1
|
Pérez-Alfocea F, Borghi M, Guerrero JJ, Jiménez AR, Jiménez-Gómez JM, Fernie AR, Bartomeus I. Pollinator-assisted plant phenotyping, selection, and breeding for crop resilience to abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:56-64. [PMID: 38581375 DOI: 10.1111/tpj.16748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Food security is threatened by climate change, with heat and drought being the main stresses affecting crop physiology and ecosystem services, such as plant-pollinator interactions. We hypothesize that tracking and ranking pollinators' preferences for flowers under environmental pressure could be used as a marker of plant quality for agricultural breeding to increase crop stress tolerance. Despite increasing relevance of flowers as the most stress sensitive organs, phenotyping platforms aim at identifying traits of resilience by assessing the plant physiological status through remote sensing-assisted vegetative indexes, but find strong bottlenecks in quantifying flower traits and in accurate genotype-to-phenotype prediction. However, as the transport of photoassimilates from leaves (sources) to flowers (sinks) is reduced in low-resilient plants, flowers are better indicators than leaves of plant well-being. Indeed, the chemical composition and amount of pollen and nectar that flowers produce, which ultimately serve as food resources for pollinators, change in response to environmental cues. Therefore, pollinators' preferences could be used as a measure of functional source-to-sink relationships for breeding decisions. To achieve this challenging goal, we propose to develop a pollinator-assisted phenotyping and selection platform for automated quantification of Genotype × Environment × Pollinator interactions through an insect geo-positioning system. Pollinator-assisted selection can be validated by metabolic, transcriptomic, and ionomic traits, and mapping of candidate genes, linking floral and leaf traits, pollinator preferences, plant resilience, and crop productivity. This radical new approach can change the current paradigm of plant phenotyping and find new paths for crop redomestication and breeding assisted by ecological decisions.
Collapse
Affiliation(s)
| | | | - Juan José Guerrero
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | | | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Postdam-Golm, Germany
| | | |
Collapse
|
2
|
Bechler JP, Steiner K, Tschapka M. Feeding efficiency of two coexisting nectarivorous bat species (Phyllostomidae: Glossophaginae) at flowers of two key-resource plants. PLoS One 2024; 19:e0303227. [PMID: 38924018 PMCID: PMC11207168 DOI: 10.1371/journal.pone.0303227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/23/2024] [Indexed: 06/28/2024] Open
Abstract
Animals should maximize their energy uptake while reducing the costs for foraging. For flower-visitors these costs and benefits are rather straight forward as the energy uptake equals the caloric content of the consumed nectar while the costs equal the handling time at the flower. Due to their energetically demanding lifestyle, flower-visiting bats face particularly harsh energetic conditions and thus need to optimize their foraging behavior at the flowers of the different plant species they encounter within their habitat. In flight cage experiments we examined the nectar-drinking behavior (i.e. hovering duration, nectar uptake, and the resulting feeding efficiency) of the specialized nectar-feeding bat Hylonycteris underwoodi and the more generalistic Glossophaga commissarisi at flowers of two plant species that constitute important nectar resources in the Caribbean lowland rainforests of Costa Rica and compared nectar-drinking behavior between both bat species and at both plant species. We hypothesized that the 1) specialized bat should outperform the more generalistic species and that 2) bats should generally perform better at flowers of the nectar-rich flowers of the bromeliad Werauhia gladioliflora than at the relatively nectar-poor flowers of the Solanaceae Merinthopodium neuranthum that has an extremely long flowering phase and therefore is an extremely reliable nectar resource, particularly for the specialized Hylonycteris. While we did not find substantial differences in the feeding efficiency of the generalist G. commissarisi, we observed an increased feeding efficiency of the specialized H. underwoodi at flowers of the nectar-poor M. neuranthum. This suggests that familiarity and ecological importance are more important determinants of the interaction than just morphological traits. Our results demonstrate that in addition to morphology, behavioral adaptations are also important drivers that determine the fitness of nectar-feeding bats. Both familiarity with and the ecological importance of a resource seem to contribute to shaping the interactions between pollinating bats and their plants.
Collapse
Affiliation(s)
- Jan Philipp Bechler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Kira Steiner
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- Smithsonian Tropical Research Institute, Ancón, Panama City, Panama
| |
Collapse
|
3
|
MacNeill BN, Ortiz-Brunel JP, Rodríguez A, Ruiz-Sánchez E, Navarro-Moreno J, Hofford NP, McKain MR. Floral Diversity and Pollination Syndromes in Agave subgenus Manfreda. Integr Comp Biol 2023; 63:1376-1390. [PMID: 37673672 DOI: 10.1093/icb/icad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023] Open
Abstract
The genus Agave is an ecological keystone of American deserts and both culturally and economically important in Mexico. Agave is a large genus of about 250 species. The radiation of Agave is marked by an initial adaptation to desert environments and then a secondary diversification of species associated with pollinator groups, such as hummingbirds and nocturnal moths. Phylogenetic analyses place Agave subgenus Manfreda, or the "herbaceous agaves," in a monophyletic clade that likely evolved in part as an adaptation to novel pollination vectors. Here, we present a morphological and observational study assessing the evolution of floral form in response to pollinator specialization within this understudied group. We found significant visitation by hummingbirds and nocturnal moths to several species within the Agave subgenus Manfreda. These observations also align with our morphological analyses of floral organs and support the evolution of distinct pollination syndromes. We found that not all floral morphology is consistent within a pollination syndrome, suggesting hidden diversity in the evolution of floral phenotypes in Agave. We also characterize the morphological variation between herbarium and live specimens, demonstrating that special consideration needs to be made when combining these types of data. This work identifies the potential for studying the functional evolution of diverse floral forms within Agave and demonstrates the need to further explore ecological and evolutionary relationships to understand pollinator influence on diversification in the genus.
Collapse
Affiliation(s)
- Bryan N MacNeill
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | | | - Aarón Rodríguez
- Department of Botany and Zoology, University of Guadalajara, Zapopan, Jal. 45200 , Mexico
| | - Eduardo Ruiz-Sánchez
- Department of Botany and Zoology, University of Guadalajara, Zapopan, Jal. 45200 , Mexico
| | - Jesús Navarro-Moreno
- Department of Botany and Zoology, University of Guadalajara, Zapopan, Jal. 45200 , Mexico
| | - Nathaniel P Hofford
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| |
Collapse
|
4
|
Luong Y, Gasca‐Herrera A, Misiewicz TM, Carter BE. A pipeline for the rapid collection of color data from photographs. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11546. [PMID: 37915431 PMCID: PMC10617320 DOI: 10.1002/aps3.11546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/08/2023] [Accepted: 05/23/2023] [Indexed: 11/03/2023]
Abstract
Premise There are relatively few studies of flower color at landscape scales that can address the relative importance of competing mechanisms (e.g., biotic: pollinators; abiotic: ultraviolet radiation, drought stress) at landscape scales. Methods We developed an R shiny pipeline to sample color from images that were automatically downloaded using query results from a search using iNaturalist or the Global Biodiversity Information Facility (GBIF). The pipeline was used to sample ca. 4800 North American wallflower (Erysimum, Brassicaceae) images from iNaturalist. We tested whether flower color was distributed non-randomly across the landscape and whether spatial patterns were correlated with climate. We also used images including ColorCheckers to compare analyses of raw images to color-calibrated images. Results Flower color was strongly non-randomly distributed spatially, but did not correlate strongly with climate, with most of the variation explained instead by spatial autocorrelation. However, finer-scale patterns including local correlations between elevation and color were observed. Analyses using color-calibrated and raw images revealed similar results. Discussion This pipeline provides users the ability to rapidly capture color data from iNaturalist images and can be a useful tool in detecting spatial or temporal changes in color using citizen science data.
