1
|
Begum S, Hossain MJ, Kim I, Min HS, Lim YN, Cho HJ, Ryu JH. Modulating immune responses in alopecia: therapeutic insights and potential targets of antisense oligonucleotides. BMC Immunol 2025; 26:26. [PMID: 40181256 PMCID: PMC11967052 DOI: 10.1186/s12865-025-00685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Alopecia areata (AA) are hair loss disorders with distinct pathogenetic mechanisms involving immune dysregulation and microRNA modulation. AA, a T cell-mediated autoimmune disease, is characterized by sudden hair loss, with interferon-gamma (IFN-γ) playing a pivotal role in pathogenesis. The upregulation of IFN response genes, including IFN-inducible chemokines CXCL9, CXCL10, and CXCL11, in lesional skin reflects the activation of the IFN response pathway and contributes to immune cell recruitment and inflammation. RESULTS Recent research highlights the role of SIRT1, a class III histone deacetylase, in modulating immune responses in AA. SIRT1 inhibition promotes the production of Th1 cytokines and chemokines, impairing inflammation, while SIRT1 activation suppresses autoreactive responses through NF-κB deacetylation and STAT3 phosphorylation. Additionally, antisense oligonucleotides (ASOs) targeting miR-485-3p show therapeutic potential in promoting hair regrowth and mitigating inflammation in murine models of androgenic alopecia (AGA) and AA. CONCLUSION Understanding chemokine dysregulation provides key insights into AA pathogenesis and highlights TAMI-M as a potential therapy for reducing inflammation and promoting hair regeneration. These findings advance the exploration of immune, microRNA, and SIRT1 pathways as targets for novel hair loss treatments.
Collapse
Affiliation(s)
- Shahnaz Begum
- Biorchestra Co. Ltd., (34000) 1, International Science 2-ro, Yuseong-gu, Daejeon (Sindong 658-3), South Korea
| | - Md Jamil Hossain
- Biorchestra Co. Ltd., (34000) 1, International Science 2-ro, Yuseong-gu, Daejeon (Sindong 658-3), South Korea
| | - Insun Kim
- Biorchestra Co. Ltd., (34000) 1, International Science 2-ro, Yuseong-gu, Daejeon (Sindong 658-3), South Korea
| | - Hyun Su Min
- Biorchestra Co. Ltd., (34000) 1, International Science 2-ro, Yuseong-gu, Daejeon (Sindong 658-3), South Korea
| | - Yu Na Lim
- Biorchestra Co. Ltd., (34000) 1, International Science 2-ro, Yuseong-gu, Daejeon (Sindong 658-3), South Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, South Korea.
| | - Jin-Hyeob Ryu
- Biorchestra Co. Ltd., (34000) 1, International Science 2-ro, Yuseong-gu, Daejeon (Sindong 658-3), South Korea.
| |
Collapse
|
2
|
Wu J, Zhai J, Jia H, Ahamba IS, Dong X, Ren Z. Whole-transcriptome analysis reveals the profiles and roles of coding and non-coding RNAs during hair follicle cycling in Rex rabbits. BMC Genomics 2025; 26:74. [PMID: 39863835 PMCID: PMC11765939 DOI: 10.1186/s12864-025-11264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown. RESULTS In this study, we identified the hair follicle stages of Rex rabbits aged 3 to 5.5 months. Skin samples collected at 4, 5 and 5.5 months, representing the morphological features of the anagen, catagen and telogen stage separately, were finally selected for whole-transcriptome analysis. 25,736 mRNA, 8280 lncRNA, 24,885 circRNA and 1138 miRNA transcripts were identified. 6027 differently expressed mRNAs (DEGs), 2381 differently expressed lncRNAs (DELs), 438 differently expressed circRNAs (DECs) and 167 differently expressed miRNAs (DEMs) were detected in the anagen vs. catagen (AvC) comparison. 4092 DEGs, 1540 DELs, 356 DECs and 141 DEMs were detected in the anagen vs. telogen (AvT) comparison. 2290 DEGs, 779 DELs, 249 DECs and 92 DEMs were detected in the catagen vs. telogen (CvT) comparison. DEGs were primarily enriched in GO items including plasma membrane, integral component of plasma membrane and extracellular space. KEGG enrichment analysis revealed that DEGs were mainly enriched in PI3K-Akt signaling pathway, cell cycle and Wnt signaling pathway (p < 0.05). KEGG analysis showed trans-acting genes of DELs were significantly enriched in Hippo signaling pathway, PI3K-Akt signaling pathway and Melanogenesis. Target genes of DEMs were mainly enriched in MAPK signaling pathway, Wnt signaling pathway, ECM-receptor interaction and Signaling pathways regulating pluripotency of stem cells. Based on the ceRNA mechanism, lncRNA/circRNA-miRNA-mRNA networks were constructed involving 9 DECs, 437 DELs, 50 DEMs and 416 DEGs. CONCLUSIONS Totally, this study provides comprehensive insights into the expression patterns of protein-coding genes and non-coding transcripts throughout the HF cycle, and enhancing the understanding of the regulatory mechanisms underlying mammalian hair fiber development.
Collapse
Affiliation(s)
- Jie Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiamin Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haofan Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ifeanyi Solomon Ahamba
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Zhou Y, Mabrouk I, Ma J, Liu Q, Song Y, Xue G, Li X, Wang S, Liu C, Hu J, Sun Y. Chromosome-level genome sequencing and multi-omics of the Hungarian White Goose (Anser anser domesticus) reveals novel miRNA-mRNA regulation mechanism of waterfowl feather follicle development. Poult Sci 2024; 103:103933. [PMID: 38943801 PMCID: PMC11261457 DOI: 10.1016/j.psj.2024.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024] Open
Abstract
The Hungarian White Goose (Anser anser domesticus) is an excellent European goose breed, with high feather and meat production. Despite its importance in the poultry industry, no available genome assembly information has been published. This study aimed to present Chromosome-level and functional genome sequencing of the Hungarian White Goose. The results showed that the genome assembly has a total length of 1115.82 Mb, 39 pairs of chromosomes, 92.98% of the BUSCO index, and contig N50 and scaffold N50 were up to 2.32 Mb and 60.69 Mb, respectively. Annotation of the genome assembly revealed 19550 genes, 286 miRNAs, etc. We identified 235 expanded and 1,167 contracted gene families in this breed compared with the other 16 species. We performed a positive selection analysis between this breed and four species of Anatidae to uncover the genetic information underlying feather follicle development. Further, we detected the function of miR-199-x, miR-143-y, and miR-23-z on goose embryonic skin fibroblast. In summary, we have successfully generated a highly complete genome sequence of the Hungarian white goose, which will provide a great resource to improve our understanding of gene functions and enhance the studies on feather follicle development at the genomic level.
Collapse
Affiliation(s)
- Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guizhen Xue
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyue Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Sihui Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chang Liu
- Changchun Municipal People's Government, Changchun Animal Husbandry Service, Changchun, 130062, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China..
| |
Collapse
|
4
|
Sun H, Yuan X, Zhang N, Luo Z, Zhang L, Li X. Screening of hair follicle telogen-associated circRNAs in sheep and construction of their ceRNA network. Genomics 2024; 116:110818. [PMID: 38431032 DOI: 10.1016/j.ygeno.2024.110818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Sheep breeds with hair-shedding traits have many advantages over non-shedding sheep breeds, not only because of reduced shearing labor and feeding management costs but also because it reduces in vitro parasites and improves adaptability to summer heat stress. The wool of Dorper sheep naturally sheds in spring due to the periodic growth of hair follicles. CircRNAs primarily regulate the morphogenesis of hair follicles through the ceRNA mechanism. In this study, five 2-year-old Dorper ewes with extreme hair-shedding phenotype (S) and three Dorper ewes with non-shedding (N) phenotype were selected for subsequent analyses. For RNA extraction, skin tissues were collected on 27th September 2019 (S1, N1), 3rd January 2020 (S2, N2), and 17th March 2020 (S3, N3), which were then subjected to RNA-seq. RNA-seq technology revealed 20,185 novel circRNAs in the hair follicles of Dorper sheep. Among them, 1450 circRNAs were differentially expressed (DE). Clustering heatmap and expression pattern analyses were performed on DE circRNAs, which indicated 78 circRNAs with T pattern (Telogen, highly expressed in telogen), and the source genes for candidate circRNAs were further screened by functional enrichment analysis, which identified 13 crucial genes enriched in pathways associated with hair follicle development. Additionally, a ceRNA regulatory network comprising 4 circRNAs, 11 miRNAs, and 13 target genes was constructed. Overall, this study screened circRNAs that may be associated with the telogen phase of hair follicles in sheep, providing a relevant theoretical basis for wool shedding in sheep and for breeding Dorper sheep with automatic wool shedding.
