1
|
Kahwa I, Omara T, Ayesiga I, Shah K, Ambe GNNN, Panwala ZJ, Mbabazi R, Iqbal S, Kyarimpa C, Nagawa CB, Chauhan NS. Nutraceutical benefits of seaweeds and their phytocompounds: a functional approach to disease prevention and management. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40304066 DOI: 10.1002/jsfa.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 05/02/2025]
Abstract
Seaweeds (SWD), macroalgae or sea vegetables are a diverse group of over 9000 macroscopic and multicellular marine algae taxonomically classified (based on morphology and pigmentation) as green, brown and red algae. With microalgae, SWD represents one of the most researched oceanic resources turned to as treasure troves of bioactive compounds with ethnomedicinal, pharmaceutical, cosmeceutical and dietetic end-uses for millennia. This review compiles the nutraceutical uses of SWD and their bioactive compounds in nutrition and traditional management of diseases, offering future perspectives on using this group of organisms to improve human life. The review reveals that the nutraceutical application of SWD as nutrient-dense marine foods for treating diseases may be correlated with their inherent biosynthesis and possession of minerals, vitamins, dietary fibres and bioactive compounds. Compounds of algal origin have been validated and found to elicit antimicrobial, anti-inflammatory, free radical scavenging (antioxidant), antiproliferative and antidiabetic activities, among others. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ivan Kahwa
- Pharm-BioTechnology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | | | - Rachel Mbabazi
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Shabnoor Iqbal
- African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Christine Kyarimpa
- Department of Chemistry, Faculty of Science, Kyambogo University, Kampala, Uganda
| | - Christine Betty Nagawa
- Department of Forestry, Biodiversity and Tourism, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
2
|
Jayasinghe AMK, Kirindage KGIS, Kim SH, Lee S, Kim KN, Kim EA, Heo SJ, Ahn G. Leaves and pseudostems extract of Curcuma longa attenuates immunoglobulin E/bovine serum albumin-stimulated bone marrow-derived cultured mast cell activation and passive cutaneous anaphylaxis in BALB/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117529. [PMID: 38042384 DOI: 10.1016/j.jep.2023.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma longa, known as turmeric, is an herbaceous perennial plant belonging to the genus Curcuma. It is dispersed throughout tropical and subtropical regions worldwide. Since ancient times, turmeric has been used as an ethnomedicinal plant in the Ayurvedic system, particularly in Asian countries. Rhizomes of turmeric possess several pharmacological properties that give high value as a medicinal remedy for treating a range of conditions, including inflammation, pain, allergies, and digestive issues. Moreover, turmeric leaves and pseudostems also contain a variety of health-enhancing secondary metabolites, such as curcumin, flavonoids, and other phenolic compounds, which exhibit anti-inflammatory, antitumor, antibacterial, and antioxidant properties. AIM OF THE STUDY Allergic diseases are a group of immune-mediated disorders mainly caused by an immunoglobulin E (IgE)-dependent immunological response to an innocuous allergen. Therefore, this study aimed to investigate the effect of leaves and pseudostems extract of turmeric (TLSWE-8510) on IgE/bovine serum albumin (BSA)-stimulated allergic responses in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. MATERIALS AND METHODS The effect of TLSWE-8510 on mast cell degranulation has been evaluated by investigating the release of β-hexosaminidase and histamine in IgE/BSA-stimulated BMCMCs. Additionally, anti-allergic properties of TLSWE-8510 on IgE/BSA-stimulated BMCMCs were investigated using suppression of nuclear factor-kappa B (NF-κB), and spleen tyrosine kinase (Syk)-linker for T-cell activation (LAT)-extracellular-signal-regulated kinase (ERK)-GRB2 associated binding protein 2 (Gab2) signaling pathway and downregulation of allergy-related cytokines and chemokines