1
|
Jdeed G, Kravchuk B, Tikunova NV. Factors Affecting Phage-Bacteria Coevolution Dynamics. Viruses 2025; 17:235. [PMID: 40006990 PMCID: PMC11860743 DOI: 10.3390/v17020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Bacteriophages (phages) have coevolved with their bacterial hosts for billions of years. With the rise of antibiotic resistance, the significance of using phages in therapy is increasing. Investigating the dynamics of phage evolution can provide valuable insights for pre-adapting phages to more challenging clones of their hosts that may arise during treatment. Two primary models describe interactions in phage-bacteria systems: arms race dynamics and fluctuating selection dynamics. Numerous factors influence which dynamics dominate the interactions between a phage and its host. These dynamics, in turn, affect the coexistence of phages and bacteria, ultimately determining which organism will adapt more effectively to the other, and whether a stable state will be reached. In this review, we summarize key findings from research on phage-bacteria coevolution, focusing on the different concepts that can describe these interactions, the factors that may contribute to the prevalence of one model over others, and the effects of various dynamics on both phages and bacteria.
Collapse
Affiliation(s)
- Ghadeer Jdeed
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk 630090, Russia;
| | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk 630090, Russia;
| |
Collapse
|
2
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Ziller L, Blum PC, Buhl EM, Krüttgen A, Horz HP, Tagliaferri TL. Newly isolated Drexlerviridae phage LAPAZ is physically robust and fosters eradication of Klebsiella pneumoniae in combination with meropenem. Virus Res 2024; 347:199417. [PMID: 38880333 PMCID: PMC11245953 DOI: 10.1016/j.virusres.2024.199417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Due to the spread of multidrug resistance there is a renewed interest in using bacteriophages (briefly: phages) for controlling bacterial pathogens. The objective of this study was the characterization of a newly isolated phage (i.e. phage LAPAZ, vB_KpnD-LAPAZ), its antimicrobial activity against multidrug resistant Klebsiella pneumoniae and potential synergistic interactions with antibiotics. LAPAZ belongs to the family Drexlerviridae (genus: Webervirus) and lysed 30 % of tested strains, whereby four distinct capsular types can be infected. The genome consists of 51,689 bp and encodes 84 ORFs. The latent period is 30 min with an average burst size of 27 PFU/cell. Long-term storage experiments show that LAPAZ is significantly more stable in wastewater compared to laboratory media. A phage titre of 90 % persists up to 30 min at 50 ˚C and entire phage loss was seen only at temperatures > 66 ˚C. Besides stability against UV-C, antibacterial activity in liquid culture medium was consistent at pH values ranging from 4 to 10. Unlike exposure to phage or antibiotic alone, synergistic interactions and a complete bacterial eradication was achieved when combining LAPAZ with meropenem. In addition, synergism with the co-presence of ciprofloxacin was observed and phage resistance emergence could be delayed. Without co-addition of the antibiotic, phage resistant mutants readily emerged and showed a mixed pattern of drug sensitivity alterations. Around 88 % became less sensitive towards ceftazidime, meropenem and gentamicin. Conversely, around 44 % showed decreased resistance levels against ciprofloxacin. Whole genome analysis of a phage-resistant mutant with a 16-fold increased sensitivity towards ciprofloxacin revealed one de novo frameshift mutation leading to a gene fusion affecting two transport proteins belonging to the major facilitator-superfamily (MFS). Apparently, this mutation compromises ciprofloxacin efflux efficiency and further studies are warranted to understand how the non-mutated protein might be involved in phage-host adsorption.
Collapse
Affiliation(s)
- Leonie Ziller
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | | | - Eva Miriam Buhl
- Electron Microscopy Facility, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Alex Krüttgen
- Laboratory Diagnostic Center, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Hans-Peter Horz
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany.