Collapse
Affiliation(s)
- Haoran Sun
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiaochun Yuan
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Ningyue Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Zhongze Luo
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Liang Zhang
- Ningxia China Animal Husbandry Yilin Livestock Co., Ltd., Yinchuan 750021, Ningxia, China
| | - Xinhai Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China.
| |
Collapse
|
5
|
Qi WH, Liu T, Zheng CL, Zhao Q, Zhou N, Zhao GJ. Identification of Potential miRNA-mRNA Regulatory Network Associated with Growth and Development of Hair Follicles in Forest Musk Deer. Animals (Basel) 2023; 13:3869. [PMID: 38136906 PMCID: PMC10740511 DOI: 10.3390/ani13243869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, sRNA libraries and mRNA libraries of HFs of FMD were constructed and sequenced using an Illumina HiSeq 2500, and the expression profiles of miRNAs and genes in the HFs of FMD were obtained at the anagen and catagen stages. In total, 565 differentially expressed unigenes (DEGs) were identified, 90 of which were upregulated and 475 of which were downregulated. In the BP category of GO enrichment, the DEGs were enriched in the processes related to HF development and differentiation, including the hair cycle regulation and processes, HF development, skin epidermis development, regulation of HF development, skin development, the Wnt signaling pathway, and the BMP signaling pathway. Through KEGG analysis it was found that DEGs were significantly enriched in pathways associated with HF development and growth. A total of 186 differentially expressed miRNAs (DEmiRNAs) were screened (p < 0.05) in the HFs of FMD at the anagen stage vs. the catagen stage, 33 of which were upregulated and 153 of which were downregulated. Through DEmiRNA-mRNA association analysis, we found DEmiRNAs and target genes that mainly play regulatory roles in HF development and growth. The enrichment analysis of DEmiRNA target genes revealed similarities with the enrichment results of DEGs associated with HF development. Notably, both sets of genes were enriched in key pathways such as the Notch signaling pathway, melanogenesis, the cAMP signaling pathway, and cGMP-PKG. To validate our findings, we selected 11 DEGs and 11 DEmiRNAs for experimental verification using RT-qPCR. The results of the experimental validation were consistent with the RNA-Seq results.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Ting Liu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Cheng-Li Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 611830, China;
| | - Qi Zhao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Nong Zhou
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Gui-Jun Zhao
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| |
Collapse
|
6
|
Zhang G, Xu J, Zhang Y, Yang S, Jiang H. Expression of miRNA-1-3p and its target gene in hair follicle cycle development of Liaoning Cashmere goat. Anim Biotechnol 2023; 34:1937-1942. [PMID: 35443150 DOI: 10.1080/10495398.2022.2058519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
MicroRNA exerts an important regulatory role in almost all the biological process, including hair follicle development in Liaoning Cashmere goat. In order to improve the Cashmere performance of goat, the regulatory role of microRNA in hair follicle cycle has drawn hotspot attention. However, the molecular mechanisms of miRNA-1-3p involved in hair follicle development are poorly understood. In this study, we found that miRNA-1-3p was less expressed in anagen stage of hair follicle cycle of Cashmere goat than that in telogen stage by using RT-qPCR and immunoblotting analysis, in contrast to the expression pattern of FGF14. The Dual-Luciferase reporter assay was employed to verify the relationship between miRNA-1-3p and FGF14. The results showed that miRNA-1-3p specifically binds to the 3'UTR of FGF14 mRNA, and FGF14 is the target gene of miR-1-3p. In conclusion, this study shows that miRNA-1-3p may regulate hair follicle development in Liaoning Cashmere goats by targeting FGF14.
Collapse
Affiliation(s)
- Guishan Zhang
- School of Public Health, Jilin Medical University, Jilin, Jilin Province, China
| | - Jing Xu
- School of Basic Medical Sciences, Jilin Medical University, Jilin, Jilin Province, China
| | - Yingnan Zhang
- School of Public Health, Jilin Medical University, Jilin, Jilin Province, China
| | - Shubao Yang
- School of Basic Medical Sciences, Jilin Medical University, Jilin, Jilin Province, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| |
Collapse
|
7
|
Ding Y, Chen Y, Yang X, Xu P, Jing J, Miao Y, Mao M, Xu J, Wu X, Lu Z. An integrative analysis of the lncRNA-miRNA-mRNA competitive endogenous RNA network reveals potential mechanisms in the murine hair follicle cycle. Front Genet 2022; 13:931797. [DOI: 10.3389/fgene.2022.931797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Alopecia is a common progressive disorder associated with abnormalities of the hair follicle cycle. Hair follicles undergo cyclic phases of hair growth (anagen), regression (catagen), and rest (telogen), which are precisely regulated by various mechanisms. However, the specific mechanism associated with hair follicle cycling, which includes noncoding RNAs and regulation of competitive endogenous RNA (ceRNA) network, is still unclear. We obtained data from publicly available databases and performed real-time quantitative polymerase chain reaction validations. These analyses revealed an increase in the expression of miRNAs and a decrease in the expression of target mRNAs and lncRNAs from the anagen to telogen phase of the murine hair follicle cycle. Subsequently, we constructed the ceRNA networks and investigated their functions using enrichment analysis. Furthermore, the androgenetic alopecia (AGA) microarray data analysis revealed that several novel alopecia-related genes were identified in the ceRNA networks. Lastly, GSPT1 expression was detected using immunohistochemistry. Our analysis revealed 11 miRNAs (miR-148a-3p, miR-146a-5p, miR-200a-3p, miR-30e-5p, miR-30a-5p, miR-27a-3p, miR-143-3p, miR-27b-3p, miR-126a-3p, miR-378a-3p, and miR-22-3p), 9 target mRNAs (Atp6v1a, Cdkn1a, Gadd45a, Gspt1, Mafb, Mitf, Notch1, Plk2, and Slc7a5), and 2 target lncRNAs (Neat1 and Tug1) were differentially expressed in hair follicle cycling. The ceRNA networks were made of 12 interactive miRNA-mRNA pairs and 13 miRNA-lncRNA pairs. The functional enrichment analysis revealed the enrichment of hair growth–related signaling pathways. Additionally, GSPT1 was downregulated in androgenetic alopecia patients, possibly associated with alopecia progression. The ceRNA network identified by our analysis could be involved in regulating the hair follicle cycle.
Collapse
|
8
|
He J, Huang X, Zhao B, Liu G, Tian Y, Zhang G, Wei C, Mao J, Tian K. Integrated analysis of miRNAs and mRNA profiling reveals the potential roles of miRNAs in sheep hair follicle development. BMC Genomics 2022; 23:722. [PMID: 36273119 PMCID: PMC9588206 DOI: 10.1186/s12864-022-08954-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Merino sheep exhibit high wool production and excellent wool quality. The fleece of Merino sheep is predominantly composed of wool fibers grown from hair follicles (HFs). The HF is a complex biological system involved in a dynamic process governed by gene regulation, and gene expression is regulated by microRNAs (miRNAs). miRNA inhibits posttranscriptional gene expression by specifically binding to target messenger RNA (mRNA) and plays an important role in regulating gene expression, the cell cycle and biological development sequences. The purpose of this study was to examine mRNA and miRNA binding to identify key miRNAs and target genes related to HF development. This will provide new and important insights into fundamental mechanisms that regulate cellular activity and cell fate decisions within and outside of the skin. RESULTS We analyzed miRNA data in skin tissues collected from 18 Merino sheep on four embryonic days (E65, E85, E105 and E135) and two postnatal days (D7 and D30) and identified 87 differentially expressed miRNAs (DE-miRNAs). These six stages were further divided into two longer developmental stages based on heatmap cluster analysis, and the results showed that DE-mRNAs in Stage A were closely related to HF morphogenesis. A coanalysis of Stage A DE-mRNAs and DE-miRNAs revealed that 9 DE-miRNAs and 17 DE-mRNAs presented targeting relationships in Stage A. We found that miR-23b and miR-133 could target and regulate ACVR1B and WNT10A. In dermal fibroblasts, the overexpression of miR-133 significantly reduced the mRNA and protein expression levels of ACVR1B. The overexpression of miR-23b significantly reduced the mRNA and protein expression levels of WNT10A. CONCLUSION This study provides a new reference for understanding the molecular basis of HF development and lays a foundation for further improving sheep HF breeding. miRNAs and target genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine-wool sheep.
