, USA [2] The BioTechnology Institute, University of Minnesota, St Paul, Minnesota 55108, USA
| |
Collapse
|
30
|
Rainey PB, De Monte S. Resolving Conflicts During the Evolutionary Transition to Multicellular Life. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091740] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul B. Rainey
- New Zealand Institute for Advanced Study and Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Auckland 0745, New Zealand;
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Silvia De Monte
- Institut de Biologie de l'Ecole Normale Supérieure, UMR CNRS 8197 INSERM 1024, F-75005 Paris, France;
| |
Collapse
|
31
|
Libby E, Ratcliff W, Travisano M, Kerr B. Geometry shapes evolution of early multicellularity. PLoS Comput Biol 2014; 10:e1003803. [PMID: 25233196 PMCID: PMC4168977 DOI: 10.1371/journal.pcbi.1003803] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
Organisms have increased in complexity through a series of major evolutionary transitions, in which formerly autonomous entities become parts of a novel higher-level entity. One intriguing feature of the higher-level entity after some major transitions is a division of reproductive labor among its lower-level units in which reproduction is the sole responsibility of a subset of units. Although it can have clear benefits once established, it is unknown how such reproductive division of labor originates. We consider a recent evolution experiment on the yeast Saccharomyces cerevisiae as a unique platform to address the issue of reproductive differentiation during an evolutionary transition in individuality. In the experiment, independent yeast lineages evolved a multicellular "snowflake-like" cluster formed in response to gravity selection. Shortly after the evolution of clusters, the yeast evolved higher rates of cell death. While cell death enables clusters to split apart and form new groups, it also reduces their performance in the face of gravity selection. To understand the selective value of increased cell death, we create a mathematical model of the cellular arrangement within snowflake yeast clusters. The model reveals that the mechanism of cell death and the geometry of the snowflake interact in complex, evolutionarily important ways. We find that the organization of snowflake yeast imposes powerful limitations on the available space for new cell growth. By dying more frequently, cells in clusters avoid encountering space limitations, and, paradoxically, reach higher numbers. In addition, selection for particular group sizes can explain the increased rate of apoptosis both in terms of total cell number and total numbers of collectives. Thus, by considering the geometry of a primitive multicellular organism we can gain insight into the initial emergence of reproductive division of labor during an evolutionary transition in individuality.
Collapse
Affiliation(s)
- Eric Libby
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| | - William Ratcliff
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Michael Travisano
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ben Kerr
- Department of Biology and BEACON Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
32
|
Ratcliff WC, Herron MD, Howell K, Pentz JT, Rosenzweig F, Travisano M. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat Commun 2014; 4:2742. [PMID: 24193369 PMCID: PMC3831279 DOI: 10.1038/ncomms3742] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023] Open
Abstract
The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. The early steps in the evolution of multicellularity are poorly understood. Here, Ratcliff et al. show that multicellularity can rapidly evolve in the green alga Chlamydomonas reinhardtii, demonstrating that single-cell developmental bottlenecks may evolve rapidly via co-option of the ancestral phenotype.
Collapse
Affiliation(s)
- William C Ratcliff
- 1] School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA [2] Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, Minnesota 55108, USA [3] The BioTechnology Institute, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ratcliff WC, Travisano M. Experimental Evolution of Multicellular Complexity in Saccharomyces cerevisiae. Bioscience 2014. [DOI: 10.1093/biosci/biu045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2013; 110:E4223-31. [PMID: 24145419 DOI: 10.1073/pnas.1305949110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and industrial applications of S. cerevisiae. Multicellular, fast-sedimenting lineages obtained from a haploid S. cerevisiae strain in two independent evolution experiments were analyzed by whole genome resequencing. The two evolved cell lines showed different frameshift mutations in a stretch of eight adenosines in ACE2, which encodes a transcriptional regulator involved in cell cycle control and mother-daughter cell separation. Introduction of the two ace2 mutant alleles into the haploid parental strain led to slow-sedimenting cell clusters that consisted of just a few cells, thus representing only a partial reconstruction of the evolved phenotype. In addition to single-nucleotide mutations, a whole-genome duplication event had occurred in both evolved multicellular strains. Construction of a diploid reference strain with two mutant ace2 alleles led to complete reconstruction of the multicellular-fast sedimenting phenotype. This study shows that whole-genome duplication and a frameshift mutation in ACE2 are sufficient to generate a fast-sedimenting, multicellular phenotype in S. cerevisiae. The nature of the ace2 mutations and their occurrence in two independent evolution experiments encompassing fewer than 500 generations of selective growth suggest that switching between unicellular and multicellular phenotypes may be relevant for competitiveness of S. cerevisiae in natural environments.
Collapse
|