1
|
Chen L, Liu Z. BAP1-mediated ubiquitination inhibition and CAS6/AXL signaling activation in bladder cancer progression. Cytotechnology 2025; 77:95. [PMID: 40330545 PMCID: PMC12050257 DOI: 10.1007/s10616-025-00757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
This study investigates the role of BRCA1-associated protein 1 (BAP1) in regulating the ubiquitination of SP1, YAP, and PD-L1, as well as its impact on the CAS6/AXL signaling pathway in bladder cancer progression. Transcriptomic analysis was performed using the GSE3167 dataset to identify key gene expression patterns and regulatory mechanisms. A bladder cancer mouse model was established with control (NC), OE-BAP1, and KD-BAP1 groups to assess the effects of BAP1 overexpression and knockdown. Western blot analysis evaluated the expression levels of BAP1, SP1, YAP, PD-L1, CAS6, AXL, and related signaling proteins. Functional assays, including scratch, Transwell, and colony formation, were conducted to assess cell migratory, invasive, and proliferative capacities. Additional groups included BAP1, SP1 inhibitor, BAP1 + SP1 inhibitor, SP1 + anti-PD-L1 monoclonal antibody, and BAP1 + SP1 + anti-PD-L1 combination to evaluate the interplay of these regulatory mechanisms. BAP1 overexpression significantly increased the expression of SP1, YAP, PD-L1, CAS6, AXL, and downstream signaling proteins (PI3K, STAT3, ERK½, MMP-2, and MMP-9), while BAP1 knockdown reduced their levels. Functional assays showed that the BAP1 group exhibited significantly enhanced migratory, invasive, and proliferative abilities compared to controls. Inhibiting SP1 or combining SP1 inhibition with anti-PD-L1 treatment effectively reduced migration, invasion, and proliferation, particularly after 48 h. BAP1 promotes bladder cancer progression by inhibiting the ubiquitination of SP1, YAP, and PD-L1 and activating the CAS6/AXL signaling pathway. These findings highlight BAP1 as a potential therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Liang Chen
- Department of Urology Surgery, Feicheng People’s Hospital, Tai’an, China
| | - Zhenjun Liu
- Department of Special Inspection, Tai’an Public Health Medical Center, 336 Wanguan Street, Changcheng Road West, Taishan District, 271000 Shandong Tai’an City, China
| |
Collapse
|
2
|
Zhang C, Sun Q, Zhang X, Qin N, Pu Z, Gu Y, Yan C, Zhu M, Dai J, Wang C, Li N, Jin G, Ma H, Hu Z, Zhang E, Tan F, Shen H. Gene amplification-driven RNA methyltransferase KIAA1429 promotes tumorigenesis by regulating BTG2 via m6A-YTHDF2-dependent in lung adenocarcinoma. Cancer Commun (Lond) 2022; 42:609-626. [PMID: 35730068 PMCID: PMC9257983 DOI: 10.1002/cac2.12325] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background Epigenetic alterations have been shown to contribute immensely to human carcinogenesis. Dynamic and reversible N6‐methyladenosine (m6A) RNA modification regulates gene expression and cell fate. However, the reasons for activation of KIAA1429 (also known as VIRMA, an RNA methyltransferase) and its underlying mechanism in lung adenocarcinoma (LUAD) remain largely unexplored. In this study, we aimed to clarify the oncogenic role of KIAA1429 in the tumorigenesis of LUAD. Methods Whole‐genome sequencing and transcriptome sequencing of LUAD data were used to analyze the gene amplification of RNA methyltransferase. The in vitro and in vivo functions of KIAA1429 were investigated. Transcriptome sequencing, methylated RNA immunoprecipitation sequencing (MeRIP‐seq), m6A dot blot assays and RNA immunoprecipitation (RIP) were performed to confirm the modified gene mediated by KIAA1429. RNA stability assays were used to detect the half‐life of the target gene. Results Copy number amplification drove higher expression of KIAA1429 in LUAD, which was correlated with poor overall survival. Manipulating the expression of KIAA1429 could regulate the proliferation and metastasis of LUAD. Mechanistically, the target genes of KIAA1429‐mediated m6A modification were confirmed by transcriptome sequencing and MeRIP‐seq assays. We also revealed that KIAA1429 could regulate BTG2 expression in an m6A‐dependent manner. Knockdown of KIAA1429 significantly decreased the m6A levels of BTG2 mRNA, leading to enhanced YTH m6A RNA binding protein 2 (YTHDF2, the m6A “reader”)‐dependent BTG2 mRNA stability and promoted the expression of BTG2; thus, participating in the tumorigenesis of LUAD. Conclusions Our data revealed the activation mechanism and important role of KIAA1429 in LUAD tumorigenesis, which may provide a novel view on the targeted molecular therapy of LUAD.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, P. R. China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Qi Sun
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Xu Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zhening Pu
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Yayun Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Ni Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, P. R. China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Research Unit of Prospective Cohort of Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, 100142, P. R. China
| |
Collapse
|
3
|
Zhu J, Lu Z, Ke M, Cai X. Sp1 is overexpressed and associated with progression and poor prognosis in bladder urothelial carcinoma patients. Int Urol Nephrol 2022; 54:1505-1512. [PMID: 35467245 DOI: 10.1007/s11255-022-03212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Specificity protein 1 (Sp1) is a transcription factor that exerts key functions in the carcinogenesis and progression of various types of cancer. However, its expression and prognostic value in bladder urothelial carcinoma (BUC) have yet to be completely elucidated. METHODS The present study performed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to examine Sp1 mRNA expression in 12 pairs of urothelial carcinoma and adjacent normal bladder tissues. Immunohistochemistry (IHC) was performed in 113 paraffin-embedded urothelial carcinoma tissues to detect the expression of Sp1. Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the correlation between Sp1 expression and patient prognosis. RESULTS The mRNA expression of Sp1 was elevated in the urothelial carcinoma by RT-qPCR compared with their paired normal bladder tissues. Among 113 cases of patients with urothelial carcinoma, there were 39 low histological grade and 74 high histological grade, 61 unifocal tumor and 52 multifocal tumor, 78 cases in Ta, T1, and T2 stages, and 35 cases in T3 and T4 stages. The enhanced expression of Sp1 mRNA was observed in tumors with a high histological grade, and invasive and metastatic samples. Immunohistochemistry revealed that Sp1 high expression was significantly correlated with the histological grade, tumor stage, vascular invasion, lymph node metastasis and distant metastasis (P < 0.05). Kaplan-Meier analysis demonstrated that elevated Sp1 expression in cancer tissue was correlated with a significantly poor overall survival (OS) and disease-free survival (DFS) compared with samples with low Sp1 expression (P < 0.05). Multivariate analyses by Cox's proportional hazard model also revealed that the expression of Sp1 was an independent prognostic factor in urothelial carcinoma. CONCLUSION Sp1 expression is significantly elevated in urothelial carcinoma and may be used to identify a subset of patients with aggressive behaviors and poor clinical outcomes. Sp1 is a potential novel independent prognostic biomarker for patients with urothelial carcinoma following surgery.