Collapse
Affiliation(s)
- Junmin He
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guifen Liu
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuezhen Tian
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Guoping Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chen Wei
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jingyi Mao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Kechuan Tian
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
9
|
He J, Zhao B, Huang X, Fu X, Liu G, Tian Y, Wu C, Mao J, Liu J, Gun S, Tian K. Gene network analysis reveals candidate genes related with the hair follicle development in sheep. BMC Genomics 2022; 23:428. [PMID: 35672687 PMCID: PMC9175362 DOI: 10.1186/s12864-022-08552-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Merino sheep are the most famous fine wool sheep in the world. They have high wool production and excellent wool quality and have attracted worldwide attention. The fleece of the Merino sheep is composed predominantly of wool fibers grown from secondary wool follicles. Therefore, it is necessary to study the development of hair follicles to understand the mechanism of wool production. The hair follicle is a complex biological system involved in a dynamic process governed by gene regulation. The hair follicle development process is very complex and poorly understood. The purpose of our research is to identify candidate genes related to hair follicle development, provide a theoretical molecular breeding basis for the cultivation of fine wool sheep, and provide a reference for the problems of hair loss and alopecia areata that affect human beings. Results We analyzed mRNAs data in skin tissues of 18 Merino sheep at four embryonic days (E65, E85, E105 and E135) and two postnatal days (P7 and P30). G1 to G6 represent hair follicles developmental at six stages (i.e. E65 to P30). We identified 7879 differentially expressed genes (DEGs) and 12623 novel DEGs, revealed different expression patterns of these DEGs at six stages of hair follicle development, and demonstrated their complex interactions. DEGs with stage-specific expression were significantly enriched in epidermal differentiation and development, hair follicle development and hair follicle morphogenesis and were enriched in many pathways related to hair follicle development. The key genes (LAMA5, WNT10A, KRT25, SOSTDC1, ZDHHC21, FZD1, BMP7, LRP4, TGFβ2, TMEM79, SOX10, ITGB4, KRT14, ITGA6, and GLI2) affecting hair follicle morphogenesis were identified by network analysis. Conclusion This study provides a new reference for the molecular basis of hair follicle development and lays a foundation for further improving sheep hair follicle breeding. Candidate genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine wool sheep. These results are a valuable resource for biological investigations of fleece evolution in animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08552-2.
Collapse
Affiliation(s)
- Junmin He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuezhen Tian
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jingyi Mao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jing Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
10
|
Lin X, Zhu L, He J. Morphogenesis, Growth Cycle and Molecular Regulation of Hair Follicles. Front Cell Dev Biol 2022; 10:899095. [PMID: 35646909 PMCID: PMC9133560 DOI: 10.3389/fcell.2022.899095] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022] Open
Abstract
As one of the main appendages of skin, hair follicles play an important role in the process of skin regeneration. Hair follicle is a tiny organ formed by the interaction between epidermis and dermis, which has complex and fine structure and periodic growth characteristics. The hair growth cycle is divided into three continuous stages, growth (anagen), apoptosis-driven regression (catagen) and relative quiescence (telogen). And The Morphogenesis and cycle of hair follicles are regulated by a variety of signal pathways. When the signal molecules in the pathways are abnormal, it will affect the development and cycle of hair follicles, which will lead to hair follicle-related diseases.This article will review the structure, development, cycle and molecular regulation of hair follicles, in order to provide new ideas for solving diseases and forming functional hair follicle.
Collapse
|
11
|
Jiang Y, Liu H, Zou Q, Li S, Ding X. miR-29a-5p Inhibits Prenatal Hair Placode Formation Through Targeting EDAR by ceRNA Regulatory Network. Front Cell Dev Biol 2022; 10:902026. [PMID: 35646897 PMCID: PMC9133881 DOI: 10.3389/fcell.2022.902026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hair placode formation is an important stage of hair follicle morphogenesis and it is a complex process facilitated by non-coding RNAs. In this study, we conducted whole transcriptome sequencing analysis of skin, heart, liver, lung, and kidney tissues of day 41 (E41) normal and hairless pig embryos, and respectively detected 15, 8, and 515 skin-specific differentially expressed (DE) lncRNAs, miRNAs, and mRNAs. Furthermore, 18 competing endogenous RNA (ceRNA) networks were constructed. Following weighted gene co-expression network analysis (WGCNA) of stages E39, E41, E45, E52, and E60, between normal and hairless pig embryos, only two ceRNAs (lncRNA2162.1/miR-29a-5p/BMPR1b and lncRNA627.1/miR-29a-5p/EDAR) that showed period-specific differential expression in E41 skin were retained. Dual-luciferase reporter assays further indicated that EDAR was a direct, functioning target of miR-29a-5p and that no binding site was found in BMPR1b. Moreover, miR-29a-5p overexpression inhibited the mRNA and protein expression of EDAR while no significant differential expression of BMPR1b was detected. In addition, over-expressed lncRNA627.1 reduces the expression of miR-29a-5p and increase EDAR expression while inhibits lncRNA627.1 resulted in a opposite expression trend. Cell proliferation result demonstrated that lower expression of EDAR and lncRNA627.1 inhibited hair placode precursor cells (HPPCs) proliferation in a manner similar to that shown by over-expressed miR-29a-5p. This study identified that miR-29a-5p inhibited HPPCs proliferation via the suppression of EDAR expression in the EDA/EDAR signaling pathway, while lncRNA627.1 rescues EDAR expression. Our study provides a basis for a better understanding of the mechanisms underlying the ceRNA complex, miR29a-5p/EDAR/lncRNA627.1, that could regulate hair placode formation, which may help decipher diseases affecting human hair.
Collapse
Affiliation(s)
- Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quan Zou
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shujuan Li
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Xiangdong Ding,
| |
Collapse
|
12
|
Hair Follicle-Related MicroRNA-34a Serum Expression and rs2666433A/G Variant in Patients with Alopecia: A Cross-Sectional Analysis. Biomolecules 2022; 12:biom12050602. [PMID: 35625530 PMCID: PMC9138785 DOI: 10.3390/biom12050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 01/10/2023] Open
Abstract
Alopecia areata (AA) is a type of immune-mediated alopecia. Recent studies have suggested microRNAs’ (miRNAs) implication in several cellular processes, including epidermal and hair follicle biology. Single nucleotide polymorphisms (SNPs) can modify gene expression levels, which may induce an autoimmune response. This case−control study included 480 participants (240 for each case/control group). MicroRNA-34a gene (MIR-34A) rs2666433A/G variant was genotyped using real-time allelic discrimination polymerase chain reaction (PCR). Additionally, circulatory miR-34a levels were quantified by quantitative reverse transcription PCR (qRT-PCR). On comparing between alopecia and non-alopecia cohorts, a higher frequency of A variant was noted among patients when compared to controls—A allele: 28 versus 18% (p < 0.001); A/A genotype: 9 versus 2%; A/G genotype: 39 versus 32% (p < 0.001). A/A and A/G carriers were more likely to develop alopecia under heterozygote comparison (OR = 1.83, 95% CI = 1.14−2.93), homozygote comparison (OR = 4.19, 95% CI = 1.33−13.1), dominant (OR = 2.0, 95% CI = 1.27−3.15), recessive (OR = 3.36, 95% CI = 1.08−10.48), over-dominant (OR = 1.65, 95% CI = 1.04−32.63), and log additive (OR = 1.91, 95% CI = 1.3−2.82) models. Serum miR-34a expression levels were upregulated in alopecia patients with a median and quartile fold change of 27.3 (1.42−2430). Significantly higher levels were more pronounced in A/A genotype patients (p < 0.01). Patients carrying the heterozygote genotype (rs2666433 * A/G) were two times more likely to develop more severe disease grades. Stratified analysis by sex revealed the same results. A high expression level was associated with concomitant autoimmune comorbidities (p = 0.001), in particular SLE (p = 0.007) and vitiligo (p = 0.049). In conclusion, the MIR34A rs2666433 (A/G) variant is associated with AA risk and severity in the studied population. Furthermore, high miR-34a circulatory levels could play a role in disease pathogenesis.
Collapse
|
13
|
Mokabber H, Vatankhah MA, Najafzadeh N. The regulatory role of microRNAs in the development, cyclic changes, and cell differentiation of the hair follicle. Process Biochem 2022; 114:36-41. [DOI: 10.1016/j.procbio.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Lv X, Chen W, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo JM, Haile A, Sun W. Integrated Hair Follicle Profiles of microRNAs and mRNAs to Reveal the Pattern Formation of Hu Sheep Lambskin. Genes (Basel) 2022; 13:genes13020342. [PMID: 35205386 PMCID: PMC8872417 DOI: 10.3390/genes13020342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Hair follicle development is closely associated with wool curvature. Current studies reveal the crucial role of microRNAs (miRNAs) in hair follicle growth and development. However, few studies are known regarding their role in wool curvature. To reveal the potential roles of miRNAs in Hu sheep lambskin with different patterns, a total of 37 differentially expressed (DE) miRNAs were identified in hair follicles between small waves (SM) and straight wool (ST) groups using RNA-seq. Through functional enrichment and miRNA-mRNA co-expression analysis, some key miRNAs (oar-miR-143, oar-miR-200b, oar-miR-10a, oar-miR-181a, oar-miR-10b, oar-miR-125b, etc.) and miRNA-mRNA pairs (miR-125b target CD34, miR-181a target FGF12, LMO3, miR-200b target ZNF536, etc.) were identified. Though direct or indirect ways affecting hair follicle development, these miRNAs and mRNAs may have possible effects on wool curvature, and this study thus provides valuable insight on potential pattern formation.