expression. Furthermore, in vivo, studies were conducted using IgE-mediated PCA in BALB/c mice. RESULTS TLSWE-8510 treatment significantly inhibited the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of β-hexosaminidase and histamine dose-dependently. Additionally, TLSWE-8510 reduced the expression of high-affinity IgE receptors (Fc epsilon receptor I-FcεRI) on the surface of BMCMCs and the binding of IgE to FcεRI. Besides, the expression of cytokines and chemokines is triggered by IgE/BSA stimulation via activating the allergy-related signaling pathways. TLSWE-8510 dose-dependently downregulated the mRNA expression and the production of allergy-related cytokines (interleukin (IL)-1β, IL-3, IL-4, IL-5, IL-6, IL-13, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ), and chemokines (thymus and activation-regulated chemokine (TARC), and regulated upon activation, normal T cell expressed and secreted (RANTES)) by regulating the phosphorylation of downstream signaling molecules, NF-κB, and Syk, LAT, ERK and Gab2 in IgE/BSA-stimulated BMCMCs. Moreover, PCA reaction in IgE/BSA-stimulated BALB/c mice ears was effectively decreased by TLSWE-8510 treatment in a dose-dependent manner. CONCLUSIONS These results collectively demonstrated that TLSWE-8510 suppressed mast cell degranulation by inhibiting the release of chemical mediators related to allergies. TLSWE-8510 downregulated the allergy-related cytokines and chemokines expression and phosphorylation of downstream signaling molecules in IgE/BSA-stimulated BMCMCs. Furthermore, in vivo studies with IgE-mediated PCA reaction in the BALB/c mice ears were attenuated by TLSWE-8510 treatment. These findings revealed that TLSWE-8510 has the potential as a therapeutic agent for the treatment of allergic diseases.
Collapse
Affiliation(s)
| | | | - Sun-Hyung Kim
- French Korea Aromatics Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Seok Lee
- French Korea Aromatics Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Kil-Nam Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61751, Republic of Korea.
| | - Eun-A Kim
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea.
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea; Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
3
|
Duan X, Agar OT, Barrow CJ, Dunshea FR, Suleria HAR. Improving potential strategies for biological activities of phlorotannins derived from seaweeds. Crit Rev Food Sci Nutr 2023; 65:833-855. [PMID: 39889780 DOI: 10.1080/10408398.2023.2282669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Seaweeds have garnered considerable attention due to their capacity to serve as exceptional reservoirs of numerous bioactive metabolites possessing substantial chemical and biological significance. .Phlorotannins constitute a significant class of natural polyphenols originating from brown seaweeds, featuring a broad spectrum of bioactive attributes and demonstrating potential applicability across various sectors. The potential health advantages associated with phlorotannins, particularly concerning the prevention of conditions linked to oxidative stress, such as inflammation, diabetes, and allergies, have generated substantial interest within the food and pharmaceutical industries. Nevertheless, current research remains insufficient in providing a comprehensive understanding of their absorption, as comparisons drawn with their terrestrial counterparts remain speculative. It is commonly presumed that phenolic compounds, including phlorotannins, face challenges due to their limited solubility, instability, and extensive metabolism, all of which restrict their bioavailability. In order to circumvent these limitations and amplify their utility as components of medicinal formulations or healthcare products, researchers have explored various strategies, including the encapsulation or integration of phlorotannins into nano-/micro-particles or advanced drug delivery systems. This review offers a thorough exploration of the structural and biological attributes of phlorotannins and furnishes insights into potential strategies showing promise for their effective utilization in preclinical and clinical applications.