Collapse
Affiliation(s)
- Jialiang Zhu
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Taizhou, 317000, Zhejiang Province, People's Republic of China
| | - Ziwen Lu
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Taizhou, 317000, Zhejiang Province, People's Republic of China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Taizhou, 317000, Zhejiang Province, People's Republic of China
| | - Xianguo Cai
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Taizhou, 317000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
4
|
Wang R, Wang R, Tian J, Wang J, Tang H, Wu T, Wang H. BTG2 as a tumor target for the treatment of luminal A breast cancer. Exp Ther Med 2022; 23:339. [PMID: 35401805 PMCID: PMC8988138 DOI: 10.3892/etm.2022.11269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
As one of the most common breast cancer subtypes, luminal A breast cancer is sensitive to endocrine-based therapy and insensitive to chemotherapy. Patients with luminal A subtype of breast cancer have a relatively good prognosis compared with that of patients with other subtypes of breast cancer. However, with the increased incidence in endocrine resistance and severe side effects, simple endocrine therapy has become unsuitable for the treatment of luminal A breast cancer. Therefore, identifying novel therapeutic targets for luminal A breast cancer may accelerate the development of an effective therapeutic strategy. The bioinformatical analysis of the current study, which included KEGG and GO analyses of the GSE20437 dataset containing 24 healthy and 18 breast cancer tissue samples, identified key target genes associated with breast cancer. Moreover, survival analysis results revealed that a low expression of BTG2 was significantly associated with the low survival rate of patients with breast cancer, indicated that B-cell translocation gene 2 (BTG2) may be a potential target in breast cancer. However, BTG2 may be cancer type-dependent, as overexpression of BTG2 has been demonstrated to suppress the proliferation of pancreatic and lung cancer cells, but promote the proliferation of bladder cancer cells. Since the association between BTG2 and luminal A-subtype breast cancer remains unclear, it is important to understand the biological function of BTG2 in luminal A breast cancer. Based on the expression levels of estrogen receptor, progesterone receptor and human epidermal growth factor receptor, MCF-7 cells were selected in the present study as a luminal A breast cancer cell type. MTT, Transwell invasion and wound healing assays revealed that overexpression of BTG2 suppressed the levels of MCF-7 cell proliferation, migration and invasion. In addition, the downregulation of BTG2 at the mRNA and protein level was also confirmed in luminal A breast tumor tissue, which was consistent with the results in vitro. These results indicated that BTG2 may act as an effective target for the treatment of luminal A breast cancer.
Collapse
Affiliation(s)
- Runzhi Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, P.R. China
| | - Ronghua Wang
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Jinjun Tian
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Jian Wang
- Department of Breast Center, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Huaxiao Tang
- Department of Pathology, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Tao Wu
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Hui Wang
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| |
Collapse
|
5
|
Lin S, Wang L, Shi Z, Zhu A, Zhang G, Hong Z, Cheng C. Circular RNA circFLNA inhibits the development of bladder carcinoma through microRNA miR-216a-3p/BTG2 axis. Bioengineered 2021; 12:11376-11389. [PMID: 34852712 PMCID: PMC8810163 DOI: 10.1080/21655979.2021.2008659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent studies have shown that circular RNA circFLNA is abnormally expressed in a variety of malignant tumors, but its role and mechanism in bladder carcinoma (BCa) are still unclear. The present paper aims to contribute to research on the effects and mechanism of circFLNA on the malignant phenotype of BCa. In this study, the expressions of circFLNA, miR-216a-3p and BTG2 in BCa and BCa cells (EJ, T24, 5637, TCC-SUP) were detected by qRT-PCR. EdU staining, colony formation, Transwell assay, wound healing assays, and sphere formation assay were used to measure the cell proliferation, viability, invasion, migration, and cell stemness of BCa cells after circFLNA overexpression. In addition, the correlation existed between miR-216a-3p and circFLNA or BTG2 was confirmed by Dual-Luciferase Reporter assay and RNA pull-down. Western blot was utilized to determine the expression of BTG2, MMP2, epithelial-mesenchymal transition (EMT)-related proteins (vimentin, E-cadherin) and stem cell-specific proteins (CD34, OCT4, SOX2). Our study confirmed that downregulated circFLNA and BTG2 expression and upregulated miR-216a-3p were found in both BCa tissues and cell lines. Meanwhile, upregulated circFLNA inhibited proliferation, invasion and migration, EMT and stemness of BCa cells. MiR-216a-3p was a target gene of circFLNA and could target BTG2. Further analysis finally demonstrated that circFLNA sponged miR-216a-3p and indirectly promoted BTG2 expression, ultimately regulating proliferation, migration, invasion and EMT of BCa cells. In conclusion, circFLNA inhibits the malignant phenotype of BCa cells and their stemness through miR-216a-3p/BTG2, thus suppressing BCa progression.