Collapse
Affiliation(s)
- Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
- Correspondence: ; Tel.: +86-139-5275-0912
| |
Collapse
|
15
|
Abreu CM, Marques AP. Recreation of a hair follicle regenerative microenvironment: Successes and pitfalls. Bioeng Transl Med 2022; 7:e10235. [PMID: 35079623 PMCID: PMC8780054 DOI: 10.1002/btm2.10235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
The hair follicle (HF) is an exquisite skin appendage endowed with cyclical regenerative capacity; however, de novo follicle formation does not naturally occur. Consequently, patients suffering from extensive skin damage or hair loss are deprived of the HF critical physiological and/or aesthetic functions, severally compromising skin function and the individual's psychosocial well-being. Translation of regenerative strategies has been prevented by the loss of trichogenic capacity that relevant cell populations undergo in culture and by the lack of suitable human-based in vitro testing platforms. Here, we provide a comprehensive overview of the major difficulties associated with HF regeneration and the approaches used to overcome these drawbacks. We describe key cellular requirements and discuss the importance of the HF extracellular matrix and associated signaling for HF regeneration. Finally, we summarize the strategies proposed so far to bioengineer human HF or hair-bearing skin models and disclose future trends for the field.
Collapse
Affiliation(s)
- Carla M. Abreu
- 3B's Research Group, I3Bs ‐ Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark–Parque de Ciência e Tecnologia, University of MinhoGuimarãesPortugal
- ICVS/3B's–PT Government Associate LaboratoryGuimarãesPortugal
| | - Alexandra P. Marques
- 3B's Research Group, I3Bs ‐ Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark–Parque de Ciência e Tecnologia, University of MinhoGuimarãesPortugal
- ICVS/3B's–PT Government Associate LaboratoryGuimarãesPortugal
| |
Collapse
|
16
|
Kowalczyk A, Chikina M, Clark N. Complementary evolution of coding and noncoding sequence underlies mammalian hairlessness. eLife 2022; 11:76911. [PMID: 36342464 PMCID: PMC9803358 DOI: 10.7554/elife.76911] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Body hair is a defining mammalian characteristic, but several mammals, such as whales, naked mole-rats, and humans, have notably less hair. To find the genetic basis of reduced hair quantity, we used our evolutionary-rates-based method, RERconverge, to identify coding and noncoding sequences that evolve at significantly different rates in so-called hairless mammals compared to hairy mammals. Using RERconverge, we performed a genome-wide scan over 62 mammal species using 19,149 genes and 343,598 conserved noncoding regions. In addition to detecting known and potential novel hair-related genes, we also discovered hundreds of putative hair-related regulatory elements. Computational investigation revealed that genes and their associated noncoding regions show different evolutionary patterns and influence different aspects of hair growth and development. Many genes under accelerated evolution are associated with the structure of the hair shaft itself, while evolutionary rate shifts in noncoding regions also included the dermal papilla and matrix regions of the hair follicle that contribute to hair growth and cycling. Genes that were top ranked for coding sequence acceleration included known hair and skin genes KRT2, KRT35, PKP1, and PTPRM that surprisingly showed no signals of evolutionary rate shifts in nearby noncoding regions. Conversely, accelerated noncoding regions are most strongly enriched near regulatory hair-related genes and microRNAs, such as mir205, ELF3, and FOXC1, that themselves do not show rate shifts in their protein-coding sequences. Such dichotomy highlights the interplay between the evolution of protein sequence and regulatory sequence to contribute to the emergence of a convergent phenotype.
Collapse
Affiliation(s)
- Amanda Kowalczyk
- Carnegie Mellon-University of Pittsburgh PhD Program in Computational BiologyPittsburghUnited States,Department of Computational Biology, University of PittsburghPittsburghUnited States
| | - Maria Chikina
- Department of Computational Biology, University of PittsburghPittsburghUnited States
| | - Nathan Clark
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| |
Collapse
|
17
|
Yang M, Weng T, Zhang W, Zhang M, He X, Han C, Wang X. The Roles of Non-coding RNA in the Development and Regeneration of Hair Follicles: Current Status and Further Perspectives. Front Cell Dev Biol 2021; 9:720879. [PMID: 34708037 PMCID: PMC8542792 DOI: 10.3389/fcell.2021.720879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alopecia is a common problem that affects almost every age group and is considered to be an issue for cosmetic or psychiatric reasons. The loss of hair follicles (HFs) and hair caused by alopecia impairs self-esteem, thermoregulation, tactile sensation and protection from ultraviolet light. One strategy to solve this problem is HF regeneration. Many signalling pathways and molecules participate in the morphology and regeneration of HF, such as Wnt/β-catenin, Sonic hedgehog, bone morphogenetic protein and Notch. Non-coding RNAs (ncRNAs), especially microRNAs and long ncRNAs, have significant modulatory roles in HF development and regeneration via regulation of these signalling pathways. This review provides a comprehensive overview of the status and future prospects of ncRNAs in HF regeneration and could prompt novel ncRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Min Yang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojie He
- Department of General Practice, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| |
Collapse
|
18
|
Paul S, Licona-Vázquez I, Serrano-Cano FI, Frías-Reid N, Pacheco-Dorantes C, Pathak S, Chakraborty S, Srivastava A. Current insight into the functions of microRNAs in common human hair loss disorders: a mini review. Hum Cell 2021; 34:1040-1050. [PMID: 33908022 DOI: 10.1007/s13577-021-00540-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Alopecia areata (AA) and Androgenic alopecia (AGA) are the most common multifactorial hair loss disorders that have a serious psychological impact on the affected individuals, while frontal fibrosing alopecia (FFA) is comparatively less common. However, due to the unknown etiology and the effect of many adverse factors, the prognosis of these conditions is challenging to predict. Moreover, no approved therapy has been available to date to prevent or treat these disorders. MicroRNAs (miRNAs) are a group of evolutionary conserved small non-coding RNA molecules with significant roles in the posttranscriptional gene regulation either through mRNA degradation or translational repression. A number of biological processes are controlled by these molecules, including cell growth and differentiation, proliferation, inflammation, immune responses, and apoptosis. Recently, a handful of studies have demonstrated the impact of miRNAs on common hair loss-related disorders; however, the exhaustive molecular mechanisms are still unclear. In this review, we discussed the functional implications of miRNAs in common hair loss-related disorders and addressed their efficacy to be used for theranostic purposes shortly.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Epigmenio González No. 500 Fracc. San Pablo, 76130, Querétaro, México.
| | - Iván Licona-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Epigmenio González No. 500 Fracc. San Pablo, 76130, Querétaro, México
| | - Francisco I Serrano-Cano
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Epigmenio González No. 500 Fracc. San Pablo, 76130, Querétaro, México
| | - Natalia Frías-Reid
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Epigmenio González No. 500 Fracc. San Pablo, 76130, Querétaro, México
| | - Carolina Pacheco-Dorantes
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Epigmenio González No. 500 Fracc. San Pablo, 76130, Querétaro, México
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603103, Tamil Nadu, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| |
Collapse
|
19
|
Bai L, Sun H, Jiang W, Yang L, Liu G, Zhao X, Hu H, Wang J, Gao S. DNA methylation and histone acetylation are involved in Wnt10b expression during the secondary hair follicle cycle in Angora rabbits. J Anim Physiol Anim Nutr (Berl) 2021; 105:599-609. [PMID: 33404138 DOI: 10.1111/jpn.13481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/03/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022]
Abstract
Secondary hair follicles (SHFs) in the Angora rabbit exhibit classic cyclic hair development, but the multiple molecular signals involved in hair cycling are yet to be explored in detail. In the present study, we investigated the expression pattern, methylation and histone H3 acetylation status of Wnt10b, as a molecular signal participating in hair cycling, during the SHF cycle in the Angora rabbit. Expression of Wnt10b at the anagen phase was significantly higher than that at both the telogen and catagen phases, suggesting that Wnt10b might serve as a critical activator during cyclic transition of SHFs. Methylation frequency of the fifth CpG site (CpG5-175 bp) in CpG islands at the anagen phase was lower than that at both the catagen and telogen phases. The methylation status of the CpG5 site was negatively correlated with Wnt10b expression. This indicated that the methylation of CpG5 might participate in Wnt10b transcriptional suppression in SHFs. Furthermore, histone H3 acetylation status in the regions-256~-11 bp and 98 ~ 361 bp were significantly lower at both the catagen and telogen phases than at the anagen phase. The histone H3 acetylation level was significantly positively correlated with Wnt10b expression. This confirmed that histone acetylation was likely involved in upregulating Wnt10b transcription in SHFs. Additionally, potential binding to the transcription factors ZF57 and HDBP was predicted within the CpG5 site. In conclusion, our findings reveal the epigenetic mechanism of Wnt10b transcription and provide a new insight into epigenetic regulation during the SHF cycle in the Angora rabbit.