Collapse
Affiliation(s)
- Xinyu Duan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Osman Tuncay Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| |
Collapse
|
4
|
Jin Lim H, Cho CH, Lee SH, Seon Won Y, Gyeong Bak S, Kim M, Kim S, Yoon M, Joo Ha H, Tae Jang J, Jae Lee S. Estrogenic active Ecklonia cava extract improves bone loss and depressive behaviour in OVX mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
5
|
Adjuvant role of probiotics in allergen-specific immunotherapy. Clin Immunol 2022; 245:109164. [DOI: 10.1016/j.clim.2022.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
|
6
|
Transcriptional responses in Ecklonia cava to short-term exposure to polycyclic aromatic hydrocarbons. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Sugiura Y, Matsuura Y, Katsuzaki H, Kakinuma M, Amano H, Usui M, Tanaka R, Matsushita T, Miyata M. The Immunomodulating Effect of Phlorotannins from a Brown Alga, Eisenia nipponica, on Mice Stimulated with Ovalbumin through T Cell Regulation. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:307-316. [PMID: 35633415 DOI: 10.1007/s11130-022-00974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The immunomodulating effect of phlorotannin was investigated in mice stimulated by ovalbumin. When analyzing the main components of phlorotannin concentrate (PTC) from Eisenia nipponica, seven phlorotannins [eckol, 6,6'-bieckol, 6,8'-bieckol, 8,8'-bieckol, dieckol, phlorofucofuroeckol (PFF)-A, and PFF-B] were detected. These phlorotannins accounted for approximately 80% of PTC. Oral administration of PTC to mice daily for 21 days reduced serum immunoglobulin E (IgE) and total IgG1 levels attributable to Th2 cells. The production of splenic cytokines [interleukin (IL)-10 and transforming growth factor-β1] and Treg cell-mediated expression of forkhead box protein P3 mRNA were significantly increased whereas the production of inflammatory cytokines (interferon-γ, IL-4, IL-5, and IL-17) by Th1, Th2, and Th17 cells was markedly suppressed. IL-21 production and basic leucine zipper ATF-like transcription factor mRNA expression attributable to follicular helper T (Tfh) cells were also suppressed. Flow cytometric analyses demonstrated increased number of Treg cells despite a decrease in the total T cell population. An increase in total B cells was also observed by the flow cytometric analyses in addition to increases in IL-10 production, which activates B cells. In contrast, the significantly suppressed production of inflammatory cytokines and moderate increase in Treg cell subpopulation indicated a direct impact of PTC on inflammatory lymphocytes (Th1, Th2, Th17, and Tfh). Thus, PTC may exert antiallergic effects by immunomodulation of T cells and inactivation of inflammatory lymphocyte.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Yamaguchi, Japan.
| | - Yuta Matsuura
- Research Center for Fish Diseases, National Research Institute of Aquaculture, Minami-ise, Mie, Japan
| | | | - Makoto Kakinuma
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Hideomi Amano
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Masakatsu Usui
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Yamaguchi, Japan
| | - Ryusuke Tanaka
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Yamaguchi, Japan
| | - Teruo Matsushita
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Yamaguchi, Japan
| | - Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Yamaguchi, Japan
| |
Collapse
|
8
|
Seong Choi K, Shin TS, Chun J, Ahn G, Jeong Han E, Kim MJ, Kim JB, Kim SH, Kho KH, Heon Kim D, Shim SY. Sargahydroquinoic acid isolated from Sargassum serratifolium as inhibitor of cellular basophils activation and passive cutaneous anaphylaxis in mice. Int Immunopharmacol 2022; 105:108567. [PMID: 35114442 DOI: 10.1016/j.intimp.2022.108567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Basophils and mast cells are characteristic effector cells in allergic reactions. Sargahydorquinoic acid (SHQA), a compound isolated from Sargassum serratifolium (marine alga), possesses various biochemical properties, including potent antioxidant activities. The objective of the present study was to investigate inhibitory effects of SHQA on the activation of human basophilic KU812F cells induced by phorbol myristate acetate and A23187 (PMACI), a calcium ionophore. Furthermore, we confirmed the inhibitory effects of SHQA on the activation of rat basophilic leukemia (RBL)-2H3 cells induced by compound 48/80 (com 48/80), bone marrow-derived mast cells (BMCMCs) induced by anti-dinitrophenyl(DNP)-immunoglobulin E (IgE)/DNP-bovine serum albumin (BSA), DNP/IgE and on the reaction of passive cutaneous anaphylaxis (PCA) mediated by IgE. SHQA reduced PMACI-induced intracellular reactive oxygen species (ROS) and calcium levels. Western blot analysis revealed that SHQA downregulated the activation of ERK, p38, and NF-κB in a dose-dependent manner. Moreover, SHQA suppressed the production and gene expression of various cytokines, including interleukin (IL)-1 β, IL-4, IL-6, and IL-8 in PMACI-induced KU812F cells and IL-4 and tumor necrosis factor (TNF)- α in com 48/80-induced RBL-2H3 cells. It also determined the inhibition of PMACI, com 48/80- and IgE/DNP-induced degranulation by reducing the release of β -hexosaminidase. Furthermore, it attenuated the IgE/DNP-induced PCA reaction in the ears of BALB/c mice. These results suggest that SHQA isolated from S. serratifolium is a potential therapeutic functional food material for inhibiting effector cell activation in allergic reactions and anaphylaxis in animal model.