Collapse
Affiliation(s)
- Shuangquan Lin
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lei Wang
- College of Pharmacy, Nanchang Medical College, Jiangxi, China
| | - Zimin Shi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Anyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gan Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengdong Hong
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Cheng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Adnan M, Rasul A, Hussain G, Shah MA, Sarfraz I, Nageen B, Riaz A, Khalid R, Asrar M, Selamoglu Z, Adem Ş, Sarker SD. Physcion and Physcion 8-O-β-D-glucopyranoside: Natural Anthraquinones with Potential Anticancer Activities. Curr Drug Targets 2021; 22:488-504. [PMID: 33050858 DOI: 10.2174/1389450121999201013154542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
Nature has provided prodigious reservoirs of pharmacologically active compounds for drug development since times. Physcion and physcion 8-O-β-D-glucopyranoside (PG) are bioactive natural anthraquinones which exert anti-inflammatory and anticancer properties with minimum or no adverse effects. Moreover, physcion also exhibits anti-microbial and hepatoprotective properties, while PG is known to have anti-sepsis as well as ameliorative activities against dementia. This review aims to highlight the natural sources and anticancer activities of physcion and PG, along with associated mechanisms of actions. On the basis of the literature, physcion and PG regulate multitudinous cell signaling pathways through the modulation of various regulators of cell cycle, protein kinases, microRNAs, transcriptional factors, and apoptosis linked proteins resulting in the effective killing of cancerous cells in vitro as well as in vivo. Both compounds effectively suppress metastasis, furthermore, physcion acts as an inhibitor of 6PGD and also plays an important role in chemosensitization. This review article suggests that physcion and PG are potent anticancer drug candidates, but further investigations on their mechanism of action and pre-clinical trials are mandatory in order to comprehend the full potential of these natural cancer killers in anticancer remedies.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rida Khalid
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Cankiri Karatekin University, UluyazI Campus Cankiri, Turkey
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, England, United Kingdom
| |
Collapse
|
7
|
Silencing of miR-152 contributes to DNMT1-mediated CpG methylation of the PTEN promoter in bladder cancer. Life Sci 2020; 261:118311. [PMID: 32861793 DOI: 10.1016/j.lfs.2020.118311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
AIM Bladder cancer (BCa) is one of the most commonly occurring urological malignancy. DNA methylation mediated by DNA methyltransferase 1 (DNMT1) plays a crucial role in the physiological and pathological processes of cancer. However, the role of upstream regulatory factors and downstream target genes of DNA methylation mediated by DNMT1 needs further study in BCa. We aim to discover the upstream regulatory factor and downstream target gene of DNMT1, which form a signaling pathway to regulate the progression of BCa. MAIN METHODS DNMT1 expression in BCa tissues and cells was detected by qPCR and Western Blot. Balbc/nu/nu mice were used to determine the relationship between DNMT1 expression and tumor growth. CCK8, EdU, and transwell assays were employed to measure cell viability, proliferation, and migration respectively. RNA immunoprecipitation (RIP) assays and dual luciferase reporter assays were applied to determine the relationships among DNMT1, miR-152-3p and PTEN. KEY FINDINGS A significant up-regulation of DNMT1 in BCa tissues and cells, and silencing of DNMT1 expression inhibited the tumor growth in vivo. Knockdown of DNMT1 inhibited the cell growth and migration of BCa cells. miR-152-3p inhibited the DNMT1 and over-expression of DNMT1 restored the cellular function of miR-152-3p in BCa cells. DNMT1 regulated the phosphatase and tensin homolog (PTEN) expression via modulating the status of DNA methylation in the promoter of PTEN. SIGNIFICANCE This study confirmed the role and underlying mechanism of DNMT1-mediated DNA methylation and displayed a novel regulatory pathway miR-152/DNMT1/PTEN in BCa, thus, providing a potential diagnostic and therapeutic targets for BCa.
Collapse
|
8
|
DNA Methylation as a Therapeutic Target for Bladder Cancer. Cells 2020; 9:cells9081850. [PMID: 32784599 PMCID: PMC7463638 DOI: 10.3390/cells9081850] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is the tenth most frequent cancer worldwide and is associated with high mortality when diagnosed in its most aggressive form, which is not reverted by the current treatment options. Thus, the development of new therapeutic strategies, either alternative or complementary to the current ones, is of major importance. The disruption of normal epigenetic mechanisms, namely, DNA methylation, is a known early event in cancer development. Consequently, DNA methyltransferase (DNMT) inhibitors constitute a promising therapeutic target for the treatment of BC. Although these inhibitors, mainly nucleoside analogues such as 5-azacytidine (5-aza) and decitabine (DAC), cause re-expression of tumor suppressor genes, inhibition of tumor cell growth, and increased apoptosis in BC experimental models and clinical trials, they also show important drawbacks that prevent their use as a valuable option for the treatment of BC. However, their combination with chemotherapy and/or immune-checkpoint inhibitors could aid in their implementation in the clinical practice. Here, we provide a comprehensive review of the studies exploring the effects of DNA methylation inhibition using DNMTs inhibitors in BC, from in vitro and in vivo studies to clinical trials.
Collapse
|
9
|
Wojtczyk-Miaskowska A, Schlichtholz B. Tobacco carcinogens and the methionine metabolism in human bladder cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 782:108281. [PMID: 31843138 DOI: 10.1016/j.mrrev.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023]
Abstract
Cigarette smoking is a strong risk factor for bladder cancer. It has been shown that the duration of smoking is associated with a poor prognosis and a higher risk of recurrence. This is due to tobacco carcinogens forming adducts with DNA and proteins that participate in the DNA repair mechanisms. Additionally, polymorphisms of genes responsible for methyl group transfer in the methionine cycle and dosages of vitamins (from diet and supplements) can cause an increased risk of bladder cancer. Upregulated DNA methyltransferase 1 expression and activity results in a high level of methylated products of metabolism, as well as hypermethylation of tumor suppressor genes. The development of a market that provides new inhibitors of DNA methyltransferase or alternatives for current smokers is essential not only for patients but also for people who are under the danger of secondhand smoking and can experience its long-term exposure consequences.