| | | |
Collapse
|
4
|
Chen X, Zou T, Zeng Q, Chen Y, Zhang C, Jiang S, Ding G. Metagenomic analysis reveals ecological and functional signatures of oral phageome associated with severe early childhood caries. J Dent 2024; 146:105059. [PMID: 38801939 DOI: 10.1016/j.jdent.2024.105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVES Severe early childhood caries (S-ECC) is highly prevalent, affecting children's oral health. S-ECC development is closely associated with the complex oral microbial microbiome and its microorganism interactions, such as the imbalance of bacteriophages and bacteria. Till now, little is known about oral phageome on S-ECC. Therefore, this study aimed to investigate the potential role of the oral phageome in the pathogenesis of S-ECC. METHODS Unstimulated saliva (2 mL) was collected from 20 children with and without S-ECC for metagenomics analysis. Metagenomics sequencing and bioinformatic analysis were performed to determine the two groups' phageome diversity, taxonomic and functional annotations. Statistical analysis and visualization were performed with R and SPSS Statistics software. RESULTS 85.7 % of the extracted viral sequences were predicted from phages, in which most phages were classified into Myoviridae, Siphoviridae, and Podoviridae. Alpha diversity decreased, and Beta diversity increased in the S-ECC phageome compared to the healthy group. The abundance of Podoviridae phages increased, and the abundance of Inoviridae, Herelleviridae, and Streptococcus phages decreased in the S-ECC group. Functional annotation revealed increased annotation on glycoside hydrolases and nucleotide metabolism, decreased glycosyl transferases, carbohydrate-binding modules, and biogenic metabolism in the S-ECC phageome. CONCLUSIONS Metagenomic analysis revealed reduced Streptococcus phages and significant changes in functional annotations within the S-ECC phageome. These findings suggest a potential weakening of the regulatory influence of oral bacteria, which may indicate the development of innovative prevention and treatment strategies for S-ECC. These implications deserve further investigation and hold promise for advancing our understanding and management of S-ECC. CLINICAL SIGNIFICANCE The findings of this study indicate that oral phageomes are associated with bacterial genomes and metabolic processes, affecting the development of S-ECC. The reduced modulatory effect of the oral phageome in counteracting S-ECC's cariogenic activity suggests a new avenue for the prevention and treatment of S-ECC.
Collapse
Affiliation(s)
- Xin Chen
- Shenzhen Children's Hospital of China Medical University (CMU), Shenzhen, PR China; Department of Stomatology, Shenzhen Children's Hospital, Shenzhen, PR China
| | - Ting Zou
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, PR China
| | - Qinglu Zeng
- The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Yubing Chen
- The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Chengfei Zhang
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, PR China
| | - Shan Jiang
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, PR China.
| | - Guicong Ding
- Shenzhen Children's Hospital of China Medical University (CMU), Shenzhen, PR China; Department of Stomatology, Shenzhen Children's Hospital, Shenzhen, PR China.
| |
Collapse
|
5
|
Greenrod STE, Cazares D, Johnson S, Hector TE, Stevens EJ, MacLean RC, King KC. Warming alters life-history traits and competition in a phage community. Appl Environ Microbiol 2024; 90:e0028624. [PMID: 38624196 PMCID: PMC11107170 DOI: 10.1128/aem.00286-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Host-parasite interactions are highly susceptible to changes in temperature due to mismatches in species thermal responses. In nature, parasites often exist in communities, and responses to temperature are expected to vary between host-parasite pairs. Temperature change thus has consequences for both host-parasite dynamics and parasite-parasite interactions. Here, we investigate the impact of warming (37°C, 40°C, and 42°C) on parasite life-history traits and competition using the opportunistic bacterial pathogen Pseudomonas aeruginosa (host) and a panel of three genetically diverse lytic bacteriophages (parasites). We show that phages vary in their responses to temperature. While 37°C and 40°C did not have a major effect on phage infectivity, infection by two phages was restricted at 42°C. This outcome was attributed to disruption of different phage life-history traits including host attachment and replication inside hosts. Furthermore, we show that temperature mediates competition between phages by altering their competitiveness. These results highlight phage trait variation across thermal regimes with the potential to drive community dynamics. Our results have important implications for eukaryotic viromes and the design of phage cocktail therapies.IMPORTANCEMammalian hosts often elevate their body temperatures through fevers to restrict the growth of bacterial infections. However, the extent to which fever temperatures affect the communities of phages with the ability to parasitize those bacteria remains unclear. In this study, we investigate the impact of warming across a fever temperature range (37°C, 40°C, and 42°C) on phage life-history traits and competition using a bacterium (host) and bacteriophage (parasite) system. We show that phages vary in their responses to temperature due to disruption of different phage life-history traits. Furthermore, we show that temperature can alter phage competitiveness and shape phage-phage competition outcomes. These results suggest that fever temperatures have the potential to restrict phage infectivity and drive phage community dynamics. We discuss implications for the role of temperature in shaping host-parasite interactions more widely.