Collapse
Affiliation(s)
- Yvonne Luong
- Biological SciencesSan Jose State UniversitySan Jose, California95192USA
| | | | - Tracy M. Misiewicz
- University and Jepson HerbariaUniversity of CaliforniaBerkeley, California94720USA
| | - Benjamin E. Carter
- Biological SciencesSan Jose State UniversitySan Jose, California95192USA
| |
Collapse
|
5
|
Martín-Hernanz S, Albaladejo RG, Lavergne S, Rubio E, Marín-Rodulfo M, Arroyo J, Aparicio A. Strong conservatism of floral morphology during the rapid diversification of the genus Helianthemum. AMERICAN JOURNAL OF BOTANY 2023; 110:e16155. [PMID: 36912727 DOI: 10.1002/ajb2.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 05/16/2023]
Abstract
PREMISE Divergence of floral morphology and breeding systems are often expected to be linked to angiosperm diversification and environmental niche divergence. However, available evidence for such relationships is not generalizable due to different taxonomic, geographical and time scales. The Palearctic genus Helianthemum shows the highest diversity of the family Cistaceae in terms of breeding systems, floral traits, and environmental conditions as a result of three recent evolutionary radiations since the Late Miocene. Here, we investigated the tempo and mode of evolution of floral morphology in the genus and its link with species diversification and environmental niche divergence. METHODS We quantified 18 floral traits from 83 taxa and applied phylogenetic comparative methods using a robust phylogenetic framework based on genotyping-by-sequencing data. RESULTS We found three different floral morphologies, putatively related to three different breeding systems: type I, characterized by small flowers without herkogamy and low pollen to ovule ratio; type II, represented by large flowers with approach herkogamy and intermediate pollen to ovule ratio; and type III, featured by small flowers with reverse herkogamy and the highest pollen to ovule ratio. Each morphology has been highly conserved across each radiation and has evolved independently of species diversification and ecological niche divergence. CONCLUSIONS The combined results of trait, niche, and species diversification ultimately recovered a pattern of potentially non-adaptive radiations in Helianthemum and highlight the idea that evolutionary radiations can be decoupled from floral morphology evolution even in lineages that diversified in heterogeneous environments as the Mediterranean Basin.
Collapse
Affiliation(s)
- Sara Martín-Hernanz
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Sébastien Lavergne
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Laboratoire d'Ecologie Alpine (LECA), FR-38000, Grenoble, France
| | - Encarnación Rubio
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Macarena Marín-Rodulfo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Osuna-Mascaró C, Rubio de Casas R, Gómez JM, Loureiro J, Castro S, Landis JB, Hopkins R, Perfectti F. Hybridization and introgression are prevalent in Southern European Erysimum (Brassicaceae) species. ANNALS OF BOTANY 2023; 131:171-184. [PMID: 35390125 PMCID: PMC9904350 DOI: 10.1093/aob/mcac048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Hybridization is a common and important force in plant evolution. One of its outcomes is introgression - the transfer of small genomic regions from one taxon to another by hybridization and repeated backcrossing. This process is believed to be common in glacial refugia, where range expansions and contractions can lead to cycles of sympatry and isolation, creating conditions for extensive hybridization and introgression. Polyploidization is another genome-wide process with a major influence on plant evolution. Both hybridization and polyploidization can have complex effects on plant evolution. However, these effects are often difficult to understand in recently evolved species complexes. METHODS We combined flow cytometry, analyses of transcriptomic sequences and pollen tube growth assays to investigate the consequences of polyploidization, hybridization and introgression on the recent evolution of several Erysimum (Brassicaceae) species from the South of the Iberian Peninsula, a well-known glacial refugium. This species complex differentiated in the last 2 million years, and its evolution has been hypothesized to be determined mainly by polyploidization, interspecific hybridization and introgression. KEY RESULTS Our results support a scenario of widespread hybridization involving both extant and 'ghost' taxa. Several taxa studied here, most notably those with purple corollas, are polyploids, probably of allopolyploid origin. Moreover, hybridization in this group might be an ongoing phenomenon, as pre-zygotic barriers appeared weak in many cases. CONCLUSIONS The evolution of Erysimum spp. has been determined by hybridization to a large extent. Species with purple (polyploids) and yellow flowers (mostly diploid) exhibit a strong signature of introgression in their genomes, indicating that hybridization occurred regardless of colour and across ploidy levels. Although the adaptive value of such genomic exchanges remains unclear, our results demonstrate the significance of hybridization for plant diversification, which should be taken into account when studying plant evolution.
Collapse
Affiliation(s)
| | - Rafael Rubio de Casas
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Ecología, Universidad de Granada, Granada, Spain
| | - José M Gómez
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA‐CSIC), Almería, Spain
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Silvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Jacob B Landis
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- The Arnold Arboretum, 1300 Centre Street, Boston, MA, USA
| | | |
Collapse
|
7
|
Gómez JM, González-Megías A, Narbona E, Navarro L, Perfectti F, Armas C. Phenotypic plasticity guides Moricandia arvensis divergence and convergence across the Brassicaceae floral morphospace. THE NEW PHYTOLOGIST 2022; 233:1479-1493. [PMID: 34657297 DOI: 10.1111/nph.17807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Many flowers exhibit phenotypic plasticity. By inducing the production of several phenotypes, plasticity may favour the rapid exploration of different regions of the floral morphospace. We investigated how plasticity drives Moricandia arvensis, a species displaying within-individual floral polyphenism, across the floral morphospace of the entire Brassicaceae family. We compiled the multidimensional floral phenotype, the phylogenetic relationships, and the pollination niche of over 3000 species to construct a family-wide floral morphospace. We assessed the disparity between the two M. arvensis floral morphs (as the distance between the phenotypic spaces occupied by each morph) and compared it with the family-wide disparity. We measured floral divergence by comparing disparity with the most common ancestor, and estimated the convergence of each floral morph with other species belonging to the same pollination niches. Moricandia arvensis exhibits a plasticity-mediated floral disparity greater than that found between species, genera and tribes. The novel phenotype of M. arvensis moves outside the region occupied by its ancestors and relatives, crosses into a new region where it encounters a different pollination niche, and converges with distant Brassicaceae lineages. Our study suggests that phenotypic plasticity favours floral divergence and rapid appearance of convergent flowers, a process which facilitates the evolution of generalist pollination systems.