Collapse
Affiliation(s)
- A Wojtczyk-Miaskowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland.
| | - B Schlichtholz
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|
10
|
Zheng F, Zhao Y, Li X, Tang Q, Wu J, Wu W, Hann SS. The repression and reciprocal interaction of DNA methyltransferase 1 and specificity protein 1 contributes to the inhibition of MET expression by the combination of Chinese herbal medicine FZKA decoction and erlotinib. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111928. [PMID: 31077779 DOI: 10.1016/j.jep.2019.111928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal medicine Fuzheng Kang-Ai (FZKA) decoction obtained from Guangdong Kangmei Pharmaceutical Company, which contains 12 components with different types of constituents, has been used as part of the adjuvant treatment of lung cancer for decades. We previously showed that FZKA decoction enhances the growth inhibition of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-resistant non-small cell lung cancer (NSCLC) cells by suppressing glycoprotein mucin 1 (MUC1) expression. However, the molecular mechanism underlying the therapeutic potential, particularly in sensitizing or/and enhancing the anti-lung cancer effect of EGFR-TKIs, remains unclear. MATERIALS AND METHODS Cell viability was measured using 3-(4, 5-diMEThylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and 5-ethynyl -2'-deoxyuridine (EdU) assays. Western blot analysis was performed to examine the protein expressions of DNA methyltransferase 1 (DNMT1), specificity protein 1 (SP1), and MET, an oncogene encoding for a trans-membrane tyrosine kinase receptor activated by the hepatocyte growth factor (HGF). The expression of MET mRNA was measured by quantitative real-time PCR (qRT-PCR). Exogenous expression of DNMT1 and SP1, and MET were carried out by transient transfection assays. The promoter activity of MET was tested using Dual-luciferase reporter assays. A nude mouse xenografted tumor model further evaluated the effect of the combination of FZKA decoction and erlotinib in vivo. RESULTS The combination of FZKA and erlotinib produced an even greater inhibition of NSCLC cell growth. FZKA decreased the expressions of DNMT1, SP1, and MET (c-MET) proteins, and the combination of FZKA and erlotinib demonstrated enhanced responses. Interestingly, there was a mutual regulation of DNMT1 and SP1. In addition, exogenously expressed DNMT1 and SP1 blocked the FZKA-inhibited c-MET expression. Moreover, excessive expressed MET neutralized FZKA-inhibited growth of NSCLC cells. FZKA decreased the mRNA and promoter activity of c-MET, which was not observed in cells with ectopic expressed DNMT1 gene. Similar findings were observed in vivo. CONCLUSION FZKA decreases MET gene expression through the repression and mutual regulation of DNMT1 and SP1 in vitro and in vivo. This leads to inhibit the growth of human lung cancer cells. The combination of FZKA and EGFR-TKI erlotinib exhibits synergy in this process. The regulatory loops among the DNMT1, SP1 and MET converge in the overall effects of FZKA and EGFR-TKI erlotinib. This in vitro and in vivo study clarifies an additional novel molecular mechanism underlying the anti-lung cancer effects in response to the combination of FZKA and erlotinib in gefitinib-resistant NSCLC cells.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - YueYang Zhao
- Laboratory of Tumor Biology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China; Department of Medical Oncology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Xiong Li
- Central Laboratory, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - JingJing Wu
- Laboratory of Tumor Biology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - WanYin Wu
- Department of Medical Oncology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
11
|
Translational downregulation of Twist1 expression by antiproliferative gene, B-cell translocation gene 2, in the triple negative breast cancer cells. Cell Death Dis 2019; 10:410. [PMID: 31138781 PMCID: PMC6538657 DOI: 10.1038/s41419-019-1640-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
Twist1, a key transcription factor regulating epithelial–mesenchymal transition and cancer metastasis, is highly expressed in invasive cancers in contrast to the loss of BTG2/TIS21 expression. Based on our observation that forced expression of BTG2/TIS21 downregulated Twist1 protein expression without altering mRNA level, we investigated molecular mechanisms of the BTG2/TIS21-inhibited Twist1 translation in the triple negative breast cancer (TNBC) cells and in vivo BTG2/TIS21-knockout (KO) mice and human breast cancer tissues. (1) C-terminal domain of Twist1 and Box B of BTG2/TIS21 interacted with each other, which abrogated Twist1 activity. (2) BTG2/TIS21 inhibited translational initiation by depleting eIF4E availability via inhibiting 4EBP1 phosphorylation. (3) Expression of BTG2/TIS21 maintained p-eIF2α that downregulates initiation of protein translation, confirmed by eIF2α-AA mutant expression and BTG2/TIS21 knockdown in MEF cells. (4) cDNA microarray analysis revealed significantly higher expression of initiation factors-eIF2A, eIF3A, and eIF4G2-in the BTG2/TIS21-KO mouse than that in the wild type. (5) BTG2/TIS21-inhibited translation initiation lead to the collapse of polysome formation and the huge peak of 80s monomer in the BTG2/TIS21 expresser, but not in the control. (6) mRNAs and protein expressions of elongation factors were also downregulated by BTG2/TIS21 expression in TNBC cells, but much higher in both TIS21-KO mice and lymph node-positive human breast cancers. (7) BTG2/TIS21-mediated Twist1 loss was not due to the protein degradation by ubiquitination and autophagy activation. (8) Twist1 protein level was significantly higher in various organs of TIS21-KO mice compared with that in the control, indicating the in vivo role of BTG2/TIS21 gene in the regulation of Twist1 protein level. Altogether, the present study support our hypothesis that BTG2/TIS21 is a promising target to combat with metastatic cancers with high level of Twist1 without BTG2/TIS21 expression.
Collapse
|
12
|
Yan H, Li J, Ying Y, Xie H, Chen H, Xu X, Zheng X. MIR-300 in the imprinted DLK1-DIO3 domain suppresses the migration of bladder cancer by regulating the SP1/MMP9 pathway. Cell Cycle 2018; 17:2790-2801. [PMID: 30526300 DOI: 10.1080/15384101.2018.1557490] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging research has suggested that miRNAs play a significant role in oncogenesis and tumor progression by regulating multiple molecular pathways. Here, we investigated miR-300, which inhibited bladder cancer (BCa) migration by regulating the SP1/MMP9 pathway. miR-300, belonging to the DLK1-DIO3 miRNA cluster, is frequently expressed at lower levels in BCa tissue than in adjacent normal tissue due to DNA methylation. Reinforced expression of miR-300 significantly suppressed the migration of BCa cells. We carried out a search of online databases to predict potential targets of miR-300. Further studies determined that miR-300 directly targeted SP1 and suppressed its expression by specifically binding to its 3'-untranslated region. Meanwhile, downregulated MMP9 may be the final effector of BCa cell mobility. Small interference RNAs silencing SP1 phenocopied the effects of miR-300 overexpression, while restoration of SP1 expression partially rescued the inhibition of metastasis induced by miR-300 overexpression in BCa cells. In conclusion, we unveiled a miR-300/SP1/MMP9 pathway in BCa. These findings demonstrate that miR-300 is a promising tumor suppressor in BCa.