Collapse
Affiliation(s)
- Liya Bai
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haitao Sun
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenxue Jiang
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Yang
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Gongyan Liu
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xueyan Zhao
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongmei Hu
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuxia Gao
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
20
|
Deng W, Hu T, Han L, Liu B, Tang X, Chen H, Chen X, Wan M. miRNA microarray profiling in patients with androgenic alopecia and the effects of miR-133b on hair growth. Exp Mol Pathol 2020; 118:104589. [PMID: 33290799 DOI: 10.1016/j.yexmp.2020.104589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Androgenetic alopecia (AGA), a common alopecia, is often accompanied by abnormal expression of multiple miRNAs. This study aims to investigate abnormally expressed miRNAs in patients with AGA and their specific molecular mechanism. METHODS miRNA microarray profiling and qRT-PCR validation were used to screen and verify abnormally expressed miRNAs in patients with AGA. Human hair follicles (HFs) were treated with different concentrations of dihydrotestosterone (DHT, 10-5, 10-6, 10-7 and 10-8 mol/L) for 10 days. The effects of DHT on HF growth, proliferation, and miRNA expression in cultured HFs were investigated using immunofluorescence staining and qRT-PCR. Moreover, human dermal papilla cells (HDPCs) were treated/transfected with a Wnt/β-catenin pathway activator and/or miR-133b mimic, and then the CCK-8 assay was used to evaluate HDPC proliferation. qRT-PCR and Western blotting were used to measure the expression of Versican, ALP and β-catenin RESULTS: miRNA microarray profiling identified 43 miRNAs that were significantly differentially expressed in AGA patients, and qRT-PCR verified that 8 miRNAs were significantly differentially expressed. The expression of miR-133b was abnormally high in AGA patients. DHT (10-5 mol/L) inhibited human HF growth and upregulated miR-133b expression, and DHT (10-7 mol/L) induced human HF growth and downregulated miR-133b expression. HDPC proliferation was inhibited, and the expression of β-catenin was downregulated in the miR-133b mimic-transfected group compared with the control group (P < 0.05). Wnt/β-catenin pathway activator treatment significantly promoted HDPC proliferation and upregulated the expression of β-catenin (P < 0.05). In addition, the proliferation of HDPCs was not significantly different between the group cotreated with a Wnt/β-catenin pathway activator and miR-133b mimic, and the control group (P > 0.05), but the expression of Versican and ALP was suppressed in the cotreatment group (P < 0.05) CONCLUSION: Our data indicated that patients with androgenic alopecia have specific miRNA expression profiles and that the abnormal expression of miR-133b may inactivate the Wnt/β-catenin pathway and ultimately regulate hair growth.
Collapse
Affiliation(s)
- Wenjia Deng
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Ting Hu
- Department of Dermatology, Yuebei People's Hospital, No. 133 South Huimin Road, Shaoguan 512026, Guangdong, China
| | - Le Han
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Ben Liu
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Xin Tang
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Haiyan Chen
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Xianyan Chen
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Miaojian Wan
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, China.
| |
Collapse
|
21
|
Dorożyńska K, Maj D. Rabbits - their domestication and molecular genetics of hair coat development and quality. Anim Genet 2020; 52:10-20. [PMID: 33216407 DOI: 10.1111/age.13024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
The European rabbit (Oryctolagus cuniculus) is the only representative of its genus living in present-day Europe and North Africa, and all domestic rabbits are descendants of this one species, which is native to the Iberian Peninsula. There are over 300 breeds of rabbits that differ in size, coat color, length of ears and type of fur. Rabbits are bred for various reasons, such as for laboratory animals and a source of meat, wool and fur, as well as for pets and exhibition animals. The hair coat is a important economic trait of rabbits. Its development and quality are influenced by various factors, both environmental and genetic. The genetic mechanisms underlying its development have not been thoroughly researched. The aim of this review is to discuss the domestication of rabbits and the different aspects of rabbit genetics. A brief review of the properties of rabbit hair coat, hair coat development and hair cycle will be provided, followed by discussion of the factors regulating hair coat development, molecular control of hair coat development and the role of non-coding RNAs in the regulation of gene expression in the hair follicles of rabbits. Information about genetic regulation of pathways could provide useful tools for improving hair coat quality and be of practical use in rabbit breeding.
Collapse
Affiliation(s)
- K Dorożyńska
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - D Maj
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| |
Collapse
|
22
|
Wang XQ, Tu WZ, Guo JB, Song G, Zhang J, Chen CC, Chen PJ. A Bioinformatic Analysis of MicroRNAs' Role in Human Intervertebral Disc Degeneration. PAIN MEDICINE 2020; 20:2459-2471. [PMID: 30953590 DOI: 10.1093/pm/pnz015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives The aim of our study was to ascertain the underlying role of microRNAs (miRNAs) in human intervertebral disc degeneration (IDD). Design Bioinformatic analysis from multiple databases. Methods Studies of the association of miRNAs and IDD were identified in multiple electronic databases. All potential studies were assessed by the same inclusion and exclusion criteria. We recorded whether miRNA expression was commonly increased or suppressed in the intervertebral disc tissues and cells of IDD subjects. We used String to identify biological process and cellular component pathways of differentially expressed genes. Results We included fifty-seven articles from 1,277 records in this study. This report identified 40 different dysregulated miRNAs in 53 studies, including studies examining cell apoptosis (26 studies, 49.06%), cell proliferation (15 studies, 28.3%), extracellular matrix (ECM) degradation (10 studies, 18.86%), and inflammation (five studies, 9.43%) in IDD patients. Three upregulated miRNAs (miR-19b, miR-32, miR-130b) and three downregulated miRNAs (miR-31, miR-124a, miR-127-5p) were considered common miRNAs in IDD tissues. The top three biological process pathways for upregulated miRNAs were positive regulation of biological process, nervous system development, and negative regulation of biological process, and the top three biological process pathways for downregulated miRNAs were negative regulation of gene expression, intracellular signal transduction, and negative regulation of biological process. Conclusions This study revealed that miRNAs could be novel targets for preventing IDD and treating patients with IDD by regulating their target genes. These results provide valuable information for medical professionals, IDD patients, and health care policy makers.
Collapse
Affiliation(s)
- Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Equal contribution
| | - Wen-Zhan Tu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Equal contribution
| | - Jia-Bao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juan Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chang-Cheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Lin BJ, Lin GY, Zhu JY, Yin GQ, Huang D, Yan YY. LncRNA-PCAT1 maintains characteristics of dermal papilla cells and promotes hair follicle regeneration by regulating miR-329/Wnt10b axis. Exp Cell Res 2020; 394:112031. [PMID: 32339605 DOI: 10.1016/j.yexcr.2020.112031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The failure of hair follicle regeneration is the major cause of alopecia, which is a highly prevalent disease worldwide. Dermal papilla (DP) cells play important role in the regulation of hair follicle regeneration. However, the molecular mechanism of how dermal papilla cells direct follicle regeneration is still to be elucidated. METHODS In vitro DP 3D culturing and in vivo nude mice DP sphere implanted models were used to examine the molecular regulation of DP cells and follicle regeneration. qRT-PCR and Western blotting were used to detect gene and protein expression, respectively. Immunofluorescence was used to detect the expression level of Wnt10b, Ki-67 and β-catenin. Luciferase assay was used to examine the relationship among PCAT1, miR-329 and Wnt10b. ALP activity was measured by ELISA. H&E staining was used to measure follicle growth in skin tissues. RESULTS Up-regulation of PCAT1 and Wnt10b, however, down-regulation of miR-329 were found in the in vitro 3D dermal papilla. Bioinformatics analysis and luciferase assays demonstrated that PCAT1 promoted Wnt10b expression by sponging miR-329. Knockdown of PCAT1 suppressed the proliferation and activity, as well as ALP and other DP markers of DP cells by targeting miR-329. Knockdown of PCAT1 regulated miR-329/Wnt10b axis to attenuate β-catenin expression and nucleus translocation to inhibit Wnt/β-catenin signaling. Furthermore, knockdown of PCAT1 suppressed DP sphere induced follicle regeneration and hair growth in nude mice. CONCLUSION PCAT1 maintains characteristics of DP cells by targeting miR-329 to activating Wnt/β-catenin signaling pathway, thereby promoting hair follicle regeneration.