Collapse
Affiliation(s)
- José M Gómez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), E-04120, Almería, Spain
- Research Unit Modeling Nature, Universidad de Granada, E-18071, Granada, Spain
| | - Adela González-Megías
- Research Unit Modeling Nature, Universidad de Granada, E-18071, Granada, Spain
- Departamento de Zoología, Universidad de Granada, E-18071, Granada, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, E-41013, Sevilla, Spain
| | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, E-36310, Vigo, Spain
| | - Francisco Perfectti
- Research Unit Modeling Nature, Universidad de Granada, E-18071, Granada, Spain
- Departamento de Genética, Universidad de Granada, E-18071, Granada, Spain
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA-CSIC), E-04120, Almería, Spain
| |
Collapse
|
8
|
Bilbao G, Bruneau A, Joly S. Judge it by its shape: a pollinator-blind approach reveals convergence in petal shape and infers pollination modes in the genus Erythrina. AMERICAN JOURNAL OF BOTANY 2021; 108:1716-1730. [PMID: 34590308 DOI: 10.1002/ajb2.1735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Pollinators are thought to exert selective pressures on plants, mediating the evolution of convergent floral shape often recognized as pollination syndromes. However, little is known about the accuracy of using petal shape for inferring convergence in pollination mode without a priori pollination information. Here we studied the genus Erythrina L. as a test case to assess whether ornithophyllous pollination modes (hummingbirds, passerines, sunbirds, or mixed pollination) can be inferred based on the evolutionary analysis of petal shape. METHODS We characterized the two-dimensional dissected shape of standard, keel, and wing petals from 106 Erythrina species using geometric morphometrics and reconstructed a phylogenetic tree of 83 Erythrina species based on plastid trnL-F and nuclear ribosomal ITS sequences. We then used two phylogenetic comparative methods based on Ornstein-Uhlenbeck models, SURFACE and l1OU, to infer distinct morphological groups using petal shape and identify instances of convergent evolution. The effectiveness of these methods was evaluated by comparing the groups inferred to known pollinators. RESULTS We found significant petal shape differences between hummingbird- and passerine-pollinated Erythrina species. Our analyses also revealed that petal combinations generally provided better inferences of pollinator types than individual petals and that the method and optimization criterion can affect the results. CONCLUSIONS We show that model-based approaches using petal shape can detect convergent evolution of floral shape and relatively accurately infer pollination modes in Erythrina. The inference power of the keel petals argues for a deeper investigation of their role in the pollination biology of Erythrina and other bird-pollinated legumes.
Collapse
Affiliation(s)
- Gonzalo Bilbao
- Institut de recherche en biologie végétale and Département de Sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal (QC), H1X 2B2, Canada
| | - Anne Bruneau
- Institut de recherche en biologie végétale and Département de Sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal (QC), H1X 2B2, Canada
| | - Simon Joly
- Institut de recherche en biologie végétale and Département de Sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal (QC), H1X 2B2, Canada
- Montreal Botanical Garden, 4101 Sherbrooke East, Montréal (QC), H1X 2B2, Canada
| |
Collapse
|
9
|
Christie K, Doan JP, Mcbride WC, Strauss SY. Asymmetrical reproductive barriers in sympatric jewelflowers: are floral isolation, genetic incompatibilities and floral trait displacement connected? Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Floral visitors influence reproductive interactions among sympatric plant species, either by facilitating assortative mating and contributing to reproductive isolation, or by promoting heterospecific pollen transfer, potentially leading to reproductive interference or hybridization. We assessed preference and constancy of floral visitors on two co-occurring jewelflowers [Streptanthus breweri and Streptanthus hesperidis (Brassicaceae)] using field arrays, and quantified two floral rewards potentially important to foraging choice – pollen production and nectar sugar concentration – in a greenhouse common garden. Floral visitors made an abundance of conspecific transitions between S. breweri individuals, which thus experienced minimal opportunities for heterospecific pollen transfer from S. hesperidis. In contrast, behavioural isolation for S. hesperidis was essentially absent due to pollinator inconstancy. This pattern emerged across multiple biotic environments and was unrelated to local density dependence. S. breweri populations that were sympatric with S. hesperidis had higher nectar sugar concentrations than their sympatric congeners, as well as allopatric conspecifics. Previous work shows that S. breweri suffers a greater cost to hybridization than S. hesperidis, and here we find that it also shows asymmetrical floral isolation and floral trait displacement in sympatry. These findings suggest that trait divergence may reduce negative reproductive interactions between sympatric but genetically incompatible relatives.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Evolution and Ecology, University of California Davis, One Shields Avenue, Davis, CA, USA
- Center for Population Biology, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Jonathan P Doan
- Department of Evolution and Ecology, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Wendy C Mcbride
- Deaver Herbarium, Northern Arizona University, Flagstaff, AZ, USA
| | - Sharon Y Strauss
- Department of Evolution and Ecology, University of California Davis, One Shields Avenue, Davis, CA, USA
- Center for Population Biology, University of California Davis, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
10
|
Shan W, Guo D, Guo H, Tan S, Ma L, Wang Y, Guo X, Xu B. Cloning and expression studies on glutathione S-transferase like-gene in honey bee for its role in oxidative stress. Cell Stress Chaperones 2021; 27:121-134. [PMID: 35102524 PMCID: PMC8943077 DOI: 10.1007/s12192-022-01255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/03/2022] Open
Abstract
Glutathione S-transferases (GSTs) constitute an important multifunctional enzyme family that plays vital roles in cellular detoxification and protecting organisms against oxidative stress caused by reactive oxygen species (ROS). In this study, we isolated a GST-like gene from Apis cerana cerana (AccGSTL) and investigated its antioxidant functions under stress conditions. We found that AccGSTL belongs to the Sigma class of GSTs. Real-time quantitative PCR and western blotting analyses showed that the mRNA and protein levels of AccGSTL were altered in response to oxidative stress caused by various external stimuli. In addition, a heterologous expression analysis showed that AccGSTL overexpression in Escherichia coli (E. coli) cells enhanced resistance to oxidative stress. After AccGSTL silencing with RNA interference (RNAi) technology, the expression of some antioxidant genes was inhibited, and the enzymatic activities of POD, CAT, and SOD were decreased. In conclusion, these data suggest that AccGSTL may be involved in antioxidant defense under adverse conditions in A. cerana cerana.