Collapse
Affiliation(s)
- Huaqing Yan
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Jiangfeng Li
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Yufan Ying
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Haiyun Xie
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Hong Chen
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Xin Xu
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Xiangyi Zheng
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| |
Collapse
|
13
|
Sundaramoorthy S, Devanand P, Ryu MS, Song KY, Noh DY, Lim IK. TIS21 /BTG2 inhibits breast cancer growth and progression by differential regulation of mTORc1 and mTORc2-AKT1-NFAT1-PHLPP2 signaling axis. J Cancer Res Clin Oncol 2018; 144:1445-1462. [PMID: 29808317 DOI: 10.1007/s00432-018-2677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/21/2018] [Indexed: 10/25/2022]
Abstract
PURPOSE It has been reported that PI3K/AKT pathway is altered in various cancers and AKT isoforms specifically regulate cell growth and metastasis of cancer cells; AKT1, but not AKT2, reduces invasion of cancer cells but maintains cancer growth. We propose here a novel mechanism of the tumor suppresser, TIS21/BTG2, that inhibits both growth and invasion of triple negative breast cancer cells via AKT1 activation by differential regulation of mTORc1 and mTORc2 activity. METHODS Transduction of adenovirus carrying TIS21/BTG2 gene and transfection of short interfering RNAs were employed to regulate TIS21/BTG2 gene expression in various cell lines. Treatment of mTOR inhibitors and mTOR kinase assays can evaluate the role of mTORc in the regulation of AKT phosphorylation at S473 residue by TIS21/BTG2 in breast cancer cells. Open data and immunohistochemical analysis were performed to confirm the role of TIS21/BTG2 expression in various human breast cancer tissues. RESULTS We observed that TIS21/BTG2 inhibited mTORc1 activity by reducing Raptor-mTOR interaction along with upregulation of tsc1 expression, which lead to significant reduction of p70S6K activation as opposed to AKT1S473, but not AKT2, phosphorylation via downregulating PHLPP2 (AKT1-specific phosphatase) in breast cancers. TIS21/BTG2-induced pAKTS473 required Rictor-bound mTOR kinase, indicating activation of mTORc2 by TIS21/BTG2 gene. Additionally, the TIS21/BTG2-induced pAKTS473 could reduce expression of NFAT1 (nuclear factor of activated T cells) and its target genes, which regulate cancer microenvironment. CONCLUSIONS TIS21/BTG2 significantly lost in the infiltrating ductal carcinoma, but it can inhibit cancer growth via the TIS21/BTG2-tsc1/2-mTORc1-p70S6K axis and downregulate cancer progression via the TIS21/BTG2-mTORc2-AKT1-NFAT1-PHLPP2 pathway.
Collapse
Affiliation(s)
- Santhoshkumar Sundaramoorthy
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Preethi Devanand
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Min Sook Ryu
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, 156-756, Republic of Korea
| | - Dong Young Noh
- Department of Surgery, Seoul National University, Seoul, 03080, Republic of Korea
| | - In Kyoung Lim
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
14
|
Marques-Magalhães Â, Graça I, Henrique R, Jerónimo C. Targeting DNA Methyltranferases in Urological Tumors. Front Pharmacol 2018; 9:366. [PMID: 29706891 PMCID: PMC5909196 DOI: 10.3389/fphar.2018.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Devanand P, Oya Y, Sundaramoorthy S, Song KY, Watanabe T, Kobayashi Y, Shimizu Y, Hong SA, Suganuma M, Lim IK. Inhibition of TNFα-interacting protein α (Tipα)-associated gastric carcinogenesis by BTG2 /TIS21 via downregulating cytoplasmic nucleolin expression. Exp Mol Med 2018; 50:e449. [PMID: 29472702 PMCID: PMC5903828 DOI: 10.1038/emm.2017.281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
To understand the regulation of Helicobacter pylori (H. pylori)-associated gastric carcinogenesis, we examined the effect of B-cell translocation gene 2 (BTG2) expression on the biological activity of Tipα, an oncoprotein secreted from H. pylori. BTG2, the human ortholog of mouse TIS21 (BTG2/TIS21), has been reported to be a primary response gene that is transiently expressed in response to various stimulations. Here, we report that BTG2 is constitutively expressed in the mucous epithelium and parietal cells of the gastric gland in the stomach. Expression was increased in the mucous epithelium following H. pylori infection in contrast to its loss in human gastric adenocarcinoma. Indeed, adenoviral transduction of BTG2/TIS21 significantly inhibited Tipα activity in MKN-1 and MGT-40, human and mouse gastric cancer cells, respectively, thereby downregulating tumor necrosis factor-α (TNFα) expression and Erk1/2 phosphorylation by reducing expression of nucleolin, a Tipα receptor. Chromatin immunoprecipitation proved that BTG2/TIS21 inhibited Sp1 expression and its binding to the promoter of the nucleolin gene. In addition, BTG2/TIS21 expression significantly reduced membrane-localized nucleolin expression in cancer cells, and the loss of BTG2/TIS21 expression induced cytoplasmic nucleolin availability in gastric cancer tissues, as evidenced by immunoblotting and immunohistochemistry. Higher expression of BTG2 and lower expression of nucleolin were accompanied with better overall survival of poorly differentiated gastric cancer patients. This is the first report showing that BTG2/TIS21 inhibits nucleolin expression via Sp1 binding, which might be associated with the inhibition of H. pylori-induced carcinogenesis. We suggest that BTG2/TIS21 is a potential inhibitor of nucleolin in the cytoplasm, leading to inhibition of carcinogenesis after H. pylori infection.