Collapse
Affiliation(s)
- Kap Seong Choi
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Tai-Sun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiyeon Chun
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Eui Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea; Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kang-Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sun-Yup Shim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
9
|
Anti-Allergic Effect of 3,4-Dihydroxybenzaldehyde Isolated from Polysiphonia morrowii in IgE/BSA-Stimulated Mast Cells and a Passive Cutaneous Anaphylaxis Mouse Model. Mar Drugs 2022; 20:md20020133. [PMID: 35200662 PMCID: PMC8875385 DOI: 10.3390/md20020133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigated the anti-allergic effects of 3,4-dihydroxybenzaldehyde (DHB) isolated from the marine red alga, Polysiphonia morrowii, in mouse bone-marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-sensitized mice. DHB inhibited IgE/bovine serum albumin (BSA)-induced BMCMCs degranulation by reducing the release of β-hexosaminidase without inducing cytotoxicity. Further, DHB dose-dependently decreased the IgE binding and high-affinity IgE receptor (FcεRI) expression and FcεRI-IgE binding on the surface of BMCMCs. Moreover, DHB suppressed the secretion and/or the expression of the allergic cytokines, interleukin (IL)-4, IL-5, IL-6, IL-13, and tumor necrosis factor (TNF)-α, and the chemokine, thymus activation-regulated chemokine (TARC), by regulating the phosphorylation of IκBα and the translocation of cytoplasmic NF-κB into the nucleus. Furthermore, DHB attenuated the passive cutaneous anaphylactic (PCA) reaction reducing the exuded Evans blue amount in the mouse ear stimulated by IgE/BSA. These results suggest that DHB is a potential therapeutic candidate for the prevention and treatment of type I allergic disorders.
Collapse
|
10
|
Kumar LRG, Paul PT, Anas KK, Tejpal CS, Chatterjee NS, Anupama TK, Mathew S, Ravishankar CN. Phlorotannins-bioactivity and extraction perspectives. JOURNAL OF APPLIED PHYCOLOGY 2022; 34:2173-2185. [PMID: 35601997 PMCID: PMC9112266 DOI: 10.1007/s10811-022-02749-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/09/2023]
Abstract
Phlorotannins, a seaweed based class of polyphenolic compounds, have proven to possess potential bioactivities such as antioxidant, antimicrobial, anti-allergic, anti-diabetic, anti-inflammatory, anti-cancerous, neuroprotection etc. These bioactivities have further increased demand globally and sustainable techniques such as supercritical fluid extraction, microwave assisted extraction, enzyme assisted extraction, extraction using deep eutectic solvents etc. are being explored currently for production of phlorotannin-rich extracts. In spite of such well documented bioactivities, very few phlorotannin-based nutraceuticals are available commercially which highlights the significance of generating consumer awareness about their physiological benefits. However, for industry level commercialization accurate quantification of phlorotannins with respect to the different classes is vital requiring sophisticated analytical techniques such as mass spectrometry, 1H-NMR spectroscopy etc. owing to the wide structural diversity. This review summarizes the extraction and bioactivities of phlorotannins based on the findings of in vivo and in vitro studies.