Collapse
Affiliation(s)
- Wenlu Shan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Huijuan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Li G, Zhao H, Guo H, Wang Y, Cui X, Xu B, Guo X. Functional and transcriptomic analyses of the NF-Y family provide insights into the defense mechanisms of honeybees under adverse circumstances. Cell Mol Life Sci 2020; 77:4977-4995. [PMID: 32016487 PMCID: PMC11104996 DOI: 10.1007/s00018-019-03447-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
As predominant pollinators, honeybees are important for crop production and terrestrial ecosystems. Recently, various environmental stresses have led to large declines in honeybee populations in many regions. The ability of honeybees to respond to these stresses is critical for their survival. However, the details of the stress defense mechanisms of honeybees have remained elusive. Here, we found that the Nuclear Factor Y (NF-Y) family (containing NF-YA, NF-YB, and NF-YC) is a novel stress mediator family that regulates honeybee environmental stress resistance. NF-YA localized in the nucleus, NF-YB accumulated in the cytoplasm, and NF-YC presented in both the nucleus and cytoplasm. NF-YC interacted with NF-YA and NF-YB in vitro and in vivo, and the nuclear import of NF-YB relied on its interaction with NF-YC. We further found that the expression of NF-Y was induced under multiple stress conditions. In addition, NF-Y regulated many stress responses and antioxidant genes at the transcriptome-wide level, and knockdown of NF-Y repressed the expression of stress-inducible genes, particularly LOC108003540 and LOC107994062, under adverse circumstances. Silencing NF-Y lowered honeybee stress resistance by reducing total antioxidant capacity and enhancing oxidative impairment. Collectively, these results indicate that NF-Y plays important roles in stress responses. Our study sheds light on the underlying defense mechanisms of honeybees under environmental stress.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Hongbin Guo
- Statistics Department, University of Auckland, 38 Princes Street, Auckland, New Zealand
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Gómez JM, Perfectti F, Armas C, Narbona E, González-Megías A, Navarro L, DeSoto L, Torices R. Within-individual phenotypic plasticity in flowers fosters pollination niche shift. Nat Commun 2020; 11:4019. [PMID: 32782255 PMCID: PMC7419554 DOI: 10.1038/s41467-020-17875-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022] Open
Abstract
Phenotypic plasticity, the ability of a genotype of producing different phenotypes when exposed to different environments, may impact ecological interactions. We study here how within-individual plasticity in Moricandia arvensis flowers modifies its pollination niche. During spring, this plant produces large, cross-shaped, UV-reflecting lilac flowers attracting mostly long-tongued large bees. However, unlike most co-occurring species, M. arvensis keeps flowering during the hot, dry summer due to its plasticity in key vegetative traits. Changes in temperature and photoperiod in summer trigger changes in gene expression and the production of small, rounded, UV-absorbing white flowers that attract a different assemblage of generalist pollinators. This shift in pollination niche potentially allows successful reproduction in harsh conditions, facilitating M. arvensis to face anthropogenic perturbations and climate change.
Collapse
Affiliation(s)
- José M Gómez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain.
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain.
| | - Francisco Perfectti
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain.
- Departamento de Genética, Universidad de Granada, Granada, Spain.
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain.
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Adela González-Megías
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Zoología, Universidad de Granada, Granada, Spain
| | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, Vigo, Spain
| | - Lucía DeSoto
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Rubén Torices
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
13
|
Kriebel R, Drew B, González-Gallegos JG, Celep F, Heeg L, Mahdjoub MM, Sytsma KJ. Pollinator shifts, contingent evolution, and evolutionary constraint drive floral disparity in Salvia (Lamiaceae): Evidence from morphometrics and phylogenetic comparative methods. Evolution 2020; 74:1335-1355. [PMID: 32484910 DOI: 10.1111/evo.14030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/21/2020] [Indexed: 12/23/2022]
Abstract
Switches in pollinators have been argued to be key drivers of floral evolution in angiosperms. However, few studies have tested the relationship between floral shape evolution and switches in pollination in large clades. In concert with a dated phylogeny, we present a morphometric analysis of corolla, anther connective, and style shape across 44% of nearly 1000 species of Salvia (Lamiaceae) and test four hypotheses of floral evolution. We demonstrate that floral morphospace of New World (NW) Salvia is largely distinct from that of Old World (OW) Salvia and that these differences are pollinator driven; shifts in floral morphology sometimes mirror shifts in pollinators; anther connectives (key constituents of the Salvia staminal lever) and styles co-evolved from curved to linear shapes following shifts from bee to bird pollination; and morphological differences between NW and OW bee flowers are partly the legacy of constraints imposed by an earlier shift to bird pollination in the NW. The distinctive staminal lever in Salvia is a morphologically diverse structure that has evolved in concert with both the corolla and style, under different pollinator pressures, and in contingent fashion.
Collapse
Affiliation(s)
- Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Bryan Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, 68849
| | | | - Ferhat Celep
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Yahşiyan, 71450, Turkey
| | - Luciann Heeg
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Mohamed M Mahdjoub
- Department of Biology, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira, 10000, Algeria
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
14
|
Dowell JA, Reynolds EC, Pliakas TP, Mandel JR, Burke JM, Donovan LA, Mason CM. Genome-Wide Association Mapping of Floral Traits in Cultivated Sunflower (Helianthus annuus). J Hered 2020; 110:275-286. [PMID: 30847479 DOI: 10.1093/jhered/esz013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/02/2019] [Indexed: 12/14/2022] Open
Abstract
Floral morphology and pigmentation are both charismatic and economically relevant traits associated with cultivated sunflower (Helianthus annuus L.). Recent work has linked floral morphology and pigmentation to pollinator efficiency and seed yield. Understanding the genetic architecture of such traits is essential for crop improvement, and gives insight into the role of genetic constraints in shaping floral diversity. A diversity panel of 288 sunflower genotypes was phenotyped for a variety of morphological, phenological, and color traits in both a greenhouse and a field setting. Association mapping was performed using 5788 SNP markers using a mixed linear model approach. Several dozen markers across 10 linkage groups were significantly associated with variation in morphological and color trait variation. Substantial trait plasticity was observed between greenhouse and field phenotyping, and associations differed between environments. Color traits mapped more strongly than morphology in both settings, with markers together explaining 16% of petal carotenoid content in the greenhouse, and 17% and 24% of variation in disc anthocyanin presence in the field and greenhouse, respectively. Morphological traits like disc size mapped more strongly in the field, with markers together explaining up to 19% of disc size variation. Loci identified here through association mapping within cultivated germplasm differ from those identified through biparental crosses between modern cultivated sunflower and either its wild progenitor or domesticated landraces. Several loci lie within genomic regions involved in domestication. Differences between phenotype expression under greenhouse and field conditions highlight the importance of plasticity in determining floral morphology and pigmentation.