Collapse
Affiliation(s)
| | - Daniel Cazares
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Serena Johnson
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Tobias E. Hector
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Emily J. Stevens
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - R. Craig MacLean
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Van Cauwenberghe J, Simms EL. How might bacteriophages shape biological invasions? mBio 2023; 14:e0188623. [PMID: 37812005 PMCID: PMC10653932 DOI: 10.1128/mbio.01886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Ellen L. Simms
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
7
|
Jiang H, Li C, Huang X, Ahmed T, Ogunyemi SO, Yu S, Wang X, Ali HM, Khan F, Yan C, Chen J, Li B. Phage combination alleviates bacterial leaf blight of rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1147351. [PMID: 37152174 PMCID: PMC10155274 DOI: 10.3389/fpls.2023.1147351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
Rice bacterial leaf blight (BLB) is the most destructive bacterial diseases caused by Xanthomonas oryzae pv. oryzae (Xoo). Phages have been proposed as a green and efficient strategy to kill bacterial pathogens in crops, however, the mechanism of action of phages in the control of phyllosphere bacterial diseases remain unclear. Here, the glasshouse pot experiment results showed that phage combination could reduce the disease index by up to 64.3%. High-throughput sequencing technology was used to analyze the characteristics of phyllosphere microbiome changes and the results showed that phage combinations restored the impact of pathogen invasion on phyllosphere communities to a certain extent, and increased the diversity of bacterial communities. In addition, the phage combination reduced the relative abundance of epiphytic and endophytic Xoo by 58.9% and 33.9%, respectively. In particular, Sphingomonas and Stenotrophomonas were more abundant. According to structural equation modeling, phage combination directly and indirectly affected the disease index by affecting pathogen Xoo biomass and phage resistance. In summary, phage combination could better decrease the disease index. These findings provide new insights into phage biological control of phyllosphere bacterial diseases, theoretical data support, and new ideas for agricultural green prevention and control of phyllosphere diseases.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Changxin Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo, China
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
McLean KD, Gowler CD, Dziuba MK, Zamani H, Hall SR, Duffy MA. Sexual recombination and temporal gene flow maintain host resistance and genetic diversity. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Węgrzyn G. Should Bacteriophages Be Classified as Parasites or Predators? Pol J Microbiol 2022; 71:3-9. [PMID: 35635166 PMCID: PMC9152906 DOI: 10.33073/pjm-2022-005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022] Open
Abstract
Abstract
Bacteriophages are viruses infecting bacteria and propagating in bacterial cells. They were discovered over 100 years ago, and for decades they played crucial roles as models in genetics and molecular biology and as tools in genetic engineering and biotechnology. Now we also recognize their huge role in natural environment and their importance in human health and disease. Despite our understanding of bacteriophage mechanisms of development, these viruses are described as parasites or predators in the literature. From the biological point of view, there are fundamental differences between parasites and predators. Therefore, in this article, I asked whether bacteriophages should be classified as former or latter biological entities. Analysis of the literature and biological definitions led me to conclude that bacteriophages are parasites rather than predators and should be classified and described as such. If even more precise ecological classification is needed, bacteriophages can perhaps be included in the group of parasitoids. It might be the most appropriate formal classification of these viruses, especially if strictly virulent phages are considered, contrary to phages which lysogenize host cells and those which develop according to the permanent infection mode (or chronic cycle, like filamentous phages) revealing features of classical parasites.
Collapse
Affiliation(s)
- Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology , University of Gdańsk , Gdańsk , Poland
| |
Collapse
|
10
|
Adler BA, Kazakov AE, Zhong C, Liu H, Kutter E, Lui LM, Nielsen TN, Carion H, Deutschbauer AM, Mutalik VK, Arkin AP. The genetic basis of phage susceptibility, cross-resistance and host-range in Salmonella. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34910616 PMCID: PMC8744999 DOI: 10.1099/mic.0.001126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Though bacteriophages (phages) are known to play a crucial role in bacterial fitness and virulence, our knowledge about the genetic basis of their interaction, cross-resistance and host-range is sparse. Here, we employed genome-wide screens in Salmonella enterica serovar Typhimurium to discover host determinants involved in resistance to eleven diverse lytic phages including four new phages isolated from a therapeutic phage cocktail. We uncovered 301 diverse host factors essential in phage infection, many of which are shared between multiple phages demonstrating potential cross-resistance mechanisms. We validate many of these novel findings and uncover the intricate interplay between RpoS, the virulence-associated general stress response sigma factor and RpoN, the nitrogen starvation sigma factor in phage cross-resistance. Finally, the infectivity pattern of eleven phages across a panel of 23 genome sequenced Salmonella strains indicates that additional constraints and interactions beyond the host factors uncovered here define the phage host range.