Collapse
Affiliation(s)
- Lekshmi R. G. Kumar
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - Preethy Treesa Paul
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - K. K. Anas
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - C. S. Tejpal
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - N. S. Chatterjee
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - T. K. Anupama
- ICAR-Central Institute of Fisheries Technology (CIFT), Veraval Research Centre, Veraval, India
| | - Suseela Mathew
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - C. N. Ravishankar
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| |
Collapse
|
11
|
Sugiura Y, Katsuzaki H, Imai K, Amano H. The Anti-Allergic and Anti-Inflammatory Effects of Phlorotannins from the Edible Brown Algae, Ecklonia sp. and Eisenia sp. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211060924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Because the number of people suffering from allergies has significantly increased, improved ways of treating these conditions by medical, pharmaceutical, and dietary means are required. Large numbers of studies on allergy have been conducted, and many anti-allergic compounds have been found. Phenolic compounds from terrestrial plants, including catechins and flavonoids, possess anti-allergic properties. Although polyphenols are present in some brown algae, their anti-allergic activities were not studied in detail before the 1990s. The focus was on the algal polyphenols, collectively called phlorotannins (eg., eckol, 6,6′-bieckol, 8,8′-bieckol, dieckol, and phlorofucofuroeckol-A), and research was conducted to clarify their anti-allergic activities. This review summarizes the anti-allergic effects of phlorotannins isolated from the brown alga, Eisenia nipponica, and related reports by other research groups.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hideomi Amano
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
12
|
Tong T, Liu X, Yu C. Extraction and Nano-Sized Delivery Systems for Phlorotannins to Improve Its Bioavailability and Bioactivity. Mar Drugs 2021; 19:625. [PMID: 34822496 PMCID: PMC8622035 DOI: 10.3390/md19110625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
This review aims to provide an informative summary of studies on extraction and nanoencapsulation of phlorotannins to improve their bioavailability and bioactivity. The origin, structure, and different types of phlorotannins were briefly discussed, and the extraction/purification/characterization methods for phlorotannins were reviewed, with a focus on techniques to improve the bioactivities and bioavailability of phlorotannins via nano-sized delivery systems. Phlorotannins are promising natural polyphenol compounds that have displayed high bioactivities in several areas: anticancer, anti-inflammation, anti-HIV, antidiabetic, and antioxidant. This review aims to provide a useful reference for researchers working on developing better utilization strategies for phlorotannins as pharmaceuticals, therapeuticals, and functional food supplements.
Collapse
Affiliation(s)
- Tianjian Tong
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Xiaoyang Liu
- National Engineering Research Center for Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
13
|
Sugiura Y, Usui M, Katsuzaki H, Imai K, Tanaka R, Matsushita T, Miyata M. Dieckol isolated from a brown alga, Eisenia nipponica, suppresses ear swelling from allergic inflammation in mouse. J Food Biochem 2021; 45:e13659. [PMID: 33595108 DOI: 10.1111/jfbc.13659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/26/2020] [Accepted: 01/29/2021] [Indexed: 11/29/2022]
Abstract
We previously found a lipophilic fraction of the methanol/chloroform extract of a brown alga, Eisenia nipponica, that had an antiallergic effect in a murine ear swelling test. In this study, we purified the active component from the lipophilic fraction using high performance liquid chromatography and analyzed the mass and nuclear magnetic resonance spectra. This uncovered the phlorotannin dieckol, which exhibited antiallergic effects in an ear swelling test using mice sensitized by arachidonic acid, 12-O-tetradecanoylphorbol-13-acetate, and oxazolone. Mechanistic investigations indicated that dieckol suppressed degranulation, chemical mediator release, and the expression of mRNA such as cyclooxygenase-2, interleukin-6, and tumor necrosis factor-α in rat basophilic leukemia-2H3 cells. In summary, we isolated dieckol from E. nipponica and demonstrated its antiallergic mechanisms. PRACTICAL APPLICATIONS: As the incidence of allergies increases worldwide, so too does the demand for food components with antiallergic and anti-inflammatory properties. Given this trend, we focused on a brown alga that displays a variety of bioactivities. Here, we have isolated dieckol from the antiallergic lipophilic fraction of E. nipponica and found that it possesses diverse physiological activities that may prevent lifestyle-related diseases. Consequently, dieckol or the alga containing this phlorotannin could be used as a health food ingredient to combat not only allergies, but also variety of disorders including the undesirable effects of aging.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Masakatsu Usui