Collapse
Affiliation(s)
- Jordan A Dowell
- Department of Biology, University of Central Florida, Orlando, FL
| | - Erin C Reynolds
- Department of Plant Biology, University of Georgia, Athens, GA
| | | | - Jennifer R Mandel
- Department of Biological Sciences, University of Memphis, Memphis, TN
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL.,Department of Plant Biology, University of Georgia, Athens, GA.,Arnold Arboretum, Harvard University, Boston, MA
| |
Collapse
|
15
|
Züst T, Strickler SR, Powell AF, Mabry ME, An H, Mirzaei M, York T, Holland CK, Kumar P, Erb M, Petschenka G, Gómez JM, Perfectti F, Müller C, Pires JC, Mueller LA, Jander G. Independent evolution of ancestral and novel defenses in a genus of toxic plants ( Erysimum, Brassicaceae). eLife 2020; 9:e51712. [PMID: 32252891 PMCID: PMC7180059 DOI: 10.7554/elife.51712] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Phytochemical diversity is thought to result from coevolutionary cycles as specialization in herbivores imposes diversifying selection on plant chemical defenses. Plants in the speciose genus Erysimum (Brassicaceae) produce both ancestral glucosinolates and evolutionarily novel cardenolides as defenses. Here we test macroevolutionary hypotheses on co-expression, co-regulation, and diversification of these potentially redundant defenses across this genus. We sequenced and assembled the genome of E. cheiranthoides and foliar transcriptomes of 47 additional Erysimum species to construct a phylogeny from 9868 orthologous genes, revealing several geographic clades but also high levels of gene discordance. Concentrations, inducibility, and diversity of the two defenses varied independently among species, with no evidence for trade-offs. Closely related, geographically co-occurring species shared similar cardenolide traits, but not glucosinolate traits, likely as a result of specific selective pressures acting on each defense. Ancestral and novel chemical defenses in Erysimum thus appear to provide complementary rather than redundant functions.
Collapse
Affiliation(s)
- Tobias Züst
- Institute of Plant Sciences, University of BernBernSwitzerland
| | | | | | - Makenzie E Mabry
- Division of Biological Sciences, University of MissouriColumbiaUnited States
| | - Hong An
- Division of Biological Sciences, University of MissouriColumbiaUnited States
| | | | | | | | | | - Matthias Erb
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Georg Petschenka
- Institut für Insektenbiotechnologie, Justus-Liebig-Universität GiessenGiessenGermany
| | - José-María Gómez
- Department of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (EEZA-CSIC)AlmeríaSpain
| | - Francisco Perfectti
- Research Unit Modeling Nature, Department of Genetics, University of GranadaGranadaSpain
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld UniversityBielefeldGermany
| | - J Chris Pires
- Division of Biological Sciences, University of MissouriColumbiaUnited States
| | | | | |
Collapse
|
16
|
Giovanetti M, Giuliani C, Boff S, Fico G, Lupi D. A botanic garden as a tool to combine public perception of nature and life-science investigations on native/exotic plants interactions with local pollinators. PLoS One 2020; 15:e0228965. [PMID: 32078664 PMCID: PMC7032708 DOI: 10.1371/journal.pone.0228965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/27/2020] [Indexed: 11/23/2022] Open
Abstract
Life-sciences are pointing towards an alarming worldwide pollinator decline. This decline proceeds along with overall biodiversity losses, even in the context of urban landscapes and human welfare. At the same time, social-sciences are arguing an increased distance from nature, experienced by citizens. The strong connection between the public good and pollinator sustainability, even in urban areas, is well-documented. However, usually basic and applied life-sciences tend to underestimate public perception of nature, which is better tackled by the fields of social-sciences. Therefore, more efforts are needed to link scientific questions and public ‘perception’ of nature. We designed a transversal project where research questions directly confront public concerns: i.e., even while addressing scientific knowledge gaps, our questions directly arise from public concerns. Social studies highlighted that appreciation of (exotic) plants is related to the impact they may have on the surrounding natural environment: therefore, we investigated links of native and exotic flowers to local pollinators. Other studies highlighted that scientific results need to link to everyday individual experience: therefore, we investigated pollination modes of the renown Salvia, native and exotic, largely used in cuisine and gardening. The botanic garden was the promoter of scientific questions addressed by the public, and also collated the results in a travelling exhibition. The exhibition, together with a dedicated catalogue, were especially designed to enlighten the wide public on the relationships that plants, native and exotic alike, establish with the surrounding world.
Collapse
Affiliation(s)
- Manuela Giovanetti
- Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
- * E-mail:
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Milano, Italy
- Department of Pharmaceutical Sciences, Ghirardi Botanic Garden, University of Milan, Milano, Italy
| | - Samuel Boff
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milano, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Milano, Italy
- Department of Pharmaceutical Sciences, Ghirardi Botanic Garden, University of Milan, Milano, Italy
| | - Daniela Lupi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milano, Italy
| |
Collapse
|
17
|
Hsu HC, Chou WC, Kuo YF. 3D revelation of phenotypic variation, evolutionary allometry, and ancestral states of corolla shape: a case study of clade Corytholoma (subtribe Ligeriinae, family Gesneriaceae). Gigascience 2020; 9:giz155. [PMID: 31967295 PMCID: PMC6974915 DOI: 10.1093/gigascience/giz155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/22/2019] [Accepted: 12/08/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Quantification of corolla shape variations helps biologists to investigate plant diversity and evolution. 3D images capture the genuine structure and provide comprehensive spatial information. RESULTS This study applied X-ray micro-computed tomography (µCT) to acquire 3D structures of the corollas of clade Corytholoma and extracted a set of 415 3D landmarks from each specimen. By applying the geometric morphometrics (GM) to the landmarks, the first 4 principal components (PCs) in the 3D shape and 3D form analyses, respectively, accounted for 87.86% and 96.34% of the total variance. The centroid sizes of the corollas only accounted for 5.46% of the corolla shape variation, suggesting that the evolutionary allometry was weak. The 4 morphological traits corresponding to the 4 shape PCs were defined as tube curvature, lobe area, tube dilation, and lobe recurvation. Tube curvature and tube dilation were strongly associated with the pollination type and contained phylogenetic signals in clade Corytholoma. The landmarks were further used to reconstruct corolla shapes at the ancestral states. CONCLUSIONS With the integration of µCT imaging into GM, the proposed approach boosted the precision in quantifying corolla traits and improved the understanding of the morphological traits corresponding to the pollination type, impact of size on shape variation, and evolution of corolla shape in clade Corytholoma.
Collapse
Affiliation(s)
- Hao-Chun Hsu
- Department of Biomechatronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Wen-Chieh Chou
- Department of Biomechatronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Yan-Fu Kuo
- Department of Biomechatronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
18
|
Scopece G, Frachon L, Cozzolino S. Do native and invasive herbivores have an effect on Brassica rapa pollination? PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:927-934. [PMID: 30884071 DOI: 10.1111/plb.12985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Mutualistic (e.g. pollination) and antagonistic (e.g. herbivory) plant-insect interactions shape levels of plant fitness and can have interactive effects. By using experimental plots of Brassica rapa plants infested with generalist (Mamestra brassicae) and specialised (Pieris brassicae) native herbivores and with a generalist invasive (Spodoptera littoralis) herbivore, we estimated both pollen movement among treatments and the visiting behaviour of honeybees versus other wild pollinators. Overall, we found that herbivory has weak effects on plant pollen export, either in terms of inter-treatment movements or of dispersion distance. Plants infested with the native specialised herbivore tend to export less pollen to other plants with the same treatment. Other wild pollinators preferentially visit non-infested plants that differ from those of honeybees, which showed no preferences. Honeybees and other wild pollinators also showed different behaviours on plants infested with different herbivores, with the former tending to avoid revisiting the same treatment and the latter showing no avoidance behaviour. When taking into account the whole pollinator community, i.e. the interactive effects of honeybees and other wild pollinators, we found an increased avoidance of plants infested by the native specialised herbivore and a decreased avoidance of plants infested by the invasive herbivore. Taken together, our results suggest that herbivory may have an effect on B. rapa pollination, but this effect depends on the relative abundance of honeybees and other wild pollinators.