Collapse
Affiliation(s)
- Benjamin A Adler
- The UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Crystal Zhong
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Heloise Carion
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
11
|
Salazar KC, Ma L, Green SI, Zulk JJ, Trautner BW, Ramig RF, Clark JR, Terwilliger AL, Maresso AW. Antiviral Resistance and Phage Counter Adaptation to Antibiotic-Resistant Extraintestinal Pathogenic Escherichia coli. mBio 2021; 12:e00211-21. [PMID: 33906920 PMCID: PMC8092219 DOI: 10.1128/mbio.00211-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC), often multidrug resistant (MDR), is a leading cause of urinary tract and systemic infections. The crisis of emergent MDR pathogens has led some to propose bacteriophages as a therapeutic. However, bacterial resistance to phage is a concerning issue that threatens to undermine phage therapy. Here, we demonstrate that E. coli sequence type 131, a circulating pandemic strain of ExPEC, rapidly develops resistance to a well-studied and therapeutically active phage (ϕHP3). Whole-genome sequencing of the resisters revealed truncations in genes involved in lipopolysaccharide (LPS) biosynthesis, the outer membrane transporter ompA, or both, implicating them as phage receptors. We found ExPEC resistance to phage is associated with a loss of fitness in host microenvironments and attenuation in a murine model of systemic infection. Furthermore, we constructed a novel phage-bacterium bioreactor to generate an evolved phage isolate with restored infectivity to all LPS-truncated ExPEC resisters. This study suggests that although the resistance of pandemic E. coli to phage is frequent, it is associated with attenuation of virulence and susceptibility to new phage variants that arise by directed evolution.IMPORTANCE In response to the rising crisis of antimicrobial resistance, bacteriophage (phage) therapy has gained traction. In the United States, there have been over 10 cases of largely successful compassionate-use phage therapy to date. The resilience of pathogens allowing their broad antibiotic resistance means we must also consider resistance to therapeutic phages. This work fills gaps in knowledge regarding development of phage resisters in a model of infection and finds critical fitness losses in those resisters. We also found that the phage was able to rapidly readapt to these resisters.
Collapse
Affiliation(s)
- Keiko C Salazar
- Department of Integrative Molecular and Biomedical Science, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Li Ma
- School of Biological and Physical Sciences, Northwestern State University, Natchitoches, Louisiana, USA
| | - Sabrina I Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara W Trautner
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Austen L Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Holding ML, Strickland JL, Rautsaw RM, Hofmann EP, Mason AJ, Hogan MP, Nystrom GS, Ellsworth SA, Colston TJ, Borja M, Castañeda-Gaytán G, Grünwald CI, Jones JM, Freitas-de-Sousa LA, Viala VL, Margres MJ, Hingst-Zaher E, Junqueira-de-Azevedo ILM, Moura-da-Silva AM, Grazziotin FG, Gibbs HL, Rokyta DR, Parkinson CL. Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proc Natl Acad Sci U S A 2021; 118:e2015579118. [PMID: 33875585 PMCID: PMC8092465 DOI: 10.1073/pnas.2015579118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear. We tested alternative hypotheses linking venom complexity and ecological sources of selection from diet in the largest clade of front-fanged venomous snakes in North America: the rattlesnakes, copperheads, cantils, and cottonmouths. We generated independent transcriptomic and proteomic measures of venom complexity and collated several natural history studies to quantify dietary variation. We then constructed genome-scale phylogenies for these snakes for comparative analyses. Strikingly, prey phylogenetic diversity was more strongly correlated to venom complexity than was overall prey species diversity, specifically implicating prey species' divergence, rather than the number of lineages alone, in the evolution of complexity. Prey phylogenetic diversity further predicted transcriptomic complexity of three of the four largest gene families in viper venom, showing that complexity evolution is a concerted response among many independent gene families. We suggest that the phylogenetic diversity of prey measures functionally relevant divergence in the targets of venom, a claim supported by sequence diversity in the coagulation cascade targets of venom. Our results support the general concept that the diversity of species in an ecological community is more important than their overall number in determining evolutionary patterns in predator trait complexity.
Collapse
Affiliation(s)
- Matthew L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634;
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Erich P Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Timothy J Colston
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | | | - Jason M Jones
- HERP.MX A.C., Villa del Álvarez, Colima 28973, Mexico
| | | | - Vincent Louis Viala
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil
- Center of Toxins, Immune-Response and Cell Signaling, São Paulo 05503-900, Brazil
| | - Mark J Margres
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | | | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil
- Center of Toxins, Immune-Response and Cell Signaling, São Paulo 05503-900, Brazil
| | - Ana M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040, Brazil
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634;
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634
| |
Collapse
|
13
|
Yaeger LN, Coles VE, Chan DCK, Burrows LL. How to kill Pseudomonas-emerging therapies for a challenging pathogen. Ann N Y Acad Sci 2021; 1496:59-81. [PMID: 33830543 DOI: 10.1111/nyas.14596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
As the number of effective antibiotics dwindled, antibiotic resistance (AR) became a pressing concern. Some Pseudomonas aeruginosa isolates are resistant to all available antibiotics. In this review, we identify the mechanisms that P. aeruginosa uses to evade antibiotics, including intrinsic, acquired, and adaptive resistance. Our review summarizes many different approaches to overcome resistance. Antimicrobial peptides have potential as therapeutics with low levels of resistance evolution. Rationally designed bacteriophage therapy can circumvent and direct evolution of AR and virulence. Vaccines and monoclonal antibodies are highlighted as immune-based treatments targeting specific P. aeruginosa antigens. This review also identifies promising drug combinations, antivirulence therapies, and considerations for new antipseudomonal discovery. Finally, we provide an update on the clinical pipeline for antipseudomonal therapies and recommend future avenues for research.