Collapse
Affiliation(s)
- Bo-Jie Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Province, PR China.
| | - Guan-Yu Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Province, PR China
| | - Jiang-Ying Zhu
- Academy of Humanities and Social Sciences, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi Province, PR China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Province, PR China
| | - Guo-Qian Yin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Province, PR China
| | - Dan Huang
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Province, PR China
| | - Yu-Yong Yan
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Province, PR China
| |
Collapse
|
24
|
Lin BJ, Zhu JY, Ye J, Lu SD, Liao MD, Meng XC, Yin GQ. LncRNA-XIST promotes dermal papilla induced hair follicle regeneration by targeting miR-424 to activate hedgehog signaling. Cell Signal 2020; 72:109623. [PMID: 32243962 DOI: 10.1016/j.cellsig.2020.109623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Alopecia is a highly prevalent disease characterizing by the loss of hair. Dermal papilla (DP) cells are the inducer of hair follicle regeneration, and in vitro three-dimensional (3D) culturing DP cells have been proven to induce hair follicle regeneration. However, the molecular mechanisms behind the regulation of 3D culturing DP cells remain unclear. METHODS 3D-cultivated DP cells were used as in vitro cell model. DP sphere xenograft to nude mice was performed for in vivo study of hair follicle regeneration. qRT-PCR, Western blotting, and immunofluorescence were used for detecting the level of XIST, miR-424 and Hedgehog pathway-related proteins, respectively. H&E staining was used to examine hair neogenesis. Cell viability, proliferation and ALP activity were measured by MTT, CCK-8 and ELISA assays, respectively. Luciferase assays were used for studying molecular regulation between XIST, miR-424 and Shh 3'UTR. RESULTS XIST and Shh were up-regulated, and miR-424 was down-regulated in 3D DP cells. Molecular regulation studies suggested that XIST sponged miR-424 to promote Shh expression. Knockdown of XIST suppressed DP cell activity, cell proliferation, ALP activity and the expression of other DP markers by sponging miR-424. Knockdown of XIST suppressed Shh mediated hedgehog signaling by targeting miR-424. Moreover, the knockdown of XIST inhibited DP sphere induced in vivo hair follicle regeneration and hair development. CONCLUSION XIST sponges miR-424 to promote Shh expression, thereby activating hedgehog signaling and facilitating DP mediated hair follicle regeneration.
Collapse
Affiliation(s)
- Bo-Jie Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, PR China
| | - Jiang-Ying Zhu
- Academy of Humanities and Social Sciences, Guangxi Medical University, Nanning 530021, Guangxi Province, PR China
| | - Jun Ye
- Department of Emergency Surgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, Hunan Province, PR China
| | - Si-Ding Lu
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, PR China
| | - Ming-De Liao
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, PR China
| | - Xu-Chang Meng
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, PR China
| | - Guo-Qian Yin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, PR China.
| |
Collapse
|
25
|
Song L, Cui Y, Xiao L, Yu S, He J. DHT and E2 synthesis-related proteins and receptors expression in male yak skin during different hair follicle stages. Gen Comp Endocrinol 2020; 286:113245. [PMID: 31415730 DOI: 10.1016/j.ygcen.2019.113245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 12/21/2022]
Abstract
Dihydrotestosterone (DHT) and 17β-estradiol (E2) are sex hormones that regulate human hair follicle (HF) growth and are produced by peripheral reduction and aromatization of testosterone. However, the expression patterns of DHT and E2 synthesis-related proteins and their receptors in male yak skin during different HF stages (telogen, anagen, and catagen) are unknown. In this study, we found that both 5α-red and androgen receptor (AR) were expressed in epithelial cells and AR was expressed in the dermal papilla. Additionally, the transcription level of 5α-red1 at different HF stages was significantly higher than that of 5α-red2 mRNA at the same stage; 5α-red1 and 5α-red2 proteins peaked during the anagen and telogen periods of HF, respectively. However, AR protein was only expressed in the skin during the anagen phase of HF. Aromatase and estrogen receptors (ERα and ERβ) were expressed in cutaneous epithelial cells, whereas ERα and ERβ were expressed in the dermal papilla; the transcription level of ERα in HFs at each stage was much higher than that of ERβ. From the catagen to telogen phase, aromatase protein expression was down-regulated, while ERα protein expression was up-regulated. Based on our results, we speculate that 5α-red1 is essential for the synthesis of DHT in male yak skin epithelial cells and promotes the growth of HFs through AR. E2 synthesized by male yak skin epithelial cells may inhibit the growth of male yak skin HFs by ERα. These results provide a foundation for further study on the mechanism of hormone-regulated male yak skin HFs.
Collapse
Affiliation(s)
- Liangli Song
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| | - Longfei Xiao
- Laboratory of Veterinary Obstetrics, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
26
|
Song LL, Cui Y, Yu SJ, Liu PG, He JF. TGF-β and HSP70 profiles during transformation of yak hair follicles from the anagen to catagen stage. J Cell Physiol 2019; 234:15638-15646. [PMID: 30723905 DOI: 10.1002/jcp.28212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Transforming growth factor-β (TGF-β) and heat shock protein 70 (HSP70) are important for the hair follicle (HF) cycle, but it is unclear whether they participate in HF regression in yak skin. In this study, we investigated the role of TGF-β, TGF-βRII, and HSP70 in the transition from anagen to catagen of HFs. The results showed that TGF-β2 transcription was significantly higher than that of TGF-β1 and TGF-β3 in the same periods. Meanwhile, the expressions of TGF-β2, TGF-βRII, and caspase-3 were higher in the catagen phase than that in mid-anagen, and some TGF-βRII-positive HF cells were terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-positive. Moreover, the HSP70 protein levels in mid-anagen were higher than those in late-anagen and catagen. These results suggested that TGF-β2 plays a major role in catagen induction in yak HFs, which might be achieved via TGF-βRII-mediated apoptosis in HF epithelial cells. In contrast, HSP70 might protect epithelial cells from apoptosis and ultimately inhibit HF regression. In conclusion, TGF-β2 has positive effects, whereas HSP70 has negative effects, on catagen induction.
Collapse
Affiliation(s)
- Liang-Li Song
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Si-Jiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng-Gang Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jun-Feng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
27
|
Zhao B, Chen Y, Yang N, Chen Q, Bao Z, Liu M, Hu S, Li J, Wu X. miR‐218‐5p regulates skin and hair follicle development through Wnt/β‐catenin signaling pathway by targeting SFRP2. J Cell Physiol 2019; 234:20329-20341. [DOI: 10.1002/jcp.28633] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Yang Chen
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
- Joint International Research Laboratory of Agriculture & Agri‐Product Safety Yangzhou University Yangzhou Jiangsu China
| | - Naisu Yang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Qiuran Chen
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Zhiyuan Bao
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Ming Liu
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Shuaishuai Hu
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Jiali Li
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
| | - Xinsheng Wu
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu China
- Joint International Research Laboratory of Agriculture & Agri‐Product Safety Yangzhou University Yangzhou Jiangsu China
| |
Collapse
|
28
|
Transcriptomic Analysis of Coding Genes and Non-Coding RNAs Reveals Complex Regulatory Networks Underlying the Black Back and White Belly Coat Phenotype in Chinese Wuzhishan Pigs. Genes (Basel) 2019; 10:genes10030201. [PMID: 30866582 PMCID: PMC6470719 DOI: 10.3390/genes10030201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 01/03/2023] Open
Abstract
Coat color is one of the most important characteristics for distinguishing Chinese indigenous pig breeds. In Wuzhishan pigs, the animals have black on the back and white on the abdomen. However, the molecular genetic basis of this phenotype is unclear. In this study, we used high-throughput RNA sequencing to compare expression profiles of coding and non-coding RNAs from white and black skin samples obtained from individual Wuzhishan pigs. The expression profiling revealed that 194 lncRNAs (long non-coding RNAs), 189 mRNAs (messenger RNAs), and 162 miRNAs (microRNAs) had significantly different levels of expression (|log2 fold change| > 1, p-value < 0.05) in white and black skin. Compared to RNA levels in black skin, white skin had higher levels of expression of 185 lncRNAs, 181 mRNAs, and 23 miRNAs and lower levels of expression of 9 lncRNAs, 8 mRNAs, and 139 miRNAs. Functional analysis suggested that the differentially expressed transcripts are involved in biological processes such as melanin biosynthesis, pigmentation and tyrosine metabolism. Several key genes involved in melanogenesis, including MLANA, PMEL, TYR, TYRP1, DTC, TRPM1 and CAMK2A, had significantly different levels of expression in the two skin tissues. Potential lncRNA–miRNA–gene interactions were also examined. A total of 15 lncRNAs, 11 miRNAs and 7 genes formed 23 lncRNA–miRNA–gene pairs, suggesting that complex regulatory networks of coding and non-coding genes underlie the coat color trait in Wuzhishan pigs. Our study provides a foundation for understanding how lncRNA, miRNA and genes interact to regulate coat color in black-back/white-belly pigs. We also constructed lncRNA–miRNA–gene interaction networks to elucidate the complex molecular mechanisms underlying skin physiology and melanogenesis. The results extend our knowledge about the diversity of coat color among different domestic animals and provide a foundation for studying novel mechanisms that control coat color in Chinese indigenous pigs.