Collapse
Affiliation(s)
- G Scopece
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
| | - L Frachon
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - S Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
| |
Collapse
|
19
|
Is there spatial variation in phenotypic selection on floral traits in a generalist plant–pollinator system? Evol Ecol 2019. [DOI: 10.1007/s10682-019-10002-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Nikolov LA. Brassicaceae flowers: diversity amid uniformity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2623-2635. [PMID: 30824938 DOI: 10.1093/jxb/erz079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The mustard family Brassicaceae, which includes the model plant Arabidopsis thaliana, exhibits morphological stasis and significant uniformity of floral plan. Nonetheless, there is untapped diversity in almost every aspect of floral morphology in the family that lends itself to comparative study, including organ number, shape, form, and color. Studies on the genetic basis of morphological diversity, enabled by extensive genetic tools and genomic resources and the close phylogenetic distance among mustards, have revealed a mosaic of conservation and divergence in numerous floral traits. Here I review the morphological diversity of the flowers of Brassicaceae and discuss studies addressing the underlying genetic and developmental mechanisms shaping floral diversity. To put flowers in the context of the floral display, I describe diversity in inflorescence morphology and the variation that exists in the structures preceding the floral organs. Reconstructing the floral morphospace in Brassicaceae coupled with next-generation sequencing data and unbiased approaches to interrogate gene function in species throughout the mustard phylogeny offers promising ways to understand how developmental mechanisms originate and diversify.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Molecular, Cell and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Schiestl FP, Balmer A, Gervasi DD. Real‐time evolution supports a unique trajectory for generalized pollination*. Evolution 2018; 72:2653-2668. [DOI: 10.1111/evo.13611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Florian P. Schiestl
- Institute of Systematic and Evolutionary BotanyUniversity of Zürich Zollikerstrasse 107, CH‐8008 Zürich Switzerland
| | - Alice Balmer
- Institute of Systematic and Evolutionary BotanyUniversity of Zürich Zollikerstrasse 107, CH‐8008 Zürich Switzerland
| | - Daniel D. Gervasi
- Institute of Systematic and Evolutionary BotanyUniversity of Zürich Zollikerstrasse 107, CH‐8008 Zürich Switzerland
| |
Collapse
|
22
|
Landis JB, Bell CD, Hernandez M, Zenil-Ferguson R, McCarthy EW, Soltis DE, Soltis PS. Evolution of floral traits and impact of reproductive mode on diversification in the phlox family (Polemoniaceae). Mol Phylogenet Evol 2018; 127:878-890. [DOI: 10.1016/j.ympev.2018.06.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023]
|
23
|
Eisen KE, Geber MA. Ecological sorting and character displacement contribute to the structure of communities of Clarkia species. J Evol Biol 2018; 31:1440-1458. [PMID: 30099807 DOI: 10.1111/jeb.13365] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 01/27/2023]
Abstract
Despite long-standing interest in the evolutionary ecology of plants that share pollinators, few studies have explored how these interactions may affect communities during both community assembly (ecological sorting) and through ongoing, in situ evolution (character displacement), and how the effects of these interactions may change with community context. To determine if communities display patterns consistent with ecological sorting, we assessed the frequency of co-occurrence of four species of Clarkia in the southern Sierra foothills (Kern County, CA, USA). To investigate potential character displacement, we measured pollination-related traits on plants grown in a greenhouse common garden from seed collected in communities with one, two or four Clarkia species. Among the four species of Clarkia in this region, the two species that are often found in multi-species communities also co-occur with one another more frequently than expected under a null model. This pattern is consistent with ecological sorting, although further investigation is needed to determine the role of pollinators in shaping community assembly. Patterns of trait variation in a common garden suggest that these two species have diverged in floral traits and converged in flowering time where they co-occur, which is consistent with character displacement. Trait variation across community types also suggests that the process and outcome of character displacement may vary with community context. Because community context appears to affect both the direction and magnitude of character displacement, change in more species-rich communities may not be predictable from patterns of change in simpler communities.
Collapse
Affiliation(s)
- Katherine E Eisen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Monica A Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
24
|
Smith SD, Kriebel R. Convergent evolution of floral shape tied to pollinator shifts in Iochrominae (Solanaceae)*. Evolution 2018; 72:688-697. [DOI: 10.1111/evo.13416] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Stacey D. Smith
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado 80305
| | - Ricardo Kriebel
- Department of Botany University of Wisconsin – Madison Madison Wisconsin 53706
| |
Collapse
|
25
|
Joly S, Lambert F, Alexandre H, Clavel J, Léveillé‐Bourret É, Clark JL. Greater pollination generalization is not associated with reduced constraints on corolla shape in Antillean plants. Evolution 2018; 72:244-260. [DOI: 10.1111/evo.13410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Joly
- Montreal Botanical Garden 4101 Sherbrooke East Montréal QC, H1X 2B2 Canada
- Institut de recherche en biologie végétale, Département de sciences biologiquesUniversité de MontréalMontréal Canada
| | - François Lambert
- Institut de recherche en biologie végétale, Département de sciences biologiquesUniversité de MontréalMontréal Canada
| | - Hermine Alexandre
- Institut de recherche en biologie végétale, Département de sciences biologiquesUniversité de MontréalMontréal Canada
| | - Julien Clavel
- École Normale Supérieure, Paris Sciences et Lettres (PSL) Research University, Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm F‐75005 Paris France
| | - Étienne Léveillé‐Bourret
- Institut de recherche en biologie végétale, Département de sciences biologiquesUniversité de MontréalMontréal Canada
- Current Address: Department of BiologyUniversity of OttawaOttawa Canada
| | - John L. Clark
- Department of Biological SciencesThe University of AlabamaTuscaloosa, Alabama 35487
- Science DepartmentThe Lawrenceville SchoolLawrenceville, New Jersey U.S.A
| |
Collapse
|
26
|
Narbona E, Wang H, Ortiz PL, Arista M, Imbert E. Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:8-20. [PMID: 28430395 DOI: 10.1111/plb.12575] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/18/2017] [Indexed: 05/20/2023]
Abstract
Flower colour polymorphism (FCP) is the occurrence of at least two discrete flower colour variants in the same population. Despite a vast body of research concerning the maintenance and evolutionary consequences of FCP, only recently has the spatial variation in morph frequencies among populations been explored. Here we summarise the biochemical and genetic basis of FCP, the factors that have been proposed to explain their maintenance, and the importance of FCP and its geographic variation in the speciation process. We also review the incidence of FCP in the environmentally heterogeneous Mediterranean Basin. Nearly 88% of Mediterranean FCP species showed anthocyanin-based polymorphisms. Concerning the evolutionary mechanisms that contribute to maintain FCP, selection by pollinators is suggested in some species, but in others, selection by non-pollinator agents, genetic drift or gene flow are also found; in some cases different processes interact in the maintenance of FCP. We emphasise the role of both autonomous selfing and clonal reproduction in FCP maintenance. Mediterranean polymorphic species show mainly monomorphic populations with only a few polymorphic ones, which generate clinal or mosaic patterns of variation in FCP. No cases of species with only polymorphic populations were found. We posit that different evolutionary processes maintaining polymorphism the Mediterranean Basin will result in a continuum of geographic patterns in morph compositions and relative frequencies of FCP species.