Collapse
Affiliation(s)
- Luke N Yaeger
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Victoria E Coles
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Derek C K Chan
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Chaudhry W, Lee E, Worthy A, Weiss Z, Grabowicz M, Vega N, Levin B. Mucoidy, a general mechanism for maintaining lytic phage in populations of bacteria. FEMS Microbiol Ecol 2021; 96:5897354. [PMID: 32845324 PMCID: PMC7532286 DOI: 10.1093/femsec/fiaa162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
We present evidence that phage resistance resulting from overproduction of exopolysaccharides, mucoidy, provides a general answer to the longstanding question of how lytic viruses are maintained in populations dominated by bacteria upon which they cannot replicate. In serial transfer culture, populations of mucoid Escherichia coli MG1655 that are resistant to lytic phages with different receptors, and thereby requiring independent mutations for surface resistance, are capable of maintaining these phages with little effect on their total density. Based on the results of our analysis of a mathematical model, we postulate that the maintenance of phage in populations dominated by mucoid cells can be attributed primarily to high rates of transition from the resistant mucoid states to susceptible non-mucoid states. Our tests with both population dynamic and single cell experiments as well as genomic analysis are consistent with this hypothesis. We discuss reasons for the generalized resistance of these mucoid E. coli, and the genetic and molecular mechanisms responsible for the high rate of transition from mucoid to sensitive states responsible for the maintenance of lytic phage in mucoid populations of E. coli.
Collapse
Affiliation(s)
- Waqas Chaudhry
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Esther Lee
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Andrew Worthy
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Zoe Weiss
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Marcin Grabowicz
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole Vega
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Bruce Levin
- Department of Biology, Emory University, Atlanta, GA 30322, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Wang X, Wei Z, Yang K, Wang J, Jousset A, Xu Y, Shen Q, Friman VP. Phage combination therapies for bacterial wilt disease in tomato. Nat Biotechnol 2019; 37:1513-1520. [PMID: 31792408 DOI: 10.1038/s41587-019-0328-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022]
Abstract
Bacteriophages have been proposed as an alternative to pesticides to kill bacterial pathogens of crops. However, the efficacy of phage biocontrol is variable and poorly understood in natural rhizosphere microbiomes. We studied biocontrol efficacy of different phage combinations on Ralstonia solanacearum infection in tomato. Increasing the number of phages in combinations decreased the incidence of disease by up to 80% in greenhouse and field experiments during a single crop season. The decreased incidence of disease was explained by a reduction in pathogen density and the selection for phage-resistant but slow-growing pathogen strains, together with enrichment for bacterial species that were antagonistic toward R. solanacearum. Phage treatment did not affect the existing rhizosphere microbiota. Specific phage combinations have potential as precision tools to control plant pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.
| | - Keming Yang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Jianing Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.,Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, the Netherlands
| | - Yangchun Xu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.
| | - Ville-Petri Friman
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
16
|
Steering Phages to Combat Bacterial Pathogens. Trends Microbiol 2019; 28:85-94. [PMID: 31744662 DOI: 10.1016/j.tim.2019.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
|
17
|
Wright RCT, Friman VP, Smith MCM, Brockhurst MA. Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure. mBio 2019; 10:e01652-19. [PMID: 31551330 PMCID: PMC6759759 DOI: 10.1128/mbio.01652-19] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 01/07/2023] Open
Abstract
Phage therapy is a promising alternative to chemotherapeutic antibiotics for the treatment of bacterial infections. However, despite recent clinical uses of combinations of phages to treat multidrug-resistant infections, a mechanistic understanding of how bacteria evolve resistance against multiple phages is lacking, limiting our ability to deploy phage combinations optimally. Here, we show, using Pseudomonas aeruginosa and pairs of phages targeting shared or distinct surface receptors, that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance. Whereas sequential exposure allowed bacteria to acquire multiple resistance mutations effective against both phages, this evolutionary trajectory was prevented by simultaneous exposure, resulting in quantitatively weaker resistance. The order of phage exposure determined the fitness costs of sequential resistance, such that certain sequential orders imposed much higher fitness costs than the same phage pair in the reverse order. Together, these data suggest that phage combinations can be optimized to limit the strength of evolved resistances while maximizing their associated fitness costs to promote the long-term efficacy of phage therapy.IMPORTANCE Globally rising rates of antibiotic resistance have renewed interest in phage therapy where combinations of phages have been successfully used to treat multidrug-resistant infections. To optimize phage therapy, we first need to understand how bacteria evolve resistance against combinations of multiple phages. Here, we use simple laboratory experiments and genome sequencing to show that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance evolution in the opportunistic pathogen Pseudomonas aeruginosa These findings suggest that phage combinations can be optimized to limit the emergence and persistence of resistance, thereby promoting the long-term usefulness of phage therapy.