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Ryusuke Tanaka
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Teruo Matsushita
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Masaaki Miyata
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| |
Collapse
|
14
|
Han EJ, Kim HS, Sanjeewa KKA, Jung K, Jee Y, Jeon YJ, Fernando IPS, Ahn G. Sargassum horneri as a Functional Food Ameliorated IgE/BSA-Induced Mast Cell Activation and Passive Cutaneous Anaphylaxis in Mice. Mar Drugs 2020; 18:E594. [PMID: 33256200 PMCID: PMC7760094 DOI: 10.3390/md18120594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Sargassum horneri (S. horneri), an edible brown alga, has been proposed as a functional food with an improvement effect on abnormal skin immune responses. The present study investigates the anti-allergic effect of an ethanol extract from S. horneri (SHE) on immunoglobulin E (IgE)/bovine serum albumin (BSA)-mediated activation in bone marrow-derived cultured-mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) reaction in mice. SHE markedly and dose-dependently suppressed the degranulation of BMCMCs by reducing the β-hexosaminidase and histamine release without cytotoxicity. In addition, SHE significantly decreased the FcεRI expression on the surface of BMCMCs and its IgE binding. Moreover, SHE reduced the mRNA expression and the production of allergic cytokines; interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-10, IL-13; interferon (IFN)-γ and/or tumor necrosis factor (TNF)-α; and a chemokine, thymus and activation-regulated chemokine (TARC), by suppressing the activation of Src-family kinases and nuclear factor (NF)-κB signaling. In further study, the application of SHE reduced the PCA reaction in an IgE/BSA-induced type I allergic mice model. Taken together, we suggest that SHE has an anti-allergic effect in type I allergic responses.
Collapse
Affiliation(s)
- Eui Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea;
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Janghang-eup, Seocheon 33662, Korea;
| | - Kalu Kapuge Asanka Sanjeewa
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea; (K.K.A.S.); (Y.-J.J.)
| | - Kyungsook Jung
- Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Korea;
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea; (K.K.A.S.); (Y.-J.J.)
| | - Ilekuttige Priyan Shanura Fernando
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
- Control Center for Aquatic Animal Diseases, Chonnam National University, Yeosu 59626, Korea
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
| |
Collapse
|
15
|
Cotas J, Leandro A, Monteiro P, Pacheco D, Figueirinha A, Gonçalves AMM, da Silva GJ, Pereira L. Seaweed Phenolics: From Extraction to Applications. Mar Drugs 2020; 18:E384. [PMID: 32722220 PMCID: PMC7460554 DOI: 10.3390/md18080384] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Seaweeds have attracted high interest in recent years due to their chemical and bioactive properties to find new molecules with valuable applications for humankind. Phenolic compounds are the group of metabolites with the most structural variation and the highest content in seaweeds. The most researched seaweed polyphenol class is the phlorotannins, which are specifically synthesized by brown seaweeds, but there are other polyphenolic compounds, such as bromophenols, flavonoids, phenolic terpenoids, and mycosporine-like amino acids. The compounds already discovered and characterized demonstrate a full range of bioactivities and potential future applications in various industrial sectors. This review focuses on the extraction, purification, and future applications of seaweed phenolic compounds based on the bioactive properties described in the literature. It also intends to provide a comprehensive insight into the phenolic compounds in seaweed.
Collapse
Affiliation(s)
- João Cotas
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Pedro Monteiro
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.M.); (G.J.d.S.)
| | - Diana Pacheco
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Artur Figueirinha
- LAQV, REQUIMTE, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana M. M. Gonçalves
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.M.); (G.J.d.S.)