Collapse
|
29
|
Hao S, Wang L, Zhao K, Zhu X, Ye F. Rs1894720 polymorphism in MIAT increased susceptibility to age-related hearing loss by modulating the activation of miR-29b/SIRT1/PGC-1α signaling. J Cell Biochem 2018; 120:4975-4986. [PMID: 30556210 DOI: 10.1002/jcb.27773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/06/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND MIAT may be implicated in the pathogenesis of age-related hearing loss (AHL). This study aimed to clarify the effect of a MIAT signaling pathway on the risk of AHL. METHODS Terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, auditory brainstem response (ABR) and quantitative hair cell counts were used to compare the hearing functions in different groups of mice. 5,5,6,6-Tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) dye method was used to establish the potential association between mitochondrial dysfunction and aging. Real-time polymerase chain reaction, Western blot analysis, computational analysis, and luciferase assay were conducted to establish a myocardial infarction associated transcript (MIAT) signaling pathway, whose role in the pathogenesis of AHL was further validated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and flow cytometry. RESULTS Aged C57BL/6 mice were associated with a more severe level of hair cell loss, while exhibiting a higher ABR threshold at various frequencies as well as a lower percentage of inner/outer hair cells. A reduced mitochondrial membrane potential in the cochleae of aged C57BL/6 mice indicated the presence of mitochondrial dysfunction in these mice. Relative expression of MIAT, Sirtuin1 (SIRT1), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) was downregulated in aged mice, with microRNA-29b (miR-29b) being highly expressed. Also, MIAT binds to miR-29b, an inhibitor of SIRT1 expression. The regulatory relationship among MIAT, miR-29b, and SIRT1 was further validated by comparing the differentiated expression of these factors in cells treated with phosphate-buffered saline + H2 O2, a negative control + H2 O2, MIAT + H2 O2 , or H2 O2 + anti-miR-29b. CONCLUSION MIAT could elevate the expression of SIRT1/PGC-1α via downregulating miR-29b. And the downregulated SIRT/PGC-1α increased the incidence of AHL via promoting the apoptosis of cochlear hair cells.
Collapse
Affiliation(s)
- Shaojuan Hao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fanglei Ye
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Zhao B, Chen Y, Mu L, Hu S, Wu X. Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus). WORLD RABBIT SCIENCE 2018. [DOI: 10.4995/wrs.2018.7058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Skin is an important trait for Rex rabbits and skin development is influenced by many processes, including hair follicle cycling, keratinocyte differentiation and formation of coat colour and skin morphogenesis. We identified differentially expressed microRNAs (miRNAs) between the back and belly skin in Rex rabbits. In total, 211 miRNAs (90 upregulated miRNAs and 121 downregulated miRNAs) were identified with a |log<sub>2</sub> (fold change)|>1 and <em>P</em>-value<0.05. Using target gene prediction for the miRNAs, differentially expressed predicted target genes were identified and the functional enrichment and signalling pathways of these target genes were processed to reveal their biological functions. A number of differentially expressed miRNAs were found to be involved in regulation of the cell cycle, skin epithelium differentiation, keratinocyte proliferation, hair follicle development and melanogenesis. In addition, target genes regulated by miRNAs play key roles in the activities of the Hedgehog signalling pathway, Wnt signalling pathway, Osteoclast differentiation and MAPK pathway, revealing mechanisms of skin development. Nine candidate miRNAs and 5 predicted target genes were selected for verification of their expression by quantitative reverse transcription polymerase chain reaction. A regulation network of miRNA and their target genes was constructed by analysing the GO enrichment and signalling pathways. Further studies should be carried out to validate the regulatory relationships between candidate miRNAs and their target genes.
Collapse
|
31
|
Dobreva A, Paus R, Cogan NG. Analysing the dynamics of a model for alopecia areata as an autoimmune disorder of hair follicle cycling. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 35:387-407. [DOI: 10.1093/imammb/dqx009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 06/26/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Atanaska Dobreva
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - N G Cogan
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
32
|
Wark AR, Terman EJ, Tabin CJ. miR-128-1 is not required for hair pigmentation in mice. Exp Dermatol 2017; 26:940-942. [PMID: 28418585 DOI: 10.1111/exd.13360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 01/29/2023]
Abstract
MicroRNAs are endogenous, regulatory RNAs implicated in many biological processes including pigmentation. Software algorithms and in vitro experiments predict that microRNAs can target pigmentation pathway genes, but few have been tested in vivo. MiR-128-1, a microRNA within the strongly selected lactase locus in the human genome, has predicted pigmentation targets. To test the role of miR-128-1 in pigment regulation, we created C57BL/6 agouti miR-128-1 knockout mice and quantified melanin deposition in hair. MiR-128-1 knockout mice have no detectable hair pigmentation phenotype. We conclude that miR-128-1 does not play a significant regulatory role in hair pigmentation in mice.
Collapse
Affiliation(s)
- Abigail R Wark
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
33
|
Exploring a Role for Regulatory miRNAs In Wound Healing during Ageing:Involvement of miR-200c in wound repair. Sci Rep 2017; 7:3257. [PMID: 28607463 PMCID: PMC5468284 DOI: 10.1038/s41598-017-03331-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
Multiple factors and conditions can lead to impaired wound healing. Chronic non-healing wounds are a common problem among the elderly. To identify microRNAs negatively impacting the wound repair, global miRNA profiling of wounds collected from young and old mice was performed. A subset of miRNAs that exhibited an age-dependent expression pattern during wound closure was identified, including miR-31 and miR-200c. The expression of miR-200 family members was markedly downregulated upon wounding in both young and aged mice, with an exception of acute upregulation of miR-200c at the early phase of wound healing in aged skin. In unwounded aged skin (versus unwounded younger skin), the level of miR-200c was also found elevated in both human and mice. Overexpression of miR-200c in human ex vivo wounds delayed re-epithelialisation and inhibited cell proliferation in the wound epithelium. Modulation of miR-200c expression in both human and mouse keratinocytes in vitro revealed inhibitory effects of miR-200c on migration, but not proliferation. Accelerated wound closure in vitro induced by anti-miR-200c was associated with upregulation of genes controlling cell migration. Thus, our study identified miR-200c as a critical determinant that inhibits cell migration during skin repair after injury and may contribute to age-associated alterations in wound repair.
Collapse
|
34
|
Luan L, Shi J, Yu Z, Andl T. The major miR-31 target genes STK40 and LATS2 and their implications in the regulation of keratinocyte growth and hair differentiation. Exp Dermatol 2017; 26:497-504. [PMID: 28419554 DOI: 10.1111/exd.13355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
Abstract
Emerging evidence indicates that even subtle changes in the expression of key genes of signalling pathways can have profound effects. MicroRNAs (miRNAs) are masters of subtlety and generally have only mild effects on their target genes. The microRNA miR-31 is one of the major microRNAs in many cutaneous conditions associated with activated keratinocytes, such as the hyperproliferative diseases psoriasis, non-melanoma skin cancer and hair follicle growth. miR-31 is a marker of the hair growth phase, and in our miR-31 transgenic mouse model it impairs the function of keratinocytes. This leads to aberrant proliferation, apoptosis, and differentiation that results in altered hair growth, while the loss of miR-31 leads to increased hair growth. Through in vitro and in vivo studies, we have defined a set of conserved miR-31 target genes, including LATS2 and STK40, which serve as new players in the regulation of keratinocyte growth and hair follicle biology. LATS2 can regulate growth of keratinocytes and we have identified a function of STK40 that can promote the expression of key hair follicle programme regulators such as HR, DLX3 and HOXC13.
Collapse
Affiliation(s)
- Liming Luan
- Division of Dermatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jianyun Shi
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
35
|
Gao W, Sun W, Yin J, Lv X, Bao J, Yu J, Wang L, Jin C, Hu L. Screening candidate microRNAs (miRNAs) in different lambskin hair follicles in Hu sheep. PLoS One 2017; 12:e0176532. [PMID: 28464030 PMCID: PMC5413071 DOI: 10.1371/journal.pone.0176532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
Hu sheep lambskin is a unique white lambskin from China that exhibits three types of flower patterns, including small waves, medium waves, and large waves, with small waves considered the best quality. However, our understanding of the molecular mechanism underlying flower pattern formation in Hu sheep lambskin is limited. The aim of the present study was to further explore the relevance between candidate microRNAs (miRNAs) and developmental characteristics of hair follicles and screen miRNAs for later functional validation. Herein, we employed Illumina Hiseq 2500 to identify differentially expressed miRNAs in hair follicles of different flower patterns with small, medium, and large waves to construct a comprehensive sequence database on the mechanism of hair follicle development. Paraffin sections of lambskin tissue were prepared to assess the structure of different hair follicles. Expression levels of candidate miRNAs in different flower patterns were analyzed by relative quantitation using real-time PCR, combined with histological observation and micro-observation technologies, and the correlation between expression levels of candidate miRNAs and histological properties of hair follicles was analyzed by using SPSS 17.0. A total of 522 differentially expressed miRNAs were identified, and RNA-seq analysis detected 7,266 target genes in different groups of flower patterns. Gene ontological analysis indicated these target genes were mainly involved in cell proliferation, differentiation, growth, apoptosis, and ion transport, and 14 miRNAs, including miR-143, miR-10a, and let-7 were screened as candidate miRNAs in Hu sheep hair follicle growth and development. In the same field of vision, variance analysis showed that the number of secondary follicles in small waves was significantly larger than that in large and medium waves (P<0.01); the diameter of the primary and secondary follicles in large waves was respectively larger than those in medium and small waves (P<0.01). Combined with correlation analysis between miRNA expression and histological properties of hair follicles, highly significant differences in miRNA-143 expression levels between large and small waves were observed (P<0.01), and significant differences in the miRNA-10a expression levels between large and small waves (P<0.05) and in let-7i expression levels between large and medium waves were observed (P<0.05). Significant differences in the expression of novel miRNAs of NW_004080184.1_6326 between medium and large waves were detected (P<0.05), and highly significant differences between medium and small waves were observed (P<0.01). Highly significant differences in the expression level of NW_004080165.1_8572 between medium and large and small waves (P<0.01), in that of NW_004080181.1_3961 between medium and small waves (P<0.01), and in that of NW_004080190.1_13733 between medium and large waves were observed, whereas no significant differences in the other miRNAs among large, medium, and small waves were detected. Overall, the present study showed that miRNA-143, miRNA-10a, let-7i, NW_004080184.1_6326, NW_004080165.1_8572, NW_004080181.1_3961, and NW_004080190.1_13733 could be considered as important candidate genes, indicating these seven miRNAs may play significant roles in hair follicle growth and development in Hu sheep lambskin.