Collapse
Affiliation(s)
- Rosanna C T Wright
- Department of Biology, University of York, York, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Scanlan JG, Hall AR, Scanlan PD. Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. INFECTION GENETICS AND EVOLUTION 2019; 73:425-432. [DOI: 10.1016/j.meegid.2019.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/21/2023]
|
19
|
Fortuna MA, Barbour MA, Zaman L, Hall AR, Buckling A, Bascompte J. Coevolutionary dynamics shape the structure of bacteria-phage infection networks. Evolution 2019; 73:1001-1011. [PMID: 30953575 DOI: 10.1111/evo.13731] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/18/2019] [Indexed: 01/21/2023]
Abstract
Coevolution-reciprocal evolutionary change among interacting species driven by natural selection-is thought to be an important force in shaping biodiversity. This ongoing process takes place within tangled networks of species interactions. In microbial communities, evolutionary change between hosts and parasites occurs at the same time scale as ecological change. Yet, we still lack experimental evidence of the role of coevolution in driving changes in the structure of such species interaction networks. Filling this gap is important because network structure influences community persistence through indirect effects. Here, we quantified experimentally to what extent coevolutionary dynamics lead to contrasting patterns in the architecture of bacteria-phage infection networks. Specifically, we look at the tendency of these networks to be organized in a nested pattern by which the more specialist phages tend to infect only a proper subset of those bacteria infected by the most generalist phages. We found that interactions between coevolving bacteria and phages become less nested over time under fluctuating dynamics, and more nested under arms race dynamics. Moreover, when coevolution results in high average infectivity, phages and bacteria differ more from each other over time under arms race dynamics than under fluctuating dynamics. The tradeoff between the fitness benefits of evolving resistance/infectivity traits and the costs of maintaining them might explain these differences in network structure. Our study shows that the interaction pattern between bacteria and phages at the community level depends on the way coevolution unfolds.
Collapse
Affiliation(s)
- Miguel A Fortuna
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Luis Zaman
- Center for the Study of Complex Systems, Ecology, and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Alex R Hall
- Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland
| | - Angus Buckling
- ESI & CEC, Biosciences, University of Exeter, Penryn, Cornwall, UK
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Wright RCT, Friman VP, Smith MCM, Brockhurst MA. Cross-resistance is modular in bacteria-phage interactions. PLoS Biol 2018; 16:e2006057. [PMID: 30281587 PMCID: PMC6188897 DOI: 10.1371/journal.pbio.2006057] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/15/2018] [Accepted: 09/24/2018] [Indexed: 01/21/2023] Open
Abstract
Phages shape the structure of natural bacterial communities and can be effective therapeutic agents. Bacterial resistance to phage infection, however, limits the usefulness of phage therapies and could destabilise community structures, especially if individual resistance mutations provide cross-resistance against multiple phages. We currently understand very little about the evolution of cross-resistance in bacteria–phage interactions. Here we show that the network structure of cross-resistance among spontaneous resistance mutants of Pseudomonas aeruginosa evolved against each of 27 phages is highly modular. The cross-resistance network contained both symmetric (reciprocal) and asymmetric (nonreciprocal) cross-resistance, forming two cross-resistance modules defined by high within- but low between-module cross-resistance. Mutations conferring cross-resistance within modules targeted either lipopolysaccharide or type IV pilus biosynthesis, suggesting that the modularity of cross-resistance was structured by distinct phage receptors. In contrast, between-module cross-resistance was provided by mutations affecting the alternative sigma factor, RpoN, which controls many lifestyle-associated functions, including motility, biofilm formation, and quorum sensing. Broader cross-resistance range was not associated with higher fitness costs or weaker resistance against the focal phage used to select resistance. However, mutations in rpoN, providing between-module cross-resistance, were associated with higher fitness costs than mutations associated with within-module cross-resistance, i.e., in genes encoding either lipopolysaccharide or type IV pilus biosynthesis. The observed structure of cross-resistance predicted both the frequency of resistance mutations and the ability of phage combinations to suppress bacterial growth. These findings suggest that the evolution of cross-resistance is common, is likely to play an important role in the dynamic structure of bacteria–phage communities, and could inform the design principles for phage therapy treatments. Phage therapy is a promising alternative to antibiotics for treating bacterial infections. Yet as with antibiotics, bacteria readily evolve resistance to phage attack, including cross-resistance that protects against multiple phages at once and so limits the usefulness of phage cocktails. Here we show, using laboratory experimental evolution of resistance against 27 phages in P. aeruginosa, that cross-resistance is common and determines the ability of phage combinations to suppress bacterial growth. Using whole-genome sequencing, we show that cross-resistance is most common against multiple phages that use the same receptor but that global regulator mutations provide generalist resistance, probably by simultaneously affecting the expression of multiple different phage receptors. Future trials should test if these features of cross-resistance evolution translate to more complex in vivo environments and can therefore be exploited to design more effective phage therapies for the clinic.