Collapse
Affiliation(s)
- Preethi Devanand
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| | - Yukiko Oya
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Santhoshkumar Sundaramoorthy
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tatsuro Watanabe
- Department of Clinical Laboratory of Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | - Soon Auck Hong
- Department of Pathology, Soonchunhyang Cheonan hospital, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - In Kyoung Lim
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
16
|
Chen X, Guo H, Li F, Fan D. Physcion 8-O-β-glucopyranoside suppresses the metastasis of breast cancer in vitro and in vivo by modulating DNMT1. Pharmacol Rep 2017; 69:36-44. [DOI: 10.1016/j.pharep.2016.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 01/07/2023]
|
17
|
Wang Q, Wang Y, Xing Y, Yan Y, Guo P, Zhuang J, Qin F, Zhang J. RETRACTED: Physcion 8-O-β-glucopyranoside induces apoptosis, suppresses invasion and inhibits epithelial to mesenchymal transition of hepatocellular carcinoma HepG2 cells. Biomed Pharmacother 2016; 83:372-380. [PMID: 27416558 DOI: 10.1016/j.biopha.2016.06.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 06/22/2016] [Accepted: 06/25/2016] [Indexed: 12/12/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Panels from Figure 4A appear similar to panels from Figure 1 of the article previously published by Z. Ding, F. Xu, J. Tang, G. Li, P. Jiang, Z. Tang and H. Wu in Neoplasma 63(3) (2016) 351–361 http://www.elis.sk/index.php?page=shop.product_details&flypage=flypage.tpl&product_id=4703&category_id=128&option=com_virtuemart&vmcchk=1&Itemid=1. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Qiang Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yong Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yuqing Xing
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yi Yan
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Peng Guo
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jianguang Zhuang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Fawei Qin
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jie Zhang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
18
|
Gao SS, Yang XH, Wang M. Inhibitory effects of B-cell translocation gene 2 on skin cancer cells via the Wnt/β-catenin signaling pathway. Mol Med Rep 2016; 14:3464-8. [DOI: 10.3892/mmr.2016.5596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/06/2016] [Indexed: 11/05/2022] Open
|
19
|
Choi OR, Ryu MS, Lim IK. Shifting p53-induced senescence to cell death by TIS21(/BTG2/Pc3) gene through posttranslational modification of p53 protein. Cell Signal 2016; 28:1172-1185. [PMID: 27208501 DOI: 10.1016/j.cellsig.2016.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
Abstract
Cellular senescence and apoptosis can be regulated by p53 activity, although the underlying mechanism of the switch between the two events remains largely unknown. Cells exposed to cancer chemotherapy can escape to senescence phenotype rather than undergoing apoptosis. By employing adenoviral transduction of p53 or TIS21 genes, we observed shifting of p53 induced-senescence to apoptosis in EJ bladder cancer cells, which express H-RasV12 and mutant p53; transduction of p53 increased H-RasV12 expression along with senescence phenotypes, whereas coexpression with TIS21 (p53+TIS21) induced cell death rather than senescence. The TIS21-mediated switch of senescence to apoptosis was accompanied by nuclear translocation of p53 protein and its modifications on Ser-15 and Ser-46 phosphorylation and acetylations on Lys-120, -320, -373 and -382 residues. Mechanistically, TIS21(/BTG2) regulated posttranslational modification of p53 via enhancing miR34a and Bax expressions as opposed to inhibiting SIRT1 and Bcl2 expression. At the same time, TIS21 increased APAF-1 and p53AIP1 expressions, but inhibited the interaction of p53 with iASPP. In vitro tumorigenicity was significantly reduced in the p53+TIS21 expresser through inhibiting micro-colony proliferation by TIS21. Effect of TIS21 on the regulation of p53 activity was confirmed by knockdown of TIS21 expression by RNA interference. Therefore, we suggest TIS21 expression as an endogenous cell death inducer at the downstream of p53 gene, which might be useful for intractable cancer chemotherapy.
Collapse
Affiliation(s)
- Ok Ran Choi
- Department of Biochemistry and Molecular Biology, School of Medicine and Graduate School of Medical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Min Sook Ryu
- Department of Biochemistry and Molecular Biology, School of Medicine and Graduate School of Medical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, School of Medicine and Graduate School of Medical Sciences, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
20
|
Zhao S, Wu J, Tang Q, Zheng F, Yang L, Chen Y, Li L, Hann SS. Chinese herbal medicine Xiaoji decoction inhibited growth of lung cancer cells through AMPKα-mediated inhibition of Sp1 and DNA methyltransferase 1. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:172-181. [PMID: 26850724 DOI: 10.1016/j.jep.2016.01.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoji decoction (XJD), which was considered as a Chinese herbal prescription, has been used for cancer treatment, especially lung cancer, for decades to improve quality of life and prolong the patient survival. However, the molecular mechanisms underlying the therapeutic potential have not been well elucidated. MATERIALS AND METHODS The cell viability was examined by MTT assays. The phosphorylation and expression of AMP-activated protein kinase alpha (AMPKα), DNA methyltransferase 1 (DNMT1) and transcription factor Sp1 proteins were assessed by Western Blot. Exogenous expression of Sp1 and DNMT1 were performed by transient transfection methods. The effects of XJD on the growth of xenograft tumors were evaluated by in vivo bioluminescence imaging. RESULTS We showed that XJD inhibited growth of human non small cell lung cancer (NSCLC) cells in vitro. We also found that XJD increased phosphorylation of AMPKα and inhibited protein expression of DNTM1, the latter was not observed in the presence of the inhibitor of AMPK (compound C). Overexpression of DNTM1 reversed the effect of XJD on cell growth. In addition, XJD decreased Sp1 protein expression, which was eliminated by compound C. Conversely, exogenous expressed Sp1 abrogated XJD-inhibited DNTM1 protein expression. Interestingly, exogenous expression of DNMT1 feedback antagonized the XJD-induced phosphorylation of AMPKα. In in vivo studies, we found that XJD inhibited tumor growth in xenograft nude mice model, which was accompanied by induction of phosphorylation of AMPKα and suppression of DNMT1 protein from xenograft tumors. CONCLUSION Our results show that XJD inhibits NSCLC cell growth via AMPKα-mediated inhibition of transcription of Sp1, followed by the reduction of DNMT1 expression both in vitro and in vivo. The negative feedback regulation loop of AMPKα further demonstrates the critical role of DNMT1 in mediating the overall effects of XJD in this process. This study unveils novel molecular mechanism by which XJD controls NSCLC cell growth.