Collapse
Affiliation(s)
- E Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - H Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, Montpellier, France
| | - P L Ortiz
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - M Arista
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - E Imbert
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, Montpellier, France
| |
Collapse
|
27
|
Bukhari G, Zhang J, Stevens PF, Zhang W. Evolution of the process underlying floral zygomorphy development in pentapetalous angiosperms. AMERICAN JOURNAL OF BOTANY 2017; 104:1846-1856. [PMID: 29247025 DOI: 10.3732/ajb.1700229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY Observations of floral ontogeny indicated that floral organ initiation in pentapetalous flowers most commonly results in a median-abaxial (MAB) petal during early development, a median-adaxial (MAD) petal being less common. Such different patterns of floral organ initiation might be linked with different morphologies of floral zygomorphy that have evolved in Asteridae. Here, we provide the first study of zygomorphy in pentapetalous angiosperms placed in a phylogenetic framework, the goal being to find if the different patterns of floral organ initiation are connected with particular patterns of zygomorphy. METHODS We analyzed patterns of floral organ initiation and displays of zygomorphy, extracted from floral diagrams representing 405 taxa in 330 genera, covering 83% of orders (30 out of 36) and 37% of families (116 out of 313) in core eudicots in the context of a phylogeny using ancestral state reconstructions. KEY RESULTS The MAB petal initiation is the ancestral state of the pattern of floral organ initiation in pentapetalous angiosperms. Taxa with MAD petal initiation represent ∼30 independent origins from the ancestral MAB initiation. There are distinct developmental processes that give rise to zygomorphy in different lineages of pentapetalous angiosperms, closely related lineages being likely to share similar developmental processes. CONCLUSIONS We have demonstrated that development indeed constrains the processes that give rise to floral zygomorphy, while phylogenetic distance allows relaxation of these constraints, which provides novel insights on the role that development plays in the evolution of floral zygomorphy.
Collapse
Affiliation(s)
- Ghadeer Bukhari
- Department of Biology, Virginia Commonwealth University, 1000 West Cary Street, Richmond, Virginia 23284 USA
| | - Jingbo Zhang
- Department of Biology, Virginia Commonwealth University, 1000 West Cary Street, Richmond, Virginia 23284 USA
| | - Peter F Stevens
- Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121 USA
| | - Wenheng Zhang
- Department of Biology, Virginia Commonwealth University, 1000 West Cary Street, Richmond, Virginia 23284 USA
| |
Collapse
|
28
|
Teixido AL, Guzmán B, Staggemeier VG, Valladares F. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:963-972. [PMID: 28727278 DOI: 10.1111/plb.12604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches.
Collapse
Affiliation(s)
- A L Teixido
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Madrid, Móstoles, Spain
| | - B Guzmán
- Real Jardín Botánico, CSIC, Madrid, Spain
| | - V G Staggemeier
- Department of Botany, São Paulo State University (UNESP), Institute of Biosciences, Phenology Lab, Rio Claro, São Paulo, Brazil
| | - F Valladares
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, Spain
| |
Collapse
|
29
|
Russell AL, Buchmann SL, Papaj DR. How a generalist bee achieves high efficiency of pollen collection on diverse floral resources. Behav Ecol 2017. [DOI: 10.1093/beheco/arx058] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
30
|
Thompson JN, Schwind C, Friberg M. Diversification of Trait Combinations in Coevolving Plant and Insect Lineages. Am Nat 2017; 190:171-184. [PMID: 28731801 DOI: 10.1086/692164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Closely related species often have similar traits and sometimes interact with the same species. A crucial problem in evolutionary ecology is therefore to understand how coevolving species diverge when they interact with a set of closely related species from another lineage rather than with a single species. We evaluated geographic differences in the floral morphology of all woodland star plant species (Lithophragma, Saxifragaceae) that are pollinated by Greya (Prodoxidae) moths. Flowers of each woodland star species differed depending on whether plants interact locally with one, two, or no pollinating moth species. Plants of one species grown in six different environments showed few differences in floral traits, suggesting that the geographic differences are not due significantly to trait plasticity. Greya moth populations also showed significant geographic divergence in morphology, depending on the local host and on whether the moth species co-occurred locally. Divergence in the plants and the moths involved shifts in combinations of partially correlated traits, rather than any one trait. The results indicate that the geographic mosaic of coevolution can be amplified as coevolving lineages diversify into separate species and come together in different combinations in different ecosystems.
Collapse
|
31
|
Pollinator type and secondarily climate are related to nectar sugar composition across the angiosperms. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9887-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
The effect of pollinators and herbivores on selection for floral signals: a case study in Brassica rapa. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9878-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Delgado-Dávila R, Martén-Rodríguez S, Huerta-Ramos G. Variation in floral morphology and plant reproductive success in four Ipomoea species (Convolvulaceae) with contrasting breeding systems. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:903-912. [PMID: 27634630 DOI: 10.1111/plb.12507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
This study tested the hypothesis that self-compatibility would be associated with floral traits that facilitate autonomous self-pollination to ensure reproduction under low pollinator visitation. In a comparison of two pairs of Ipomoea species with contrasting breeding systems, we predicted that self-compatible (SC) species would have smaller, less variable flowers, reduced herkogamy, lower pollinator visitation and higher reproductive success than their self-incompatible (SI) congeners. We studied sympatric species pairs, I. hederacea (SC)- I. mitchellae (SI) and I. purpurea (SC)-I. indica (SI), in Mexico, over two years. We quantified variation in floral traits and nectar production, documented pollinator visitation, and determined natural fruit and seed set. Hand-pollination and bagging experiments were conducted to determine potential for autonomous self-pollination and apomixis. Self-compatible Ipomoea species had smaller flowers and lower nectar production than SI species; however, floral variation and integration did not vary according to breeding system. Bees were primary pollinators of all species, but visitation rates were seven times lower in SC than SI species. SC species had a high capacity for autonomous self-pollination due to reduced herkogamy at the highest anther levels. Self-compatible species had two to six times higher fruit set than SI species. Results generally support the hypothesis that self-compatibility and autonomous self-pollination ensure reproduction under low pollinator visitation. However, high variation in morphological traits of SC Ipomoea species suggests they maintain variation through outcrossing. Furthermore, reduced herkogamy was associated with high potential for autonomous self-pollination, providing a reproductive advantage that possibly underlies transitions to self-compatibility in Ipomoea.