Collapse
Affiliation(s)
- Rosanna C. T. Wright
- Department of Biology, University of York, York, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Michael A. Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Betts A, Gray C, Zelek M, MacLean RC, King KC. High parasite diversity accelerates host adaptation and diversification. Science 2018; 360:907-911. [PMID: 29798882 PMCID: PMC7612933 DOI: 10.1126/science.aam9974] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/18/2018] [Accepted: 04/16/2018] [Indexed: 09/23/2023]
Abstract
Host-parasite species pairs are known to coevolve, but how multiple parasites coevolve with their host is unclear. By using experimental coevolution of a host bacterium and its viral parasites, we revealed that diverse parasite communities accelerated host evolution and altered coevolutionary dynamics to enhance host resistance and decrease parasite infectivity. Increases in parasite diversity drove shifts in the mode of selection from fluctuating (Red Queen) dynamics to predominately directional (arms race) dynamics. Arms race dynamics were characterized by selective sweeps of generalist resistance mutations in the genes for the host bacterium's cell surface lipopolysaccharide (a bacteriophage receptor), which caused faster molecular evolution within host populations and greater genetic divergence among populations. These results indicate that exposure to multiple parasites influences the rate and type of host-parasite coevolution.
Collapse
Affiliation(s)
- A Betts
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - C Gray
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - M Zelek
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - R C MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - K C King
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
22
|
Latz S, Krüttgen A, Häfner H, Buhl EM, Ritter K, Horz HP. Differential Effect of Newly Isolated Phages Belonging to PB1-Like, phiKZ-Like and LUZ24-Like Viruses against Multi-Drug Resistant Pseudomonas aeruginosa under Varying Growth Conditions. Viruses 2017; 9:v9110315. [PMID: 29077053 PMCID: PMC5707522 DOI: 10.3390/v9110315] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
In this study, we characterize three phages (SL1 SL2, and SL4), isolated from hospital sewage with lytic activity against clinical isolates of multi-drug resistant Pseudomonas aeruginosa (MDR-PA). The host spectrum ranged from 41% to 54%, with all three phages together covering 79% of all tested clinical isolates. Genome analysis revealed that SL1 (65,849 bp, 91 open reading frames ORFs) belongs to PB1-like viruses, SL2 (279,696 bp, 354 ORFs) to phiKZ-like viruses and SL4 (44,194 bp, 65 ORFs) to LUZ24-like viruses. Planktonic cells of four of five selected MDR-PA strains were suppressed by at least one phage with multiplicities of infection (MOIs) ranging from 1 to 10−6 for 16 h without apparent regrowth of bacterial populations. While SL2 was most potent in suppressing planktonic cultures the strongest anti-biofilm activity was observed with SL4. Phages were able to rescue bacteria-infected wax moth larvae (Galleria melonella) for 24 h, whereby highest survival rates (90%) were observed with SL1. Except for the biofilm experiments, the effect of a cocktail with all three phages was comparable to the action of the best phage alone; hence, there are no synergistic but also no antagonistic effects among phages. The use of a cocktail with these phages is therefore expedient for increasing host range and minimizing the development of phage resistance.
Collapse
Affiliation(s)
- Simone Latz
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany.
| | - Alex Krüttgen
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany.
| | - Helga Häfner
- Department of Infection Control and Infectious Diseases, RWTH Aachen University Hospital, 52074 Aachen, Germany.
| | - Eva Miriam Buhl
- Electron Microscopy Facility, RWTH Aachen University Hospital, 52074 Aachen, Germany.
| | - Klaus Ritter
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany.
| | - Hans-Peter Horz
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany.
| |
Collapse
|
23
|
Bacteria-Bacteriophage Coevolution in the Human Gut: Implications for Microbial Diversity and Functionality. Trends Microbiol 2017; 25:614-623. [PMID: 28342597 DOI: 10.1016/j.tim.2017.02.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 02/08/2023]
Abstract
Antagonistic coevolution (AC) between bacteria and bacteriophages plays a key role in driving and maintaining microbial diversity. Consequently, AC is predicted to affect all levels of biological organisation, from the individual to ecosystem scales. Nonetheless, we know nothing about bacteria-bacteriophage AC in perhaps the most important and clinically relevant microbial ecosystem known to humankind - the human gut microbiome. In this opinion piece I review current research on bacteria-phage AC in in vitro and natural populations of microbes. I then examine the evidence and discuss the potential role of AC in driving observed patterns of intra- and interindividual variation in the gut microbiome together with detailing the potential functional consequences of such AC-driven microbial variation for human health and disease.