Collapse
Affiliation(s)
- ShunYu Zhao
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Jingjing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - LiJun Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - YuQin Chen
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Liuning Li
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
21
|
Lee YY, Ryu MS, Kim HS, Suganuma M, Song KY, Lim IK. Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2. Mol Cells 2016; 39:266-79. [PMID: 26912086 PMCID: PMC4794609 DOI: 10.14348/molcells.2016.2362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 12/31/2015] [Indexed: 11/27/2022] Open
Abstract
The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) α and PKCβ1 exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. PKCα accompanied pErk1/2 to the nucleus after freeing it from PEA-15pS(104) via PKCβ1 and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of PKCα were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated PKCα expression and increased epidermal and hair follicle cell proliferation. Thus, PKCα downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear PKCα degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of PKCα expression following TPA treatment reduces pErk1/2-activated SP1 biding to the p21(WAF1) gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.
Collapse
Affiliation(s)
- Yun Yeong Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-380,
Korea
| | - Min Sook Ryu
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-380,
Korea
| | | | - Masami Suganuma
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama,
Japan
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Seoul 156-756,
Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-380,
Korea
| |
Collapse
|
22
|
Choi JA, Jung YS, Kim JY, Kim HM, Lim IK. Inhibition of breast cancer invasion by TIS21/BTG2/Pc3-Akt1-Sp1-Nox4 pathway targeting actin nucleators, mDia genes. Oncogene 2016; 35:83-93. [PMID: 25798836 DOI: 10.1038/onc.2015.64] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 01/18/2015] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
Abstract
The mammalian homolog of Drosophila diaphanous (mDia), actin nucleator, has been known to participate in the process of invasion and metastasis of cancer cells via regulating a number of actin-related biological processes. We have previously reported that tumor suppressor TIS21(/BTG2/Pc3) (TIS21) inhibits invadopodia formation by downregulating reactive oxygen species (ROS) in MDA-MB-231 cells. We herein report that TIS21(/BTG2/Pc3) downregulates diaphanous-related formin (DRF) expression via reducing NADPH oxidase 4 (Nox4)-derived ROS generation by Akt1 activation and subsequently impairs invasion activity of the highly invasive breast cancer cells. Knockdown of Akt1 by RNA interference recovered the TIS21(/BTG2/Pc3)-inhibited F-actin remodeling and ROS generation by recovering Nox4 expression. Furthermore, Sp1-mediated Nox4 transcription was downregulated by TIS21(/BTG2/Pc3)-Akt1 signals, leading to the inhibition of cancer cell invasion via F-actin remodeling by mDia genes. To our best knowledge, this is the first study to show that TIS21(/BTG2/Pc3)-Akt1 inhibited Sp1-Nox4-ROS cascade, subsequently reducing invasion activity via inhibition of mDia family genes.
Collapse
Affiliation(s)
- J-A Choi
- Departments of Biochemistry and Molecular Biology, Ajou University School of Medicine, and Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Y S Jung
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - J Y Kim
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - H M Kim
- Department of Energy Systems Research, Ajou University, Suwon, Korea
| | - I K Lim
- Departments of Biochemistry and Molecular Biology, Ajou University School of Medicine, and Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| |
Collapse
|
23
|
Wang X, Chen E, Yang X, Wang Y, Quan Z, Wu X, Luo C. 5-azacytidine inhibits the proliferation of bladder cancer cells via reversal of the aberrant hypermethylation of the hepaCAM gene. Oncol Rep 2015; 35:1375-84. [PMID: 26677113 DOI: 10.3892/or.2015.4492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte cell adhesion molecule (hepaCAM), a tumor-suppressor gene, is rarely expressed in bladder carcinoma. However, little is known concerning the mechanisms of low hepaCAM expression in bladder cancer. Abnormal hypermethylation in the promoter plays a crucial role in cancer by silencing tumor-suppressor genes, which is catalyzed by DNA methyltransferases (DNMTs). In the present study, a total of 31 bladder cancer and 22 adjacent tissues were assessed by immunohistochemistry to detect DNMT3A/3B and hepaCAM expression. Methylation of hepaCAM was determined by methylation‑specific polymerase chain reaction (MSP). The mRNA and protein levels of DNMT3A/3B and hepaCAM were determined by RT-PCR and western blot analysis after treatment with 5-azacytidine (AZAC). Following AZAC treatment, the proliferation of bladder cancer cells was detected by CCK-8 and colony formation assays. Cell cycle distribution was examined by flow cytometry. To further evaluate the tumor‑suppressive roles of AZAC and the involved mechanisms, the anti-tumorigenicity of AZAC was tested in vivo. The expression of DNMT3A/3B protein was markedly increased in the bladder carcinoma tissues (P<0.05), and had a negative linear correlation with hepaCAM expression in the same patients according to Pearson's analysis (r=-0.7176/-0.7127, P<0.05). The MSP results indicated that the hepaCAM gene was hypermethylated in three bladder cancer cell lines. Furthermore, we found that downregulation of DNMT3A/3B expression, after treatment with AZAC, reversed the hypermethylation and expression of hepaCAM in bladder cancer cells. In addition, AZAC inhibited the proliferation of bladder cancer cells and arrested cells at the G0/G1 phase. The in vivo results showed that expression of DNMT3A/3B and hepaCAM as well as tumor growth of nude mice were markedly altered which corresponded with the in vitro results. Due to the ability to reactivate expression of hepaCAM and inhibit growth of bladder cancer cells, AZAC may represent an effective treatment for bladder cancer.