| | - Leonel Pereira
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
16
|
5-Bromo-3,4-dihydroxybenzaldehyde from Polysiphonia morrowii attenuate IgE/BSA-stimulated mast cell activation and passive cutaneous anaphylaxis in mice. Biochem Pharmacol 2020; 178:114087. [PMID: 32531348 DOI: 10.1016/j.bcp.2020.114087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
The present study investigates the anti-allergic activity of the marine algal bromophenol, 3-bromo-4,5-dihydroxybenzaldehyde (BDB), isolated from Polysiphonia morrowii Harvey in immunoglobulin (Ig)E/bovine serum albumin (BSA)-stimulated mouse bone marrow-derived cultured mast cells (BMCMCs) and a passive cutaneous anaphylaxis (PCA) mice ear model. BDB effectively inhibited β-hexosaminidase release (IC50 = 80.12 µM), in IgE/BSA-stimulated BMCMCs without a cytotoxic response. Also, BDB down-regulated the expression or secretion of cytokines, interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-10, IL-13, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α and the chemokine (thymus and activation-regulated chemokine (TARC). The above effects could be attributed to the dose-dependent decrease of FcεRI expression on the surface of BMCMCs and its stable IgE binding. Moreover, BDB suppressed the nuclear factor (NF)-κB and spleen tyrosine kinase (SYK)-linker for T-cell activation (LAT)-GRB2 associated binding protein 2 (Gab2) signaling axis activated by IgE/BSA stimulation. Furthermore, oral administration of BDB to IgE-sensitized mice effectively attenuated IgE-triggered PCA reaction. Collectively, the anti-allergic effects of BDB suggest its potential applicability as a candidate for in-depth test trials.
Collapse
|
17
|
Anti-allergy effect of mojabanchromanol isolated from Sargassum horneri in bone marrow-derived cultured mast cells. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Han EJ, Kim HS, Sanjeewa K, Herath K, Jeon YJ, Jee Y, Lee J, Kim T, Shim SY, Ahn G. Eckol from Ecklonia cava Suppresses Immunoglobulin E-mediated Mast Cell Activation and Passive Cutaneous Anaphylaxis in Mice. Nutrients 2020; 12:E1361. [PMID: 32397556 PMCID: PMC7284712 DOI: 10.3390/nu12051361] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Eckol, a precursor compound belonging to the dibenzo-1,4-dioxin class of phlorotannins, is a phloroglucinol derivative that exerts various activities. In the present study, we investigated the antiallergic effects of eckol isolated from the marine brown algae, Ecklonia cava using immunoglobulin E (IgE)/bovine serum albumin (BSA)-stimulated mouse bone marrow-derived cultured mast cells (BMCMC) and a mouse model of anaphylaxis. Eckol inhibited IgE/BSA-induced BMCMC degranulation by reducing β-hexosaminidase release. A flow cytometric analysis revealed that eckol decreases FcεRI expression on cell surface and IgE binding to the FcεRI in BMCMC. Moreover, eckol suppressed the production of the cytokines, interleukin (IL)-4, IL-5, IL-6, and IL-13 and the chemokine, thymus activation-regulated chemokine (TARC) by downregulating, IκB-α degradation and NF-κB nuclear translocation. Furthermore, it attenuated the passive cutaneous anaphylactic reaction induced by IgE/BSA-stimulation in the ear of BALB/c mice. These results suggest that eckol is a potential therapeutic candidate for the prevention and treatment of allergic disorders.
Collapse
Affiliation(s)
- Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea;
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea;
| | - K.K.A. Sanjeewa
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (K.K.A.S.); (Y.-J.J.)
| | - K.H.I.N.M. Herath
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (Y.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (K.K.A.S.); (Y.-J.J.)
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (Y.J.)
| | - Jeongjun Lee
- Naturetech, 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungbuk 27858, Korea; (J.L.); (T.K.)
| | - Taehee Kim
- Naturetech, 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungbuk 27858, Korea; (J.L.); (T.K.)