Collapse
|
24
|
Singhal S. Digest: Beating pathogens at their own game*. Evolution 2017; 71:804-805. [DOI: 10.1111/evo.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Sonia Singhal
- Department of Biology; University of Washington; Box 351800 Seattle Washington 98195
| |
Collapse
|
25
|
Gurney J, Aldakak L, Betts A, Gougat-Barbera C, Poisot T, Kaltz O, Hochberg ME. Network structure and local adaptation in co-evolving bacteria-phage interactions. Mol Ecol 2017; 26:1764-1777. [PMID: 28092408 DOI: 10.1111/mec.14008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/21/2023]
Abstract
Numerous theoretical and experimental studies have investigated antagonistic co-evolution between parasites and their hosts. Although experimental tests of theory from a range of biological systems are largely concordant regarding the influence of several driving processes, we know little as to how mechanisms acting at the smallest scales (individual molecular and phenotypic changes) may result in the emergence of structures at larger scales, such as co-evolutionary dynamics and local adaptation. We capitalized on methods commonly employed in community ecology to quantify how the structure of community interaction matrices, so-called bipartite networks, reflected observed co-evolutionary dynamics, and how phages from these communities may or may not have adapted locally to their bacterial hosts. We found a consistent nested network structure for two phage types, one previously demonstrated to exhibit arms race co-evolutionary dynamics and the other fluctuating co-evolutionary dynamics. Both phages increased their host ranges through evolutionary time, but we found no evidence for a trade-off with impact on bacteria. Finally, only bacteria from the arms race phage showed local adaptation, and we provide preliminary evidence that these bacteria underwent (sometimes different) molecular changes in the wzy gene associated with the LPS receptor, while bacteria co-evolving with the fluctuating selection phage did not show local adaptation and had partial deletions of the pilF gene associated with type IV pili. We conclude that the structure of phage-bacteria interaction networks is not necessarily specific to co-evolutionary dynamics, and discuss hypotheses for why only one of the two phages was, nevertheless, locally adapted.
Collapse
Affiliation(s)
- James Gurney
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Lafi Aldakak
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Alex Betts
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Claire Gougat-Barbera
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Timothée Poisot
- Département de Sciences Biologiques, Université de Montréal, Pavillon Marie-Victorin, 90, avenue Vincent-d'Indy, Montréal, H2V 2S9, Canada
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France.,Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, 87501, USA
| |
Collapse
|
26
|
Mumford R, Friman VP. Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phage therapy. Evol Appl 2016; 10:161-169. [PMID: 28127392 PMCID: PMC5253424 DOI: 10.1111/eva.12435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022] Open
Abstract
The rapid rise of antibiotic resistance has renewed interest in phage therapy – the use of bacteria‐specific viruses (phages) to treat bacterial infections. Even though phages are often pathogen‐specific, little is known about the efficiency and eco‐evolutionary outcomes of phage therapy in polymicrobial infections. We studied this experimentally by exposing both quorum‐sensing (QS) signalling PAO1 and QS‐deficient lasR Pseudomonas aeruginosa genotypes (differing in their ability to signal intraspecifically) to lytic PT7 phage in the presence and absence of two bacterial competitors: Staphylococcus aureus and Stenotrophomonas maltophilia–two bacteria commonly associated with P. aeruginosa in polymicrobial cystic fibrosis lung infections. Both the P. aeruginosa genotype and the presence of competitors had profound effects on bacteria and phage densities and bacterial resistance evolution. In general, competition reduced the P. aeruginosa frequencies leading to a lower rate of resistance evolution. This effect was clearer with QS signalling PAO1 strain due to lower bacteria and phage densities and relatively larger pleiotropic growth cost imposed by both phages and competitors. Unexpectedly, phage selection decreased the total bacterial densities in the QS‐deficient lasR pathogen communities, while an increase was observed in the QS signalling PAO1 pathogen communities. Together these results suggest that bacterial competition can shape the eco‐evolutionary outcomes of phage therapy.
Collapse
Affiliation(s)
- Rachel Mumford
- Silwood Park Campus Imperial College London Ascot Berkshire UK
| | - Ville-Petri Friman
- Silwood Park Campus Imperial College London Ascot Berkshire UK; Department of Biology University of York York UK
| |
Collapse
|
27
|
Host and Parasite Evolution in a Tangled Bank. Trends Parasitol 2016; 32:863-873. [PMID: 27599631 DOI: 10.1016/j.pt.2016.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023]
Abstract
Most hosts and parasites exist in diverse communities wherein they interact with other species, spanning the parasite-mutualist continuum. These additional interactions have the potential to impose selection on hosts and parasites and influence the patterns and processes of their evolution. Yet, host-parasite interactions are almost exclusively studied in species pairs. A wave of new research has incorporated a multispecies community context, showing that additional ecological interactions can alter components of host and parasite fitness, as well as interaction specificity and virulence. Here, we synthesize these findings to assess the effects of increased species diversity on the patterns and processes of host and parasite evolution. We argue that our understanding of host-parasite interactions would benefit from a richer biotic perspective.
Collapse
|