Collapse
Affiliation(s)
- Xiaorong Wang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - E Chen
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Xue Yang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Yin Wang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunli Luo
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
24
|
Kiselyov A, Bunimovich-Mendrazitsky S, Startsev V. Key signaling pathways in the muscle-invasive bladder carcinoma: Clinical markers for disease modeling and optimized treatment. Int J Cancer 2015; 138:2562-9. [PMID: 26547270 DOI: 10.1002/ijc.29918] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/03/2015] [Accepted: 11/04/2015] [Indexed: 02/01/2023]
Abstract
In this review, we evaluate key molecular pathways and markers of muscle-invasive bladder cancer (MIBC). Overexpression and activation of EGFR, p63, and EMT genes are suggestive of basal MIBC subtype generally responsive to chemotherapy. Alterations in PPARγ, ERBB2/3, and FGFR3 gene products and their signaling along with deregulated p53, cytokeratins KRT5/6/14 in combination with the cellular proliferation (Ki-67), and cell cycle markers (p16) indicate the need for more radical treatment protocols. Similarly, the "bell-shape" dynamics of Shh expression levels may suggest aggressive MIBC. A panel of diverse biological markers may be suitable for simulation studies of MIBC and development of an optimized treatment protocol. We conducted a critical evaluation of PubMed/Medline and SciFinder databases related to MIBC covering the period 2009-2015. The free-text search was extended by adding the following keywords and phrases: bladder cancer, metastatic, muscle-invasive, basal, luminal, epithelial-to-mesenchymal transition, cancer stem cell, mutations, immune response, signaling, biological markers, molecular markers, mathematical models, simulation, epigenetics, transmembrane, transcription factor, kinase, predictor, prognosis. The resulting selection of ca 500 abstracts was further analyzed in order to select the latest publications relevant to MIBC molecular markers of immediate clinical significance.
Collapse
Affiliation(s)
- Alex Kiselyov
- NBIC, Moscow Institute of Physics and Technology (MIPT), 9 Institutsky per, Dolgoprudny, Moscow Region, 141700, Russia
| | | | - Vladimir Startsev
- Department of Oncology, State Pediatric Medical University, St.-Petersburg, 194100, Russia
| |
Collapse
|
25
|
Cho JJ, Chae JI, Kim KH, Cho JH, Jeon YJ, Oh HN, Yoon G, Yoon DY, Cho YS, Cho SS, Shim JH. Manumycin A from a new Streptomyces strain induces endoplasmic reticulum stress-mediated cell death through specificity protein 1 signaling in human oral squamous cell carcinoma. Int J Oncol 2015; 47:1954-62. [PMID: 26352011 DOI: 10.3892/ijo.2015.3151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/10/2015] [Indexed: 11/05/2022] Open
Abstract
Manumycin A (Manu A) is a natural antibiotic produced by new Streptomyces strain, exhibiting antitumor and anticancer effects. However, the anticancer effects of Manu A on oral squamous cell carcinoma (OSCC) have not been reported. OSCC is an aggressive type of cancer because of its poor prognosis and low survival rate despite advanced medical treatment. We observed that Manu A reduced cell growth and Sp1 protein levels in OSCC cell lines (HN22 and HSC4) in a dose- and time-dependent manner. We also observed downregulation of Sp1 downstream target genes such as p27, p21, Mcl-1 and survivin. Moreover, nuclear staining with DAPI showed that Manu A was able to cause nuclear condensation and further fragmentation. Flow cytometry analyses using Annexin V and propiodium iodide supported Manu A-mediated apoptotic cell death of OSCC cells. Furthermore, Bcl-2 family such as mitochondrial pro‑apoptotic Bax, anti-apoptotic Bcl-xl and Bid were regulated by Manu A, triggering the mitochondrial apoptotic pathway. In conclusion, these results indicate that Manu A is a potential to treat human OSCC via cell apoptosis through the downregulation of Sp1.
Collapse
Affiliation(s)
- Jung Jae Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Ka Hwi Kim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Ha Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young Sik Cho
- College of Pharmacy, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
26
|
Li J, Wang Q, Xiao B, Zhang X. Effect of internal iliac artery chemotherapy after transurethral resection of bladder tumor for muscle invasive bladder cancer. Chin J Cancer Res 2014; 26:558-63. [PMID: 25400421 DOI: 10.3978/j.issn.1000-9604.2014.10.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To evaluate the clinical effect of transurethral resection of bladder tumor (TUR-BT) combined with internal iliac artery chemotherapy and intravesical instillation therapy for muscle invasive bladder cancer (MIBC). METHODS From February 2007 to April 2014, 62 patients with MIBC were treated with TUR-BT combined with intravesical instillation therapy, with or without internal iliac artery chemotherapy, and the chemotherapy regimen is gemcitabine and cisplatin (GC). The bladder preservation and survival rate as well as cancer-specific survival (CSS) rate and overall survival (OS) rate of the two groups were compared. RESULTS Sixty-two patients were followed-up for 26-102 months with an average of 58.4±3.1 months. Recurrence-free survival (RFS) at 2-year for TUR + GC group and TUR group were 77.8% and 53.8%, respectively. Bladder preserved rate (BPR) at 3-year for TUR + GC group and TUR group were 94.4% and 80.8%. CSS rate at 2-year for TUR + GC group and TUR group were 94.4% and 84.6%. The disease-free survival (DFS) at 1-year for TUR + GC group and TUR group were 83.3% and 61.5%, and 77.8% and 53.8% for the 2(nd) year. OS at 2-year for TUR + GC group and TUR group were 88.9% and 92.3%. CONCLUSIONS TUR-BT and intravesical instillation therapy combined with internal iliac artery chemotherapy for MIBC had a better outcome at RFS, BPR and DFS than the treatment without internal iliac artery chemotherapy, and no difference in OS and CSS.
Collapse
Affiliation(s)
- Jianxing Li
- 1 Department of Urology, Beijing Tsinghua Changgung Hospital, Medical Centre, Tsinghua University, Beijing 102218, China ; 2 Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qi Wang
- 1 Department of Urology, Beijing Tsinghua Changgung Hospital, Medical Centre, Tsinghua University, Beijing 102218, China ; 2 Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Bo Xiao
- 1 Department of Urology, Beijing Tsinghua Changgung Hospital, Medical Centre, Tsinghua University, Beijing 102218, China ; 2 Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xin Zhang
- 1 Department of Urology, Beijing Tsinghua Changgung Hospital, Medical Centre, Tsinghua University, Beijing 102218, China ; 2 Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|