| | - Sun-Yup Shim
- Fisheries Science Institute, Chonnam National University, Daehak-Ro, Yeosu 59626, Korea
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea;
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
19
|
Rosa GP, Tavares WR, Sousa PMC, Pagès AK, Seca AML, Pinto DCGA. Seaweed Secondary Metabolites with Beneficial Health Effects: An Overview of Successes in In Vivo Studies and Clinical Trials. Mar Drugs 2019; 18:E8. [PMID: 31861879 PMCID: PMC7024274 DOI: 10.3390/md18010008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Macroalgae are increasingly viewed as a source of secondary metabolites with great potential for the development of new drugs. In this development, in vitro studies are only the first step in a long process, while in vivo studies and clinical trials are the most revealing stages of the true potential and limitations that a given metabolite may have as a new drug. This literature review aims to give a critical overview of the secondary metabolites that reveal the most interesting results in these two steps. Phlorotannins show great pharmaceutical potential in in vivo models and, among the several examples, the anti-dyslipidemia activity of dieckol must be highlighted because it was more effective than lovastatin in an in vivo model. The IRLIIVLMPILMA tridecapeptide that exhibits an in vivo level of activity similar to the hypotensive clinical drug captopril should still be stressed, as well as griffithsin which showed such stunning results over a variety of animal models and which will probably move onto clinical trials soon. Regarding clinical trials, studies with pure algal metabolites are scarce, limited to those carried out with kahalalide F and fucoxanthin. The majority of clinical trials currently aim to ascertain the effect of algae consumption, as extracts or fractions, on obesity and diabetes.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
| | - Wilson R. Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Aida K. Pagès
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Barbosa M, Lopes G, Andrade PB, Valentão P. Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Abstract
Natural marine-derived compounds show excellent biological activities. Isolation, characterization and applications of marine derived compounds show a promising way to develop novel drugs to treat various diseases. Phlorotannins are one of the main compounds which are commonly isolated from the brown seaweeds. The structural unit of phlorotannins is made-up of polyphenolic units. Due to the unique structures, phlorotannins show a variety of biological activities such as antibacterial, antioxidant, anti-inflammatory, antiproliferative, antitumor, antidiabetics, radio protective, antiadipogenic, and anti-allergic effects. In the current chapter, we have discussed general information on phlorotannins, extraction procedure and their biological activities in detail. From the scientific literature, phlorotannins can be potentially useful in the development of pharmaceuticals, nutraceuticals and cosmeceuticals.
Collapse
|
22
|
Barbosa M, Lopes G, Valentão P, Ferreres F, Gil-Izquierdo Á, Pereira DM, Andrade PB. Edible seaweeds' phlorotannins in allergy: A natural multi-target approach. Food Chem 2018; 265:233-241. [PMID: 29884379 DOI: 10.1016/j.foodchem.2018.05.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/13/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022]
Abstract
The anti-allergenicity of phlorotannin-targeted extracts from four edible seaweed species of Fucus genus was evaluated herein for the first time. Extracts were able to act upon cellular events triggered by immunological reaction (IgE/antigen), and on cellular events downstream the Ca2+ influx caused by a chemical stimulus (calcium ionophore A23187), preventing degranulation of RBL-2H3 cells. Furthermore, a dose-dependent behaviour towards allergy-related enzymatic systems was observed for all the phlorotannin extracts. Linear correlations were found between reduction of the allergic mediators released and the total phlorotannin content, as well as between the enzyme inhibition and the amount of phlorotannins in the extracts. These results point to a multi-target anti-allergic capacity of phlorotannin-targeted extracts, which displayed effects on different critical steps of the allergic response, contributing to the valorisation of Fucus spp. both as food and for nutraceutical applications.
Collapse
Affiliation(s)
- Mariana Barbosa
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Graciliana Lopes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Koirala P, Jung HA, Choi JS. Recent advances in pharmacological research on Ecklonia species: a review. Arch Pharm Res 2017; 40:981-1005. [PMID: 28840539 PMCID: PMC7090987 DOI: 10.1007/s12272-017-0948-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022]
Abstract
The genus Ecklonia (Lessoniaceae, Phaeophyceae), commonly called kelp (brown algae), is abundant on the coasts of Japan and Korea. During the past few decades, Ecklonia species have received tremendous attention for their wide range of therapeutic properties and multiple health benefits, such as great nutritional value and being rich in vitamins, minerals, dietary fiber, proteins, and polysaccharides. Several novel functional ingredients with diversified biological activities have been isolated and possess antimicrobial, antiviral, hepatoprotective, cardioprotective, anti-inflammatory, neuroprotective, anticarcinogenic, immunomodulatory, hypolipidemic, anti-diabetic, and antioxidant therapeutic properties. The present review discusses the phytochemical, pharmacological, therapeutic, nutritional, and health benefits of different species of genus Ecklonia, as well as their use in the prevention of disease and maintenance of good health.
Collapse
Affiliation(s)
- Prashamsa Koirala
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|