Collapse
Affiliation(s)
- R Delgado-Dávila
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
- Departamento de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | - S Martén-Rodríguez
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.
| | - G Huerta-Ramos
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| |
Collapse
|
34
|
Prieto-Benítez S, Millanes AM, Dötterl S, Giménez-Benavides L. Comparative analyses of flower scent in Sileneae
reveal a contrasting phylogenetic signal between night and day emissions. Ecol Evol 2016. [DOI: 10.1002/ece3.2377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Samuel Prieto-Benítez
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| | - Ana M. Millanes
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| | - Stefan Dötterl
- Department of Ecology and Evolution; University of Salzburg; Hellbrunnerstr. 34 5020 Salzburg Austria
| | - Luis Giménez-Benavides
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| |
Collapse
|
35
|
Koski MH, Ashman T. Macroevolutionary patterns of ultraviolet floral pigmentation explained by geography and associated bioclimatic factors. THE NEW PHYTOLOGIST 2016; 211:708-18. [PMID: 26987355 PMCID: PMC6681094 DOI: 10.1111/nph.13921] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/30/2016] [Indexed: 05/27/2023]
Abstract
Selection driven by biotic interactions can generate variation in floral traits. Abiotic selection, however, also contributes to floral diversity, especially with respect to patterns of pigmentation. Combining comparative studies of floral pigmentation and geography can reveal the bioclimatic factors that may drive macroevolutionary patterns of floral color. We create a molecular phylogeny and measure ultraviolet (UV) floral pattern for 177 species in the Potentilleae tribe (Rosaceae). Species are similar in flower shape and visible color but vary in UV floral pattern. We use comparative approaches to determine whether UV pigmentation variation is associated with geography and/or bioclimatic features (UV-B, precipitation, temperature). Floral UV pattern was present in half of the species, while others were uniformly UV-absorbing. Phylogenetic signal was detected for presence/absence of pattern, but among patterned species, quantitative variation in UV-absorbing area was evolutionarily labile. Uniformly UV-absorbing species tended to experience higher UV-B irradiance. Patterned species occurring at higher altitudes had larger UV-absorbing petal areas, corresponding with low temperature and high UV exposure. This analysis expands our understanding of the covariation of UV-B irradiance and UV floral pigmentation from within species to that among species, and supports the view that abiotic selection is associated with floral diversification among species.
Collapse
Affiliation(s)
- Matthew H. Koski
- Department of Biological SciencesUniversity of PittsburghPittsburghPA15260USA
- Present address:
Department of BiologyUniversity of VirginiaCharlottesvilleVA22904USA
| | - Tia‐Lynn Ashman
- Department of Biological SciencesUniversity of PittsburghPittsburghPA15260USA
| |
Collapse
|
36
|
Sazatornil FD, Moré M, Benitez-Vieyra S, Cocucci AA, Kitching IJ, Schlumpberger BO, Oliveira PE, Sazima M, Amorim FW. Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks. J Anim Ecol 2016; 85:1586-1594. [DOI: 10.1111/1365-2656.12509] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/22/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Federico D. Sazatornil
- Instituto Multidisciplinario de Biología Vegetal (CONICET - Universidad Nacional de Córdoba); Córdoba Argentina
| | - Marcela Moré
- Instituto Multidisciplinario de Biología Vegetal (CONICET - Universidad Nacional de Córdoba); Córdoba Argentina
| | - Santiago Benitez-Vieyra
- Instituto Multidisciplinario de Biología Vegetal (CONICET - Universidad Nacional de Córdoba); Córdoba Argentina
| | - Andrea A. Cocucci
- Instituto Multidisciplinario de Biología Vegetal (CONICET - Universidad Nacional de Córdoba); Córdoba Argentina
| | - Ian J. Kitching
- Department of Life Sciences; Natural History Museum; Cromwell Road London UK
| | | | - Paulo E. Oliveira
- Instituto de Biologia; Universidade Federal de Uberlândia; Uberlândia Minas Gerais Brazil
| | - Marlies Sazima
- Departamento de Biologia Vegetal; Instituto de Biologia; Universidade Estadual de Campinas; Campinas São Paulo Brazil
| | - Felipe W. Amorim
- Departamento de Botânica; Instituto de Biociências; Universidade Estadual Paulista ‘Júlio de Mesquita Filho’; Botucatu São Paulo Brazil
| |
Collapse
|
37
|
Melzer R, Theißen G. The significance of developmental robustness for species diversity. ANNALS OF BOTANY 2016; 117:725-32. [PMID: 26994100 PMCID: PMC4845805 DOI: 10.1093/aob/mcw018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND The origin of new species and of new forms is one of the fundamental characteristics of evolution. However, the mechanisms that govern the diversity and disparity of lineages remain poorly understood. Particularly unclear are the reasons why some taxa are vastly more species-rich than others and the manner in which species diversity and morphological disparity are interrelated. SCOPE AND CONCLUSIONS Evolutionary innovations and ecological opportunities are usually cited as among the major factors promoting the evolution of species diversity. In many cases it is likely that these factors are positively reinforcing, with evolutionary innovations creating ecological opportunities that in turn foster the origin of new innovations. However, we propose that a third factor, developmental robustness, is very often essential for this reinforcement to be effective. Evolutionary innovations need to be stably and robustly integrated into the developmental genetic programme of an organism to be a suitable substrate for selection to 'explore' ecological opportunities and morphological 'design' space (morphospace). In particular, we propose that developmental robustness of the bauplan is often a prerequisite for the exploration of morphospace and to enable the evolution of further novelties built upon this bauplan Thus, while robustness may reduce the morphological disparity at one level, it may be the basis for increased morphological disparity and for evolutionary innovations at another level, thus fostering species diversity.
Collapse
Affiliation(s)
- Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland and
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
38
|
Theißen G, Melzer R. Robust views on plasticity and biodiversity. ANNALS OF BOTANY 2016; 117:693-697. [PMCID: PMC4845811 DOI: 10.1093/aob/mcw066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 06/09/2023]
Abstract
Background How the diversity of life on our planet originated is not completely understood and many questions are still open. Especially, the role of developmental robustness in evolution is an often neglected topic. Scope Considering diverse groups of plants and animals, and employing different concepts and approaches, the authors of articles in this Special Issue try to understand better the impact of developmental robustness, phenotypic plasticity and variance on species diversity, evolution and morphological disparity. Conclusions Several lines of theoretical considerations as well as case studies show that developmental robustness supports rather than prevents the evolution of species diversity, at least under certain circumstances. Among the possible mechanisms is the scenario that developmental robustness facilitates the synorganization of body parts, which may enable the origin of complex novelties; this then may set the ground for species radiation.
Collapse
Affiliation(s)
- Günter Theißen
- Friedrich-Schiller-University Jena, Department of Genetics, Philosophenweg 12, D-07743 Jena, Germany
| | - Rainer Melzer
- University College Dublin, School of Biology and Environmental Science, Belfield, Dublin 4, Ireland
| |
Collapse
|