Collapse
Affiliation(s)
- Wen Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- * E-mail:
| | - Jinfeng Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianjun Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiarui Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lihong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chengyan Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liang Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
The Molecular Revolution in Cutaneous Biology: Noncoding RNAs: New Molecular Players in Dermatology and Cutaneous Biology. J Invest Dermatol 2017; 137:e105-e111. [PMID: 28411840 DOI: 10.1016/j.jid.2017.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/10/2015] [Accepted: 02/01/2016] [Indexed: 02/06/2023]
Abstract
Progress in genome sequencing achieved during the last two decades revealed that only about 2% of the genome codes for proteins, while the largest genome fraction is encoding thousands of non-coding RNAs. Non-coding RNAs play indispensable roles in regulating the activity and stability of the genome. Recent research in the area of the non-coding transcriptome signified the crucial roles for RNA regulatory networks in the normal development and their implications in a variety of pathological conditions. Here, recent advances in our understanding of non-coding RNA-mediated regulation of skin development and homeostasis are highlighted, focusing mainly on the regulatory roles of miRNAs and lncRNAs.
Collapse
|
37
|
Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix. Eur J Cell Biol 2017; 96:632-641. [PMID: 28413121 DOI: 10.1016/j.ejcb.2017.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21CIP1, p27KIP1 and p57KIP2) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21CIP1, p27KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically relevant model system for cell cycle physiology research of human epithelial cells within their natural tissue habitat.
Collapse
|
38
|
Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nat Commun 2017; 8:14694. [PMID: 28272467 PMCID: PMC5344973 DOI: 10.1038/ncomms14694] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023] Open
Abstract
Male-pattern baldness (MPB) is a common and highly heritable trait characterized by androgen-dependent, progressive hair loss from the scalp. Here, we carry out the largest GWAS meta-analysis of MPB to date, comprising 10,846 early-onset cases and 11,672 controls from eight independent cohorts. We identify 63 MPB-associated loci (P<5 × 10-8, METAL) of which 23 have not been reported previously. The 63 loci explain ∼39% of the phenotypic variance in MPB and highlight several plausible candidate genes (FGF5, IRF4, DKK2) and pathways (melatonin signalling, adipogenesis) that are likely to be implicated in the key-pathophysiological features of MPB and may represent promising targets for the development of novel therapeutic options. The data provide molecular evidence that rather than being an isolated trait, MPB shares a substantial biological basis with numerous other human phenotypes and may deserve evaluation as an early prognostic marker, for example, for prostate cancer, sudden cardiac arrest and neurodegenerative disorders.
Collapse
|
39
|
Hochfeld LM, Anhalt T, Reinbold CS, Herrera-Rivero M, Fricker N, Nöthen MM, Heilmann-Heimbach S. Expression profiling and bioinformatic analyses suggest new target genes and pathways for human hair follicle related microRNAs. BMC DERMATOLOGY 2017; 17:3. [PMID: 28228108 PMCID: PMC5322611 DOI: 10.1186/s12895-017-0054-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/11/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Human hair follicle (HF) cycling is characterised by the tight orchestration and regulation of signalling cascades. Research shows that micro(mi)RNAs are potent regulators of these pathways. However, knowledge of the expression of miRNAs and their target genes and pathways in the human HF is limited. The objective of this study was to improve understanding of the role of miRNAs and their regulatory interactions in the human HF. METHODS Expression levels of ten candidate miRNAs with reported functions in hair biology were assessed in HFs from 25 healthy male donors. MiRNA expression levels were correlated with mRNA-expression levels from the same samples. Identified target genes were tested for enrichment in biological pathways and accumulation in protein-protein interaction (PPI) networks. RESULTS Expression in the human HF was confirmed for seven of the ten candidate miRNAs, and numerous target genes for miR-24, miR-31, and miR-106a were identified. While the latter include several genes with known functions in hair biology (e.g., ITGB1, SOX9), the majority have not been previously implicated (e.g., PHF1). Target genes were enriched in pathways of interest to hair biology, such as integrin and GnRH signalling, and the respective gene products showed accumulation in PPIs. CONCLUSIONS Further investigation of miRNA expression in the human HF, and the identification of novel miRNA target genes and pathways via the systematic integration of miRNA and mRNA expression data, may facilitate the delineation of tissue-specific regulatory interactions, and improve our understanding of both normal hair growth and the pathobiology of hair loss disorders.
Collapse
Affiliation(s)
- Lara M Hochfeld
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Thomas Anhalt
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Céline S Reinbold
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Marisol Herrera-Rivero
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Nadine Fricker
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany. .,Department of Genomics, Life and Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
40
|
|
41
|
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
42
|
Xue T, Wei L, Zha DJ, Qiu JH, Chen FQ, Qiao L, Qiu Y. miR-29b overexpression induces cochlear hair cell apoptosis through the regulation of SIRT1/PGC-1α signaling: Implications for age-related hearing loss. Int J Mol Med 2016; 38:1387-1394. [PMID: 27635430 PMCID: PMC5065299 DOI: 10.3892/ijmm.2016.2735] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
It has been reported that the degeneration of cochlear hair cells is the typical cause of presbycusis (or age-related hearing loss). However, the molecular mechanisms that mediate cochlear hair cell apoptosis are not yet fully understood and there is no effective treatment for this disorder. MicroRNAs (miRNAs or miRs) have been increasingly shown to be associated with age-related diseases and are emerging as promising therapeutic targets. In this study, we investigated whether miR-29b is involved in the degeneration of cochlear hair cells. To examine our hypothesis, nuclear staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) were used to quantify the hair cell counts. RT-qPCR and western blot analysis were used to examine miR-29b/sirtuin 1 (SIRT1)/proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in cochlear hair cells. We found that there was a significant degeneration of cochlear hair cells and a higher expression of miR-29b in aged C57BL/6 mice compared with young mice. There was also an age-related decrease in the expression of SIRT1 and PGC-1α. In the inner ear cell line, HEI-OC1, miR-29b overexpression (by transfection with miR-29b mimic) inhibited SIRT1 and PGC-1α expression, leading to an increase in mitochondrial dysfunction and apoptosis. Moreover, the inhibition of miR-29b (by transfection with miR-29b inhibitor) increased SIRT1 and PGC-1α expression, while it decreased apoptosis. Taken together, our findings support a link between age-related cochlear hair cell apoptosis and miR-29b/SIRT1/PGC-1α signaling, which may present an attractive pharmacological target for the development of novel drugs for the treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Tao Xue
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710003, P.R. China
| | - Li Wei
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710003, P.R. China
| | - Ding-Jun Zha
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710003, P.R. China
| | - Jian-Hua Qiu
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710003, P.R. China
| | - Fu-Quan Chen
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710003, P.R. China
| | - Li Qiao
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710003, P.R. China
| | - Yang Qiu
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
43
|
Purba TS, Brunken L, Hawkshaw NJ, Peake M, Hardman J, Paus R. A primer for studying cell cycle dynamics of the human hair follicle. Exp Dermatol 2016; 25:663-8. [PMID: 27094702 DOI: 10.1111/exd.13046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 12/28/2022]
Abstract
The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lars Brunken
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, Venerology and Allergy, Charité University Medicine Berlin, Berlin, Germany
| | - Nathan J Hawkshaw
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Michael Peake
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,BSc Programme Biological Sciences, University of Huddersfield, Huddersfield, UK
| | - Jonathan Hardman
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
44
|
Heilmann-Heimbach S, Hochfeld LM, Paus R, Nöthen MM. Hunting the genes in male-pattern alopecia: how important are they, how close are we and what will they tell us? Exp Dermatol 2016; 25:251-7. [DOI: 10.1111/exd.12965] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Stefanie Heilmann-Heimbach
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| | - Lara M. Hochfeld
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Department of Dermatology; University of Münster; Münster Germany
| | - Markus M. Nöthen
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| |
Collapse
|
45
|
Beasley SM, Plikus MV, Spitale RC, Pedersen IM. The emerging functions of regulatory RNA species in skin biology. Exp Dermatol 2015; 24:827-8. [PMID: 26309056 DOI: 10.1111/exd.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Samantha M Beasley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Irene M Pedersen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|